2016合肥一模理科数学(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥市2016年高三第一次教学质量检测
数学试题(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟,祝各位考生考试顺利!
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在复平面内,复数12i
+(其中i 是虚数单位,满足21)i =-对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.sin18sin 78cos162cos78⋅-⋅ 等于( )
A. B.12- D.12
3.一次数学考试后,某老师从自己带的两个班级中各抽取5人,记录他们的考试成绩,得到如右图所示的茎叶图,已知甲班5名同学成绩的平均数为81,乙班5名同学的中位数为73,则x y -的值为( )
A.2
B.2-
C.3
D.3-
4.“1x ≥”是“12x x
+≥”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件
5.执行如下程序框图,则输出结果为( )
A.2
B.3
C.4
D.5
6.已知,,l m n 为三条不同直线,,,αβγ为三个不同平面,则下列判断正确的是( )
A .若//,//m n αα,则//m n B.若,//,m n αβαβ⊥⊥,则m n ⊥
C.若,//,//l m m αβαβ= ,则//m l
D.若,,,m n l m l n αβαγ==⊥⊥ ,则l α⊥
7.ABC ∆的三内角,,A B C 所对的边分别是,,a b c ,若7cos ,2,3,8
A c a b =
-==则a 等于( ) A.2 B.
52 C .3 D.72
8.若双曲线221:128x y C -=与双曲线22
222:1(0,0)x y C a b a b
-=>>的渐近线相同,
且双曲线2C 的焦距为则b 等于( ) A .2 B.4 C.6 D.8
9.某几何体的三视图如图所示,则该几何体的体积为( )
A.476
B.152
C.233
D.8 10.某企业的4名职工参加职业技能考核,每名职工均可从4个备选考核项目中任意抽取一个参加考核,则恰有一个项目未被抽中的概率为( )
A.916
B.2764
C.81256
D.716 11.在1(1)
n k k x =+∑的展开式中含2x 项系数与含10x 项系数相等,则正整数n 的取值为( )
A.12
B.13
C.14
D.15
12.函数22()3,()2x f x x x a g x x =-++=-,若[()]0f g x ≥对[0,1]x ∈恒成立,则实数a 的取值范围是( )
A.[,)e -+∞
B.[ln 2,)-+∞
C.[2,)-+∞
D.1(,0]
2-
第Ⅱ卷(非选择题 共90分)
本卷包括必考题和选考题两部分,第13题至第21题为必考题,每个考生都必须作答,第22题至第24题为选考题,考生根据要求作答.
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置上.
13.已知集合2
{0,1,3},{|30}A B x x x ==-=,则A B = 14.已知实数,x y 满足26002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则目标函数z x y =-的最大值是
15.已知等边ABC ∆的边长为2,若3,BC BE AD DC == ,则BD AE ⋅=
16.存在实数ϕ,使得圆面224x y +≤恰好覆盖函数sin()y x k
πϕ=+图象的最高点或最低点共三个,则正数k 的取值范围是
三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17(本小题满分12分)
在数列{}n a 中,*1111,,.22n n n a a a n N n ++=
=∈ (Ⅰ)求证:数列n a n ⎧⎫⎨⎬⎩⎭
为等比数列; (Ⅱ)求数列{}n a 的前n 项和.
18(本小题满分12分)
某医院对治疗支气管肺炎的两种方案,A B 进行比较研究,将志愿者分为两组,分别采用方案
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:2
2()n ad bc K -=,其中n a b c d =+++
19(本小题满分12分) 四棱锥E ABCD -中,//,222,AD BC AD AE BC AB AB AD ====⊥,平面EAD ⊥平面
ABCD ,点F 为DE 的中点.
(Ⅰ)求证://CF 平面EAB ;
(Ⅱ)若CF AD ⊥,求二面角D CF B --的余弦值.
20(本小题满分12分)
设,A B 为抛物线2y x =上相异两点,其纵坐标分别为1,2-,分别以,A B 为切点作抛物线的切线12,l l ,设12,l l 相交于点P .
(Ⅰ)求点P 的坐标;
(Ⅱ)M 为,A B 间抛物线段上任意一点,设PM PA PB λμ=+ ,是否为定值,如果为定值,求出该定值,如果不是定值,请说明理由.
21(本小题满分12分)
已知函数2
()4
x x f x e =-,其中 2.71828e = 是自然对数的底数. (Ⅰ)设()(1)'()g x x f x =+(其中'()f x 为()f x 的导函数),判断()g x 在(1,)-+∞上的单调性;
(Ⅱ)若()ln(1)()4F x x af x =+-+无零点,试确定正数a 的取值范围.