第五讲 立体图形染色问题

合集下载

染色问题

染色问题

什么是染色问题这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法。

染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会几种典型的染色方法。

染色问题基本解法:三面涂色和顶点有关 8个顶点。

两面染色和棱长有关。

即新棱长(棱长-2)×12一面染色和表面积有关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*60面染色和体积有关。

用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

染色问题的解题思路染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。

图一首先,拿到一道题先认真观察,看这个题的突破点。

什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。

例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。

找到这个区域问题就容易解决了。

这个区域可以任意添色就是染最多的颜色。

本题中有4种颜色那么A可以染4种颜色了。

完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。

这道题找到了最特殊的A 区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。

区域B跟A、C相连那么 B可以染2种。

D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D 则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。

高中立体图形染色问题教案

高中立体图形染色问题教案

高中立体图形染色问题教案
教学目标
- 让学生掌握立体图形的基本性质和相关公式。

- 培养学生的空间想象能力和逻辑推理能力。

- 教会学生如何通过染色方法解决立体图形的问题。

教学内容与过程
引入阶段
教师可以展示一些常见的立体图形模型,如立方体、长方体、球体等,并引导学生观察它们的特点。

提出染色问题:如果我们要对这些立体图形进行染色,最少需要多少种颜色才能确保相邻面不重色?
探索阶段
将学生分组,让每组选择一个立体图形,使用彩纸或者绘画工具来进行染色尝试。

在此过程中,教师需巡视指导,鼓励学生发现规律,比如立方体的六个面染两种颜色即可满足条件。

讨论阶段
各小组分享他们的染色方案,并解释其背后的逻辑。

教师点评各种方案的优劣,并总结出染色问题的一般性原则,即“欧拉公式”在立体图形中的应用。

应用阶段
给学生提供更复杂的立体组合图形,如多面体的组合,要求他们运用所学知识进行染色。

这一步骤旨在巩固学生的理解和应用能力。

总结阶段
教师应总结立体图形染色问题的关键点,包括:
- 立体图形的性质和面的相邻关系。

- 染色问题的解题策略和欧拉公式的应用。

- 逻辑推理在解决问题中的重要性。

课后作业与反思
布置相关的习题,让学生在家中继续练习,加深对立体图形染色问题的理解。

同时,教师应根据学生的反馈和作业表现,反思教学方法和内容,以便不断优化教学效果。

小学奥数 长方体正方体染色问题、三视图 知识点+例题+练习 (分类全面)

小学奥数 长方体正方体染色问题、三视图 知识点+例题+练习 (分类全面)

教学内容长方体正方体染色问题、沉浸问题、三视图教学目标掌握长方体正方体染色问题、沉浸问题、三视图重点染色问题、沉浸问题、三视图难点染色问题、沉浸问题、三视图教学过程一、染色问题一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。

(1)三个面涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

(2)两个面涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:算法1: 1000-8-96-384=512(个);算法2: 8×8×8=512(个)。

公式:(1)正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色,则未被涂色的小立方体有(n-2)3个.一面被涂色的小立方体为(n-2)2*6个.两面被涂色的小立方体有(n-2)*12个.三面被涂色的有8个.(2)长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个【例 1】下图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:1; 1面:6;两面:2;三面:8【巩固】下图是456⨯⨯长方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:24; 1面:52;两面:36;三面:8图1图2【巩固】小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图2所示,从上面看如图3所示,那么这个几何体至少用了块木块.26图2图3课堂作业:1.一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切3刀,沿着高边等距离切_______次后,要使各面上均没有红色的小方块为40块.5.用一些棱长是1的小正方体码放成一个立体,从上、从右看这个立体都如下图,则这个形体最少由________个小正方体构成,6.小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图2所示,从上面看如图3所示,那么这个几何体至少用了块木块.。

初中数学重点梳理:染色问题

初中数学重点梳理:染色问题

染色问题知识定位染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,这类问题的特点是知识点少,逻辑性强,技巧性强,其内部蕴藏着深刻的数学思想。

同时,染色作为一种解题手段也在数学竞赛中广泛使用。

将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系,像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明了,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法。

知识梳理知识梳理1.染色问题解答染色问题,并不需要具备更多的数学知识,只需要具有缜密的思考能力和较强的分析能力。

纵观各种染色试题,它与我们经常使用的数学方法紧密联系。

大体上有如下几种方法:奇偶分析、归纳法、反证法、抽屉原理、构造法、组合计数等。

常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。

例题精讲【试题来源】【题目】用任意的方式将平面上的每一点染上黑色或白色(称为二染色).求证:一定存在长为1的线段,它的两个端点同色。

【答案】在平面上任作一个边长为1的正三角形,设三个顶点为A,B,C,由于平面上的每点只着黑、白两色之一,根据抽屉原理,A,B,C三点中必有两点同色,以这两同色点为端点的线段长度恰为1.【解析】在平面上任画一条长为1的线段,如图,若A,B两点同色,则结论已成立.若A,B 两点不同色,为确定起见不妨设A为黑色,B为白色,以AB为边作正三角形ABC,则AB=BC=CA=1.这时C点要么是黑点,要么是白点.若C为黑点,则AC为两个端点同色的长为1的线段.若C为白点,则BC为两个端点同色的长为1的线段.上述分析过程,其实已完成了证明过程,不过思路一旦找出,出现边长为1的正三角形的顶点A,B,C三点的构想是个关键,为此可得出如下简化的证明.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】对平面上的点黑白二染色后,一定存在三顶点同色的直角三角形.【答案】见解析【解析】对平面上的点黑白二染色,根据例1的结论,存在边长为a(a>0)的线段AB,它的两个端点同色(不妨设A,B同黑).以AB为边作正方形ABCD,对角线AC,BD交于点O,如图,如果D,O,C中有一个黑点,则该点与A,B构成三顶点同黑色的直角三角形.如果D,O,C全白色,则△DOC就是三顶点全为白色的直角三角形.因此,二染色平面上一定存在顶点同色的直角三角形.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】用任意的方式,对平面上的每个点染黑色或白色,求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色.【答案】见解析【解析】若存在边长为1且顶点同色的正三角形,则问题得证.若不存在边长为1且顶点同色的正三角形,则一定存在长为1的线段AB ,两端点A ,B 异色.以AB =1为底作腰长为2的等腰三角形ABC ,则C 与A 或B 总有一对是异色的.不妨设长为2的线段AC 两端点异色(见图(a )).取AC 的中点O ,则O 必与A ,C 之一同色(见图(b )),不妨设O 与A 同色.由于不存在边长为1的同色顶点的正三角形,所以以AO 为一边的等边三角形的另外的顶点D 和E 必与A 异色.此时,△ECD 就是一个边长为3的顶点同色的正三角形.评注 事实上,当将平面分成宽度为23的水平带状区域,且每个区域含下沿直线,不含上沿直线,使相邻的带状区域染上不同颜色,对这样的平面二染色,任意边长为1的正三角形的三个顶点均不同色,但存在边长为3的三顶点同色的三角形.由例3可得更一般的结论:平面上点二染色后,要么存在边长为a (a >0)三顶点同色的正三角形,要么存在边长为3 a 三顶点同色的正三角形.【知识点】染色问题 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】连接圆周上9个不同点的36条线段染成红色或蓝色,假设9点中每3点所确定的三角形都至少含有一条红色边.证明有4点,其中每两点的连线都是红色.【答案】见解析【解析】设9个点依次为v1,v2,…,v9,首先证明必存在一点,设为v1,从v 1出发的红色线段不是5条.事实上,若不然,如果都是5条,则共有红色线段295不是整数,矛盾.若从v1出发的红色线段至少有6条,设v1v2,v1v3,v1v4,v1v5,v1v6,v 1v7均为红色,则由第26讲例8评注可知,连结v2,v3,v4,v5,v6,v7的线段中必有同色三角形.由题意知它只能为红色三角形,设为v2v3v4,则v1,v 2,v3,v4四点中两两皆连红线.若从v1出发的红色线段至多4条,则v1出发的蓝色线段至少有4条,设为v 1v2,v1v3,v1v4,v1v5,则v2,v3,v4,v54点必然两两连红线.否则,例如若v2v3是蓝色的,则△v1v2v3是蓝色三角形,与题设至少有一边为红色矛盾.以上各例中,染色都是作为问题条件给出的,有时,染色方法也作为一种分类手段,因此,用形象直观地染色进行分类,也就成了一种很有特色的解题方法.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】某桥牌俱乐部约定,四个人在一起打牌,同一方的两个人必须都曾合作过,或都不曾合作过.试证:只要有五个人,就一定能凑齐四个人,按照约定在一起打牌.【答案】见解析【解析】本题证明采用构造一个涂色模型,使它与原问题间有一一对应的关系.如果模型中的问题证明了,那么原问题也相应地证明了.证明五个人对应为空间五个点,如两个人合作过,那么对应两点连结红色线段,如两人不曾合作过,那么对应两点连结蓝色线段.因此原问题等价于证明涂色模型:空间五个点(无三点在一条直线上),两两连线,涂上红色或蓝色之一.证明必存在两条无公共端点的同色线段.设五个点为A1,A2,A3,A4,A5,不失一般性,不妨设A1A2为红色.观察△A3A4A5三条边的颜色.(1)如果△A3A4A5中有一条边为红色,设为A3A4,那么A1A2与A3A4是满足条件的两条线段;(2)如果△A3A4A5的三条边均为蓝色,此时如A1A3,A1A4,A1A5与A2A3,A2A4,A2A5中如果有一条蓝色线段,那么问题就获证.如以A1A3是蓝色线段为例,那么A1A3与A4A5是满足条件的两条线段.反之,如果此时六条线段均为红色,如取A1A3与A2A4就是满足条件的两条线段.由于无公共端点的同色线段存在,证得原命题成立.【知识点】染色问题【适用场合】阶段测验【难度系数】3【试题来源】【题目】把平面划分成形为全等正六边形的房间,并按如下办法开门:若三面墙汇聚于一点,那么在其中两面墙上各开一个门,而第三面墙不开门.证明:不论沿多么曲折的路线走回原来的房间,所穿过的门的个数一定是偶数.【答案】见解析【解析】为方便起见,我们把有公共门的两个房间叫做相邻的.用两种不同的颜色涂平面上的这些房间,使相邻的房间的颜色不同(如图).注意,从某种颜色的房间走到同种颜色的房间,必须经过另一种颜色的房间.显然,从任一房间走到同种颜色的房间,必定经过偶数个门.这样,利用图形和不同的颜色就可以解出这道题.【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】有一个2003⨯2003的棋盘和任意多个l⨯2及1⨯3的矩形纸片,规定l⨯2的纸片只能沿着棋盘的格线水平地放置,而1⨯3的纸片只能沿着棋盘的格线铅直地放置. 请问是否可依上述规定取用一些纸片不重叠地盖满整个棋盘?【答案】不可以【解析】先将棋盘的每一行黑白交错涂色,即第一行,第二行,第三行,…,依次为黑色,白色,黑色,….经过这样涂色后,开始时棋盘的黑白方格数之差为2003个.沿着棋盘的格线水平地放置1⨯2的纸片,每放上一个l⨯2的纸片,就能盖住黑白方格各一个,所以这个操作并不会改变黑白方格数之差;而每一个1⨯3的矩形纸片沿着棋盘的格线铅直地放置,所覆盖的三个方格都是同一颜色,所以每放置一片l⨯3的矩形纸片,棋盘的黑白方格数之差就增加3个或减少3个.因为2003不是3的倍数,所以,依题述规定取用一些1⨯2及l⨯3的矩形纸片是不可能不重叠地盖满整个棋盘的.【知识点】染色问题【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】证明:如图,用15块4×1的矩形瓷砖与1块2×2的方形瓷砖,不能覆盖8×8的正方形地面(瓷砖不许断开!).【答案】见解析【解析】本例题有多种证法.一个共同点是:“不能覆盖”的证明,通常借助于反证法.证法1将8×8的正方形地面的小方格,用黑、白色涂之,染色法如图.于是,每一块4×1瓷砖,不论怎样辅设,都恰好盖住两个白格两个黑格.15块4×1瓷砖共盖住30个白格和30个黑格.一块2×2瓷砖,无论怎么放,总是盖住“三白一黑”或“三黑一白”,即只能盖住奇数个白格和奇数个黑格.而盘中的黑白格总数相等(全为32个).所以用15块4×1砖与1块2×2砖不能完全覆盖8×8地面.证法2将8×8的正方形地面的小方格.用代号为1,2,3,4的四种颜色涂之,染色法如(a).这时,4×1砖每次总能盖住1,2,3,4四色;而2×2砖不论放何处,总是不能同时盖住1,2,3,4四色.故是不可能的.证法3同样用四色涂之,涂法如(b).用反证法,设4×1砖横着盖住i 色的有x i 块,竖着盖住的有y 块.2×2砖盖住阴影格处(不妨假定,余仿此).假定能够盖住.那么有:⎩⎨⎧=+=+,144,16421y x y x 相减得4(x 1-x 2)=2.因为x 1与x 2均为整数,这是不可能的.【知识点】染色问题 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块.(2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙.【答案】见解析【解析】(1)首先用12块地板砖与6块地板砖能铺成的长方形地面, 再利用4个的板块,恰用1块地板砖,可以铺满的正方形地面. (2)我们将的大正方形分成23行23列共计529个的小方格,再将第1行,第4行,第7行,第10行,第13行,第16行,第19行,第22行这八行染红色,其余的15行都染白色,任意或的小正方块无论怎样放置(边线与大正方形格线重合),每块或的正方块都将盖住偶数块的白色小方格.假设用及的正方形地板砖可以铺满后正方形地面,则它们盖住的白色的小方格总数为偶数个.然而地面染色后共有(奇数)个的白色小方格,矛盾.所以,只用,两种型号地板砖无论如何铺设,都不能铺满的正方形地面而不留空隙.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,对A,B,C,D,E,F,G七个区域分别用红、黄、绿、蓝、白五种颜色中的某一种来着色,规定相邻的区域着不同的颜色.那么有种不同的着色方法.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有种不同的着色方式.因此,本题正确答案是:2880.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】一块2×2的方格由4个1×1的方格构成,每个小方格被涂上红、绿两种颜色之一.如果要求绿色小方格的上方和右方不能与红色方格邻接.且上述四个小方格可以全部不涂绿色,也可全部涂上绿色.则可能的涂色方法共有种.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有5×4×4×2×3×3×2=2880种不同的着色方式.故答案为:2880.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】在9×9的方格表中,有29个小格被染上了黑色,如果m表示至少包含5个黑色小方格的行的数目,n表示至少包含5个黑色小方格的列的数目,试确定m+n的最大值.【答案】10【解析】∵m表示至少包含5个黑色小方格的行的数目,∴5m小于29,∴m的最大值为5,当m=5时,则n的最大值为5.故m+n的最大值为5+5=10.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】将凸五边形ABCDE的5条边和5条对角线染色,且满足任意有公共顶点的两条线段不同色,求颜色数目的最小值.【答案】5【解析】由于顶点A是4条线段AB,AC,AD,AE的公共点,因此至少需要4种颜色.若只有4种颜色,不妨设为红、黄、蓝、绿,则每个顶点引出的4条线段的颜色包含红、黄、蓝、绿各一种,因此,红色的线段共有条,矛盾.所以,至少需要5种颜色.下面的例子说明5种颜色可以将这10条线段染为满足条件的颜色.将AB,CE 染为1号颜色;将BC,DA染为2号颜色;将CD,EB染为3号颜色;将DE,AC染为4号颜色;将EA,BD染为5号颜色,则任意有公共顶点的两条线段不同色.综上所述,颜色数目的最小值为5.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】有10个表面涂满红漆的正方体,其棱长分别为2,4,6,…,20.若把这些正方体全部锯成棱长为1的小正方体,求有多少个至少一面有漆的小正方体.【答案】8000【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将直线上的每一个点都染上红、黄两色中的一种,证明:必存在同颜色的三个点,使得其中一点是另两点为端点的线段的中点.【答案】见解析【解析】【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】某班有50个学生,男女各占一半,他们围成一圈,席地而坐开营火晚会,求证:必能找到一位两旁都是女生的学生.【答案】见解析【解析】【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】若由“L”形的4个小方格,无重迭地拼成一个4×n的矩形.试证:n必为偶数.【答案】见解析【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将一个棱长分别为36厘米、54厘米和72厘米的长方体切割成一些大小相同、棱长是整数厘米的正方体,然后给这些正方体的表面涂色。

小学奥数-长方体正方体染色问题、三视图-知识点+例题+练习-(分类全面)精选全文完整版

小学奥数-长方体正方体染色问题、三视图-知识点+例题+练习-(分类全面)精选全文完整版

可编辑修改精选长方体正方体染色问题、沉浸问题、三视图全文完整版教学内容教学目标掌握长方体正方体染色问题、沉浸问题、三视图重点染色问题、沉浸问题、三视图难点染色问题、沉浸问题、三视图教学过程一、染色问题一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。

(1)三个面涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

(2)两个面涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:算法1: 1000-8-96-384=512(个);算法2: 8×8×8=512(个)。

公式:(1)正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色,则未被涂色的小立方体有(n-2)3个.一面被涂色的小立方体为(n-2)2*6个.两面被涂色的小立方体有(n-2)*12个.三面被涂色的有8个.(2)长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个【例 1】下图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:1; 1面:6;两面:2;三面:8【巩固】下图是456⨯⨯长方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?看如右下图,那么他最少用了_____块木块。

专题08《立体图形的染色问题》(解析)

专题08《立体图形的染色问题》(解析)

2022-2023学年专题卷小升初数学几何问题精选真题汇编强化训练(提高)专题08立体图形的染色问题考试时间:100分钟;试卷满分:100分一.选择题(共6小题,满分12分,每小题2分)1.(2分)(2022秋•威县期末)在图形中再给1个格子涂上颜色,使涂色部分成为一个轴对称图形,一共有()种不同的涂法.A.2B.3C.4【思路点拨】根据轴对称图形的概念与轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.【规范解答】解:画图如下:答:在图形中再给1个格子涂上颜色,使涂色部分成为一个轴对称图形,一共有4种不同的涂法.故选:C。

【考点评析】此题主要考查了学生对轴对称意义的灵活运用,解题关键是找对称轴,按对称轴的不同位置得出不同图案.2.(2分)(2022秋•兴化市期中)如图,从一个体积是30立方厘米的长方体木块中,挖掉一小块后在表面涂上红漆,三面都涂色的小正方体有()个。

A.8B.9C.10D.11【思路点拨】因为5×2×3=30,根据立体图形的知识可知:三个面均涂色的是各顶点处的小正方体加上挖掉那块左、右和后面相邻的3个;根据上面的结论,即可求得答案。

【规范解答】解:长方体三面都涂色的小正方体,在8个顶点处,加上挖掉那块左、右和后面相邻的3个。

8+3=11(个)答:三面都涂色的小正方体有11个。

故选:D。

【考点评析】此题考查了立方体的涂色问题;注意长方体表面涂色的特点及应用。

3.(2分)(2022秋•洪湖市期末)给一个正方体的表面涂上红、黄、蓝三种颜色,任意抛一次,使红色面朝上的可能性最大,蓝色面和黄色面朝上的可能性相等,需要有()个面涂红色。

A.2B.3C.4【思路点拨】一个正方体有6个相同的面积,这6个面分别涂上红、黄、蓝三种颜色,任意掷一次,要使红色面朝上的可能性最大,蓝色面和黄色面朝上的可能性相同,涂红色的面数最多,涂蓝色、黄色的面数相同。

6个面只能4份涂红色,蓝色、黄色各涂1份。

《长方体的染色问题》PPT课件

《长方体的染色问题》PPT课件

目的是努力使弱点趋于最
小,使机会趋于最大
O
T ST对策
最小与最大对策,即着重 苦乐
考虑优势因素和威胁因素, 参半


目的是努力使优势因素趋 于最大,是威胁因素趋于
最小。
SO对策
最大与最大对策,即着重 理想 考虑优势因素和机会因素, 目的在于努力使这两种因 素都趋于最大。
解威胁因素;考虑过去,立足当前,着眼未来。运用系统分析的综合分析方
法,将排列与考虑的各种环境因素相互匹配起来加以组合,得出一系最小与最小对策,即考虑 悲观
弱点因素和威胁因素,目
的是努力使这些因素都趋


于最小。
WO对策 最小与最大对策,即着重 苦乐
S
W
考虑弱点因素和机会因素, 参半
➢市场分析人员经常使用这一工具来扫描、分析整个行业和市场,获取相关 的市场资讯,为高层提供决策依据,其中,S、W是内部因素,O、T是外部 因素。
➢它在制定公司发展战略和进行竞争对手分析中也经常被使用。 SWOT的 分析技巧类似于波士顿咨询(BCG)公司的增长/份额矩阵(The Growth/Share Matrix),
已知一个正方体木块能分割成若干个棱长是1厘米的小正方体木块又知在这个大的正方体木块的5个面上涂上红色后把它分割成若干个棱长1厘米的小正方体木块中有两面涂上红色的共108块
《长方体的染色问题》
【Applicable to lecture training work report】
Special lecture notes
构造SWOT矩阵
在构造SWOT过程中,将那些对公司发展有直接的、重要的、大量的、迫切的、 久远的影响因素优先排列出来,而将那些间接的、次要的、少许的、不急的、 短暂的影响因素排列在后面。

立体图形染色计数

立体图形染色计数

数学认识立体图形知识点讲解
立体图形计数知识点
数学图形计数知识点讲解
小学数学立方体染色计数:给正方体涂色
数学知识点:染色中的抽屉原理
数学试题及解析:图形染色计数
图中的16个点表示16个城市,两个点之间的连线表示这两个城市有公路相通.问能否找到一条不重复地走遍这 16 座城市的路线?
分析:如图如对这16个城市用1、2相间进行标注,发现2有9个,1有7个,
而要不重复地走遍这 16 个城市,黑色与白色的个数应该相等,所以不能找到一条不重复地走遍这 16 座城市的路线.
解析:对这 16 个城市用 1、2 相间进行标注,2 有 9 个,1 有 7 个,而要不重
复地走遍这 16 个城市,黑色与白色的个数应该相等;所以不能找到一条不重复地走遍这 16 座城市的路线.(如下图)
点评:看到这道题,有可能会想到一笔画问题.但是请注意本题的要求是只要走过16个点,而非走过每一条路,所以不是一笔画问题.。

六年级染色问题

六年级染色问题

染色问题基本解法:三面涂色和顶点有关 8个顶点。

两面染色和棱长有关。

即新棱长(棱长-2)×12一面染色和表面积有关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6 0面染色和体积有关。

用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

六年级染色问题:难度:高难度下图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?分析:将40个小正方形剪裁成20个相同的长方形,就是将图形分割成 20个1×2的小长方形,将图形黑白相间染色后,发现有21黑, 19白,黑、白格数目不等,而1×2的小长方形覆盖的总是黑白格各一个,所以不可能做到。

六年级染色问题习题难度:中难度下图是学校素质教育成果展览会的展室,每两个相邻的展室之间都有门相通。

有一个人打算从A室开始依次而入,不重复地看过各室展览之后,仍回到A 室,问他的目的能否达到,为什么?分析:采用染色法。

如右下图,共有9 个展览室,对这9个展览室,黑白相间地进行染色,从白室A出发走过第1 扇门必至黑室,再由黑室走过第2 扇门至白室,由于不重复地走遍每一间展览室,因此将走过黑白相间的8个展览室,再回到白室A ,共走过9扇门。

由于走过奇数次门至黑室,走过偶数次门至白室。

现在,走过9扇门,必至黑室,所以无法回到原来的白室A 。

六年级染色问题:难度:中难下图是由14个大小相同的方格组成的图形。

试问能不能剪裁成7个由相邻两方格组成的长方形分析:将这14个小方格黑白相间染色(见下图),有 8个黑格, 6个白格。

相邻两个方格必然是一黑一白,如果能剪裁成7个小长方形,那么14个格应当是黑、白各7个,与实际情况不符,所以不能剪裁成 7个由相邻两个方格组成的长方形。

染色问题练习题及答案。

染色问题完整ppt课件

染色问题完整ppt课件
问题四:若将内圆作为第五部分,有四种颜 色可供使用,又有多少种不同的方法?
2003年•高考
ppt精选版
5
例:某城市在中心广场建造一个如图所示的 花圃,现要栽种4种不同颜色的花,每部分 栽一种且相邻部分不能栽种同样颜色的花, 不同的栽种方法有多少种?
解:根据分步计数原理,不同的栽种方法有:
4 3 2 1 A 2 1 1 1 1 2 1 ( 种 ) 2 2
答:不同的栽种方法p有pt精选1版20种。
6
强化训练 1、至少需要几种颜色才能使 右图中所有有公共端点的线段 涂上不同的颜色? 4种
2、将一个四棱锥S–ABCD的 每个顶点染上一种颜色,并使 同一条棱的两个端点异色,如 果有5种颜色可供使用,那么 A 不同的染色方法有多少种?
420种 ppt精选版
不同的栽种方法有120ppt精选版将一个四棱锥sabcd的每个顶点染上一种颜色并使同一条棱的两个端点异色如果有5种颜色可供使用那么不同的染色方法有多少种
染色问题
执教:叶 春 天
ppt精选版
1
二十世纪现代数学十大成果之一——四色问题:
给任意一张平面地图着色时,最多用四 种颜色就可使任何具有公共边界线的区域 着不同颜色。
S
D
C
B
7
小结:
解决染色问题的基本方法有二:分步 法和分类法。但分步法中有些步骤却要分 类计算,而分类法中的有些类型则要分步 计算。因此,要注意将二者结合使用。
作业:
课堂新坐标P282 一、二
ppt精选版
8
下课 谢谢指导
ppt精选版
9
ppt精选版
2
问题一:给四川、青海、西藏、云南四省 (区)的地图染色,要求每省(区)用一种 颜色,相邻省(区)着不同色,有四种颜色 可供使用,则不同的染色方法有多少种?

立体图形的涂色问题

立体图形的涂色问题

立体图形的涂色问题例1.一个表面都涂满红色的立方体,在它的每个面上等距离地切两刀,可得到27个小立方体,而且切面都是白色,这27个小立方体中,一面是红色的有多少个?二面是红色的有多少个?三面是红色的有多少个?各面都没有红色的有多少个?解析:仔细观察(1)一面涂有红色的小方块位于每个面的中心。

有6个(2)二面涂有红色的小方块位于每条棱的中间。

有12个(3)三面涂有红色的小方块位于每个角上,永远都是8个。

(4)各面没有红色的小方块位于立方体的内部,用总的小方块的数量减去一面、二面、三面涂红的块数,就可以了。

有1个进一步归纳:对于一个n×n×n的正方体,其涂色情况如下:(1)三面涂色的:8个(2)二面涂色的:(n-2)×12个(3)一面涂色的:(n-2)×(n-2)×6个(4)各面没涂色的:总的个数减去上面三类的总个数或(n-2)×(n-2)×(n-2)个例2.有个长方体,长、宽、高分别是3、5、7(单位:厘米),分别将其表面涂上红色,然后将它们分割成棱长为1厘米的小立方体,一面是红色的有多少个?二面是红色的有多少个?三面是红色的有多少个?各面都没有红色的有多少个?解析:(1)三面涂色的在角上,有8个(2)二面涂色的在每条棱中间,长上面有1×4=4个,宽上面有3×4=12个,高上面有5×4=20个,总共36个(3)一面涂色的在每个面的中间,上、下面上有1×3×2=6个,左、右面上有3×5×2=30个,前、后面上有1×5×2=10个,总共46个(4)各面都没涂色的有3×5×7-8-36-46=15个进一步归纳:对于一个a×b×c的长方体(a、b、c表示长、宽、高),其涂色情况如下:(1)三面涂色的:8个(2)二面涂色的:[(a-2)+(b-2)+(c-2)]×4个即(a+b+c-6)×4个(3)一面涂色的:[(a-2)×(b-2)+(a-2)×(c-2)+(b-2)×(c-2)]×2个(4)各面没涂色的:总的个数减去上面三类的总个数或(a-2)×(b-2)×(c-2)个练习:1.一个棱长为3厘米,在其表面涂满红漆,然后切成棱长都是1分米的小正方体,问三面、二面、一面涂有红漆各有多少个?六面都没红色有多少个?(答案:8、12、6、1)2.一个长方体木块,长、宽、高分别是5、3、4分米,在它六个面上漆满油漆,然后踞成棱长都是1分米的正方体木块。

小学奥数题目-五年级-计数类-立方体染色

小学奥数题目-五年级-计数类-立方体染色

通常,在一个大的立方体表面进行染色,染色之后再进行切割,将大立方体切割成许多小的立方体,这样得到的小立方体中,染色的情况会有许多种,一面染色、两面染色、三面染色……本讲主要讲解解决这类问题的一些方法。

包括染色一面,两面,三面等小立方体个数的计算公式。

例1、将下图中棱长为10厘米正方体表面涂上红色,如果沿着虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?1. 1.长宽高分别为3,4,5的长方体,将其表面涂上红色,然后将其切成60个边长为1的小立方体,这些小立方体中没有被涂上红色的所有表面的面积和是多少?2. 2.长宽高分别为6,8,12的长方体,将其表面涂上红色,然后沿着与边长分别为6和8的侧面平行的面切3次,沿着与边长分别为8和12的侧面平行的面切2次,沿着与边长分别为6和12的侧面平行的面切3次,将其分成若干个小长方体,这些小长方体中没有被涂成红色的所有表面的面积是多少?3. 3.将棱长为8厘米正方体表面涂上红色,如果把它切成64个边长为2厘米的小立方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?视频描述例2、有30个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?1. 1.如下图,由44个边长为1厘米的小正方体组成的如图所示的形式,现在把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?2. 2.有55个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?3. 3.如下图,由35个边长为2厘米的小正方体堆成的形状,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?视频描述例3、一个长方体木块,长5分米,宽3分米,高4分米,在它六个面上都漆满油漆,然后锯成棱长都是1分米的正方体木块。

问锯成的木块中三面涂有油漆有多少块?两面涂有油漆的有多少块?1. 1.一个长方体木块,长10分米,宽6分米,高8分米,在它六个面上都漆满油漆,然后锯成棱长都是2分米的正方体木块。

五年级下学期数学 长方体和正方体的染色问题 专项题型训练 后面带答案

五年级下学期数学 长方体和正方体的染色问题 专项题型训练  后面带答案

长方体与正方体的染色问题【知识点总结】三个面都染色的在8个顶点处,两个面都染色的在12条棱的中间段(去掉每条横两头的各一个),一面有色的在各个面的中央,没有着色的在长方体的里面。

对于一个n×n×n的正方体,其涂色情况如下:三面涂色的:8块二面涂色的:(n-2)×12一面涂色的:(n-2)×(n-2)×6没有颜色的:(n-2)×(n-2)×(n-2)验算的方法:上面的总数=体积数对于一个a×b×c的长方体,其涂色情况如下:三面涂色的:8块二面涂色的:[(a-2)+(b-2)+(c-2)]×4一面涂色的:[(a-2)×(b-2)+(a-2)×(c-2)+(b-2)×(c-2)]×2 没有颜色的:(a-2)×(b-2)×(c-2)验算的方法:上面的总数=体积数【针对性训练】1、下图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它洞虚线切成8个正方体,这些小正方体的所有表面的面积和是()平方厘米。

2、一个正方体形状的木块儿,棱长为1米,若沿着正方体的三个方向分别锯成3份,四份、五份,如下图,得到大大小小的长方体60块,这60块长方体的表面积的和是多少平方米?3、一个表面积为56平方厘米的长方体如图切成27个小长方体,这27个小长方体的表面积的和是多少平方厘米?4、(1)将一个长10厘米,宽5厘米,高4厘米的长方体表面全部染成红色,然后切割成棱长为1厘米的小正方体,所有的小正方体中有1面染色的有()个,2面染色的有()个,三面染色的有()个,0面染色的有()个。

(2)将一个棱长为8厘米的正方体表面全部染成红色,然后切割成棱长为1厘米的小正方体,所有的小正方体中有1面染色的有()个,2面染色的有()个,三面染色的有()个,0面染色的有()个5、(1)将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色没有涂的小立方体只有3块。

数学人教版五年级下册探索图形(染色问题)课件

数学人教版五年级下册探索图形(染色问题)课件

一共有( a 8×b 6×h 5= )个小正方体 240 )个小正方体 1、三面涂色的块数有( 8 )个。 2、两面涂色的块数有( ([( [( 8-2 a-2 )) +( +( 6-2 b-2 )) +( +( 5-2 h-2 )) ] ] ×× 4=452)) 个。 个。 3、一面涂色的块数有([( a-2 8-2)×(b-2 6-2)+ ( a-2 8-2)×(h-2 5-2)+ ( + 6-2 (b-2 )×( )×( 5-2 h-2 )] )× ] 2=108 ×2 4、没有涂色的块数有( ( a-2 8-2)×(b-2 6-2)×(h-2 5-2)= 72 )) 个。 个。 )个。
把1000个小正方体拼成的大正方体表面涂上颜色1三面涂色的块数有101010把一个长10厘米宽7厘米高5厘米的长方体木块的表面涂上漆然后切成棱长是1厘米的小正方体
五年级数学思维专题---- 染色问题
绵阳东辰国际学校 赵波



第一模块:正方体的染色问题
下面3个图分别是由8个、27个、64个棱长为1厘米的小正方体拼成 一个大正方体,将它的表面全部涂成红色。请你先认真观察各类正方体 的分布位置,通过涂一涂、想一想、数一数或算一算,并按要求填空。
1、三面涂色的块数有多少个? 2、两面涂色的块数有多少个? (5—2)×12=36 (个) 3、一面涂色的块数有多少个?
8个
(5-2)×(5-2)× 6=54(个)
4、没有涂色的块数有多少个? (5-2)×(5-2)×(5-2) =27(个)
第二模块:长方体的染色问题
把一个长8厘米,宽6厘米、高5厘米的长方体木块的表面涂上 漆,然后切成棱长是1厘米的小正方体。

专题08《立体图形的染色问题》(原卷)

专题08《立体图形的染色问题》(原卷)

2022-2023学年专题卷小升初数学几何问题精选真题汇编强化训练(提高)专题08立体图形的染色问题考试时间:100分钟;试卷满分:100分姓名:___________班级:___________考号:___________题号一二三四五总分得分评卷人得分一.选择题(共6小题,满分12分,每小题2分)1.(2分)(2022秋•威县期末)在图形中再给1个格子涂上颜色,使涂色部分成为一个轴对称图形,一共有()种不同的涂法.A.2B.3C.42.(2分)(2022秋•兴化市期中)如图,从一个体积是30立方厘米的长方体木块中,挖掉一小块后在表面涂上红漆,三面都涂色的小正方体有()个。

A.8B.9C.10D.113.(2分)(2022秋•洪湖市期末)给一个正方体的表面涂上红、黄、蓝三种颜色,任意抛一次,使红色面朝上的可能性最大,蓝色面和黄色面朝上的可能性相等,需要有()个面涂红色。

A.2B.3C.44.(2分)(2022秋•雨花台区期中)将一个大正方体表面积涂色后,平均分成若干个完全一样的小正方体(如图),其中只有两个面涂色的小正方体有()个。

A.8B.12C.24D.365.(2分)(2021秋•莱阳市期末)把一个棱长为9厘米的正方体表面涂上油漆,然后全部切割成棱长为3厘米的小正方体,任何一面都没有油漆的小正方体有()个。

A.1B.3C.66.(2分)(2021秋•海陵区期末)将一个表面涂色的正方体,切成27块大小相同的小正方体,一面涂色的有()块。

A.6B.8C.16D.24评卷人得分二.填空题(共8小题,满分17分)7.(2分)(2023•郧阳区模拟)把一个棱长是6cm的正方体的六个面涂满红色,然后切割成1cm3的小正方体。

这些小正方体中一面涂红色的有个,没有涂红色有个。

8.(2分)(2021秋•莱州市期末)一个表面涂蓝色的正方体,棱长9cm,把它切成棱长3cm 的小正方体,最多可以切成块,其中,三面是蓝色的有块。

六年级:立体图形染色计数1

六年级:立体图形染色计数1

好好学习,天天向上
六年级:立体图形染色计数1
学而思“专题”栏目每日精选试题各一道,细分不同年级和难度。

-本周试题由学而思智康名师刘金玲精选、解析,以保证试题质量。

-每周末,我们将一周试题汇总为word版本试卷,您可下载打印或在线阅读。

-每道题的答题时间不应超过15分钟。

六年级几何:立体图形染色计数
难度:高难度
把正方体的六个表面都划分成9个相等的正方形(下图)。

用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那幺,用红色染的正方形最多有多少个?
幸福像花儿一样,学习像溪水一般。

数学人教版五年级下册正方体染色

数学人教版五年级下册正方体染色

四阶正方体
三面涂色:8×1=8(个)
两面涂色:2×12=24(个) 两面涂色:(4 -2)×12(个)
一面涂色:4×6=24(个) 一面涂色:(4-2)2×6(个) 没有涂色:64-24-24-8=8(个)或者2×2×2=8(个)
五阶正方体
三面涂色:8×1=8(个) 两面涂色:3×12=36(个) 两面涂色:(5 -2)×12(个)
你能提出的数学问题
1、这个建筑物的棱长是多少?一个小正方体的 棱长又是多少? 2、这个建筑物的棱长和? 3、这个建筑物由多少个小正方体组成? 4、这个建筑物的表面积? 5、这个建筑物的体积? 6、这个建筑物分别由多少个“一面有玻璃” 、 “两面有玻璃”、“三面有玻璃”、“没有面 有玻璃”的正方体组成?
人教版数学五年级下册
正 方 体 的 涂 色 问 题
长沙市雨花区砂子塘湘天小学
超现实主义立方体建筑设计
建筑物的外 部材质由铝 制反光瓷砖、 玻璃以及太 阳能电光版 组成;而内部 则由强化木 构架梁搭建 而成,其原 材料来源于 落叶松木。
在功能性方面, 建筑物将设计有 雪上交通工具仓 库、滑雪用具储 藏室、烘干室;底 层(Ground Floor) 将会是以餐厅为 主,上方楼层则 主要以休息区与 卧室为主。
十阶正方体
三面涂色:8×1=8(个) 两面涂色:(10 -2)×12(个) 一面涂色:(10-2)2×6(个)
没有涂色: 1000-8-95-384=512(个)或8×8×8=512(个)
你获得了什么
化繁为简 观察 抽象出数学模型 归纳整理 举一反三 转化问题
关键问题
这个建筑物分别由多少个“一面有玻 璃” 、“两面有玻璃”、“三面有玻璃”、 “没有面有玻璃”的正方体组成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲立体图形染色问题
姓名成绩
【例1】一个正方体棱长7cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
【例2】一个长方体长9cm,宽4cm,高8 cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
〖练习1〗一个正方体,表面涂成红色,切成棱长1cm的小正方体,期中一面涂色的有216个小正方体,这个正方体的体积是多少?
〖练习2〗一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切n次后,要使各面上均没有红色的小方块为24块,则n的取值是________。

综合试题
1、某学生语文和数学平均分为90分,语文和英语的平均分为94分,英语和数学平均分为91分。

这位学生语文考()分,数学考()分。

2、甲仓库有大米95.8吨,乙仓库有大米54.5吨。

要从甲仓库中运()吨到乙仓库后,乙仓库中的大米吨数是甲仓库中的2倍。

3、有一组数据如下图排列:
一二三四五
1 2 3 4 5
9 8 7 6
10 11 12 13
17 16 15 14
······如此规律,1991排在第()列。

4、一个长方体,如果长减少2厘米,宽、高不变,它的体积减少48立方厘米,如果宽增加3厘米,长、高都不变,它的体积增加99立方厘米,如果高增加4厘米,长、宽都不变,它的体积增加352立方厘米,求原长方体的表面积是多少平方厘米?。

相关文档
最新文档