河南省新乡市九年级上册期末数学试卷

合集下载

河南省新乡市九年级上学期数学期末考试试卷

河南省新乡市九年级上学期数学期末考试试卷

河南省新乡市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)有下列几种说法:①角平分线上的点到角两边的距离相等;②顺次连结矩形四边中点得到的四边形是菱形;③等腰梯形的底角相等;④平行四边形是中心对称图形。

其中正确的有()A . 4个B . 3个C . 2个D . 1个2. (2分)在平面直角坐标系中,点P(2,-3)关于原点对称点P‘的坐标是()A . (-2,-3)B . (-3,-2)C . (-2,3)D . (-3,2)3. (2分)(2019·威海) 已知,是方程的两个实数根,则的值是()A . 2023B . 2021C . 2020D . 20194. (2分)二次函数的顶点坐标是()A . (3,2)B . (3,﹣2)C . (﹣3,﹣2)D . (﹣3,2)5. (2分)抛物线与轴交点的个数为()A . 0B . 1C . 2D . 以上都不对6. (2分)一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。

如果任意抛掷小正方体两次,那么下列说法正确的是()A . 得到的数字之和必然是4B . 得到的数字之和可能是3C . 得到的数字之和不可能是2D . 得到的数字之和有可能是17. (2分),则()A . 4B . 2C . 4或-2D . 4或28. (2分)用配方法解方程x2-2x-5=0时,原方程应变形为()A . (x+1)2=6B . (x-1)2=6C . (x+2)2=9D . (x-2)2=99. (2分)如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF 交于点M,如果CM=4,FM=5,则BE等于()A . 9B . 12C . 13D . 14二、填空题 (共6题;共6分)10. (1分)(2019·渝中模拟) 二次函数的顶点坐标为________。

河南省新乡市九年级上学期数学期末测试题(含答案)

河南省新乡市九年级上学期数学期末测试题(含答案)

河南省新乡市九年级上学期数学期末测试题(含答案)一、选择题(每题3分,共30分)1.在下列调查中,适宜釆用全面调查的是()A.了解我省中学生的视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率2.若a<1,化简√ ( a− 1)2- 1=()A. a− 2B. 2− aC. aD. −a3.如图,在△ABC中两条中线BE、CD相交于点O,记△DOE的面积为S1,△COB的面积为S2,则S1:S2=()A. 1:4B. 2:3C. 1:3D. 1:24.“服务他人,提升自我”,桃园学校和极开展志愿者服务活动,来自初三的5 名同学(3男2女)成立了“交通秩序维护”小分队.若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.16B.15C.25D.355.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35则BC的长是()A. 4cmB. 6cmC. 8cmD.10cm6.如图,AB是半圆的直径,D是弧AC的中点,∠ABC=50°,则∠DAB等于()A. 55° B. 60° C. 65° D. 70°7.函数y=kx与y= −kx2+k(k≠0)在同一直角坐标系中的图象可能是()8.如图,Rt△ABC中,∠ACB=90°,AC=4, BC=6,以斜边AB上的一点0为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A. 2.5B. 1.6C. 1.5D. 19.如图,在△ABC中,AB = 5, AC = 3, BC = 4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为BD̂,则图中阴影部分的面积为()A.2512π B.43π C.34π D.512π第8题第9题第10题10.如图是抛物线y1=ax2+bx + c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4, 0),直线y2=mx + n(m≠0)与抛物线交于A,B两点,下列结论:①2a + b = 0;②abc>0;③方程ax2+bx + c= 3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1其中正确的是()A.①②③B.①③④C.①③⑤D. ②④⑤二、填空题(每遇3分,丼15分)11.(−12)−1+(1−√2)0=.12.在平面直角坐标系中有两点A (6, 2),B (6, 0),以原点为位似中心,相似比为1: 3,把线段AB缩小,则A点对应点的坐标是。

河南省新乡市九年级上学期数学期末试卷

河南省新乡市九年级上学期数学期末试卷

河南省新乡市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·泸县) 在平面直角坐标系中,将点向右平移4个单位长度,得到的对应点的坐标为()A .B .C .D .2. (2分)(2020·大连模拟) 不等式的解集在数轴上表示正确的是()A .B .C .D .3. (2分) (2017九下·潍坊开学考) 下列函数中,满足y的值随x的值增大而增大的是()A . y=﹣2xB . y=3x﹣1C . y=D . y=x24. (2分) (2019九上·武汉开学考) 下列图形中,是轴对称图形的是()A .B .C .D .5. (2分) (2019七下·孝感月考) 平面坐标系中,点A(n,1-n)不可能是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)下列说法中,正确的个数有()①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5.A . 1个B . 2个C . 3个D . 4个7. (2分)(2017·蓝田模拟) 若一个正比例函数的图象经过点(﹣2,1),则这个图象也一定经过点()A . (﹣,1)B . (2,﹣1)C . (﹣1,2)D . (1,)8. (2分)下列命题中,是真命题的是()①正三角形都相似;②含45°的直角三角形都相似;③含30°的直角三角形都相似;④直角三角形斜边上的高分原三角形成的两个小三角形相似;⑤菱形都相似;⑥矩形都相似;⑦正方形都相似;⑧圆形都相似.A . ①②③④⑦⑧B . ①②③⑦⑧C . ②③⑥⑦⑧D . ①④⑤⑦⑧9. (2分)已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A . x>﹣2B . x<﹣2C . x>2D . x<310. (2分) (2019八上·昆明期末) 三角形内有一点到三角形三边的距离相等,则这个点一定是三角形的()A . 三条高的交点B . 三条角平分线的交点C . 三边中线的交点D . 三边垂直平分线的交点二、填空题 (共5题;共5分)11. (1分)已知哎平面直角坐标系xOy中,过P(1,1)的直线l与x轴、y轴正半轴交于点A,点B,若三角形AOB的面积等于3,直线l的解析式为________12. (1分)(2016·嘉善模拟) 从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为________13. (1分) (2019九上·江津期末) 等腰△ABC的腰长与底边长分别是方程x2﹣6x+8=0的两个根,则这个△ABC 的周长是________.14. (1分) (2016八上·余杭期中) 如图,在中,和的平分线相交于点,过点作交于,交于,过点作于,下列四个结论:① ;② ;③点到各边的距离相等;④设,,则.其中正确的结论是________.(填序号)15. (1分)(2018·徐汇模拟) 如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.三、解答题 (共7题;共70分)16. (10分) (2019八下·兰州期中) 如图,网格中已知△ABC三个顶点的坐标分别为(-4,3)、(-3,1)、(-1,3),按要求解决下列问题:①将△ABC向右平移1个单位长度,再向下平移4个单位长度,得到,作出;②将绕点O逆时针旋转90°,得到作出17. (15分)在如图的坐标系中,画出函数y=2与y=2x+6的图象,并结合图象求:(1)方程2x+6=0的解;(2)不等式2x+6>2的解集.18. (5分) (2019八上·洪泽期末) 如图,中,边AB、AC的垂直平分线ED、GF分别交AB、AC于点E、G,交BC于点D、F,连接AD,AF,若,求的度数.19. (5分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC 的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.20. (15分)(2018·攀枝花) 如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═,反比例函数y= 的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;(3)求S△OEB .21. (10分) (2019八上·平川期中) 直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2)(1)求直线AB所对应的函数关系式;(2)若直线AB上一点C在第一象限且点C的坐标为(a,2),求△BOC的面积.22. (10分)(2020·门头沟模拟) 如图,在中,,以为直径的交于点D,过点作的切线交于E.(1)求证:;(2)如果的直径是5,求的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共70分)16-1、17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、。

河南省新乡市九年级数学上学期期末考试试题

河南省新乡市九年级数学上学期期末考试试题

河南省新乡市九年级数学上学期期末考试试题满分120分,考试时间100分钟。

一、选择题(本大题共10小题,共30分)1.若一元二次方程的常数项是0,则m等于A.B. 3C.D. 92.下列所给图形既是中心对称图形,又是轴对称图形的是A. 正三角形B. 角C. 正方形D. 正五边形3.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋中摸出2个球,其中2个球颜色不相同的概率是A. B. C. D.4.用配方法解方程,配方后可得A. B. C. D.5.如图,是的外接圆,,则的大小为A. B.C.D.6. 将抛物线平移,得到抛物线,下列平移方式中,正确的是A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位7. 如图,是的两条切线,切点分别是,如果,那么等于A. B.C.D.8.独山县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户2014年人均纯收入为2620元,经过帮扶到2016年人均纯收入为3850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A. 2620(1+x)2=3850B. 2620(1+x)=3850C. 2620(1+2x)=3850D. 2620(1+x)2=38509.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A. ①B. ②C. ①②D. ①③10.如图是二次函数图象的一部分,对称轴为,且经过点下列说法:;;;若是抛物线上的两点,则;其中其中说法正确的是A. B.C.D.二、填空题(本大题共5小题,每题3分共15分)11. 若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+1的值为______。

九年级上册新乡数学期末试卷复习练习(Word版 含答案)

九年级上册新乡数学期末试卷复习练习(Word版 含答案)

九年级上册新乡数学期末试卷复习练习(Word 版 含答案)一、选择题1.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( )A .3cmB .6cmC .12cmD .24cm 2.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π 3.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°4.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( )A .226+B .226-+C .242+D .242 5.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( )A .8,10B .10,9C .8,9D .9,106.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4 7.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x = 8.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大.A .2x <B .2x >C .0x <D .0x >9.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-1 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 11.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°12.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm二、填空题13.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.14.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .15.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.16.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .17.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.18.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.19.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.20.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.21.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .22.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.23.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.24.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________ 三、解答题25.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像;(2)直接写出不等式221x x x -->+的解集.26.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x 的代数式表示DF = ;(2)x 为何值时,区域③的面积为180平方米;(3)x 为何值时,区域③的面积最大?最大面积是多少?27.某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为x 元(30x >)时,每周的销售量y (件)满足关系式:10600y x =-+.(1)若每周的利润W 为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?(2)当3552x ≤≤时,求每周获得利润W 的取值范围.28.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.29.计算:(1)()28233+-- (2)()103127+3.14+2π-⎛⎫- ⎪⎝⎭ 30.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.31.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ; (2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.32.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由. ②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=,∴圆锥的底面半径为:()24π2π12cm ÷=.故答案为:C.【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.2.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.3.C解析:C【解析】【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠C+∠A=180°,∵∠A=80°,∴∠C=100°,故选:C .【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.4.B解析:B【解析】【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.【详解】解:∵AB=42,A(0,2)、B(a ,a +2)∴22(22)42a a ++-=,解得a =4或a =-4(因为a >0,舍去)∴B(4,6),设直线AB 的解析式为y=kx+2,将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+,将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C点的位置是解决此题的关键.5.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.6.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.7.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 9.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x =,方程整理,得,x 2-x=0因式分解得,x (x-1)=0,于是,得,x=0或x-1=0,解得x 1=0,x 2=1,故选:C .【点睛】本题考查了解一元二次方程,因式分解法是解题关键.10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.C解析:C【解析】【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题.【详解】连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°.∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.12.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.二、填空题13.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n,解得360πn=所以22360S==16360360扇形π4πrπ=n15.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.16.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90=25180R∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.17.【解析】【分析】连接OB、OC,如图,由圆周角定理可得∠BOC的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB、OC,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:解析:5 2【解析】【分析】连接OB、OC,如图,由圆周角定理可得∠BOC的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键. 18.2+2【解析】【分析】作AD ⊥OB 于点D ,根据题目条件得出∠OAD =60°、∠DAB =45°、OA =4km ,再分别求出AD 、OD 、BD 的长,从而得出答案.【详解】如图所示,过点A 作AD ⊥O解析:23+2【解析】【分析】作AD ⊥OB 于点D ,根据题目条件得出∠OAD =60°、∠DAB =45°、OA =4km ,再分别求出AD 、OD 、BD 的长,从而得出答案.【详解】如图所示,过点A 作AD ⊥OB 于点D ,由题意知,∠AOD =30°,OA =4km ,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=4×2=km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=2(km),故答案为:2.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.19..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】解析:12.【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是36=12;故答案为:12.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.20.2023【解析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m ﹣1=0,∴2m2﹣3m =1,∴原式=3(2m2﹣3m )+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m 2﹣3m ﹣1=0,∴2m 2﹣3m =1,∴原式=3(2m 2﹣3m )+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.21.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则: 1204180R ππ⨯=,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 22.【解析】【分析】设BE =x ,CF =y ,则EC =5﹣x ,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF 的最小值即可解决问题.【详解】解:设BE =x ,CF =y ,则EC =5﹣x , 解析:254【解析】【分析】设BE =x ,CF =y ,则EC =5﹣x ,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF 的最小值即可解决问题.【详解】解:设BE =x ,CF =y ,则EC =5﹣x ,∵AE ⊥EF ,∴∠AEF =90°,∴∠AEB +∠FEC =90°,而∠AEB +∠BAE =90°,∴∠BAE =∠FEC ,∴Rt △ABE ∽Rt △ECF , ∴AB EC =BE CF, ∴55x -=x y , ∴y =﹣15x 2+x =﹣15(x ﹣52)2+54, ∵﹣15<0, ∴x =52时,y 有最大值54, ∴CF 的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.23.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM ∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.24.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x2-4x与x轴的另外一个交点为B,令y=0,则x=0或4,过点B(4,0),由函数的对称轴,二次函数y=x2-4x翻折后的表达式为:y=-x2+4x,当直线y=-2x+b处于直线m的位置时,此时直线和新图象只有一个交点A,当直线处于直线n的位置时,此时直线n过点B(4,0)与新图象有三个交点,当直线y=-2x+b处于直线m、n之间时,与该新图象有两个公共点,当直线处于直线m的位置:联立y=-2x+b与y=x2-4x并整理:x2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B时,将点B的坐标代入直线表达式得:0=-8+b,解得:b=8,故-1<b<8;故答案为:-1<b<8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A、B两个临界点,进而求解.三、解答题25.(1)画图见解析;(2)x<-1或x>3【解析】【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)221x x x -->+在图象中代表着抛物线在直线上方的图象∴解集是x <-1或x >3【点睛】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.26.(1)48-12x ;(2)x 为1或3;(3)x 为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF 、EC 以外的线段用x 表示出来,再用96减去所有线段的长再除以2可得DF 的长度;(2)将区域③图形的面积用关于x 的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S ,得出x 关于S 的表达式,得到关于S 的二次函数,求出二次函数在x 取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x (48-12x )=180,解得x 1=1,x 2=3答:x 为1或3时,区域③的面积为180平方米(3)设区域③的面积为S ,则S =5x (48-12x )=-60x 2+240x =-60(x -2)2+240 ∵-60<0,∴当x =2时,S 有最大值,最大值为240答:x 为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.27.(1)售价应定为每件40元;(2)每周获得的利润的取值范围是1250元W ≤≤2250元.【解析】【分析】(1)根据题意列出方程即可求解;(2)根据题意列出二次函数,根据3552x ≤≤求出W 的取值.【详解】解:(1)根据题意得()()30106002000x x --+=,解得140x =,250x =.∵让消费者得到最大的实惠,∴140x =.答:售价应定为每件40元.(2)()()230106001090018000W x x x x =--+=-+- ()210452250x =--+.∵100-<,∴当45x =时,W 有最大值2250.当35x =时,1250W =;当52x =时,1760W =.∴每周获得的利润的取值范围是1250元W ≤≤2250元.【点睛】此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系列出方程或二次函数进行求解. 28.125【解析】【分析】过A 点作AD ⊥BC ,将等腰三角形转化为直角三角形,利用勾股定理求AD ,利用锐角三角函数的定义求∠B 的正切值.【详解】过点A 作AD ⊥BC ,垂足为D ,∵AB=AC=13,BC=10,∴BD=DC=12BC=5,∴AD12==,在Rt△ABD中,∴tan B125 ADBD==.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.29.(1;(2)6【解析】【分析】(1)将原式三项化简,合并同类二次根式后即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项利用零指数公式化简,第三项利用负指数公式化简,合并后即可得到结果;【详解】解:(1)原式=,(2)原式=3+1+2=6【点睛】此题考查了实数的混合运算,涉及的知识有:算术平方根和立方根,绝对值的性质,0指数和负整指数幂,熟练掌握公式及法则是解本题的关键.30.(1)相切,证明见解析;(2).【解析】【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD ,CO=CO ,OB=OD ,∴△OCB ≌△OCD ,∴∠ODC=∠OBC=90°,∴OD ⊥DC ,∴DC 是⊙O 的切线;(2)设⊙O 的半径为r ,在Rt △OBE 中,∵OE 2=EB 2+OB 2,∴(8﹣r )2=r 2+42,∴r=3,AB=2r=6,∵tan ∠E=OB CD EB DE=, ∴348CD =, ∴CD=BC=6, 在Rt △ABC 中,22226662AB BC ++= 【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键.31.(1)()4,1;(2)4l 的函数表达式为()21412y x =--+,24x ≤≤;(3)120a a +=,理由详见解析【解析】【分析】(1)设x=0,求出y 的值,即可得到C 的坐标,根据抛物线L 3:21(2)12y x =--得到抛物线的对称轴,由此可求出点C 关于该抛物线对称轴对称的对称点D 的坐标;(2)由(1)可知点D 的坐标为(4,1),再由条件以点D 为顶点的L 3的“友好”抛物线L 4的解析式,可求出L 4的解析式,进而可求出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)根据:抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,可以列出两个方程,相加可得(a 1+a 2)(h-m )2=0.可得120a a +=.【详解】解:(1)∵抛物线l 3:21(2)12y x =--, ∴顶点为(2,-1),对称轴为x=2,设x=0,则y=1,∴C (0,1), ∴点C 关于该抛物线对称轴对称的对称点D 的坐标为:(4,1);(2)解:设4l 的函数表达式为()241y a x =-+由“友好”抛物线的定义,过点()2,1- ()21241a ∴-=-+12a ∴=- 4l 的函数表达式为()21412y x =--+ 3l ∴与4l 中y 同时随x 增大而增大的自变量的取值范围是24x ≤≤(3)120a a +=理由如下:∵ 抛物线()21y a x m n =-+与抛物线()22y a x h k =+-互为“友好”抛物线,()()2122k a h m n n a m h k ⎧=-+⎪∴⎨=-+⎪⎩①② ①+②得:()()2210+-=a a m h m h ≠120a a ∴+=【点睛】本题属于二次函数的综合题,涉及了抛物线的对称变换、抛物线与坐标轴的交点坐标以及新定义的问题,解答本题的关键是数形结合,特别是(3)问根据已知条件得出方程组求解,有一定难度.32.(1)①P 与直线相切.理由见解析;②()1,1P 或()5,3P -;(2)91,4⎫-⎪⎭或91,4⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)①作直线l 的垂线,利用两点之间的距离公式及二次函数图象上点的特征证明线段相等即可;②利用两点之间的距离公式及二次函数图象上点的特征构建方程即可求得答案.(2)利用两点之间的距离公式分别求得各线段的长,根据“和谐点”的定义及二次函数图象上点的特征构建方程即可求得答案.【详解】(1)①P 与直线相切.如图,过P 作PQ ⊥直线l ,垂足为Q ,设()P m n ,.则()2221PB m n =-+,()222PQ n =- 21(1)14n m =--+,即:()2144m n -=- ()()2222221442PB m n n n n PQ ∴=-+=-+=-=PB PQ ∴= P ∴与直线l 相切.②当P 与y 轴相切时PD PB PQ ==∴()222m n =- ,2m n ∴=-,即:2n m =±代入()2144m n -=-化简得:2650m m -+=或2250m m ++=.解得:11m =,25m =. ()1,1P ∴或()5,3P -.(2)已知1P 、3P 的横坐标分别是2,6,代入二次函数的解析式得:1324P ⎛⎫ ⎪⎝⎭,,32164P ⎛⎫- ⎪⎝⎭,, 设()2P mn ,, ∵点B 的坐标为()10,,()2144m n -=- ∴()2213521044BP ⎛⎫=-+-= ⎪⎝⎭,3294BP ==,22BP n ===-,依题意得:12323BP BP BP BP ++=,即2132BP BP BP =+, 5292244n -=+,即:1724n -=, ∴254n =(不合题意,舍去)或94n =-, 把94n =-,代入()2144m n -=-得: ()2113m -=直接开平方解得:11m =,21m =,∴()13,T P P 的坐标为:91,4⎫-⎪⎭或91,4⎛⎫- ⎪⎝⎭【点睛】 本题主要考查了两点之间的距离公式二次函数的性质,利用两点之间的距离公式及二次函数图象上点的特征构建方程是解题的关键.。

河南省新乡市九年级上学期期末数学试卷

河南省新乡市九年级上学期期末数学试卷

河南省新乡市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一元二次方程的实数根为()A . 没有实数根B .C .D .2. (2分)下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是()A . 4个B . 3个C . 2个D . 1个3. (2分)(2016·长沙模拟) 如图所示是一个几何体的三视图,则这个几何体的名称是()A . 圆柱B . 圆锥C . 长方体D . 棱锥4. (2分)(2019·渝中模拟) 下列事件中是必然事件的为()A . 三点确定一个圆B . 抛掷一枚骰子,朝上的一面点数恰好是5C . 四边形有一个外接圆D . 圆的切线垂直于过切点的半径5. (2分)如果两个相似三角形的相似比是1:,那么这两个相似三角形的面积比是()A . 2:1B . 1:C . 1:2D . 1:46. (2分)矩形ABCD沿AE折叠,使点D落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于()A . 15°B . 30°C . 45°D . 60°7. (2分)(2019·零陵模拟) 如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为()A .B . 1C . 1或3D . 或8. (2分)(2019·泰山模拟) 给出下列函数:①y=2x-3;②y= ;③y=2x2;④y=-3x+1.上述函数中符合条件“当x>0时,函数值y随自变量x增大而增小”的是()A . ①③B . ③④C . ②④D . ②③9. (2分) (2019八下·鄂城期末) 如图,在△ABC中,∠C=90°,E是CA延长线上一点,F是CB上一点,AE=12,BF=8,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A . 2B . 4C . 6D . 310. (2分) (2020八下·迁西期末) 下列情境分别可以用图中哪幅图来近似地刻画?①一杯越晾越凉的水(水温与时间的关系);②一面冉冉上升的旗子(高度与时间的关系);③足球守门员大脚开出去的球(高度与时间的关系);④匀速行驶的汽车(速度与时间的关系),对应正确的是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)反比例函数y=中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k=________12. (1分) (2018八上·浦东期中) 如果分式在实数范围内有意义,则x的取值范围是________.13. (1分)如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y= 的图象经过点B,则k=________.14. (1分) (2020九上·苏州期末) 如图,在半径为3的⊙O中,随意向圆内投掷一个小球,经过大量重复投掷后发现,小球落在阴影部分的概率稳定在,则的长约为________.(结果保留 )15. (1分)(2020·北京模拟) 如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于________.16. (1分)(2017·盐城模拟) 某二次函数的图象的顶点坐标(4,﹣1),且它的形状、开口方向与抛物线y=﹣x2相同,则这个二次函数的解析式为________.17. (1分) (2019九上·黑龙江期末) 某摄影小组的学生,将自己的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,根据题意列出的方程是________。

河南省新乡市牧野区河南师范大学附属中学2022-2023学年九年级上学期期末数学试题

河南省新乡市牧野区河南师范大学附属中学2022-2023学年九年级上学期期末数学试题

河南省新乡市牧野区河南师范大学附属中学2022-2023学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________ A.B.C.D.A.B.C.D.34π8有()A.2个B.3个C.4个D.5个二、填空题5(1)分别求出直线AB 及反比例函数的解析式;(2)求OCD V的面积; (3)利用图像直接写出:当x 在什么范围内取值时12y y >.20.某校安装了红外线体温检测仪(如图1),该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,其红外线探测点O 可以在垂直于地面的支杆OP 上下调节(如图2),探测最大角(OBC ∠)为58°,探测最小角(OAC ∠)为26.6°,已知该设备在支杆OP 上下调节时,探测最大角及最小角始终保持不变.(结果精确到0.01米,参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,sin26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50︒≈)(1)若该设备的安装高度OC 为1.6米时,求测温区域的宽度AB ;(2)若要求测温区域的宽度AB 为2.53米,请你帮助学校确定该设备的安装高度OC . 21.卡塔尔世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于45元,且获利不高于50%.试销售期间发现,当销售单价定为45元时,每天可售出310本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y 本,销售单价为x 元.(1)请直接写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?(3)当每本足球纪念册销售单价是多少元时,商店每天获利2600元?22.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?23.综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动,(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,,.连接PM BM根据以上操作,如图1,当点M在EF上时,写出下图中一个30 的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片ABCD,且边长为10cm,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,求FQ的长:∥,交AD于G,交BC于H,当点P ②当点M不在EF上,经过点M的直线GH CD恰好为边AD的中点时,DG的长为______cm;当点P恰好为边AD的三等分点时(靠近点A),DG的长为______cm.。

河南省新乡市九年级上学期数学期末考试试卷

河南省新乡市九年级上学期数学期末考试试卷

河南省新乡市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017九上·重庆期中) 在同一平面上,点A到⊙O的圆心距离为2,⊙O的半径为1,点A与⊙O 的位置关系是()A . 点在圆外B . 点在圆上C . 点在圆内D . 无法确定2. (2分)(2019·合肥模拟) 如图,矩形ABCD中,AB=5,BC=12,点E在边AD上,点G在边BC上,点F、H在对角线BD上,若四边形EFGH是正方形,则AE的长是()A . 5B .C .D .3. (2分) (2016九上·衢江月考) 已知y=x(x+5﹣a)+2是关于x的二次函数,当x的取值范围在1≤x≤4时,y在x=1时取得最大值,则实数a的取值范围是()A . a=10B . a=4C . a≥9D . a≥104. (2分) (2019九下·温州模拟) 如图,AB 是⊙O 的直径,CD 是⊙O 的弦,若∠ADC=54°,则∠CAB 的度数是()A . 52°B . 36°C . 27°D . 26°5. (2分)(2017·兰州模拟) sin60°的值等于()A .B .C .D .6. (2分)下列说法正确的是()A . 相切两圆的连心线经过切点B . 长度相等的两条弧是等弧C . 平分弦的直径垂直于弦D . 相等的圆心角所对的弦相等7. (2分)若二次函数的图象与x轴有两个交点,坐标分别为(, 0),(, 0),且,图象上有一点M()在x轴下方,则下列判断中正确的是().A .B .C .D .8. (2分)如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A . 1B . 2C . 3D . 4二、填空题 (共9题;共10分)9. (1分) (2017九上·河源月考) 如果在比例尺为1∶1000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是________千米.10. (1分) (2018九上·义乌期中) 已知P是线段AB的黄金分割点,PA>PB,AB=2cm,则PA为________cm.11. (1分)(2016·开江模拟) 定义新运算“*”,规则:a*b= ,如1*2=2, * .若x2+x﹣1=0的两根为x1 , x2 ,则x1*x2=________.12. (1分)(2018·永定模拟) 如图,在平面直角坐标系中,每个小方格的边长均为1.△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是________.13. (1分)如图,在直角三角形ABC中,∠C=90°,AC=5 ,AB=10,则∠A=________度.14. (1分)直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x 轴上的影长为________ ,点C的影子的坐标为________ .15. (1分)(2019八下·番禺期末) 如图,等腰三角形中,,是底边上的高,则AD=________.16. (1分) (2015八下·洞头期中) 平行四边形ABCD的周长为30 cm,AB:BC=2:3,则AB=________.17. (2分)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=________ .三、解答题 (共10题;共89分)18. (10分) (2018七上·富顺期中) ;19. (5分) (2019九上·济阳期末) 如图,△A BC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果点P,Q分别从点A,B同时出发,经几秒钟,使△PBQ 的面积等于8cm2?20. (7分)(2018·青岛模拟) 一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.21. (2分)(2017·仪征模拟) 我校“文化氧吧”有A、B、C、D四本书是小明想拜读的,但他现阶段只打算选读两本.(1)若小明已选A书,再从其余三本书中随机选一款,恰好选中C的概率是________;(2)小明随机选取两本书,请用树状图或列表法求出他恰好选中A、C两本的概率.22. (10分)(2016·滨湖模拟) 解答题(1)计算:()0+ ﹣|﹣3|+tan45°;(2)计算:(x+2)2﹣2(x﹣1).23. (10分) (2017·北京模拟) 阅读下面材料:上课时李老师提出这样一个问题:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范围.小捷的思路是:原不等式等价于x2﹣2x﹣1>a,设函数y1=x2﹣2x﹣1,y2=a,画出两个函数的图象的示意图,于是原问题转化为函数y1的图象在y2的图象上方时a的取值范围.(1)请结合小捷的思路回答:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,则a的取值范围是________ .(2)参考小捷思考问题的方法,解决问题:关于x的方程x﹣4= 在0<a<4范围内有两个解,求a的取值范围.24. (10分) (2017九上·河东开学考) 如图,在平面直角坐标系中,点0是坐标原点.边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,点E是对角线AC上一点,连接OE、BE,BE的延长线交OA于点P,若△OCE的面积为12.(1)求点E的坐标:(2)求△OPE的周长.25. (10分) (2015九上·罗湖期末) 如图,某测量员测量公园内一棵树DE的高度,他们在这棵树左侧一斜坡上端点A处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.(1)求斜坡AC的长;(2)请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).26. (10分)(2019·香坊模拟) 已知,△ABC内接于圆O,弦CD⊥AB交AB于E,AF⊥BC于点F,AF交CD 于点G.(1)如图①,求证:DE=EG;(2)如图②,连接OG,连接DA并延长至点P,连接CP,点P在CG的垂直平分线上,若AP=2AG,求证:OG∥AB;(3)如图③,在(2)的条件下,过点D作DK⊥AF于点K,若∠PAC=∠DAF,KG=,求线段CG的长.27. (15分) (2019八上·西安月考) 问题探究(1)如图①,在△ABC 中,∠B=30°,E 是 AB 边上的点,过点 E 作EF⊥BC 于 F,则的值为________.(2)如图②,在四边形 ABCD 中,AB=BC=6,∠ABC=60°,对角线 BD 平分∠ABC,点E 是对角线 BD 上一点,求 AE+ BE的最小值.问题解决(3)如图③,在平面直角坐标系中,直线 y = -x + 4 分别于 x 轴,y 轴交于点 A、B,点 P 为直线 AB 上的动点,以 OP 为边在其下方作等腰Rt△OPQ 且∠POQ=90°.已知点C(0,-4),点 D(3,0)连接 CQ、DQ,那么DQ + CQ是否存在最小值,若存在求出其最小值及此时点 P 的坐标,若不存在请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共9题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共10题;共89分)18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。

河南省新乡市九年级上学期数学期末考试试卷

河南省新乡市九年级上学期数学期末考试试卷

河南省新乡市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·江岸模拟) 下列事件中,是确定事件的是()A . 度量三角形的内角和,结果是B . 买一张电影票,座位号是奇数C . 打开电视机,它正在播放花样滑冰D . 明天晚上会看到月亮2. (2分)(2016·陕西) 如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A . 3B . 4C . 5D . 63. (2分)反比例函数的图象在()A . 第一、三象限B . 第二、四象限C . 第一、二象限D . 第三、四象限4. (2分) (2018九上·衢州期中) 如图,⊙A过点O(0,0),C( ,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A . 15°B . 30°C . 45°D . 60°5. (2分)(2016·连云港) 如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A . 2 <r<B . <r<3C . <r<5D . 5<r<6. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论正确的有()个.①abc<0,②2a+b=0,③a-b+c>0,④4a+2b+c>0,⑤b>-2c.A . 2B . 3C . 4D . 57. (2分)如图,四边形ABCD为梯形,AD∥BC,∠ABC=30°,∠BCD=60°,AD=4,AB=,则下底BC的长为()A . 6B . 8C . 10D . 128. (2分)(2016·武侯模拟) 如图,正比例函数y=﹣x与反比例函数y=﹣的图象相交于A、B两点,分别过A、B两点作y轴的垂线,垂足分别为C、D,连接AD,BC,则四边形ACBD的面积为()A . 2B . 4C . 6D . 89. (2分) (2017九上·东莞开学考) 如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是()A .B .C .D .10. (2分) (2020九上·宽城期末) 如图,在平面直角坐标系中,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p)B(2,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是()A . x<-1B . x>2C . -1<x<2D . x<-1或x>2二、填空题 (共5题;共5分)11. (1分)(2018·嘉兴模拟) 把抛物线先向左平移1个单位,再向下平移2个单位,平移后抛物线的表达式是________.12. (1分)在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有________ 个.13. (1分)(2017·花都模拟) 如图,一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么这个几何体的侧面积是________.14. (1分) (2017八下·启东期中) 如图,在△ABC中,∠ACB=90°,点D,E,F分别是AB,BC,CA的中点,若CD=2,则线段EF的长是________.15. (1分) (2017八下·江阴期中) 如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是________.三、解答题 (共9题;共64分)16. (1分) (2018八上·达州期中) 某机器零件的横截面如图所示,按要求线段和的延长线相交成直角才算合格.一工人测得,,,请你帮他判断该零件是否合格________(填“合格”或“不合格”).17. (6分) (2019八下·广东月考) 已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)18. (2分)(2018·灌南模拟) 甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19. (2分)(2018·射阳模拟) 小明在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形,已知吊车吊臂支点O距离地面的高OO′=1.5米,吊臂OA长度为6米,当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,并且从O点观测到点A的仰角为45°,从O点观测到点A′的仰角为60°.(1)求此重物在水平方向移动的距离BC;(2)求此重物在竖直方向移动的距离B′C.20. (10分) (2019七下·高安期中) 在平面直角坐标系中,有点A(1,2a+1),B(﹣a,a﹣3).(1)当点A在第一象限的角平分线上时,求a的值;(2)当点B在到x轴的距离是到y轴的距离2倍时,求点B所在的象限位置;(3)若线段AB∥x轴,求三角形AOB的面积.21. (8分) (2019九上·宜兴期中) 如图(1)如图1,网格中每个小正方形的边长为1,点A,B均在格点上.则线段AB的长为________.请借助网格,仅用无刻度的直尺在AB上作出点P,使AP= .(2)⊙O为△ABC的外接圆,请仅用无刻度的直尺,依下列条件分别在图2,图3的圆中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法,请下结论注明你所画的弦).①如图2,AC=BC;②如图3,P为圆上一点,直线l⊥OP且l∥BC.22. (10分)(2019·常德) 在等腰三角形中,,作交AB于点M ,交AC于点N .(1)在图1中,求证:;(2)在图2中的线段CB上取一动点P,过P作交CM于点E,作交BN于点F,求证:;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作交CM的延长线于点E,作交NB的延长线于点F,求证:.23. (15分) (2016九上·溧水期末) 某批发商以40元/千克的价格购入了某种水果500千克.据市场预测,该种水果的售价y(元/千克)与保存时间x(天)的函数关系为y=60+2x,但保存这批水果平均每天将损耗10千克,且最多能保存8天.另外,批发商保存该批水果每天还需40元的费用.(1)若批发商保存1天后将该批水果一次性卖出,则卖出时水果的售价为________(元/千克),获得的总利润为________(元);(2)设批发商将这批水果保存x天后一次性卖出,试求批发商所获得的总利润w(元)与保存时间x(天)之间的函数关系式;(3)求批发商经营这批水果所能获得的最大利润.24. (10分) (2016八上·高邮期末) 如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共64分)16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

2023-2024学年河南省新乡市辉县市九年级(上)期末数学试卷(含解析)

2023-2024学年河南省新乡市辉县市九年级(上)期末数学试卷(含解析)

2023-2024学年河南省新乡市辉县市九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列二次根式中,与2是同类二次根式的是( )A. 4B. 6C. 8D. 122.若关于x的一元二次方程(k−1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )A. k<5B. k<5,且k≠1C. k≤5,且k≠1D. k>53.在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是( )A. 25B. 35C. 27D. 574.如图,在长为100m,宽为50m的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是3600m2,则小路的宽是( )A. 5mB. 70mC. 5m或70mD. 10m5.下列事件中,属于随机事件的是( )A. 抛出的篮球会落下B. 从装有红球、白球的袋中摸出黑球C. 14人中至少有2人是同月出生D. 经过有交通信号灯的路口,遇到绿灯6.已知二次函数y=−3(x−2)2−3,下列说法正确的是( )A. 对称轴为x=−2B. 顶点坐标为(2,3)C. 当x>3时y随x的增大而减小D. 图象向右平移1个单位长度得到y=−3(x−1)2−37.《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架.《九章算术》中记载:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”大意:有一形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,问它的高与宽各是多少?利用方程思想,设矩形门宽为x尺,则依题意所列方程为(1丈=10尺,1尺=10寸)( )A. x2+(x+6.8)2=102B. x2+(x−6.8)2=102C. x(x+6.8)=102D. x(x−6.8)=1028.如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=( )A. 1B. 2C. 23D. 49.如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=( )A. 23B. 352C. 5+1D. 1010.如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形PA1A2A3,正方形PA4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形PA1A2A3的顶点坐标分别为P(−3,0),A1(−2,1),A2(−1,0),A3(−2,−1),则顶点A100的坐标为( )A. (31,34)B. (31,−34)C. (32,35)D. (32,0)二、填空题:本题共5小题,每小题3分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省新乡市九年级上册期末数学试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共30分)
1. (3分)已知 = ,则的值为()
A .
B .
C .
D . 2
2. (3分) (2018九上·江海期末) 下列方程中,是一元二次方程的是()
A .
B .
C .
D .
3. (3分) (2017八下·鹤壁期中) 若函数的图象在其象限内y的值随x值的增大而增大,则m 的取值范围是()
A . m>﹣2
B . m<﹣2
C . m>2
D . m<2
4. (3分)已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()
A . k>且k≠2
B . k≥且k≠2
C . k >且k≠2
D . k≥且k≠2
5. (3分)下列说法正确的是()
A . 某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖.
B . 为了解全国中学生的睡眠情况,应该采用普查的方式.
C . 一组数据3,5,4,5,5,6,10的众数和中位数都是5.
D . 若甲数据的方差s甲2=0.05,乙数据的方差s乙2=0.1,则乙数据比甲数据稳定.
6. (3分) (2015八下·绍兴期中) 某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上一个月增长的百分数相同,则每月的平均增长率为()
A . 10%
B . 15%
C . 20%
D . 25%
7. (3分) (2019九上·海淀期中) 如图,在平面直角坐标系xOy中,抛物线与x轴交于A, B两点. 若顶点C到x轴的距离为8,则线段AB的长度为()
A . 2
B .
C .
D . 4
8. (3分)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地,货车行驶的路程y1(km),小轿车行驶的路程y2(km)与时间x(h)的对应关系如图所示,下列结论错误的是()
A . 甲、乙两地相距420km
B . y1=60x,y2=
C . 货车出发4.5h与小轿车首次相遇
D . 两车首次相遇时距乙地150km
9. (3分) (2020九上·南岗期末) 如图,,直线、与这三条平行线分别交于点、
、和点、、 .则下列结论中一定正确是()
A .
B .
C .
D .
10. (3分)(2017·江阴模拟) 将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(﹣2,0),∠ABO=30°.则△AOB旋转过程中所扫过的图形的面积为()
A .
B .
C .
D .
二、填空题 (共8题;共24分)
11. (3分) (2019九上·钢城月考) 方程x2-x=0的解是________.
12. (3分)用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为=sin30°=cos60°=tan45°•sin30°=…;仿照上述材料,完成下列问题:
(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:
________=________=________ =…;
(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,填空:1=________ .
13. (3分)(2012·深圳) 如图,双曲线y= (k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q 两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为________.
14. (3分)(2020·东城模拟) 如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为________.
15. (3分) (2016八下·洪洞期末) 在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.2,乙的成绩的方差为3.9,由此可知________的成绩更稳定.
16. (3分) (2019九上·江都期末) 科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是,则蝴蝶身体的长度约为________ (精确到).
17. (3分)(2016·安徽模拟) 如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD,下列结论中正确的有________(填上所有正确结论的序号)
①GH∥DC;
②EG∥AD;
③EH=FG;
④当∠ABC与∠DCB互余时,四边形EFGH是正方形.
18. (3分)如图,在某监测点B 处望见一艘正在作业的渔船在南北偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B,C之间的距离为________ 海里.
三、计算题 (共1题;共8分)
19. (8分)
(1)用配方法解方程:x2﹣2x﹣1=0.
(2)解方程:2x2+3x﹣1=0.
(3)解方程:x2﹣4=3(x+2).
四、作图题 (共1题;共6分)
20. (6分) (2019八下·长春月考) 已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C (2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
五、解答题 (共7题;共62分)
21. (9分)下图是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200
名学生参加了这项跳绳考试,根据该统计图给出的信息可得这些同学跳绳考试的平均成绩是多少?
22. (8分)如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从B点开始沿边BC以2cm/s的速度移动.如果点P,Q分别从点A,B同时出发,经过几秒钟后,以点P、B、Q 三点为顶点的三角形与△ABC相似?
23. (8分)一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm,根据题意列出方程,并化成一般形式.
24. (8分)(2017·邹城模拟) 如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.
25. (8分)某段限速公路m上规定小汽车的行驶速度不得超过70千米/时,如图所示,已知测速站C到公路m的距离CD为30米,一辆在该公路上由北向南匀速行驶的小汽车,在A处测得测速站在汽车的南偏东30°方向,在B处测得测速站在汽车的南偏东60°方向,此车从A行驶到B所用的时间为3秒.
(1)求从A到B行驶的路程;
(2)通过计算判断此车是否超速?
26. (9分)(2018·甘肃模拟) 如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A,B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4 ,cos∠ACH=,点B的坐标为(4,n).
(1)求该反比例函数和一次函数的解析式;
(2)求△BCH的面积.
27. (12分) (2019八上·洪泽期末) 在四边形ABCD中,,,
.
(1)为边BC上一点,将沿直线AP翻折至的位置点B落在点E处
①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形不写作法,保留作图痕迹,用2B铅笔加粗加黑并直接写出此时 ________;
②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;________
(2)点Q为射线DC上的一个动点,将沿AQ翻折,点D恰好落在直线BQ上的点处,则
________;
参考答案一、单选题 (共10题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共24分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、计算题 (共1题;共8分)
19-1、
19-2、
19-3、
四、作图题 (共1题;共6分) 20-1、
20-2、
五、解答题 (共7题;共62分) 21-1、
22-1、
23-1、
24-1、
25-1、
26-1、
26-2、
27-1、
27-2、。

相关文档
最新文档