大学物理习题--8.静电场和稳恒电场
大物习题册答案及详解(山东理工大学大二上学期2020版)
4.如图所示,一点电荷q位于正立方体的A角上,则通过侧面abcd的电通量Φe=q/24ε0
考点: 高斯定理公式 (课本118页 6-18) 解法:1.建立一正方体高斯面(补7个如图正方体),使A点位于正中心
考点:电势是一个与引进电荷无关,完全由电场自身的性质和相对位置决定的物理量。电场中某点电势的大小与零 电势点的选取有关。
2.在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为
(B)
(A)Q/4πε0a
(B)Q/2πε0a
(C)Q/πε0a
(D)Q/2√2πε0a
q/(1/r-1/r0)/4πε0
考点:电势的计算
解法:U=∫
r0 r
E·dr
=∫
r0 qdr r 4πε0r
2
=q/(1/r-1/r0)/4πε0
(课本122页
6-29b)
பைடு நூலகம்
3.一质量为m、电量为q的小球,在电_场__力__作__用下,从电势为U的a点移动到电势为零的b点,若已知小球在b点的 速率为Vb,则小球在a点的速率Va=√Vb2-2qU/m
②均匀带电球面内的电势UP2=Q/4πε0R(课本123页例6-8结论得), ③UP=UP1+UP2.
6.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距 离分别为r1和r2,如图所示,则移动过程中电场力做的功为(C) (A)-Q(1/r1-1/r2)/4πε0 (B)qQ(1/r1-1/r2)/4πε0 (C)-qQ(1/r1-1/r2)/4πε0 (D)-qQ/4πε0(r2-r1) 考点:电场力的功 解法:Aeab=q(UA-UB)=q(-Q/4πε0r1— -Q/4πε0r2)=-qQ(1/r1-1/r2)/4πε0 (课本123页 6-31)
2019大学物理-电磁学
湖南城市学院大学物理(下册)练习册学号班级专业姓名2019年09月印制静电场练习题1. 如图所示, 一沿x 轴放置的无限长均匀带电直线,电荷线密度为λ,则xOy 平面上(0,a )点处的场强为( )(A) . (B) 0.(C) . (D).2.在电场中的任意一点,实验电荷的电势能为,实验电荷的电量为,的比值与下列哪个因素无关?( )(A ).场源性质 (B) 场点位置 (C )场内介质及其他导体的分布 (D)实验电荷的电荷量 3.如图,任意闭合曲面S 内外分别存在点电荷,则通过闭合曲面S 的电通量为( )(A) (B)(C) (D) 因闭合面形状不知,无法确定4.两块无限大的带电平行平板,其电荷面密度分别为-σ 和σ,则平板之间区域的电场强度大小( )(A) (B) (C) (D)5.在一个立方体的中心放一个电量为q 的点电荷,则通过立方体的每个表面的电通量应该( )(A) (B ) (C) (D)6.两个同心的,半径分别为R 1 和R 2 的均匀带电球面A 和B ,带电量分别为+q 和-q ,A 和B 之间为真空,C 是A 和B 之间的一个闭合曲面,则通过C 的电通量为( ) (A )(B )(C) 0 (D)εq7.面内三个点电荷排列成正三角形,则下列说法正确的是( ) (A) 在正三角形中心处放置点电荷,则其受力为零; (B) 在正三角形中心处放置点电荷,则其受力为零;(C) 在正三角形中心处放置任意点电荷,其受力都等于零;(D) 不存在任意一点,放置任意点电荷后,电荷受力等于零。
8.图为一接地球壳,壳内中心处放置一点电荷,若将点电荷的位置偏离中心,则( )(A) 壳内电场分布发生变化,壳外电场分布不发生变化。
(B) 壳内电场分布发生变化,壳外电场分布发生变化。
(C) 壳内电场分布不发生变化,壳外电场分布不发生变化。
(D) 壳内电场分布不发生变化,壳外电场分布发生变化。
二、填空题1.静电场是场(填“保守力场”或“非保守力场”),静电力是(填“保守力”或“非保守力”)。
大学物理静电场和稳恒电场
例4 半径为R 的均匀带电细圆环,带电量为q。
求 圆环轴线上任一点P 的电场强度。
1 dq 解 d q d l dE 4 r 3 r 0
dEx
P
x
d E dE
1 d q ˆ Ed E e 2 r 4 0 r
d E d E sin θ d E d E cos θ x
Q
9.1.3 电场 电场强度
一、电场 二、电场强度 三、电场强度的计算
后来: 法拉第提出近距作用 并提出力线和场的概念
早期:电磁理论是超距作用理论 电荷
电场
电荷
一、电场
电荷周围存在电场
(electric field)
(电场强度) (电势)
电场的宏观表现:
• 对放其内的任何电荷都有作用力 • 电场力对移动电荷作功
把带电体看做是由许多个电荷元组成
r
dq
Q
dE
P
d q ˆ E d E e r dl dS
线分布 面分布 体分布
: 线密度 : 面密度 : 体密度
dV
例1 求电偶极子在延长线上和中垂线上一点产生的电场强度。
q 解 E i E E 2 l 4 ( x l 2 ) 0 q q O q P x E i 2 4 ( x l2 ) 0 q 2 xl l i 令:电偶极矩 pq E E E 2 2 2 4 (x l 4 ) 0 2 x p E 2 2 2 4 ( x l 4 ) P 0 E q E 在中垂线上 E E 2 2 4 ( r l 4 ) 0 r P E 2 E cos E q l q 4 0r3
大学物理 高斯定理
第8章 静电场和稳恒电场
17
8-2 电通量 高斯定理
例8.6 均匀带电球面的电场强度 一半径为 R , 均匀带电 q 的球 求球面内外任意点的电场强度. 面 . 求球面内外任意点的电场强度
r
+ + 1+ + + +
S
O
v v ∫ E ⋅ dS = 0
S1
解(1) 0 < r < R )
r
R
+ + +
1 q d Φ e = E cos 0d S = dS 2 4π ε 0 r
qd S Φe = dΦe = ∫S ∫ S 4πε 0 r 2
=
=
r
+
v dS
q
4 πε 0r q
2
∫
S
dS
ε0
Φ e 与r无关
第8章 静电场和稳恒电场
12
8-2 电通量 高斯定理
点电荷在任意闭合曲面内 点电荷在任意闭合曲面内
+ q 发出的 q / ε 0
条电力线不会中断, 条电力线不会中断,仍全 部穿出封闭曲面 S ,即:
+
Φe =
q
ε0
点电荷位于球面中心
Φe =
q
ε0
第8章 静电场和稳恒电场
13
8-2 电通量 高斯定理
点电荷在闭合曲面之外 点电荷在闭合曲面之外
r v d Φ1 = E 1 ⋅ d S 1 > 0 v v d Φ2 = E 2 ⋅ d S 2 < 0
6
8-2 电通量 高斯定理
带电平行板电容器的电力线 + + + + + + + + + + + +
《大学物理》(8-13章)练习题
《大学物理》(8-13章)练习题(2022年12月)第八章气体运动论1.气体温度的微观或统计意义是什么?2.理想气体状态方程的三种形式?PV=N KT, p=nkT, (n=N/V)3.气体的最概然速率、方均根速率、平均速率的关系是什么?4.气体分子的平均平动动能的表达式及其意义?5.理想气体的内能?6.气体分子的平均自由程是指?7.单原子分子、刚性双原子分子气体的自由度数目各是多少?8、理想气体的微观模型是什么?综合练习1. 在某容积固定的密闭容器中,盛有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 4p1. ;B. 5p1;C. 6p1;D. 8p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B.pV mT⁄; C. pV kT⁄; D. pV RT⁄.3. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为( )A. 52pV; B. 32pV; C. pV; D. 12pV。
4 刚性双原子分子气体的自由度数目为()。
A. 2B. 3C. 4D. 55.气体温度的微观物理意义是:温度是分子平均平动动能的量度;温度是表征大量分子热运动激烈程度的宏观物理量,是大量分子热运动的集体表现;在同一温度下各种气体分子平均平动动能均相等。
6. 设v̅代表气体分子运动的平均速率,v p代表气体分子运动的最概然速率,(v2̅̅̅)12代表气体分子运动的方均根速率。
处于平衡状态下理想气体,三种速率关系为( )A. (v2̅̅̅)12=v̅=v p;B. v̅=v p<(v2̅̅̅)12;C. v p<v̅<(v2̅̅̅)12;D. v p>v̅>(v2̅̅̅)12。
《大学物理》习题册题目及答案第12单元稳恒电流的磁场
第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。
大学物理(下)练习题及答案
xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。
P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。
求圆心o 处的电场强度。
3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。
求圆心O 处的电场强度。
4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。
求P 点的场强。
5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。
[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。
[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。
大学物理——恒稳电场
第八章稳恒电流导体中的电流不随时间改变,则称稳恒电流;相应导体内的电场称稳恒电场。
8.1电流密度一、电流强度单位时间通过导体任一截面的电量。
t q I ∆∆=I = 常数称稳恒电流二、电流密度矢量体电流密度J∆ l∆S∆ I数值→SIJ ∆∆=(垂直通过单位横截面电流强度)方向→该点正电荷运动方向矢量式→vρ=J ρ为该点载流子电荷体密度I 和的关系为:J 面电流密度σJ⎰⋅=S Sd J I数值→lIJ ∆∆σ=(垂直通过单位横截线电流强度)方向→该点正电荷运动方向矢量式→vσσ=J 线电流用I 表示vλ=I λ→载流子电荷线密度8.2 稳恒电场的基本方程一、电流连续方程)108(--=⋅⎰Sdt dq S d J ⎰=ττρd q →-)108(τ∂∂ρττd td J ⎰⎰-=⋅∇ 或)118(0)(-=+⋅∇⎰τ∂∂ρd t J 上式称电流连续性方程积分形式,其微分形式为:)128(0-=+⋅∇tJ ∂∂ρ一、电源的电动势e8.3导电媒质中的传导电流电源恒定电势差稳恒电场恒定电流AB+++---E E →'E 非静电场,→E静电场。
电荷q 从B 出发绕行一周,场力的功为:⎰⎰⋅+'+=B A AB ld E q E E q A)( ⎰⎰⋅+⋅'=L AB ld E q l d E q ⎰⎰⋅'=⋅'=L A B ld E q l d E q)188(-⋅'==⎰L l d E qA e Aq ==e ,当1故e 是在非静电场作用下,使单位正电荷绕行一周时,非静电场所做的功。
若积分回路不通过电源内部:0=⋅⎰L l d E 在导体内:E Jγ=(本构关系)→γ电导率二、电流的功率密度电场对单位体积电荷的功率密度:EJ E P⋅==ργ三、导体内净电荷密度恒等于零=∇=⋅∇E J γ0=⋅∇E 02=∇U 或四、导体表面边界条件nq 1J 1J 2q 2γ1γ2nU n U J J n n ∂∂γ∂∂γ221121=→=2121U U t E t E =→=由上式可得:2121tg tg γγq q =8.4稳恒电场与静电场关系稳恒电场静电场0=⋅⎰Ll d E 0=⋅⎰Ll d EJ dS S⋅=⎰0 D dS S ⋅=⎰0∇⨯= E 0∇⨯= E 0∇⋅= J 0∇⋅= D 0I J dSS=⋅⎰ q D dSS=⋅⎰ EJ γ= D E=e对应关系:E E↔ J D ↔eγ↔I q↔静电场边值问题的解稳恒电场边值问题的解称静电比拟法。
大学物理期中考试静电场复习题
第八章 静电场 一.库仑定律1.电量很小的正点电荷,可作为检验电荷。
( √ ) 2.A 、B 两个点电荷间距离恒定,当其它电荷移到A 、B 附近时,A 、B 之间的库仑力将A .可能变大B .可能变小C .一定不变D .不能确定3.两个质量都是m 的相同小球,用等长的细线悬挂于同一点,如图所示,若使它们带上等值同号的电荷,平衡时两线之间的平角为θ2,当小球的半径可以忽略不计时,则每个小球所受的库仑力为:A .θmgtgB .θsin mgC .θcos mgD .mg4. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点,如果在这三角形的中心放一个电荷电量Q = q q 33-=' C ,就可以使这四个电荷都达到平衡。
5.有四个点电荷,电量都是+Q ,放在正方形的四个顶点,若要使这四个点电荷都能达到平衡,需要在正方形 中心 位置放一个电量为 Q 4122+-点电荷。
二.场强的定义1.电场强度的方向与正的检验电荷在该点所受的电场力方向相同。
( √ ) 2.如果把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动。
(√)3.下列几种说法中哪一个是正确的? ( ) A .电荷在电场中受到的电场力越大,该点的电场强度一定越大B .在某一点电荷附近的任一点,如果没有把试验电荷放进去,则该点的电场强度为零C .如果把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电力线运动D .电力线上任意一点的切线方向,代表点电荷q 在该点处获得的加速度方向4.电场线越密的地方,同一电荷所受电场力越大。
( √ ) 5.离点电荷越近的地方,电场线越密。
( √ ) 6.在无电荷的地方,任意两条电场线永远不会相交。
( √ )mm三.电通量、高斯定理1.如图所示均匀电场E 和半径为a 的半球面的轴线平行,通过此半球面的电通量为( )A .π4E a 2B .π2E a 2C .πE a 2D .02.由高斯定理可知,下列说法中正确的是:( )A .高斯面内不包围电荷,则面上各点的E处处为零B .高斯面上各点的E与面内电荷有关,与面外电荷无关C .穿过高斯面的E通量,仅与面内电荷有关D .穿过高斯面的E 通量为零,则面上各点的E必为零3.如果高斯面内无电荷,则高斯面上E处处为零。
大学物理D-习题
(5-18)
b
∫r v E ⋅ d l = 0 (5-23)
L
4.4大.1学物理
在x轴上,有一点电荷 q1 = 20 ×10−6 C ,位于原点,另一
点电荷 q2 = 50 ×10−6,C 位于x=-10cm处。试求x轴
上任一点的电场强度。
q1
q2
解:1) x > 0
3
2
1
− 0.10 0
50
=
− 15 ωBL2
50
=
− 3 ωBL2
10
大学物理
5.2.5 如图所示,一无限长直导线通有电流I=5.0A, 一矩形单匝线圈与此长直导线共面。设矩形线圈以 v=2.0m/s的速度垂直于长直导线向右运动。已知: l=0.40m, a=0.20m, d=0.20m,求矩形线圈中的感应电动 势。(不计线圈的自感)
E
的方向与BC边的夹角
θ = ar tan
E1
=
ar
tan
1.8
= 33.7°
E2
2.7
大学物理
4.4.3电荷为+q 和-2q 的两个点电荷分别置于x=1
m 和x=-1 m 处.一试验电荷置于x 轴上何处,它
受到的合力等于零?
− 2q + q
解:首先电荷受到的合力等 3
2
1
于零即为此处场强为零,定 −1.0 1.0
大学物理
5.2.4 如图所示,一根长为L的金属细杆ab绕竖直 轴O1O2以角速度在水平面内旋转.O1O2在离细杆a 端L /5 处.若已知地磁场在竖直方向的分量为B.求 ab两端间的电势差 Va −Vb .
解:Ob间的动生电动势
b点电势高于O点
大学物理稳恒电场
05 稳恒电场的实际应用
电场在电子设备中的应用
电子设备中的电场
在电子设备中,电场被广泛应用于各种电子器件,如晶体管、集成电路和微电子机械系统 等。电场用于控制电子的运动,实现信号的放大、传输和处理等功能。
半导体电场效应
在半导体材料中,电场效应非常显著。通过改变半导体材料中的电场,可以控制半导体的 导电性能,从而实现电子器件的开关和放大等功能。
电场在环境科学中的应用
环境中的电场变化与气象、地质、水文等自然现象密切相关。研究环境中的电场有助于深入了解自然灾害的形成 机制和预测方法,为环境保护和灾害防治等领域提供科学依据和技术支持。
THANKS FOR WATCHING
感谢您的观看
必须考虑的重要因素之一。
03
应用
在求解稳恒电场问题时,通常需要先根据边界条件确定电场强度E和电
位移矢量D的分量,再利用微分或积分形式的电场方程求解出其他未知
量。
04 稳恒电场的物理效应
电场对带电粒子的作用
01
静电感应
当带电粒子处于电场中时,会受 到电场力的作用,导致电荷重新 分布,产生静电感应现象。
燃料电池利用电化学反应产生电能。在燃料电池中,电场驱动离子通过电解质,产生电流。燃料电池是一种高效、清 洁的能源转换方式。
电场在太阳能电池中的应用
太阳能电池利用光生电效应将太阳能转换成电能。在太阳能电池中,光子与半导体材料相互作用,产生 电子-空穴对。电场将电子和空穴分离,形成光电流。
电场在医学领域的应用
大学物理稳恒电场
contents
目录
• 稳恒电场的基本概念 • 稳恒电场的物理性质 • 稳恒电场的数学描述 • 稳恒电场的物理效应 • 稳恒电场的实际应用 • 稳恒电场的研究前景与展望
大学物理第七章和第八章习题答案
2
R2 R1
(5) C'
rC
4 0 r R1R2 R2 R1
2. 如图所示,,两块分别带有等量异号电荷的平行金属平板 A 和 B,相距为 d=5.0mm,两板 面积均为 S=150 cm2。所带电量均为 q=2.66×10-8C, A 板带正电并接地。求:(1)B 板的电 势;(2)A、B 板间距 A 板 1.0mm 处的电势。
(4)该电容存储的电场能量;
(5)若在两极板之间充满相对介电常数为r 的各向同性均匀电介质,则电容值变为多少?
解:(1)设极板上分别带电量+Q 和-Q,距离为 d,极板间产生均匀电场,
E Q /( 0 S ) 方向为由带+Q 的极板指向带-Q 的极板
极板外侧 E' 0
(2)两极板间的电势差为U12
金属球壳、设无穷远处为电势零点,则在
球壳内半径为 r 的 P 点处的场强和电势为:
[D]
(A)E= Q ,U Q (B)E=0,U Q
4 0r 2
4 0r
4 0 r1
(C)E=0,U Q 4 0 r
(D)E=0,U Q 40r2
r1
+Q
r
r2
P
5. 关于高斯定理,下列说法中哪一个是正确的? [ C ]
专业班级_____ 姓名________ 学号________
第七章 静电场中的导体和电介质
一、选择题:
1,在带电体 A 旁有一不带电的导体壳 B,C 为导体壳空腔内的一点,如下图所示。则由静电 屏蔽可知:[ B ]
(A)带电体 A 在 C 点产生的电场强度为零; (B)带电体 A 与导体壳 B 的外表面的感应电荷在 C 点所产生的
大学物理下练习题答案
大学物理下练习题一、选择题(每题1分,共41分)1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B )(A) 场强E 的大小与试验电荷q 0的大小成反比;(B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0.2.下列几个说法中哪一个是正确的?(C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。
( D )以上说法都不正确。
3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A )(A ) i a02πελ.(B) 0.(C)i a 04πελ. (D) )(40j +i aπελ.4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C )(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向.(D) 大小为)2022a q πε, 方向沿y 轴负向.5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D )(A) πR 2E .(B) πR 2E /2 . (C) 2πR 2E .(D) 0 .6. 下列关于高斯定理理解的说法中,正确的是:(B )(A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零+λ-λ∙ (0, a ) xy O图1.1图1.2图1.3(B)高斯面上电场强处处为零,则高斯面内的电荷代数和必为零。
第八章静电场
【主要问题】 主要问题】
1、由库仑定律解题 、 例1:课后作业 :课后作业8.1
例2:课后作业 :课后作业8.2
2、求电场强度 、 (1)由点电荷场强,利用场强叠加原理求解 由点电荷场强,
1 r0 E = ∫ dE = ∫ dq 2 4πε0 r
求解步骤: 求解步骤: 1.选电荷元dq .选电荷元dq 2.确定电荷元所激发的电场dE的大小和方向. dE的大小和方向 .确定电荷元所激发的电场dE的大小和方向. 3.建立坐标系,将电场dE分解在坐标上. dE分解在坐标上 .建立坐标系,将电场dE分解在坐标上. 4.统一积分变量,进行求解. .统一积分变量,进行求解.
五、其它概念及物理量
1、电容器电容 、
C=
U =∫
Q ε0 S 平行平板电容器 平板电容器的电容 平行平板电容器的电容 C = = U d
Q Q = V A − VB U
AB
E ⋅ dl
2、电容器贮存的电能 、
Q2 1 1 We = = QU = CU 2 2C 2 2
3、电场空间所存储的能量 1 W e = ∫ we d V = ∫ ε E 2 d V V V 2
σ E= 2ε0
2. 当R<<x
无限大均匀带电平面的场强) (无限大均匀带电平面的场强)
σ 1 R2 x σ (1 − 1 + ( ) − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ E= (1− )= 2 2 2 x 2ε0 2ε 0 R +x
q ≈ 2 4πε0 x
练习: 两块无限大均匀带电平面, 练习: 两块无限大均匀带电平面,已知电荷面密度 计算场强分布。 为±σ,计算场强分布。
3. 积分 (1)统一变量 θ l 把 r、、 统一到 θ
大学物理实验用稳恒电流场模拟静电场
模拟
相似性
+
+
-
-
同轴电缆静电场推导过程(不要求,了解) λ电荷线密度 ε真空介电常数
同轴电缆电位推导过程(不要求,了解)
圆柱形电流场和电位(稳恒电流场)推导(不要求,了解) σ电导率
模拟实验法: 精度不高,但对于一般工程设计来说,已能满足要求 在科学实验研究中应用广泛 模拟
不易实现,不易测的物理状态或过程
解析法:
什么是模拟法?
电场分布
易于实现,易测的物理状态或过程
少数几种简单情况
模拟实验法:
a. 物理模拟 :保持同一物理场本身,把相同的物理现象/过程缩小或放大模拟再现。如“风洞”的飞机模型,模拟实际飞机在大气中飞行。
b. 数学模拟:两个不同本质的物理过程,用同一个数学方程来描述。
为什么不直接测静电场, 而要用稳恒电流场模拟静电场?
直接测静电场存在困难: 静电场中没有电流,电磁式电表不会偏转。 若探针伸入静电场,探针会产生感应电荷,使原电场产生显著畸变。
稳恒电流场与静电场是否具备模拟条件?
是否可以用稳恒电流场模拟静电场?
圆柱形电流场和电位
U1=10V,U2=0V r1=1.0cm,r2=10.0cm 可见圆柱形电极的等位线是同心圆。 场中任一半径r处的电位: 常数K2=10/ln10=4.34 U1=10V U2=0V
2、静电场的测绘方法
同轴圆柱电缆电场 场强E在数值上等于电位梯度,方向指向电位降落的方向。 两点电荷电场
CLICK TO ADD TITLE
1、电流场与静电场比较: 等效性?
静电场: 电场强度
两场服从的规律: 数学形式相同, 且边界条件相同 稳恒电流场: 电流连续方程
大学物理学-稳恒磁场习题课
⑶电子进入均匀磁场B中,如图所示,当电子位于 A点的时刻,具有与磁场方向成 角的速度v,它绕螺旋 线一周后到达B点,求AB的长度,并画出电子的螺旋轨 道,顺着磁场方向看去,它是顺时针旋进还是逆时针旋 进?如果是正离子(如质子),结果有何不同?
1、均匀磁场的磁感应强度B垂直于半径为r的圆面,今以该圆面
其中 直电流 ab和cd的延长线
o dc
fI
R1 R2
eI
过o
b
电流bc是以o为圆心、以 R2为半径的1/4圆弧
I
电流de也是以o为圆心、
但,是以R1为半径的1/4 圆弧
a
直电流ef与圆弧电流de在
e点相切
求:场点o处的磁感强度 B
解:
场点o处的磁感强度是由五段
特殊形状电流产生的场的叠加,f I
o dc
磁场力的大小相等方向相反; (3)质量为m,电量为q的带电粒子,受洛仑兹力作用,
其动能和动量都不变; (4)洛仑兹力总与速度方向垂直,所以带电粒子运动的
轨迹必定是圆。
习题课 1 一电子束以速度v沿X轴方向射出,在Y轴上 有电场强度为E的电场,为了使电子束不发生偏 转,假设只能提供磁感应强度大小为B=2E/v的
df
2ds
n
2 0
2 0
i dl 单位面积受力
da
df Idl B其余
da dl 0i
B总 0i
2 其余 0i
2
df
0i 2
n
dadl 2
表三 作用力
4.应用
静电场
稳恒磁场
类比总结
电偶极子 pe
fi 0
i M pE
三
磁偶极子 pm
fi 0
8.大学物理-稳恒电场
有源
有势(保守) 有势(保守)
0 (S内 )
∫ D dS = ∑q
现象: 现象:
∫ E dl = 0
L
通过截面 S 的电流强度 I 不变 通过截面内各点电流密度 j 不变
稳恒电流
不 静 电 场
Q , E 分布不随
时间变化 高斯定理 环路定理适用
I = 0. 导体内 E = 0
一经建立, 一经建立,不需能量 维持. 维持.
2
(σ =
1
ρ
l R= ρ ) S
电流的形成及其热效应都是场作用的结果 点点对应. j , w 与 E 点点对应.
四. 电源电动势 ——— 稳恒电场的能量来源
←⊕
Fe
+
-
←⊕
R
Fe
Fe←⊕ Fk
+
K
←⊕ →
Fe Fe←⊕
R
电源作用: 电源作用: 由负极板移向正极, 提供非静电力 Fk ,将 + q 由负极板移向正极, 保持极板间电势差, 以形成持续的电流. 保持极板间电势差, 以形成持续的电流.
ut
Q qn S ⊥ut I= = = qnu S ⊥ t t
dI = qnu dS ⊥
2. 电流密度矢量
dI j= n0 = qnu dS ⊥
大小:通过与该点 E 垂直的单位截面的电流 大小: 方向: 的漂移运动方向( 方向) 方向:与 +q 的漂移运动方向( E 方向)相同
j
分布: 分布:电流线 其切向即
L
静电感应: 电荷瞬间宏观定向运动 静电感应: 介质极化: 介质极化: 电荷瞬间微观定向运动
只讨论实现 平衡后电场
2.稳恒电场: 2.稳恒电场: 稳恒电场 定义:存在电荷宏观定向运动.(电流 定义:存在电荷宏观定向运动.(电流) 电荷宏观定向运动.(电流) 电荷分布不变( 空间电荷分布不变 流入= 流出) 空间电荷分布不变(流入= 流出). 电场分布不变. 电场分布不变. 性质: 性质:
大学物理练习题
第十一章真空中的静电场1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.L2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为ˍˍˍ,通过立方体一面的电场强度通量是ˍˍˍ,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是ˍˍˍ,(2)另外三个面每个面的电通量是ˍˍˍ。
3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是()A.ER2π B. ER22πC. ER22π D. ER221π4.根据高斯定理的数学表达式⎰∑⋅=SqSE/dεϖϖ可知下述各种说法中,正确的是()(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( )EOr(A)E∝1/r6.如图所示, 电荷-Q均匀分布在半径为R,长为L的圆弧上,圆弧的两端有一小空隙,空隙长为图11-2图11-3)(R L L <<∆∆,则圆弧中心O 点的电场强度和电势分别为( ) A.R Q i L R L Q 0204,4πεπε-∆-ρ B.RQ i L R L Q 02024,8πεεπ-∆-ρ C.R Q i L R L Q 0204,4πεπερ∆ D.RL L Q i L R L Q 0204,4πεπε∆-∆-ρ7.如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________q 1q 2 r 1 r 2a 的“无限长”圆柱面上均匀带电,其电荷线密度为.在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接.设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为( )(A) E =0,U =r a ln 20ελπ. (C) E =r 02ελπ,U =rb ln 20ελπ (B) E =0,U =a b ln 20ελπ (D) E =r 02ελπ,U =a b ln 20ελπ.ab r Pλ9.如图,在点电荷+Q ,-Q 产生的电场中,abcd 为同一直线上等间距的四个点,若将一点电荷+q 0由b 点移到d 点,则电场力( )A. 作正功;B. 作负功;C.不作功;D.不能确定0 x图11-6 ab c d +Q-Q 图11-910.说明下列各式的物理意义(1)l d E ρρ⋅(2)l d E b a ρρ⋅⎰(3)l d E L ρρ⋅⎰(4)S d E ρρ⋅11.已知某静电场的电势函数)(14121222SI y y x x U --=,由场强和电势梯度的关系式可得点(2,3,0)处的场强E ρ=ˍˍˍi ρ+ˍˍˍj ρ+ˍˍˍk ρ(SI)答案:1.()d L d q +π04ε 2. 00024,0,6,εεεq q q6. A7. 10cm10. (1)l d E ρρ⋅表示电场力对单位正电荷所做的元功。
大学物理8-8电流稳恒电场电动势8-9电场的能量解读
Ek dl
+ –
方向:自负极经电源内部到正极的方向为正方向。
电源外部Ek为零,
Ek dl Ek dl
L
单位正电荷绕闭合回路一周时,电源中非静电力所 做的功。 电动势描述电路中非静电力做功本领 电势差描述电路中静电力做功
8-9 电场的能量
例: 计算球形电容器的能量 已知RA、RB、q 解:场强分布 E 取体积元
q
RA
q
q 4 0 r
2
RB
r
dV 4r 2dr
1 1 q 2 2 2 dW wdV 0 E dV 0 ( ) 4 r dr 2 2 4 0 r 2
q2 1 1 能量 W dW ( ) dr 2 8 0 r 8 0 RA RB V RA
8-8 电流 稳恒电场 电动势
一、电流 电流密度
电流—— 大量电荷有规则的定向运动形成电流。
电流强度—— 单位时间内通过某截面的电量。
dq 大小: I dt
单位(SI):安培(A)
方向:规定为正电荷运动方向。 电流强度只能从整体上反映导体内电流的大小。 当遇到电流在粗细不均匀的导线或大块导体中流动的 情况时,导体的不同部分电流的大小和方向都可能不 一样。有必要引入电流密度矢量。
dq j dSdt
S
即
S
dq j dS dt
en
S
dS
j
上式是电荷守恒定律的数学 表述,又称电流连续性方程。
电流连续性方程的物理意义: 如果闭合曲面S内有正电荷积累起来,则 流入S面内的电荷量多于流出的电荷量;反之, 如果S面内的正电荷减少,则流出的电荷量多 于流入的电荷量。
大学物理(下)试试题库
大学物理(下)试题库第九章 静电场知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是:A : 只要有电荷存在,电荷周围就一定存在电场;B :电场是一种物质;C :电荷间的相互作用是通过电场而产生的;D :电荷间的相互作用是一种超距作用。
2、【 】 电场中有一点P ,下列说法中正确的是:A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越大,则同一电荷在P 点受到的电场力越大;D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止;C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在:D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。
4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有力的作用。
5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上0<x<1.(C) x 轴上x<0. (D) y 轴上y>06、真空中一点电荷的场强分布函数为:E= ___________________。
7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。
8、【 】两个点电荷21q q 和固定在一条直线上。
相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R), 环上均匀带有正电,电荷为q ,则圆心O 处的场强大小E =__________,场强方向为___________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S q E 0ε=,所以f =S q 02ε.试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p分解为与r 平行的分量θsin p 和垂直于r的分量θsin p .∵ l r >>∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=lQx E 0d ,即Q E 只有y 分量,∵ 22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan=α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-=2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'd π4π3430320r E ερ=∴ O 点电场d33030r E ερ= ; (2) ρ+在O '产生电场dπ4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 00033)(3ερερερdr r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C d=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,解: 如题8-16图示0π41ε=O U 0)(=-Rq R q 0π41ε=O U )3(R q R q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r rq r r U E ε=∂∂-= 0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4rql llr q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q(1)(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r qq F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσS q d U2032-=-=εσσ Sq dU2054+=-=εσσ 所以CB 间电场 Sqd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rrQ E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R QR r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε= 3R r >时 302π4r rQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F。