奇偶性

合集下载

奇偶性

奇偶性

函数的奇偶性一.奇偶性的定义:(1)偶函数:一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数。

例如:函数2()1f x x =+, 4()2f x x =-等都是偶函数。

(2)奇函数:一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 就叫做奇函数。

例如:函数x x f =)(,xx f 1)(=都是奇函数。

(3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性。

二、函数的奇偶性判定方法(1)定义法 (2)图像法 (3)性质法三. 奇函数性质: (1)、奇函数的图象关于原点对称; (2)、奇函数在x>0和x<0上具有相同的单调区间; (3)、定义在R 上的奇函数,有f (0)=0 . 偶函数性质: (1)、偶函数的图象关于y 轴对称; (2)、偶函数在x>0和x<0上具有相反的单调区间; 四 奇偶函数间的关系:(1)、奇函数•偶函数=奇函数; (2)、奇函数•奇函数=偶函数;(3)、偶奇函数•偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的) (5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数 五 利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称).3.具有奇偶性的函数的图象的特征。

函数的奇偶性的判断和证明

函数的奇偶性的判断和证明

函数的奇偶性的判断和证明一、函数的奇偶性的定义对于函数 f(x) ,其定义域 D 关于原点对称,如果 x D,恒有 f( x) f ( x) ,那么函数 f(x)为奇函数;如果 x D,恒有 f( x) f (x) ,那么函数 f (x)为偶函数 . 二、奇偶函数的性质1、奇偶函数的定义域关于原点对称;2、 偶函数的图像关于 y 轴对称,奇函数的图像关于原点对称;3、偶函数在对称区间的增减性相同,奇函数在对称区间的增减性相反;4、 奇函数在原点有定义时,必有f(0) 0.三、判断函数的奇偶性的方法 判断函数的奇偶性的方法,一般有三种:定义法、和差判别法、作商判别法 .1 、定义法 首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果 函数的定义域关于原点对称,则继续求 f( x) ;最后比较 f( x)和 f (x)的关系,如果有 f( x)=f (x), 则函数是偶函数,如果有 f ( x) 2、和差判别法=- f (x) ,则函数是奇函数,否则是非奇非偶函数 .对于函数定义域内的任意一个x ,若f( x) f(x) 0,则 f(x) 是奇函数;若f(x) f ( x)0 ,则 f (x) 是偶函数 .3、 作商判别法对于函数定义域内任意一个 x ,设 f ( x) 0,若f (x)1,则 f(x) 是奇函数,f (x) 1,则 f(x)f( x)f ( x)是偶函数解题步骤首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非 偶函数;如果函数的定义域关于原点对称,则继续求 f( x) ;最后比较 f ( x) 和 f(x)的关 系,如果有 f( x)= f (x) ,则函数是偶函数,如果有 f( x)=- f ( x) ,则函数是奇函数,否 则是非奇非偶函数 .例 1】判断下列函数的奇偶性②令 x 0,则 f (y) f( y) 2f (0) f (y)2) f (x)2lg(1 x 2) x22点评】(1)判断函数的奇偶性首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则 函数是非奇非偶函数 . (2) 函数的定义域关于原点对称,是函数为奇偶函数的必要非充分条件 . (3)函数的定义域求出来之后,还要注意在解题中应用,不是走一个过场和形式 .第 2小题就是利用求出的定义域对函数进行了化简 .例 2】定义在实数集上的函数f (x) ,对任意 x 、y R ,有 f(x y) f(x y) 2f (x) f(y)且 f (0) 0①证: f (0) 1 ②求证: y f (x)是偶函数解析】证明:①令 x y 0,则 f (0) f (0) 2[ f (0)] 2f (0) 0 ∴ f(0) 1∴ f ( y) f (y)1) f (x) (1 x)1x 1x∴ y f (x) 是偶函数【点评】 对于抽象函数的奇偶性的判断, 和具体函数的判断方法一样, 不同的是, 由于它是抽象函数, 所以在判断过程中,多要利用赋值法,常赋一些特殊值,如 0、-1、1等. 学科 * 网【例 3】判断函数f (x)x x (x 0)的奇偶性x 2x (x 0)【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函 数,所以要分类讨论 . (2)注意,当 x 0时,求 f ( x) 要代入下面的解析式,因为 x 0, 不是还代入上 面一段的解析式 .1)证明函数 f (x)是奇函数;(2)讨论函数 f(x)在区间 [ 1,1]上的单调性;3)设 f(1) 1 ,若 f (x) m 22am 1,对所有 x [ 1,1], a [ 1,1]恒成立,求实数 m 的取值范 围.反馈检测 1】已知 f(x)2x 1 2x 11)判断 f(x) 的奇偶性; 2)求 f(x) 的值域.反馈检测 2】已知函数 f (x) 定义域为 [ 1,1] ,若对于任意的 x,y [ 1,1],都有f (x y) f(x)f (y),且 x 0时,有 f (x) 0.例 4】判断函数 f(x) lg(x x 1) 的奇偶性 .【点评】 和差判别法实际上是奇偶函数定义的等价形式, 但是利用定义判断, 计算较为复杂, 利用和差 判别法可以化繁为简,简捷高效 .【反馈检测 3】已知函数 f(x) log a x 2(a 0且a 1).ax 2(1)求 f (x)的定义域; (2)判定 f (x)的奇偶性;3)是否存在实数 a ,使得 f (x)的定义域为 [ m,n ]时,值域为 [log an数 a 的取值范围;若不存在,请说明理由xx例 5】判断函数 g(x)x xx的奇偶性 .2x1 2x x x 0,所以 g( x) g(x) ,所以g(x)是偶函数 .点评】 和差判别法实际上是奇偶函数定义的等价形式, 但是利用定义判断, 计算较为复杂, 利用和差判别法可以化繁为简,简洁高效1, log a m 1] ?若存在,求出实解析】由题得 x 0 ,因为 g( x) g(x)xx2 x 1 2 xx 2x 1 2x(2x 1)2x 1a1例 6】 证明函数 f (x) x (a 0, a 1)是奇函数 .ax 1【点评】 作商判别法实际上是奇偶函数定义的等价形式, 判别法可以化繁为简,简捷高效 .参考答案反馈检测 1答案】(1)奇函数;(2){y| 1 y 1} .但是利用定义判断, 计算较为复杂, 利用作商奇函数;( 2)单调递增函数;( 3)m 2或 m 2.令x y 0 ,得 f (0) f (0) f (0) ,所以 f (0) 0 , 令y x 可得:f (0) f (x) f( x) 0, 所以 f ( x)f (x) ,所以 f (x)为奇函数(2)f (x) 是定义在 [1,1]上的奇函数,由题意设 1 x 1x 2 1,则f(x 2) f (x 1) f (x 2) f ( x 1) f (x 2 x 1)由题意x 0时,有 f(x) 0, f(x 2) f (x 1)反馈检测 2 详细解析】 1)因为有 f (x y) f (x) f(y) , f (x) 是在 [ 1,1]上为单调递增函数;反馈检测 2 答案】( 1)3)因为 f (x)在 [ 1,1]上为单调递增函数,所以 f (x)在[ 1,1]上的最大值为 f (1) 1,2所以要使 f (x) <m 22am 1,对所有x [ 1,1],a [ 1,1] 恒成立,22只要 m 2 2am 1 1 ,即 m 2 2am0,22令 g(a) m 2am 2am m2 由g( 1) 0 得2m m 2 g(1) 0 2mm 2m 2或 m 2.反馈检测 3 答案】(1)定义域为 (2) (2, );(2)f (x) 在定义域上为奇函数; ( 3)a (0,3 2 2)2) .x2即m、n是方程log a log a x 1的两个实根,于是问题转化成关于x的方程x22ax2 (2a 1)x 2 0在(2, ) 上有两个不同的实数解令g(x)ax2(2a1)x2, 则有:322 3 2 2(2a1)28a0a或a222a 11 3 2 2 2a0 a 又0 a 1 2a62g(2) 8a 0a0故存在这样的实数a(0,3222) 符合题意.2。

函数奇偶性性质

函数奇偶性性质

1、两个奇函数相加所得的和或相减所得的差为奇函数。

2、两个奇函数相乘所得的积或相除所得的商为偶函数。

3、一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。

4、一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。

奇函数和偶函数的判断方法
按定义来说:对于函数f(x)的定义域内任意一个x,都满足f(x)=f(-x)
所以,一般来说判断一个函数是奇函数还是偶函数必须要将定义域中的的所有数
带入,这肯定不可能的.
那么我们可以先看看定义域,奇偶函数的定义域必须是对称的,一个函数的定义域若不是对称的,那么就不用判断了,肯定不是.这个基本一看就能看出.
定义域对称,这时候要判断奇偶性,首先是利用公式,若能推出f(x)=f(-x) 或者
f(x)=-f(-x),那么就可以判定了.所以若是有表达式,一般是将-x带入.
还有可以看图像,看图象是否关于原点对称(此为奇函数)或关于y轴对称(此
为偶函数).
若以上两种都没有判断出奇偶,一般就很可能是非奇非偶函数了.不过考虑有的函数表达式复杂,f(x)=f(-x) 或者f(x)=-f(-x)难以推断,我们也可以将之分解,化成几个
函数相加减或乘除的形式,然后根据各自的奇偶性再判断.当然这时要记住奇函数、偶函数相加减或乘除之后的奇偶变化.。

奇偶性的判断方法

奇偶性的判断方法

奇偶性的判断方法
在数学中,判断一个数的奇偶性可以通过以下方法:
1. 除法判断法:将该数除以2,若余数为0,则该数是偶数;若余数为1,则该数是奇数。

2. 二进制判断法:将该数转换为二进制形式,若二进制表示的最后一位是0,则该数是偶数;若最后一位是1,则该数是奇数。

3. 数字末位判断法:观察该数的个位数字,若个位数字是0、
2、4、6、8中的任意一个,则该数是偶数;若个位数字是1、
3、5、7、9中的任意一个,则该数是奇数。

4. 整数性质判断法:对于整数来说,如果一个数是奇数,则该数减去1后能被2整除;如果一个数是偶数,则该数加上1后能被2整除。

5. 整除规律判断法:对于正整数来说,如果一个数的个位数字为0、2、4、6、8,则该数能被2整除,是偶数;如果一个数的个位数字为1、3、5、7、9,则该数除以2的余数为1,是奇数。

以上是常用的判断一个数的奇偶性的方法,根据具体情况选择合适的方法进行判断。

高中数学函数的奇偶性(解析版)

高中数学函数的奇偶性(解析版)

1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。

函数的奇偶性

函数的奇偶性

函数的奇偶性第一部分 知识梳理1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数;2.函数奇偶性的判定方法①定义法:ⅰ)若函数的定义域不是关于原点对称的对称区域,则该函数既不是奇函数也不是偶函数;ⅱ)若函数的定义域关于原点对称,在判断()f x -是否等于()f x ±-,或判断()()f x f x ±-是否等于零,或判断()()f x f x -是否等于1±;判断函数奇偶性一般步骤:ⅰ)求函数的定义域,判断定义域是否关于原点对称ⅱ)用x -代替x ,验证()()f x f x -=-,奇函数;若()()f x f x -=,偶函数;否则,非奇非偶。

②图像法③性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍奇函数; 奇数个奇函数的积、商(分母不为零)为奇函数;一个偶函数与一个奇函数的乘积是奇函数3.奇偶函数图像的性质①()()()()0f x f x f x f x ⇔-=-⇔+-=奇函数⇔函数的图像关于中心原点对称;⇔偶函数()()()-()0f x f x f x f x -=⇔-=⇔函数的图像关于y 轴对称②若奇函数()f x 的定义域包含0,则(0)0f =.③()f x 为偶函数()()(||)f x f x f x ⇔=-=④奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.第二部分 精讲点拨考点1 奇偶函数的概念与性质1、下列说法错误的个数( )①图像关于坐标原点对称的函数奇函数 ②图象关于y 轴对称的函数是偶函数③奇函数的图像一定过坐标原点 ④偶函数的图像一定与y 轴相交.1A 个 .2B 个 .3C 个 .4D 个[].1EX (1)已知函数()y f x =是偶函数,其图像与x 轴有四个交点,则方程()0f x =的所有实根之和是( )A .4 B.2 C.1 D.0(2)已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >时,()f x 的图像如图,那么()f x 的值域是___________[].2EX (1)设奇函数()f x 的定义域为[]5,5-若当[]0,5x ∈时,()f x 的图象如右图,则不等式()0f x < 的解是____________(2)设()f x 是R 上的任意函数,则下列叙述正确的是 ( ).()()A f x f x -是奇函数 .()()B f x f x -是奇函数 .()()C f x f x --是偶函数 .()()D f x f x +-是偶函数(3)若函数(1)()y x x a =+-为偶函数,则a 等于( ).2A - .1B - .1C .2D(4)已知2()1x f x m x =++为奇函数,则(1)f -的值是________考点2 奇偶函数的判断判断下列函数的奇偶性(1)()f x = (2)()11f x x x =++- (3)()(f x x =-(4)23()f x x x =- (5)2223(0)()0(0)23(0)x x x f x x x x x ⎧-+>⎪==⎨⎪---<⎩考点3 函数奇偶性的应用(1) 已知53()8f x ax bx cx =++-,且()10f d =,求()f d -的值。

数字的奇偶性及判断方法

数字的奇偶性及判断方法

数字的奇偶性及判断方法在数学中,奇偶性是数字的一个重要特征。

奇数是指不能被2整除的整数,而偶数则是可以被2整除的整数。

判断一个数字的奇偶性有很多方法,下面将详细介绍几种常用的判断方法。

一、除法判断法除法判断法是最简单直观的一种方法。

当一个数字能够被2整除时,它就是偶数;当一个数字不能被2整除时,它就是奇数。

例如,数字6能够被2整除,所以它是偶数;而数字7不能被2整除,所以它是奇数。

这种方法的优点是简单易懂,适用于普通人的日常判断。

但是对于较大的数字,进行长除法运算会比较繁琐,效率较低。

二、二进制判断法二进制判断法是一种利用数字的二进制表示来判断奇偶性的方法。

在二进制表示中,偶数的最低位(个位)是0,奇数的最低位是1。

例如,数字2的二进制表示是10,最低位是0,所以它是偶数;数字3的二进制表示是11,最低位是1,所以它是奇数。

这种方法的优点是可以快速判断一个数字的奇偶性,适用于计算机中数字的处理。

但是对于非计算机专业人士来说,理解二进制表示可能较为困难。

三、取余判断法取余判断法是一种利用取余运算来判断奇偶性的方法。

当一个数字对2取余的结果为0时,它就是偶数;当一个数字对2取余的结果为1时,它就是奇数。

例如,数字8对2取余得到的结果是0,所以它是偶数;数字9对2取余得到的结果是1,所以它是奇数。

这种方法的优点是简单明了,适用于较大的数字。

它利用了取余运算的性质,可以快速判断一个数字的奇偶性。

综上所述,我们可以选择适合的方法来判断一个数字的奇偶性。

除法判断法简单易懂,适用于普通人的日常判断;二进制判断法适用于计算机中数字的处理;而取余判断法则可以快速判断较大数字的奇偶性。

在实际使用中,可以根据具体情况选择合适的方法。

无论使用哪种方法,只要按照正确的步骤进行判断,就能准确地判断一个数字的奇偶性。

这对于解决数学问题、编程开发等方面都有着重要作用。

希望通过本文的介绍,读者能够了解数字的奇偶性及判断方法,从而在实际应用中能够准确判断数字的奇偶性。

奇偶性的判断方法

奇偶性的判断方法

奇偶性的判断方法奇偶性是数学中一个重要的概念,它在很多数学问题中都有着重要的应用。

在解决数学问题的过程中,我们经常会遇到需要判断一个数是奇数还是偶数的情况。

本文将介绍奇偶性的判断方法,帮助读者更好地理解和运用这一概念。

首先,我们来看奇数和偶数的定义。

奇数是指不能被2整除的整数,而偶数则是可以被2整除的整数。

换句话说,当一个整数除以2的余数为1时,它就是奇数;当余数为0时,它就是偶数。

这个定义是判断奇偶性的基础,也是我们后续讨论的重要依据。

在实际运用中,我们常常需要判断一个给定的整数是奇数还是偶数。

这时,我们可以利用取模运算来进行判断。

取模运算是指求两个数相除的余数。

对于一个整数n,我们可以用n%2来判断其奇偶性。

如果n%2的结果为1,那么n是奇数;如果结果为0,那么n是偶数。

这种方法简单直观,适用于各种编程语言和数学计算中。

除了取模运算,我们还可以利用数学性质来判断奇偶性。

首先,我们知道任何一个整数都可以表示为2的倍数加上1或者0,即n=2k或者n=2k+1,其中k是整数。

根据这个性质,我们可以得出结论,如果一个整数的个位数字是0、2、4、6、8中的任意一个,那么这个整数一定是偶数;如果个位数字是1、3、5、7、9中的任意一个,那么这个整数一定是奇数。

这个方法虽然在一定程度上增加了计算的复杂度,但在一些特定情况下仍然是一种有效的判断奇偶性的方法。

除了上述方法,我们还可以利用二进制表示来判断奇偶性。

在二进制表示中,一个整数的最后一位就代表了它的奇偶性。

如果一个整数的二进制表示的最后一位是1,那么这个整数是奇数;如果最后一位是0,那么这个整数是偶数。

这种方法在计算机领域中经常被使用,它能够快速准确地判断一个整数的奇偶性。

综上所述,奇偶性的判断方法有多种多样,我们可以根据具体情况选择合适的方法进行判断。

在实际问题中,对于大量的整数,我们可以利用计算机编程来快速高效地判断它们的奇偶性。

通过合理利用奇偶性的判断方法,我们能够更好地解决数学和计算问题,提高工作效率,也能更好地理解和运用奇偶性这一数学概念。

函数的奇偶性

函数的奇偶性

函数的奇偶性一、定义1、如果对于 A x ∈,都有 ,称()y f x =是偶函数。

2、如果对于 A x ∈,都有 ,称()y f x =是奇函数。

二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于 对称;2、整体性:奇偶性是函数的整体性质,对定义域内 一个x 都必须成立;3、可逆性: )()(x f x f =- ⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;4、等价性:)()(x f x f =-⇔0)()(=--x f x f ;)()(x f x f -=-⇔0)()(=+-x f x f5、奇函数的图像关于 对称,偶函数的图像关于 对称;6、奇+奇=奇;偶+偶=偶;奇*奇=偶;偶*偶=偶;奇*偶=奇7、一次函数为奇函数⇔ ;二次函数为奇函数⇔8、奇偶性与单调性 奇函数在对称区间(-b,-a)与(a ,b)上增减性相同;偶函数在对称区间(-b,-a)与(a ,b)上增减性相反应用一:奇偶性的理解例1、下面四个结论中,正确命题的个数是( )①偶函数的图象一定与y 轴相交;②函数()f x 为奇函数当且仅当(0)0f =;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数一定是0)(=x f )(R x ∈ A .1 B .2 C .3 D .4例2、对于定义在R 上的函数,下列说法正确的有 。

(1)f (x )为偶函数,则)2()2(f f =-。

(2)(2))2()2(f f =-,则f (x )为偶函数。

(3)),2()2(f f ≠-则f (x )不为偶函数。

(4))2()2(f f =-,则f (x )不为奇函数。

(5)既是奇函数又是偶函数的函数一定是R x y ∈=,0。

(6)()y f x =在]83,[+a a 上是奇函数,则2-=a 。

例3、关于函数的奇偶性的几个命题的判定。

1、 若函数为奇函数或偶函数,则其定义域关于原点对称。

( )2、 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。

奇偶性的概念课件

奇偶性的概念课件

B.偶函数 D.非奇非偶函数
B [∵f(-x)=|-x|+1=|x|+1=f(x), ∴f(x)为偶函数.]
3.已知函数f(x)=ax2+2x是奇函数,则实数a=______.
0 [∵f(x)为奇函数, ∴f(-x)+f(x)=0, ∴2ax2=0对任意x∈R恒成立, 所以a=0.]
4.下列函数中,是偶函数的有________.(填序号) ①f(x)=x3;②f(x)=x12;③f(x)=x+1x;④f(x)=x2,x∈[-1,2].
4.函数 y=f(x),x∈[-1,a](a>-1)是奇函数,则 a 等于( )
A.-1
B.0
C.1
D.无法确定
C [∵奇函数的定义域关于原点对称,∴a-1=0,即 a=1.]
合作 探究 释疑 难
函数奇偶性的判断
【例 1】 判断下列函数的奇偶性: (1)f(x)=x4;(2)f(x)=x5; (3)f(x)=x+1x;(4)f(x)=x12.
又函数f(x)=
1 3
x2+bx+b+1为二次函数,结合偶函数图象的特
点,易得b=0.
(2)令g(x)=x7-ax5+bx3+cx,则g(x)是奇函数,
∴f(-3)=g(-3)+2=-g(3)+2,又f(-3)=-3,
∴g(3)=5.又f(3)=g(3)+2,所以f(3)=5+2=7.]
利用奇偶性求参数的常见类型及策略 1定义域含参数:奇、偶函数fx的定义域为[a,b],根据定义 域关于原点对称,利用a+b=0求参数. 2解析式含参数:根据f-x=-fx或f-x=fx列式,比较 系数即可求解.
则为非奇非偶函数.]
5.已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)= x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示.

函数的奇偶性

函数的奇偶性

函数的奇偶性知识体系一、函数奇偶性的定义已知函数f(x),对定义域中任意一个自变量x,若都有,则称f(x)为奇函数;若都有,则称f(x)为偶函数。

变式:奇函数;偶函数;二、奇、偶函数的性质1. 奇函数的图象关于原点对称;偶函数的图象关于y轴对称;反之,若一个函数表示的曲线关于原点(y轴对称),则此函数必为奇(偶)函数;2. 奇+奇=奇;偶+偶=偶;奇*奇=偶;偶*偶=偶;奇*偶=奇3. 若奇函数在x=0处有定义,则f(0)=0方法体系例2. f(x)是奇函数,当x>0时,f(x)=x+lgx,求f(x)在x<0时的解析式解:当x<0时,一般地,给出奇、偶函数在某区间上的解析式,求对称区间上的解析式常用f(x)=-f(-x)或f(x)=f(-x)常见的偶函数:二、奇偶性的应用例3.解:设f(-2)=g(-2)+7=-g(2)+7=10例4. 为奇函数,则a=____解:∵f(0)=0,∴log22+a=0 ∴a=-1例5. 为偶函数,则a=_____解:∵f(x)为偶函数,,若改成,则只能根据定义。

例6. 奇函数f(x)在定义域[-4,4]上单增且满足:f(a2-1)+f(a-4)>0,求a的取值范围解:∵f(a2-1)+f(a-4)>0,∴f(a2-1)>-f(a-4)=f(4-a)∴例7. 证明:可导的偶函数其导函数为奇函数,可导的奇函数其导函数为偶函数。

证明:设偶函数为y=f(x),则有f(-x)=f(x)对上式两边求导,得由奇函数定义知,为奇函数。

同理可证可导的奇函数其导函数为偶函数。

练习题:1. 已知2. 已知f(x)(x∈R,x≠1),f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,则当x>1时,f(x)的递减区间是_____3. f(x)=ax3+(a-1)x2+48(a-2)x+b的图象关于原点对称,则f(x)在[-4,4]上的单调性____4. 已知f(x)是奇函数,g(x)为偶函数,。

奇偶性知识点

奇偶性知识点

函数的性质之奇偶性知识梳理要点一:函数奇偶性定义:如果对于函数)(x f 定义域内的任意x 都有)()(x f x f -=-,则称)(x f 为奇函数;如果对于函数)(x f 定义域内的任意x 都有)()(x f x f =-,则称)(x f 为偶函数;如果函数)(x f 不具有上述性质,则)(x f 既不是奇函数也不是偶函数(通常可以用特殊值来证明);如果函数同时具有上述两条性质,则)(x f 既是奇函数,又是偶函数。

要点二:函数奇偶性的判定方法:定义法、图像法(1)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域是否关于原点对称;②确定)(x f -与)(x f 的关系;③作出相应结论:若)()(x f x f =-或0)()(=--x f x f ,则)(x f 是偶函数;若)()(x f x f -=-或0)()(=+-x f x f ,则)(x f 是奇函数。

(2)利用图像判断函数奇偶性的方法:图像关于原点对称的函数为奇函数,图像关于y 轴对称的函数为偶函数,要点三:简单性质:设)(x f ,)(x g 的定义域分别是,1D 2D ,那么在它们的公共定义域(21D D )上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇要点四:复合函数的奇偶性:已知)(x f ,)(x g 的奇偶性,求))((x g f 的奇偶性,只有当)(),(x g x f 都是奇函数时,))((x g f 才是奇函数;其他情形是偶函数,即)(),(x g x f 中只要一个是偶函数那么))((x g f 就是偶函数。

具体可以看下面的例题。

典型例题类型一:一般函数奇偶性的判定例1.判断下列函数的奇偶性:1x x x x f -+-=11)1()(,②349)(2-++-=x x x x f ,③⎪⎩⎪⎨⎧>-<+=)0()0()(22x x x x x x x f ,④2211)(x x x f --=。

数量关系之奇偶性和质合性

数量关系之奇偶性和质合性

数量关系之奇偶性和质合性
一、奇偶性
(一)定义
偶数:能被2整除的数是偶数,0也是偶数。

奇数:不能被2整除的数是奇数。

(二)性质
1、奇数+奇数=偶数,奇数-奇数=偶数
2、偶数+偶数=偶数,偶数-偶数=偶数
3、奇数+偶数=奇数,奇数-偶数=奇数,偶数-奇数=奇数
4、奇数×奇数=奇数
5、偶数×偶数=偶数
6、奇数×偶数=偶数
总之:加减法——同奇同偶则为偶,一奇一偶则为奇;
乘法——乘数有偶则为偶,乘数无偶则为奇。

二、质合性
(1)定义
质数:只能被1和其本身整除的正整数。

如1、3、5、7、11、13、17、19.
合数:除了1和其本身,还可以被其他数整除的正整数。

互质:除了1以外,不能同时被其他整数整除的两个正整数互质。

如:2和9除了1以外,不能同时被其他整数整除,则2和9互质。

(2)性质
1既不是质数也不是合数,2是唯一一个偶质数。

数字的奇偶性及其规律

数字的奇偶性及其规律

数字的奇偶性及其规律数字是我们日常生活中不可或缺的一部分,我们用数字来计算、衡量、描述和分类事物。

在数字中,有一种重要的属性是奇偶性。

奇偶性是指一个数字能否被2整除,如果可以被2整除,则为偶数,否则为奇数。

奇偶性具有一些有趣的规律和特性,下面我们来探讨一下。

1. 奇数和偶数的定义首先,我们来定义什么是奇数和偶数。

偶数是可以被2整除的整数,即能够除以2得到整数结果。

而奇数则是不能被2整除的整数,即除以2后所得到的结果是一个小数或分数。

2. 奇数和偶数的性质奇数和偶数有一些不同的性质。

首先,任何偶数加上另一个偶数,结果仍然是偶数。

例如,2 + 4 = 6,4 + 6 = 10,都是偶数。

同样,任何奇数加上另一个奇数,结果仍然是偶数。

例如,1 + 3 = 4,3 + 5 = 8,都是偶数。

但是,当我们将一个奇数和一个偶数相加时,结果是奇数。

例如,1 +2 = 3,3 +4 = 7,都是奇数。

这表明奇数和偶数之间有一种互斥的关系,它们的相加结果始终是一个奇数。

此外,任何整数乘以2都是偶数。

例如,2 × 2 = 4,3 × 2 = 6,都是偶数。

而任何整数乘以2再加1都是奇数。

例如,2 × 2 + 1 = 5,3 × 2+ 1 = 7,都是奇数。

这个规律说明了奇数和偶数之间的倍数关系。

3. 奇偶数的应用奇偶性在我们的日常生活中有一些实际的应用。

一个常见的应用是校验数字的正确性。

在银行卡号、身份证号码、ISBN码等标识号码的最后一位往往是一个校验位,用来检查前面的数字是否正确。

校验位的选取往往是根据奇偶性规律来确定的。

例如,银行卡号的最后一位是根据前面的卡号计算得出,使得整个卡号的奇偶位数之和为一个特定数目。

另一个应用是电子校验。

在计算机中,存储的数据往往以二进制形式表示,即由0和1组成。

通过统计数据中1的个数,我们可以判断数据是否传输或存储过程中发生错误。

使用奇偶性进行校验,如果数据中1的个数为奇数,则校验位为1;如果为偶数,则校验位为0。

奇偶性的概念

奇偶性的概念

2021-2022学年高中数学必修一第3章3.2.2奇偶性第1课时奇偶性的概念学习目标 1.了解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶函数图象的对称性解决简单问题.知识点一函数奇偶性的几何特征一般地,图象关于y轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数.知识点二函数奇偶性的定义1.偶函数:函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数.2.奇函数:函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数.知识点三奇(偶)函数的定义域特征奇(偶)函数的定义域关于原点对称.1.奇、偶函数的定义域都关于原点对称.(√)2.函数f(x)=x2+|x|的图象关于原点对称.(×)3.对于定义在R上的函数f(x),若f(-1)=f(1),则函数f(x)一定是偶函数.(×)4.不存在既是奇函数又是偶函数的函数.(×)一、函数奇偶性的判断例1判断下列函数的奇偶性.(1)f(x)=1 x;(2)f(x)=x2(x2+2);(3)f (x )=x x -1; (4)f (x )=x 2-1+1-x 2.解 (1)f (x )=1x的定义域为(-∞,0)∪(0,+∞), ∵f (-x )=1-x=-1x =-f (x ), ∴f (x )=1x是奇函数. (2)f (x )=x 2(x 2+2)的定义域为R .∵f (-x )=f (x ),∴f (x )=x 2(x 2+2)是偶函数.(3)f (x )=x x -1的定义域为(-∞,1)∪(1,+∞), ∵定义域不关于原点对称,∴f (x )=x x -1既不是奇函数,也不是偶函数. (4)f (x )=x 2-1+1-x 2的定义域为{-1,1}.∵f (-x )=f (x )=-f (x )=0,∴f (x )=x 2-1+1-x 2既为奇函数,又为偶函数.反思感悟 判断函数奇偶性的方法(1)定义法:①定义域关于原点对称;②确定f (-x )与f (x )的关系.(2)图象法.跟踪训练1 判断下列函数的奇偶性.(1)f (x )=x ;(2)f (x )=1-x 2x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0. 解 (1)函数f (x )的定义域为[0,+∞),不关于原点对称,所以f (x )=x 是非奇非偶函数.(2)f (x )的定义域为[-1,0)∪(0,1],关于原点对称.f (-x )=1-x 2-x=-f (x ), 所以f (x )为奇函数.。

函数奇偶性

函数奇偶性

函数奇偶性一、主要知识:1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数; 2.奇偶函数的性质:()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数⇔()f x 的图象关于y 轴对称;()f x 是奇函数⇔()f x 的图象关于原点对称;()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.3.()f x 为偶函数()()(||)f x f x f x ⇔=-=.4.若奇函数()f x 的定义域包含0,则(0)0f =.二、主要方法:1. 判断函数的奇偶性的方法:定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; 图象法;性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D =上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,奇±偶=非奇非偶;(同不变,异为非。

) 奇×÷奇=偶,偶⨯÷偶=偶,奇⨯÷偶=奇;(奇为负,偶为正。

) 复合函数奇偶性;(一偶则偶,同奇则奇。

)②若某奇函数若存在反函数,则其反函数必是奇函数;2. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-.例1.下列函数,在其定义域内既是奇函数又是增函数的是( )A .y =x +x 3(x ∈R)B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析]首先函数为奇函数、定义域应关于原点对称,排除C ,若x =0在定义域内,则应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,故选A.例2.下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( )A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析]y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D.例3.(2010·安徽理,4)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,故选A.例4.(2010·河北唐山)已知f (x )与g (x )分别是定义在R 上奇函数与偶函数,若f (x )+g (x )=log 2(x 2+x +2),则f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f (1)+g (1)=2f (-1)+g (-1)=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f (1)+g (1)=2g (1)-f (1)=1,∴f (1)=12.例5.(文)(2010·北京崇文区)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,则f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.例6.(2010·山东日照)已知函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),若f (x )在[-1,0]上是减函数,则f (x )在[2,3]上是( )A .增函数B .减函数C.先增后减的函数D.先减后增的函数[答案] A[解析] 由f(x+2)=f(x)得出周期T=2,∵f(x)在[-1,0]上为减函数,又f(x)为偶函数,∴f(x)在[0,1]上为增函数,从而f(x)在[2,3]上为增函数.例7.(2010·辽宁锦州)已知函数f(x)是定义在区间[-a,a](a>0)上的奇函数,且存在最大值与最小值.若g(x)=f(x)+2,则g(x)的最大值与最小值之和为()A.0 B.2C.4 D.不能确定[答案] C[解析]∵f(x)是定义在[-a,a]上的奇函数,∴f(x)的最大值与最小值之和为0,又g(x)=f(x)+2是将f(x)的图象向上平移2个单位得到的,故g(x)的最大值与最小值比f(x)的最大值与最小值都大2,故其和为4.例8.定义两种运算:a⊗b=a2-b2,a⊕b=|a-b|,则函数f(x)=2⊗x(x⊕2)-2() A.是偶函数B.是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数[答案] B[解析]f(x)=4-x2|x-2|-2,∵x2≤4,∴-2≤x≤2,又∵x≠0,∴x∈[-2,0)∪(0,2].则f (x )=4-x 2-x ,f (x )+f (-x )=0,故选B.例9.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数,∴f (x )在[0,+∞)上是减函数.∴b <a <c .故选C.例10.已知函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),则f (2011)等于( )A .2B .-3C .-12D.13[答案] C[解析]由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x ∈N *).∴f (x )的周期为4, 故f (2011)=f (3)=-12.[点评] 严格推证如下:f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),例11.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析]∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x <1,∴-1<x <0,故选A.例12.(文)(09·全国Ⅱ)函数y =log 22-x2+x的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A [解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,则f (x )+f (-x )=log 22-x2+x+log 22+x2-x =log 21=0.故f (x )为奇函数,其图象关于原点对称,故选A.例13.(理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()[答案] C[解析] ∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sin π6=π3>1,排除B ,故选C.例14.(文)已知f (x )=⎩⎨⎧sinπx (x <0)f (x -1)-1 (x >0),则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [答案] -2 [解析] f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-52, f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin π6=12,∴原式=-2.例15.设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.例16.(2010·深圳中学)已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0g (x )>0,或⎩⎪⎨⎪⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.例17.(文)若f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.则f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0.例18.已知函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,则f (-3)+f (5)=________.[答案] 12[解析]∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-(x +1)2x ≤-10 -1≤x ≤1(x -1)2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.例19.(文)(2010·山东枣庄模拟)若f (x )=lg ⎝ ⎛⎭⎪⎫2x 1+x +a (a ∈R)是奇函数,则a =________.[答案] -1[解析]∵f (x )=lg ⎝⎛⎭⎫2x1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立,即lg ⎝⎛⎭⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a=lg ⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =0.∴⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0,∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1. [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些.②如果利用奇函数定义域的特点考虑,则问题变得比较简单.f (x )=lg(a +2)x +a1+x为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a=-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.例19.(2010·吉林长春质检)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫-1+a 2+x 为奇函数,则使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝⎛⎭⎫-1+a 2-x +lg ⎝⎛⎭⎫-1+a2+x=lg ⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =0,∴⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =1,∵a ≠0,∴4-ax 2-4=0,∴a =4,∴f (x )=lg ⎝⎛⎭⎫-1+42+x =lg 2-xx +2,由f (x )<-1得,lg 2-x2+x<-1,∴0<2-x 2+x <110,由2-x 2+x >0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2.例20.(2010·杭州外国语学校)已知f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)若曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)若当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1.∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a ,因为曲线y =g (x )有斜率为0的切线,所以g ′(x )=3x 2+2ax +1=0有实数解.∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3.(2)由题意得g ′(-1)=0,得a =2.∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1).令g ′(x )=0,得x 1=-1,x 2=-13. ∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值. 又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.例21.(2010·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2011).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2,∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0],∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8.又f (x )是周期为4的周期函数,∴f (x )=f (x -4)=x 2-6x +8.从而求得x ∈[2,4]时,f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2008)+f (2009)+f (2010)+f (2011)=0.∴f (0)+f (1)+f (2)+…+f (2011)=0.例22.(文)已知函数f (x )=1-42a x +a (a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值;(2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x -2恒成立,求实数t 的取值范围.[解析](1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0. 即1-42×a 0+a =0, 解得a =2.(2)∵y =2x -12x +1,∴2x =1+y 1-y, 由2x >0知1+y 1-y>0, ∴-1<y <1,即f (x )的值域为(-1,1).(3)不等式tf (x )≥2x-2即为t ·2x -t 2x +1≥2x -2. 即:(2x )2-(t +1)·2x +t -2≤0.设2x =u ,∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-(t +1)×1+t -2≤022-(t +1)×2+t -2≤0,解得t ≥0.例23.设函数f (x )=ax 2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎨⎧f (x ) x >0-f (x ) x <0.(1)若f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围;(3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0.[解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0,即-2a +b =0,因此b =2a .①因为f (-1)=0,所以b =a +c .②又因为曲线y =f (x )通过点(0,2a +3),所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3.从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3(x +1)2 x >03(x +1)2 x <0. (2)由(1)知f (x )=-3x 2-6x -3,所以g (x )=kx -f (x )=3x 2+(k +6)x +3.由g (x )在[-1,1]上是单调函数知:-k +66≤-1或-k +66≥1,得k ≤-12或k ≥0. (3)因为f (x )是偶函数,可知b =0.因此f (x )=ax 2+c .又因为mn <0,m +n >0,可知m ,n 异号.若m >0,则n <0.则F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c=a (m +n )(m -n )>0.若m <0,则n >0.同理可得F (m )+F (n )>0.综上可知F (m )+F (n )>0.例24.已知函数f(x)在(-1,1)上有定义,f(21)=-1,当且仅当0<x<1时f(x)<0,且对任意x 、y∈(-1,1)都有f(x)+f(y)=f(xy yx ++1),试证明:(1) f(x)为奇函数;(2)f(x)在(-1,1)上单调递减.证明:(1)由f(x)+f(y)=f(xy y x ++1),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f(21x xx --)=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减.令0<x1<x2<1,则f(x2)-f(x1)=f(x2)-f(-x1)=f(21121x x x x --)∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0,∴12121x x x x -->0,又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0∴x2-x1<1-x2x1, ∴0<12121x x x x --<1,由题意知f(21121x x x x --)<0即f(x2)<f(x1).∴f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0.∴f(x)在(-1,1)上为减函数.例25.设函数f(x)是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a 的取值范围,并在该范围内求函数y=(21)132+-a a 的单调递减区间.解:设0<x1<x2,则-x2<-x1<0,∵f(x)在区间(-∞,0)内单调递增,∴f(-x2)<f(-x1),∵f(x)为偶函数,∴f(-x2)=f(x2),f(-x1)=f(x1),∴f(x2)<f(x1).∴f(x)在(0,+∞)内单调递减..032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f(2a2+a+1)<f(3a2-2a+1)得:2a2+a+1>3a2-2a+1.解之,得0<a<3.又a2-3a+1=(a -23)2-45.∴函数y=(21)132+-a a 的单调减区间是[23,+∞]结合0<a<3,得函数y=(23)132+-a a 的单调递减区间为[23,3).。

奇偶性

奇偶性

函数奇偶性知识点归纳考点分析配经典案例分析 函数的奇偶性定义:1.偶函数:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.2.奇函数:一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;3、可逆性:)()(x f x f =-⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;4、等价性:)()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=;)()(x f x f -=-⇔0)()(=+-x f x f ;5、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

7、判断或证明函数是否具有奇偶性的根据是定义。

8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。

并且关于原点对称。

三、关于奇偶函数的图像特征 一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数; 即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y )偶函数的图像关于y 轴对称,反过来,如果一个函数的图像关于y 轴对称,那么这个函数是偶函数。

即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y )奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点与考点
1、什么叫偶数,什么叫奇数?
(1)是2的倍数的数叫偶数。

偶数的个位上是:0、2、4、6、8。

(2)不是2的倍数的数叫奇数。

奇数的个位上是:1、3、5、7、9。

2、摆渡
小船最初停在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。

摆渡次数船所在的位置小船摆渡11次后,船在南岸还是北岸?为什么?
小船摆渡了37次后,船在南岸还是在北岸?
摆渡奇数次后,船在__岸;
摆渡偶数次后,船在__岸。

练一练:
(1)有人说摆渡100次后,小船在北岸。

()
(2)摆渡179次后小船在北岸。

()
(3)摆渡2008次后小船在南岸。

()
(1)圆中的数有什么特点?
(2)正方形中的数有什么特点?
模拟练习:
(1)一个杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上。

翻动10次后,杯口朝,翻动19次后杯口朝。

尝试说明理由。

(2)一本数学书放在课桌上,翻动20次后,书的哪一面朝上?为什么?
3、偶数 + 偶数 =(偶数);奇数 + 奇数 =(偶数);偶数 + 奇数 =(奇数)知识应用:
判断下列算式的结果是奇数还是偶数。

10389 + 2004: _____
11387 + 131 : _____
268 + 1024 : _____
46786+25787: _____
6007 + 8997 : _____
课后练习
1.任意写出两个偶数,求出它们的和。

()+()=()举例验证
()+()=()()+()=()
偶数+偶数=()()+ ( ) = ( )
2. 任意写出两个奇数,求出它们的和。

()+()=()举例验证
()+()=()()+()=()
奇数+奇数=()()+()=()
3. 任意写出一个偶数和一个奇数,求出它们的和。

()+()=()举例验证
()+()=()()+()=()
偶数+奇数=()( )+( )=( )
4. 你能利用上面的探索方法,找出数的其他奇偶性变化的规律吗?请试着完成下面的填空。

偶数—偶数=()
奇数—奇数= ( )
奇数—偶数=()
奇数×奇数=()
奇数×偶数=()
偶数×偶数=()
5、判断下列结果是奇数还是偶数。

(1)2569+385的和是()。

(2)11+12+13+14+15+16+17+18+19的和是()。

(3)一个奇数与2相乘,积是()。

(4)485—682的差是()。

6、在方框里填上适当的数。

2573+35□的和是奇数。

380—25□的差是偶数。

7、有一枚五角硬币,“国徽”面朝上放在桌子上,请问:翻动10次后,“五角”面朝上还是“国徽”面朝上?111次呢?。

相关文档
最新文档