常用坐标系介绍及变换

合集下载

数学中的坐标系与坐标变换

数学中的坐标系与坐标变换

数学中的坐标系与坐标变换数学是一门广泛应用于各个领域的学科,而坐标系和坐标变换则是数学中的重要概念。

本文将介绍什么是坐标系,坐标变换的概念以及它们在数学和现实生活中的应用。

一、坐标系坐标系是在某一平面或空间中确定点的位置的一种方式。

它由坐标轴和原点组成。

常见的坐标系包括二维笛卡尔坐标系和三维笛卡尔坐标系。

1. 二维笛卡尔坐标系二维笛卡尔坐标系由两条垂直的数轴组成,通常称为x轴和y轴。

原点是坐标系的交点,用(0,0)表示。

在二维笛卡尔坐标系中,每个点都可以表示为一个有序对(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。

2. 三维笛卡尔坐标系三维笛卡尔坐标系在二维笛卡尔坐标系的基础上增加了一条垂直于x轴和y轴的z轴。

在三维笛卡尔坐标系中,每个点都可以表示为一个有序组(x, y, z),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标,z表示点在z轴上的坐标。

二、坐标变换坐标变换是指将一个点的坐标从一个坐标系转换到另一个坐标系的过程。

坐标变换在数学和物理学中都有着广泛的应用。

1. 平移平移是一种坐标变换,通过向所有的点添加一个常量向量,从而将一个坐标系中的点转换到另一个坐标系中。

例如,将一个点的坐标由(x, y)变为(x+a, y+b),其中(a, b)表示平移的向量。

2. 旋转旋转是一种坐标变换,通过围绕一个给定的中心点将点按照一定角度旋转,从而将一个坐标系中的点转换到另一个坐标系中。

旋转可以使用旋转矩阵或旋转角度表示。

3. 缩放缩放是一种坐标变换,通过改变点的坐标的比例,从而将一个坐标系中的点转换到另一个坐标系中。

缩放可以使点的坐标变大或变小,可以根据缩放因子在x方向和y方向上进行分别缩放。

三、数学与现实生活中的应用坐标系和坐标变换在数学和现实生活中有着广泛的应用。

以下是一些常见的应用情景:1. 几何学中的图形表示:坐标系可以用来表示几何图形,例如在平面上绘制直线、圆等图形,或者在空间中绘制立方体、球体等图形。

常用坐标系及其间的转换

常用坐标系及其间的转换
9
将式(1.4)中之φ0、 α0 分别用 B0、 A0 代替。即可得到。
3. 发射坐标系与箭体坐标系间的欧拉角及方向余弦阵 这两个坐标系的关系用以反映箭体相对于发射坐标系的姿态角。为使一般一状态下
这两坐标系转至相应轴平行,现采用下列转动顺序:先绕 oz 轴正向转动ϕ 角,然后绕
新的 y′ 轴正向转动ψ 角,最后绕新的 x1 轴正向转γ 角。两坐标系的欧拉角关系如图 1.4
用该坐标系与其它坐标系的关系反映出火箭的飞行速度矢量状态。
1.1.2 坐标系间转换
1. 地心惯性坐标系与地心坐标之间的方向余弦阵
由定义可知这两坐标系的 oE ZI , oE ZE 是重合的,而 oE X I 指向平春分点 oE X E 指
向所讨论的时刻格林威治天文台所在子午线一赤道的交点, oE X I 与 oE X E 的夹角要通
cosα0 cosλ0 + sinα0 sinφ0 sin λ0
cosα0 cosφ0 ⎤
sinφ0
⎥ ⎥
−sinα0 cosφ0 ⎦⎥
(1.4)
若将地球考虑为总地球椭球体,则发射点在椭球体上的位置可用经度 λ0 ,地理纬
度 B0 确定, ox 轴的方向则以射击方位角 A0 表示。这样两坐标系间的方向余弦阵只需
过天文年历年表查算得到,记该角为 ΩG ,显然,这两个坐标系之间仅存在一个欧拉角
ΩG ,因此不难写出两个坐标系的转换矩阵关系。
⎡XE⎤
⎡XI ⎤
⎢ ⎢
YE
⎥ ⎥
= EI
⎢ ⎢
YI
⎥ ⎥
(1.1)
⎢⎣ ZE ⎥⎦
⎢⎣ ZI ⎥⎦
其中
பைடு நூலகம்
⎡ cos ΩG sin ΩG 0⎤

不同平面坐标系的定义及转换参数设置

不同平面坐标系的定义及转换参数设置

不同平面坐标系的定义及转换参数设置下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

不同平面坐标系的定义及转换参数设置该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 不同平面坐标系的定义及转换参数设置 can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!平面坐标系是用来描述平面上点的位置的一种数学工具。

平面向量的坐标系和坐标变换

平面向量的坐标系和坐标变换

平面向量的坐标系和坐标变换在平面向量的研究中,坐标系和坐标变换起着重要的作用。

它们为我们提供了一种方便和有效的方法来描述和计算平面向量的性质和运算。

本文将介绍平面向量的坐标系和坐标变换的基本概念和应用。

一、坐标系的引入为了描述平面上的向量,我们引入了坐标系。

常用的坐标系有直角坐标系和极坐标系两种。

1. 直角坐标系直角坐标系是平面上最常见的坐标系。

它由两个相互垂直的轴组成,分别称为x轴和y轴。

在直角坐标系下,一个向量可以用坐标(x, y)来表示,其中x是沿着x轴的分量,y是沿着y轴的分量。

例如,向量A可以表示为A(x, y)。

2. 极坐标系极坐标系是另一种描述平面向量的坐标系。

它由原点O和极轴组成,极轴上有正方向和负方向。

在极坐标系下,一个向量可以用极坐标(r, θ)来表示,其中r是向量的长度,也称为模,θ是向量与极轴的夹角,也称为极角。

例如,向量A可以表示为A(r, θ)。

二、坐标变换的原理在不同的坐标系中,同一个向量可以有不同的坐标表示。

坐标变换可以将某一坐标系下的向量转换为另一坐标系下的向量。

下面分别介绍直角坐标系到极坐标系和极坐标系到直角坐标系的坐标变换。

1. 直角坐标系到极坐标系的坐标变换对于直角坐标系下的向量A(x, y),要将其转换为极坐标系下的表示,可以按照以下公式进行计算:r = √(x^2 + y^2)θ = arctan(y/x)其中,r是向量A的长度,θ是向量A与x轴的夹角。

2. 极坐标系到直角坐标系的坐标变换对于极坐标系下的向量A(r, θ),要将其转换为直角坐标系下的表示,可以按照以下公式进行计算:x = r * cos(θ)y = r * sin(θ)其中,x是向量A沿着x轴的分量,y是向量A沿着y轴的分量。

三、坐标系和坐标变换的应用坐标系和坐标变换在平面向量的计算和分析中有广泛的应用。

以下是一些常见的应用场景:1. 向量的加法和减法在直角坐标系中,向量的加法和减法可以通过分别计算向量的x轴和y轴分量来实现。

测绘中常用的坐标系与坐标转换方法

测绘中常用的坐标系与坐标转换方法

测绘中常用的坐标系与坐标转换方法在测绘学中,坐标系和坐标转换方法是重要的概念。

测绘工程师和地理信息专家经常需要使用不同的坐标系来描述和分析地球表面的特征。

本文将介绍几种常用的坐标系以及常见的坐标转换方法。

首先,让我们来了解一下常见的坐标系。

地球是一个复杂的三维球体,在测绘中我们需要将其简化为二维平面来表示。

为此,人们开发了各种各样的坐标系。

最常见的是地理坐标系和投影坐标系。

地理坐标系以地球的经度和纬度作为坐标来表示地点的位置。

经度是指一个位置相对于地球上的子午线的角度,范围从-180度到180度。

纬度是指一个位置相对于赤道的角度,范围从-90度到90度。

地理坐标系非常适合描述较大范围的地理位置,比如国家、大洲、全球等。

然而,由于地球不是一个完美的球体,而是稍微扁平的。

所以地理坐标系并不适合描述局部地区的位置。

在局部地区,我们更常用的是投影坐标系。

投影坐标系通过将地球表面投影到一个平面上来表示地点的位置。

最常见的投影方法是经纬度投影。

这种方法将地球的经纬度网格映射到一个平面上,以实现局部位置的表示。

常见的经纬度投影有墨卡托投影、兰伯特投影和正轴等距投影等。

当需要在不同坐标系之间进行转换时,我们需要使用坐标转换方法。

常见的坐标转换方法有三角法、相似变换和大地测量等。

三角法是一种基础的坐标转换方法,它使用三角形相似性定理来计算两个坐标系之间的转换参数。

这种方法在测量小范围地区时非常实用,但对于大范围地区的坐标转换则会产生较大的误差。

相似变换是一种更复杂的坐标转换方法,它使用不同比例尺的相似形状来表示两个坐标系之间的转换。

这种方法适用于小范围和中等范围的坐标转换,但对大范围地区的转换也会有误差。

大地测量是一种比较准确的坐标转换方法,它基于地球的椭球体形状和地球椭球体的参数来计算坐标之间的转换。

大地测量方法适用于任意范围的坐标转换,但计算复杂度较高。

除了以上介绍的常用坐标系和坐标转换方法,还有一些其他的坐标系统和转换方法。

地理信息中各种坐标系区别和转换总结

地理信息中各种坐标系区别和转换总结

地理信息中各种坐标系区别和转换总结引言简述地理信息系统(GIS)中坐标系的重要性概述坐标系在地理信息处理中的应用一、坐标系基本概念1.1 坐标系定义定义地理坐标系和投影坐标系描述坐标系的组成要素1.2 地理坐标系(GCS)介绍地理坐标系的基本概念描述纬度、经度和高度的概念1.3 投影坐标系(PCS)介绍投影坐标系的基本概念解释地图投影的基本原理二、常见坐标系类型2.1 地理坐标系类型WGS 84北京 54国家大地测量 2000(CGCS2000)2.2 投影坐标系类型UTM(通用横轴墨卡托投影)State Plane Coordinate System(美国州平面坐标系)地方投影坐标系(如高斯-克吕格投影)三、坐标系之间的区别3.1 坐标系参数差异描述不同坐标系的基准面、椭球体和参数差异3.2 应用领域差异讨论不同坐标系在不同领域的应用特点3.3 精度和适用性分析不同坐标系的精度和适用性四、坐标系转换原理4.1 转换基础描述坐标系转换的数学基础解释坐标转换的七参数模型4.2 转换方法平移、旋转和缩放(7参数转换)相似变换(相似因子、旋转和偏移)4.3 转换工具和技术介绍GIS软件中的坐标系转换工具讨论专业的坐标转换软件和技术五、坐标系转换实践5.1 数据准备数据格式和坐标系信息的检查5.2 转换流程描述转换的具体步骤和注意事项5.3 转换精度评估讨论转换后的精度评估方法六、坐标系转换中的常见问题6.1 投影变形问题分析投影过程中可能出现的变形问题6.2 转换误差问题讨论转换过程中可能出现的误差来源6.3 技术限制问题描述现有技术和工具的限制七、坐标系转换案例分析7.1 案例选择选择具有代表性的坐标系转换案例7.2 案例实施过程详细描述案例实施的具体步骤7.3 案例结果分析分析案例的转换效果和经验教训八、未来发展趋势8.1 技术进步预测坐标系转换技术的未来发展趋势8.2 应用拓展探讨坐标系转换在新兴领域的应用前景8.3 标准化和国际化讨论坐标系转换标准化和国际化的重要性结语总结坐标系转换的重要性和本文档的主要内容对未来坐标系转换工作的展望。

常用坐标系之间的关系与转换

常用坐标系之间的关系与转换

7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。

同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。

对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。

现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。

同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。

、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5上式表明了 2种基本坐标系之间的关系。

加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。

直角坐标系和坐标变换

直角坐标系和坐标变换

直角坐标系和坐标变换直角坐标系是描述平面或空间中点位置的一种常用坐标系统。

它由两条互相垂直的坐标轴组成,通常被称为x轴和y轴。

坐标轴上的数值表示了点在对应轴上的位置,从而确定了点在整个坐标系中的位置。

而坐标变换则是通过一定的规则将点在一个坐标系中的表示转变为另一个坐标系中的表示。

一、直角坐标系直角坐标系是一种二维坐标系,由水平的x轴和垂直的y轴构成。

x轴和y轴的交点称为原点,通常用O表示。

在直角坐标系中,每个点都可以用一个有序数对(x, y)表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

x轴和y轴的正方向上,数值逐渐增大。

在直角坐标系中,可以通过距离和角度来描述点和图形的性质。

例如,两点之间的距离可以使用勾股定理计算,而斜率可以帮助我们理解直线的倾斜程度。

二、坐标变换坐标变换是指将点在一个坐标系中的表示转变为另一个坐标系中的表示。

常见的坐标变换包括平移、旋转、缩放和镜像等。

1. 平移平移是指将一个点在坐标系中沿着某个方向移动一定距离。

如果要将一个点P(x, y)沿着x轴方向平移a个单位,y坐标保持不变,则新坐标是P(x+a, y);如果要将点P沿着y轴方向平移b个单位,x坐标保持不变,则新坐标是P(x, y+b)。

2. 旋转旋转是指将一个点或图形绕某个中心点按一定角度进行旋转。

在二维直角坐标系中,可以使用旋转矩阵对点进行旋转。

设点P(x, y)绕原点逆时针旋转θ角度,则新坐标是P'(x', y'),其中:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ3. 缩放缩放是指将一个点或图形按照一定比例进行放大或缩小。

在二维直角坐标系中,可以使用缩放矩阵对点进行缩放。

设点P(x, y)按照比例s 进行缩放,则新坐标是P'(x', y'),其中:x' = s * xy' = s * y4. 镜像镜像是指将一个点或图形关于某个轴或面对称翻转。

测量中的常用坐标系及坐标转换概述

测量中的常用坐标系及坐标转换概述

三、坐标转换
5、高斯投影的邻带换算
应用高斯投影正反算公式间接进行换带计算:实质是把椭球 面上的大地坐标作为过渡坐标,首先把某投影带(比如I带)内 有关点的平面坐标(x,y) I ,利用高斯投影反算公式换算成椭球 面上的大地坐标(B ,ι),进而得到L=L10+ ι,然后再由大地坐 标(B ,ι),利用投影正算公式换算成相邻带第Ⅱ带的平面坐标 (x,y) Ⅱ,在这一步计算中,要根据第Ⅱ带的中央子午线L20来 计算经差ι,此时ι=L- L20

大地高H:某点沿投影方向到基准面(参考椭球面)的距离。

在大地坐标系中,某点的位置用(B , L,H)来表示。
二、测量中的各种坐标系
2、空间直角坐标系

定义:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤 道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴。

在空间直角坐标系中,某点的位置用(X,Y,Z)来表示。
二、测量中的各种坐标系
3、平面直角坐标系

在小区域进行测量工作若采用大地坐标来表示地面点位置是不方便的, 通常采用平面直角坐标系。 测量工作以x轴为纵轴,以y轴为横轴 投影坐标:为了建立各种比例尺地形图的控制及工程测量控制,一般应 将椭球面上各点的大地坐标按照一定的规律投影到平面上,并以相应的 平面直角坐标表示。
三、坐标转换
3、大地坐标同空间直角坐标的变换
X N cos B cos L Y N cos B sin L Z N (1 e 2 ) sin B
三、坐标转换
4、大地坐标与高斯平面坐标的变换
将大地坐标转换为高斯平面坐标,按照高斯投影正算公式 进行。
高斯投影正算公式:
x X 0 0.5 N sin B cos B l 2 y N cos B l 1 / 6 N cos3 B l 3 (1 t 2 2 )

常用坐标系

常用坐标系

一、常用坐标系1、北京坐标系北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。

各种测量坐标转换

各种测量坐标转换

不同坐标系介绍及相互转换关系一、各坐标系介绍GIS的坐标系统大致有三种:Plannar Coordinate System(平面坐标系统,或者Custom用户自定义坐标系统)、Geographic Coordinate System(地理坐标系统)、Projection Coordinate System(投影坐标系统)。

这三者并不是完全独立的,而且各自都有各自的应用特点。

如平面坐标系统常常在小范围内不需要投影或坐标变换的情况下使用,地理坐标系统和投影坐标系统是相互联系的,地理坐标系统是投影坐标系统的基础之一。

1、椭球面(Ellipsoid)地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。

我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。

因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

采用的3个椭球体参数如下2、高斯投影坐标系统(1)高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。

德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。

该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。

常用坐标系之间的关系与转换

常用坐标系之间的关系与转换

7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。

同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。

对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。

现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。

同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。

、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;上式表明了 2种基本坐标系之间的关系。

BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。

常用坐标系介绍及变换PPT课件

常用坐标系介绍及变换PPT课件
常用坐标系介绍及变 换ppt课件
目录
• 常用坐标系介绍 • 坐标变换基础 • 坐标变换的应用 • 坐标变换的数学表达 • 坐标变换的物理意义 • 坐标变换的计算机实现
01
常用坐标系介绍
笛卡尔坐标系
01
02
03
直角坐标系
以原点为中心,x轴、y轴、 z轴分别代表三个相互垂 直的坐标轴,用于描述平 面和空间中的点。
二维坐标变换
总结词
二维坐标变换是指平面内的坐标变化, 包括平移、旋转、缩放等操作。
详细描述
二维坐标变换涉及平面内的点,可以 通过平移、旋转或缩放等操作进行坐 标变化。这种变换在平面几何、图形 处理等领域应用广泛,可以通过矩阵 运算实现快速变换。
三维坐标变换
总结词
三维坐标变换是指空间中的坐标变化,包括平移、旋转、缩放等操作。
详细描述
三维坐标变换涉及空间中的点,可以通过平移、旋转或缩放等操作进行坐标变化。这种变换在三维建模、动画制 作、机器人控制等领域应用广泛,需要使用三维矩阵运算进行实现。
03
坐标变换的应用
图形变换
图形变换是指通过数学方法将一个二维或三维图形在坐标系 中进行平移、旋转、缩放等操作,以达到改变图形位置、大是一种数值计算方法,通过将物体离散化为有限个单元,可 以分析物体的受力情况和形变程度。有限元分析在工程领域中有着广泛 的应用,可以提高设计效率和精度。
06
坐标变换的计算机实现
OpenGL中的坐标变换
投影变换
将三维场景投影到二维屏 幕上,包括正交投影和透 视投影。
视图变换
将场景中的坐标系与观察 者的坐标系进行关联,实 现视景体裁剪。
旋转变换不改变图形的大小和形状, 只改变其方向。

常用坐标系及其变换

常用坐标系及其变换

§2-2 常用坐标系及其变换坐标系的定义:坐标系是量测物体的质心或质点在空间的相对位置,以及物体在空间的相对方位所使用的基准线组。

引入坐标系的目的:1 确切地描述飞行器的运动状态。

2 研究飞行器运动参数的变化规律。

1 惯性坐标系定义:一、常用坐标系的定义¾近程导弹飞行力学中,忽略地球的自转和公转,将与地球固连的坐标系看作惯性坐标系。

¾远程导弹飞行力学中,应考虑地球自转,将以地心为原点,坐标轴不随地球自转而转动的坐标系看作惯性坐标系。

在空间位置不变或作直线运动的坐标系。

实际应用时应注意的问题:2 直角坐标系定义:又称“笛卡儿坐标系”,轴线互相垂直的坐标系。

原点:发射点(发射飞行器时的惯性中心上)地面坐标系()轴:指向任何方向,通常取指向目标的方向。

轴:轴:d ddOXY Z O d OY d OX d OZ 与轴垂直,并位于过O 点的铅垂面内,指向上方。

d OX 与、轴垂直并组成右手坐标系。

dOX d OY特点:固连于地球表面,随地球一起转动可以看作惯性系。

由于有翼导弹飞行距离小、飞行时间短,因此可以把地球看作静止的,并把地球表面看作平面,此时可以将地面系看作惯性系。

对于近程导弹来说,可以认为重力与Y轴平行,方向相反。

地面,取包含发射点的水平面或称切平面。

基准面:目的:决定飞行器重心移动的规律、空间的姿态、导弹速度方向。

原点:导弹的质心。

弹体坐标系()轴:沿纵轴,指向头部为正。

轴:轴:111OX Y Z O 1OY 1OX 1OZ 与轴垂直,并位于纵向对称平面内,指向上方为正。

1OX 弹体纵向对成平面垂直,并与、轴组成右手坐标系。

1OX 1OY特点:与弹体固连,相对于弹体不动;动坐标系。

目的:决定导弹相对于地面坐标系的姿态;把导弹旋转运动方程投影到该坐标系上,可以使方程式简单清晰。

导弹气动力矩三个分量沿此系分解;常用于研究导弹的稳定性和操纵性。

原点:导弹的质心。

弹道固连系()轴:与飞行速度方向一致。

常用坐标系介绍及变换

常用坐标系介绍及变换

➢ GPS定位采用坐标系: 在GPS定位测量中,采在空用间的两位类置和坐方标向应系保持,不变,
或仅作匀速直线运动。
即天球坐标系与地球坐标系,两坐标系的坐 标原点均在地球的质心,而坐标轴指向不 同。天球坐标系是一种惯性坐标系,其坐标 原点及各坐标轴指向在空间保持不变,用于 描述卫星运行位置和状态。地球坐标系随同 地球自转,可看作固定在地球上的坐标系, 用于描述地面观测站的位置。
长半轴: (m) 扁率: 1:298.3
BJ54可归结为: a.属参心大地坐标系; b.采用克拉索夫斯基椭球的两个几何参数; c. 大地原点在原苏联的普尔科沃; d.采用多点定位法进行椭球定位; e.高程基准为 1956年青岛验潮站求出的黄海平
均海水面。
f.高程异常以原苏联 1955年大地水准面重新平 差结果为起算数据。按我国天文水准路线推算而得 。
➢ 为什么选用空间直角坐标系? 任一点的空 间位置可由该点在三个坐标
面的投影(X,Y,Z)唯一地确定,通过坐 标平移、旋转和尺度转换,可以将一个点的 位置方便的从一个坐标系转换至另一个坐标 系。与某一空间直角坐标系所相应的大地坐 标系(B,L,H),只是坐标表现形式不 同,实质上是完全等价的,两者之间可相互 转化。
几何定义:
ZWGS84
原点—在地球质心
BIH定义的
Z轴—指向 BIH 1984.0 零子午圈
定义的协议地球 (1984.0)
P
N
CTP
赤道
平面
(CTP)方向。
X轴—指向BIH 1984.0
O
的零子午面和CTP 赤道的交点。 Y轴—与Z、X轴构成右
手坐标系。
E
YWGS8
4
XWGS84

坐标系变换方法

坐标系变换方法

坐标系变换方法引言:坐标系变换是数学中重要的概念,它在不同学科领域的应用十分广泛。

坐标系变换方法可以帮助我们在解决问题时更好地描述和分析空间中的物体运动、变形以及其他相关性质。

本文将介绍坐标系变换的概念、常见的坐标系以及不同坐标系之间的转化方法。

另外,我们还会探讨一些拓展应用,以增强我们对坐标系变换方法的理解。

正文:一、坐标系的概念坐标系是指用于确定物体在空间中位置和方向的基准系统。

我们常见的三维坐标系是笛卡尔坐标系,也称为直角坐标系,它由三条相互垂直的坐标轴组成,分别用x、y和z表示。

在笛卡尔坐标系中,任何一个点的位置都可以通过该点在各坐标轴上的投影来确定。

除了笛卡尔坐标系,我们还常用极坐标系和球坐标系来描述特定问题。

极坐标系通过极径和极角来定位一个点,常用于描述环形问题。

球坐标系则基于球体的半径、极角和方位角来定位一个点,常用于描述天体运动和物体在球面上的运动。

二、坐标系的转化方法当我们需要在不同坐标系下描述同一个物体的运动或性质时,就需要进行坐标系的转化。

以下介绍几种常见的坐标系转化方法:1. 平移变换:平移变换是指将坐标系沿着某个方向移动一段距离。

例如,在笛卡尔坐标系中,将整个坐标系沿着x轴正方向平移d个单位,可以通过将所有坐标点的x坐标加上d来实现。

2. 旋转变换:旋转变换是指将坐标系绕着某个点或轴旋转一定角度。

在笛卡尔坐标系中,可以通过将点(x, y)绕原点逆时针旋转θ角度得到新的坐标(x',y')。

其中,旋转变换可以通过矩阵运算进行计算。

3. 缩放变换:缩放变换是指将坐标系中的所有点沿着坐标轴方向进行放大或缩小。

在笛卡尔坐标系中,可以通过将点(x, y)的坐标分别乘以经过缩放的因子s来实现。

以上是常见的坐标系变换方法,它们可以在解决具体问题时灵活运用。

三、拓展应用除了将几何问题转换到不同坐标系来求解,坐标系变换方法还有一些有趣的拓展应用。

1. 图像处理:在图像处理中,常用的坐标系转换方法包括旋转、平移和缩放变换。

测绘技术中的坐标系与坐标转换方法介绍

测绘技术中的坐标系与坐标转换方法介绍

测绘技术中的坐标系与坐标转换方法介绍一、引言坐标系是现代测绘技术的基础,它是测量和定位地球上任意点位置的一种数学模型。

在测绘领域中,使用不同的坐标系可以满足不同目的的测绘需求,并且坐标转换方法的准确性也对测绘结果的质量起着重要作用。

本文将介绍常见的坐标系及其转换方法。

二、常见坐标系1. 地理坐标系地理坐标系是以地球表面为参照对象的坐标系。

通常使用经度(longitude)和纬度(latitude)来表示地球上某一点的位置。

经度用来表示东西方向,纬度用来表示南北方向。

地理坐标系具有全球通用性,广泛应用于地理信息系统(GIS)、导航、位置服务等领域。

2. 平面坐标系平面坐标系是将地球表面投影到平面上的坐标系,通过将三维地理坐标转换为二维平面坐标来描述地球上的点位置。

常见的平面坐标系有高斯投影系列、UTM (通用横轴墨卡托投影)等。

平面坐标系广泛应用于测绘工程、工程测量等领域。

三、坐标转换方法1. 地理坐标系转平面坐标系地理坐标系转平面坐标系的过程称为投影。

投影方法有很多种,常用的有高斯投影和UTM投影。

高斯投影是将地球表面的经纬度坐标通过数学公式转换为平面坐标系的过程。

高斯投影分为六度和三度带两种,根据地理位置的不同选择相应的带号和中央经线。

UTM投影采用了墨卡托投影,将地球表面划分为60个纵向带和一个横向带,每个纵向带的中央经线为带号乘以3度。

UTM投影在北半球和南半球使用的带号不同,其转换公式也略有不同。

2. 平面坐标系转地理坐标系平面坐标系转地理坐标系的过程称为反算。

反算方法有多种,常见的有逆高斯投影和逆UTM投影。

逆高斯投影是将平面坐标转换为经纬度坐标的过程。

根据高斯投影公式的逆运算,可以根据已知的平面坐标和带号计算出对应的地理坐标。

逆UTM投影通过逐步逼近的方法,将平面坐标转换为地理坐标。

根据每个带的中央经线和带号,逐步计算出对应的经度和纬度。

3. 平面坐标系间的转换在测绘工程中,常常需要将一个平面坐标系的坐标转换为另一个平面坐标系的坐标。

几种常用坐标系

几种常用坐标系

其长半轴a=6378140m; 扁率f=1/298.257。
Байду номын сангаас
4、高斯平面直角坐标系和UTM一般的地图均为平面图,其对应的也是平面坐标.因此,需要将椭球面上各点的大地坐标,按照一定的数学规律投影到平面上成为平面直角坐标.目前世界各国采用最广泛的高斯- 克吕格投影和墨卡托投影(UTM)均是正形投影(等角投影),即该投影在小区域范围内使平面图形与椭球面上的图形保持相似。为了限制长度变形,,根据国际测量协会规定,将全球按一定经差分成若干带。我国采用6度带或 3度带,6度带是自零度子午线起每隔经度。
高斯平面直角坐标系一般以中央经线(L0)投影为纵轴X, 赤道投影为横轴Y,两轴交点即为各带的坐标原点。为了避免横坐标出现负值,在投影中规定将坐标纵轴西移500公里当作起始轴。为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号。城建坐标多采用三度带的高斯-克吕格投影。同一坐标系下的大地坐标(即经纬度坐标B,L)与其对应的高斯平面直角坐标(x,y)有严格的转换关系。现行的测绘的教科书的一般都有。
浅析几种常用坐标系和坐标转换
一) 一般来讲,GPS直接提供的坐标(B,L,H)是1984年世界大地坐标系(Word Geodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为大地高即是到WGS-84椭球面的高度。而在实际应用中,我国地图采用的是1954北京坐标系或者1980西安坐标系下的高斯投影坐标(x,y,),不过也有一些电子地图采用1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),高程一般为海拔高度h。
如果不考虑高程的影响,对于不同椭球体下的高斯平面直角坐标可采用四参数的相似变换法,即四参数(x平移,y平移,尺度变化m,旋转角度α)。如果用户要求的精度低于20米,在一定范围(2'*2')内,就直接可以用二参数法(ΔB,ΔL)或(Δx,Δy)修正。但在实际操作中,这也取决于选取的公共点是否合理,并保证其足够的精度。

常用坐标系介绍及变换

常用坐标系介绍及变换

常用坐标系介绍及变换1.直角坐标系直角坐标系是最常见的坐标系之一、它由两条垂直的坐标轴组成,通常被标记为x轴和y轴。

每个点都可以用一个有序的数对(x,y)来表示,其中x是点在x轴上的位置,y是点在y轴上的位置。

直角坐标系广泛应用于几何学、物理学、工程学等领域。

2.极坐标系极坐标系是另一种常见的坐标系。

它使用一个有序的数对(r,θ)来表示一个点,其中r是点到极点的距离,θ是点与极轴的夹角。

极坐标系适用于描述圆形和对称图形,例如极坐标系可以更方便地表示一个点相对于圆心的位置。

3.三维直角坐标系三维直角坐标系是在直角坐标系的基础上增加了一条垂直于x轴和y轴的z轴。

每个点可以用一个有序的数对(x,y,z)来表示。

三维直角坐标系广泛应用于空间几何、工程学、计算机图形学等领域。

4.柱坐标系柱坐标系是一种类似于极坐标系的坐标系,但它增加了一个z坐标轴,也被称为高度坐标轴。

一个点可以用一个有序的数对(r,θ,h)来表示,其中r是点到z轴的距离,θ是点到x轴的夹角,h是点在z轴上的位置。

5.球坐标系球坐标系是一种三维坐标系,它使用一个有序的数对(r,θ,φ)来表示一个点,其中r是点到原点的距离,θ是点到x轴的夹角,φ是点到z轴的夹角。

球坐标系适用于描述球体和球对称图形。

在不同坐标系之间进行坐标变换是很常见的操作。

常见的坐标变换包括:1.直角坐标系与极坐标系的变换:直角坐标系到极坐标系的变换可以通过以下公式实现:r=√(x^2+y^2)θ = arctan(y / x)极坐标系到直角坐标系的变换可以通过以下公式实现:x = r * cos(θ)y = r * sin(θ)2.直角坐标系与三维直角坐标系的变换:直角坐标系到三维直角坐标系的变换可以通过以下公式实现:x=x'y=y'z=z'三维直角坐标系到直角坐标系的变换可以通过以下公式实现:x'=xy'=yz'=z3.极坐标系与柱坐标系的变换:极坐标系到柱坐标系的变换可以通过以下公式实现:r'=rθ'=θh'=z柱坐标系到极坐标系的变换可以通过以下公式实现:r=r'θ=θ'z=h'以上是一些常见的坐标系介绍及变换。

让我们一起来认识坐标系与坐标变换

让我们一起来认识坐标系与坐标变换

让我们一起来认识坐标系与坐标变换一、坐标系的概念与作用在数学和物理学中,坐标系是一种描述点的位置的系统,它由坐标轴和原点组成。

我们可以利用坐标系来精确地确定一个点的位置,从而进行各种数学计算和几何分析。

1.1 笛卡尔坐标系最常见的坐标系是笛卡尔坐标系,也称为直角坐标系。

它由垂直于彼此的两条直线构成,形成了一个二维平面。

这两条直线分别称为x 轴和y轴,它们的交点被定义为坐标系的原点(0, 0)。

1.2 极坐标系除了笛卡尔坐标系,还有一种常用的坐标系叫做极坐标系。

它通过一个点到原点的距离和与x轴的夹角来描述一个点的位置。

极坐标系常用于描述圆形和柱状对象的位置。

1.3 坐标系的作用坐标系在数学和物理学中有着广泛的应用。

它们可以帮助我们准确地定位和描述各种事物,从微观粒子到宇宙中的天体,都需要利用坐标系来进行研究和分析。

二、坐标变换的基本原理坐标变换是指将一个坐标系中的点的位置转换到另一个坐标系中的过程。

在实际应用中,我们经常需要将一个物体在一个坐标系中的位置描述转换为另一个坐标系中的位置描述,以实现不同坐标系之间的相互转换和计算。

2.1 平移变换平移变换是指将一个点沿着x轴和y轴的方向移动一定的距离,在新的坐标系中给出其新的位置。

一般来说,平移变换可以通过在原始坐标上加上一个平移向量来实现。

2.2 旋转变换旋转变换是指将一个点绕着指定的中心点旋转一定角度,在新的坐标系中给出其新的位置。

旋转变换可以通过一组数学公式和矩阵运算来实现。

2.3 缩放变换缩放变换是指将一个点的位置在x轴和y轴方向上按比例放大或缩小,在新的坐标系中给出其新的位置。

缩放变换可以通过乘以一个缩放因子的方式进行。

三、实际应用案例3.1 地图坐标系在地图应用中,我们经常需要将地球上的一个点的经纬度转换为平面坐标系中的x轴和y轴坐标,以便在地图上显示。

这涉及到大地坐标系和平面直角坐标系之间的坐标变换。

3.2 机器人定位在机器人技术中,机器人的定位是一个重要的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
天球 赤道
➢ 协议天球坐标系与瞬时天球坐标系的转换:
协议天球坐标系
岁差
观测瞬间的平天球坐标系 章动
瞬时天球坐标系
二、地球坐标系
地球空间直角坐标系的定义:
Z
原点O:地球质心 Z轴:指向地球北极Pn
PN
赤道 平面
X轴:指格林尼治子午
P
Z
面与地球赤道的交点E
O
X
Y
Y轴:垂直于XOZ平面,
E
Y
与X轴和Y轴构成 X
X
x
Y Ry(xp)Rx(yp)Rz(G)Ny
ZCTS
zCIS
协议地球坐标 系(平地球坐 标系)
瞬时极地 球坐标系
真天球 坐标系
平天球 坐标系ຫໍສະໝຸດ 协议天球 坐标系三、站心赤道直角坐标系和站心地平直角坐标系
站心地平直角坐标系能够比较直观方便的描述
卫星与观测站之间的瞬时距离、方位角和高度角,
了解卫星在天空中的分布情况。
国际大地测量学
会(International
Pn
Association of Geodesy-IAG)和 国际天文学联合 会(International
Astronomical Union-IAU)决 定,标准历元设
s
r M δz
α
x
y
γ
为J2000.0 。
x
Ps
J2000.0:公历为2000年1月1日12:00:00
春分点的天球子午面与 过天体s的天球子午面之 间的夹角,赤纬δ为原点 M至天体s的连线与天球 赤道面之间的夹角,向
s
r M δz
α
x
y
γ
y 天球
径γ为原点M至天体s的距
赤道
离。
x
Ps
对同一空间点,直角坐标系与其等效的球面坐标
系参数间有如下转换关系:
z
Xcoscos
Pn
Ysi ncos
Zsin
X2Y2Z2
➢ 协议天球坐标系: 或仅作匀速直线运动 为了建立一个与惯性坐标系统相接近的坐标
系,人们通常选择某一时刻,作为标准历元,并将 此刻地球的瞬时自转轴(指向北极)和地心至瞬时 春分点的方向,经过瞬时的岁差和章动改正后,分 别作为X轴和Z轴的指向,由此建立的坐标系称为协 议天球坐标系。
协议天球坐标系CIS (惯性坐标系):z
远日点
地球
春分点
太阳
近日点
秋分点
天球空间直角坐标(X,Y,Z)的定义:
原点—地球质心M Z轴—指向天球北极Pn X轴—指向春分点 Y轴—垂直于XMZ平面,
与X轴和Z轴构成右 手坐标系统。
Z
Pn
Πn
M
ε γ
X
黄道
Y
Πs
天球球面坐标(α,δ,γ)的定义:
z
天球中心与地球质心M
Pn
重合,赤经α为含天轴和
PN 赤道
P 平面
H
O B
n L
大地纬度B PS
任一地面点P在地球坐标系中的坐标,可表示为 (X,Y,Z)或(B,L,H),两种坐标系之间的转 换为:
X(N H )co B cso Ls
Y(N H )co B ssiL n
Z[N ((1e2)H ]siB n
L arctanY X
B arZ c (N t a H )/n [X 2 { Y 2 N ( 1 e 2 ) H )]}
自BJ54建立以来,在该坐标系内进行了许多地区 的局部平差,其成果得到了广泛的应用。
2、1980年国家大地坐标系
C80是为了进行全国天文大地网整体平差而建 立的。根据椭球定位的基本原理,在建立C80坐标 系时有以下先决条件: (1)大地原点在我国中部,具体地点是陕西省径阳
县永乐镇; (2)C80坐标系是参心坐标系,椭球短轴Z轴平行
Ps
黄道
天球 赤道
Πs
黄道:地球公转的轨道面 与天球相交的大圆。
黄赤交角:黄道与赤道的 夹角。
天轴与天极:地球自 转轴的延伸直线为天 轴;天轴与天球的交 点Pn和Ps称为天极, 其中Pn为北天极,为 Ps南天极。
春分点:当太阳在
黄道上从天球南半
球向北半球运行
时,黄道与天球赤
道的交点。 黄极:通过天球 中心,且垂直于 黄道面的直线与 天球的交点。其 中靠近北天极的 交点为北黄极, 靠近南天极的交 点为南黄极。
对应于 WGS-8大地坐标系有一个WGS-84椭球, 其常数采用 IAG和IUGG第 17届大会大地测量常数 的推荐值。
WGS-84椭球两个最常用的几何常数: 长半轴: 6378137± 2(m) 扁率: 1:298.257223563
WGS-84大地水准面高N等于由GPS定位测定的 点的大地高H减该点的正高H正。N值可以利用地球 重力场模型系数计算得出;也可以用特殊的数学方 法精确计算局部大地水准面高N。一旦N确定,可利 用H正=H-N计算GPS各点的的正高H正。
➢ 为什么选用空间直角坐标系? 任一点的空 间位置可由该点在三个坐标
面的投影(X,Y,Z)唯一地确定,通过坐 标平移、旋转和尺度转换,可以将一个点的 位置方便的从一个坐标系转换至另一个坐标 系。与某一空间直角坐标系所相应的大地坐 标系(B,L,H),只是坐标表现形式不 同,实质上是完全等价的,两者之间可相互 转化。
几何定义:
ZWGS84
原点—在地球质心
BIH定义的
Z轴—指向 BIH 1984.0 零子午圈
定义的协议地球 (1984.0)
P
N
CTP
赤道
平面
(CTP)方向。
X轴—指向BIH 1984.0
O
的零子午面和CTP 赤道的交点。 Y轴—与Z、X轴构成右
手坐标系。
E
YWGS8
4
XWGS84
PS
WGS-84世界大地坐标系
第十章 坐标系统
§2.1 天球坐标系和地球坐标系 §2.2 WGS-84坐标系和我国的大地坐标系 §2.3 坐标系统之间的转换 §2.4 时间系统
➢ 为什么提出坐标系? 描述物体运动,必须有参照物,为描述物
体运动而选择的所有参照物叫参照系(参考 系)。参照系是粗略的,不精确的,必须建 立坐标系。准确和完善的描述物体的运动, 观测的结果模拟及 表示或解释需要建立一个 坐标系统。
M
道)位置的变化。
ε γ
天球 赤道
Πs
➢ 章动的规律 章动的周期:18.6年 章动椭圆的长半轴:9.2″
章动椭圆
Pn a
b
Πn
岁差、章动
叠加
为了研究问题的方便,我们把岁差和章动分开研
究,分别研究两种现象的规律,然后再综合叠加。
➢ 岁差章动的叠加效果
黄极
Πn
天极
Pn
在岁差和章动 黄道 的影响下,瞬时天
➢ GPS定位采用坐标系: 在GPS定位测量中,采在空用间的两位类置和坐方标向应系保持,不变,
或仅作匀速直线运动。
即天球坐标系与地球坐标系,两坐标系的坐 标原点均在地球的质心,而坐标轴指向不 同。天球坐标系是一种惯性坐标系,其坐标 原点及各坐标轴指向在空间保持不变,用于 描述卫星运行位置和状态。地球坐标系随同 地球自转,可看作固定在地球上的坐标系, 用于描述地面观测站的位置。
➢ 协议地球坐标系和瞬时地球坐标系之间的转换 地极的瞬时坐标由国际地球自转服务组织
(International Earth Rotation Service-IERS)根据多 个台站计算出来的。协议地球坐标系和瞬时地球坐 标系之间的转换关系为:
x
x
y Ry(xp)Rx(yp)y
zCTS
zt
➢ 协议地球坐标系和协议天球坐标系之间的转换
的变化,使用起来十分不便。
➢ 协议地球坐标系(CTS)
1960年国际大测量
Z
与地球物理联合会决定 以1900.0~1905.0五年地 球自转轴瞬时位置的平 均值作为地球的固定级 称为国际协定原点CIO。
PN(协议)
P
Z
M
O
X
Y
E (协议)
赤道 平面
Y
平地球坐标系的Z轴指
X
向国际协定原点CIO 。
PS
长半轴: 6378245(m) 扁率: 1:298.3
BJ54可归结为: a.属参心大地坐标系; b.采用克拉索夫斯基椭球的两个几何参数; c. 大地原点在原苏联的普尔科沃; d.采用多点定位法进行椭球定位; e.高程基准为 1956年青岛验潮站求出的黄海平
均海水面。
f.高程异常以原苏联 1955年大地水准面重新平 差结果为起算数据。按我国天文水准路线推算而得 。
主要由日月引力 引起。太阳的影响 为月球影响的0.46, 太阳的质量是月球 的两千多万倍,为 什么月球对岁差的 影响反而更大呢?
Pn
Πn
黄道
M
ε γ
天球 赤道
Πs
章动:在日月引力等因素的影响下,瞬时北天极 将绕瞬时平北天极旋转,大致呈椭圆,这 种现象称为章动。
Pn
章动产生的主要
Πn
黄道
原因:
月球轨道面(白
球坐标系的坐标轴
的指向在不断的变
M
化,将不能直接根
ε γ
天球 赤道
Πs
据牛顿力学定律来 研究卫星的运动规 律。
➢ 岁差、章动和极移的影响 地球的自转轴不仅受日、月引力作用而使其
在空间变化,而且还受地球内部质量不均匀影响 在地球内部运动。前者导致岁差和章动,后者导 致极移。 极移:地球自转轴相对地球体的
于地球质心指向地极原点方向,大地起始子午 面平行于格林尼治平均天文台子午面;X轴在 大地起始子午面内与 Z轴垂直指向经度 0方 向;Y轴与 Z、X轴成右手坐标系;
相关文档
最新文档