土壤环境化学重点
土壤环境化学
土壤环境化学
土壤环境化学是研究土壤中化学元素、化学反应和化学过程的学科。
土壤是地球上最重要的自然资源之一,它不仅是植物生长的基础,也是生态系统的重要组成部分。
因此,了解土壤环境化学对于保护土壤资源、提高农业生产和维护生态平衡具有重要意义。
土壤中的化学元素是土壤环境化学的重要研究内容之一。
土壤中的化学元素包括有机元素和无机元素。
有机元素主要来自于植物和动物的残体,而无机元素则来自于岩石、土壤和大气等。
土壤中的化学元素对于植物生长和土壤肥力有着重要的影响。
例如,氮、磷、钾等元素是植物生长所必需的营养元素,而铁、锰、铜、锌等微量元素则对植物生长和发育有着重要的作用。
土壤中的化学反应和化学过程也是土壤环境化学的重要研究内容。
土壤中的化学反应和化学过程包括酸碱反应、氧化还原反应、络合反应、离子交换等。
这些反应和过程对土壤的肥力、酸碱度、微生物活动等都有着重要的影响。
例如,土壤的酸碱度对于植物生长和土壤微生物的生长和活动都有着重要的影响。
土壤中的氧化还原反应则对土壤中的有机物质分解和微生物代谢有着重要的作用。
土壤环境化学的研究对于保护土壤资源、提高农业生产和维护生态平衡具有重要意义。
通过研究土壤中的化学元素、化学反应和化学过程,可以制定科学的土壤管理措施,提高土壤肥力和农业生产效益。
同时,也可以减少土壤污染和土地退化,保护生态环境。
因此,
加强土壤环境化学的研究和应用,对于实现可持续发展具有重要的意义。
环境化学复习资料第四章 土壤环境化学 名词术语
第四章土壤环境化学名词术语1.土壤化学组成(Chemical composition of soil)指构成土壤的各种化学物质的种类和比例,土壤的化学组成包括①土壤矿物质:包括原生矿物和次生矿物;②土壤有机质,主要源于动植物和微生物残体,包括非腐殖物质和腐殖质;③土壤水分,并非纯水,实际上是土壤中各种成分和污染物溶解形成的溶液;④土壤中的空气。
2.土壤反应(Soil reaction)土壤酸碱性质的量度。
取决于土壤中氢离子浓度的大小,以pH值表示。
氢离子浓度高时,土壤呈酸性反应。
反之,呈碱性反应。
3.盐基饱和度(Base saturation percentage of soil)指土壤交换性阳离子中盐基离子所占的百分数,与土壤母质、气候等因素有关4.土壤吸附(Soil adsorption)指土壤矿物质、土壤胶体和土壤有机质通过各种物理化学作用力对外源物质的结合。
土壤吸附能降低污染物的扩散系数,影响其生物可利用性,从而影响污染物在土壤中的行为和生态风险。
5.土壤络合(Soil complex)指土壤中,一些配位体通过配位键结合与进入土壤的物质结合而形成复杂的分子或离子,从而影响土壤中污染物的迁移和转化行为。
6.土壤退化(Soil degradation)又称土壤衰弱,是指土壤肥力衰退导致生产力下降的过程。
是土壤环境和土壤理化性状恶化的综合表征,包括有机质含量下降、营养元素减少、土壤结构遭到破坏、土壤侵蚀,土层变浅,土体板结、土壤盐化、酸化、沙化等。
其中,有机质下降,是土壤退化的主要标志。
在干旱、半干旱地区,原来稀疏的植被受破坏,土壤沙化,就是严重的土壤退化现象。
7.土壤污染源(Soil contaminant source)造成土壤污染的污染物来源,主要为工业和城市的废废弃物堆放、农业用的化肥及农药、污水直接排放、受污染的地表径流、大气沉降、以及放射性物质和有害微生物等。
8.土壤酸化(Soil acidification)土壤内部产生和外部输入的氢离子引起土壤pH值降低和盐基饱和度减少的过程,它又是一种重要的土壤退化形式,对区域食物安全、环境质量及人畜健康产生明显负面影响。
第三节 土壤环境化学
南
通
大
學
4/ 29
环 境
化
学
与
监
测
二、 土壤的组成与性质
南
通
大
學
5/ 29
环 境
化
学
与
监
测
1、土壤矿物质
按成因类型可将土壤矿物分为两类:原生矿物和次生矿 物. 原生矿物 是各种岩石(主要趋岩浆岩)受到程度不同的物理风化 而未经化学风化的碎屑物,其原来的化学组成和结晶构造 都没有改变. 次生矿物 大多数是由原生矿物经风化后重新形成的新矿物,其 化学组成和构造都有所改变而不同于原来的原生矿物。 在土壤形成过程中,原生矿物以不同的数量与土壤中 的次生矿物混合存在,成为土壤矿物质。
24/ 29
南
通
大
學
环 境
化
学
与
监
测
2、污染物在土壤-植物体系中的迁移
土壤中污染物主要是通过植物根系根毛细胞的作用积 累于植物茎、叶和果实部分。 (1)、污染物由土壤向植物体内迁移的方式 被动转移
主动转移
(2)、影响重金属在土壤-植物体系中转移的因素 土壤中重金属向植物体内转移的过程与重金属的种类、 价态、存在形式以及土壤和植物的种类、特性有关 。 植物种类
南 通 大 學
23/ 29
环 境
化
学
与
监
测
1、土壤污染源和污染物
污染物种类:
(1)有机物质 化学农药的种类繁多,主要为有机氯和有机磷 两大类;
(2)氮类和磷类化学肥料;
(3)重金属,如砷、镉、汞、铬、铜、锌、铅等;
(4)放射性,元素如铯、锶等; (5)有害微生物类,如肠细菌、炭疽杆菌、破伤风杆菌、肠寄 生虫(蠕虫)、霍乱弧菌、结核杆菌等。 土壤中有机物分解产生CO2、CH4、H2S、H2、 NH3和N2等气体(其中CO2和CH4是主要的) 。
土壤环境化学
客土改土培肥技术 种植穴回填土按比例掺拌河沙、腐熟牛粪、草炭,穴外土壤按比例掺拌腐熟牛粪。
暗管排盐改土技术
PVC波纹管,管径6cm;暗管埋深120cm,暗管间距600-800cm;吸水管坡降2‰,集水管坡降1‰;工业固 体废弃物外包滤料,厚度20cm。
节水灌溉技术 分区灌溉模式和间歇性漫灌淋洗技术。栽植带土壤采用间歇性漫灌淋洗,栽植带间土壤主要利用雨季的雨水 自然淋洗和3次微喷灌淋洗。
我国耕地中盐渍化面积达到920.9×104hm2,占全国耕地面积的6.62%。
河滨口海三湿角地洲景红观地毯景观 内陆盐碱地
滨海湿地水鸟
盐碱地农业利用的障碍因素
土壤高盐胁迫 土壤结构性差,透水透气性能差 干旱缺水,或地下水位过高,造成渍涝 缺乏充足的淡水灌溉资源
盐渍化防控与盐渍土资源利用措施
盐渍土的分布范围很广,在南极洲以外的各大洲均有分布,涉及100多个国家,尤其以干旱、半干旱地区分 布最广,其总面积约为9.54×108hm2。
我国的盐渍土面积占世界盐渍土总面积的1/10强,约合9.91×107hm2,从热带到寒温带、滨海到内陆、湿润地 区到荒漠地区,均有分布,几乎占了我国国土面积的1/3 。
咸水冰融化 融化咸水入渗
土壤水盐运移动态
地下水
基于微地形营建的粘质盐土改良绿化 主要开展底部滤层排盐并阻断盐分上升途径、物理掺土改良、微地形营建增大控制土体深度、施用改良剂改 善土壤通透性能、根据土壤盐分含量和立地土壤深度需求配置绿化植被等复合盐碱土壤改良与绿化技术。
草本带 R3 乔灌混合带
乔木带 R2
大多数是由原生矿物经化学风化后形成的新矿物,其化学组成和晶体结构都 有所改变。
2. 土壤有机质(Soil Organic Matter)
土壤环境化学
土壤环境化学
《土壤环境化学》
第一章土壤基础
1.1 土壤组成
土壤是由固体、液体和气体组成的:固体由颗粒组成,液体是由土壤中的水分和有机物所构成,气体是由土壤根系空间和排出的空气中所含的气体构成。
1.2 土壤类型
土壤主要分为三类:水泥土、粘土及砂土。
水泥土是一种半水泥状的土壤,其中含有较多的碳酸钙和镁酸钙,有利于土壤的吸水和保水能力,但其中的有机物含量比较低,表层颗粒较小,土壤水分去向也不利于植物的生长。
粘土一般具有悬浮性,它的颗粒小而密,其中含有较多的有机物和黏土矿物,具有良好的吸附性,对植物有较大的造林价值。
砂土是指由砂砾组成的土壤,对水分和有机物的保存和吸收能力较差,表层颗粒较大,可以较容易的通过空气或降雨而运出,一般用作农田种植。
1.3 土壤温度和湿度
土壤的温度和湿度是土壤形成、发育和演变的重要因素。
一般情况下,随着土壤的深度不断增加,温度也会不断降低;湿度也会随着深度的增加而不断上升,这是由于土壤根系空间中的水分会不断从空气和降雨中补充,使其相对湿度更高。
第四章土壤环境化学(SoilEnvironmentalChemistry)
可交换性盐基总量 盐基饱和度(%) 100 阳离子交换量
(2)土壤胶体的阴离子交换吸附
带正电荷的胶体吸附的阴离子与土壤溶 液中的阴离子交换。 吸附顺序:
F- > C2O42- > 柠檬酸根 > PO43- > HCO3-> H2BO3- > Ac- > SCN- > SO42- > Cl- > NO3-
代换性酸度:
用过量中性盐(KCl、NaCl等) 溶液 淋洗土壤,溶液中金属离子与土壤中H+、 Al3+发生离子交换作用:
|土壤胶体|-H+ + KCl → |土壤胶体|-K+ + HCl |土壤胶体|-Al3++ 3KCl→|土壤胶体|-3K+ + AlCl3 AlCl3 + H2O → Al(OH)3 + 3HCl
形成过程:由地壳的岩石、矿物经过风化作用形成的。 按成因类型分类: 原生矿物
Soil)
次生矿物
原生矿物:
土壤中原先存在的岩石颗粒,受到不同
程度物理风化后形成的。
类别:
硅酸盐(石英、长石、云母等);
氧化物(SiO2 、Al2O3、 TiO2、 Fe2O3);
硫化物 (FeS);
磷酸盐如氟磷灰石Ca5(PO4)3F等。
有机质和低价金属离子。
土壤氧化还原能力的大小可以用土壤的氧 化还原电位(Eh)来衡量。 根据土壤Eh值可以确定土壤中有机物和
无机物可能发生的氧化还原反应和环境行为。
一般旱地土壤的氧化还原电位(Eh)为 +400—+700mV;水田的Eh值在-200—300mV。
土壤环境化学知识普及
5、土壤微生物的固定和活化 (1)胞外络合作用 (2)胞外沉淀作用 (3)金属的微生物转化
6、土壤根际的富集和降毒
(1)根际氧化还原屏障形成 (2)根际pH屏障形成 (3)根系分泌物的络合作用
(四)土壤中有毒的重金属
重金属中毒机理
生物机体中含巯基(-SH)的酶与外来重 金属的反应:
①活性酸度:H+的浓度 ②潜在酸度
(2)土壤碱度
土壤溶液中OH-离子的主要来源,是CO32和 HCO3-的碱金属(Na+、K+)及碱土金
属(Ca2+、Mg2+)的盐类。
(3)土壤的缓冲能力
①土壤溶液的缓冲作用
②土壤胶体的缓冲作用
3、土壤的氧化还原性
土壤中的主要氧化剂有土壤中的氧气、 NO3-离子和高价金属离子。土壤中的主要 还原剂有有机质和低价金属离子。
土壤胶体对重金属的吸附作用通常分为非专性吸 附和专性吸附。
非专性吸附:
专性吸附:
3、重金属离子的配位作用
土壤重金属可与土壤中的各种无机配位体和有机配 位体发生配位作用。
4、土壤中重金属的沉淀和溶解
在高氧化环境中,Eh较高,钒、铬呈氧化态,形成 可溶性钒酸盐、铬酸盐等,具有极强的迁移能力, 而铁、锰则相反,形成高价难溶性化合物沉淀,迁
1、汞
汞在土壤中可能以多种不同的形态存在,如无机汞 有HgS、HgO、HgCO3、HgHPO3,HgSO4,
HgCl2等。
2.镉
镉在土壤中只能以二价简单离子或简单配 离子的形式存在于土壤溶液中,如Cd2+、 CdCl+、CdSO4,CdHCO3+等。Cd2+与有 机配体形成配合物的能力很弱,故土壤中有 机结合态的镉较少。镉还以CdCO3、 Cd3(PO4)2、Cd(OH)2、CdS等难溶的形 态存在于土壤中。
004.2土壤环境化学-土壤污染(重金属)
而不同种类的重金属,在土壤和农作物系统中迁移转化规律明 显不同。
重金属在土壤中的含量和植物吸收累积研究的结果为: Cd、As较易被植物吸收, Cu、Mn、Se、Zn等次之, Co、Pb、Ni等难于被吸收, Cr极难被吸收。
研究春麦受重金属污染状况后发现, Cd是强积累性元素, 而Pb的迁移性则相对较弱; 铬和铅是生物不易积累的元素。������
5
(3)土壤环境容量:
土壤环境单元所容许承纳的污染物质的最大 允许量或负荷量(土壤环境静容量).
土壤环境单元一定时限内遵循环境质量标准, 既保证农产品产量和生物学质量,同时也不使环 境污染时,土壤所能允许承纳的污染物的最大数 量或负荷量(土壤环境动容量)。
6
(4)当土壤中含有害物质过多,超过土壤的自净能 力,就会引起土壤的组成、结构和功能发生变化, 微生物活动受到抑制,有害物质或其分解产物在 土壤中逐渐积累,通过“土壤→植物→人体”, 或通过“土壤→水→人体” 间接被人体吸收,达 到危害人体健康的程度,就是土壤污染。
4.放射性污染物
9
(6)重金属污染土壤的特点:
重金属不被土壤微生物降解,可在土壤中 不断积累,也可以为生物所富集,并通过食物 链在人体内积累,危害人体健康。
重金属一旦进入土壤就很难予以彻底的 清除。日本的“痛痛病”,我国沈阳郊区张 士灌区的“镉米”事件等是重金属污染的典 型实例。
10
•克山病 •大骨节病 •水俣病 •痛痛病 •黑脚病
第四章 土壤环境化学
Chapter 4. Soil Environmental Chemistry
补充掌握
土壤污染概述
(1)土壤背景值 土壤本身含有微量的金属元素,其中很
多是作物生长必需的微量营养元素,如Mn、 Zn、Cu等。不同地区土壤中重金属的种类和 含量也有很大差别。
环境化学课件(第四章 土壤环境化学)
土壤是地球陆地表面具有肥力、能够生长植物的疏松表层,
是由岩石经风化发育而成的历史自然体。
土壤的两个重要功能: (1)肥力作用:土壤具有供应与调控植物根系所 需水、气、热和养料的能力; (2)净化作用:土壤具有同化和代谢外界进入土 壤中的物质的能力,所以土壤又是保护环境的重要 净化剂。 土壤环境化学主要介绍土壤的形成、组成和性质, 污染物在土壤-植物系统中的迁移、转化、降解与归 趋。其重点是研究和掌握污染物在土壤中的分布、 迁移、转化和归趋的规律,为防治土壤污染奠定理 论基础。
⑵水铝片:铝八面体(或称铝氧八面体)是由一个 铝原子和六个氧原子或氢氧原子团构成的。铝原子 在中央,上下各为三个氧原子或氢氧原子团交错排 列,构成一个八面体。在同一平面上,由许多相邻 的铝八面体通过共用氧原子相联结,形成铝八面体 层,称水铝片,水铝片也是晶层的基本单元。
层状硅酸盐矿物种类: 1:1型矿物:由一片硅氧片和一片水铝片叠合而成,主要为高岭 石类矿物; 2:1型矿物:由两片硅氧片中间夹一片水铝片叠合而成。这类矿 物又分为膨胀型(蒙脱石类和蛭石)和非膨胀型矿物(主要有 水云母类)。 (1)高岭石:风化程度极高的矿物,主要见于湿热的热带地 区的土壤中,在花岗岩残积母质上发育的土壤中含量也较高。 颗粒粗大,厚0.1~5.0 m;比表面小,膨胀性小,阳离子代换 量低;富含高岭石的土壤,透水性良好,植物可获得的有效水 分多,但供肥、保肥能力低,植物易感养分不足; (2)蒙脱石:基性岩在碱性环境条件下形成的,在湿带干旱 地区的土壤中含量较高。其颗粒直径小于1 m,阳离子代换量 极高。植物难以利用它所吸收的水分,因此富含蒙脱石的土壤, 植物易感水分缺乏,同时干裂现象严重而不利于植物生长。 (3)水云母:一种风化程度较低的矿物,一般土壤中均有分 布,但以湿带干旱地区的土壤中含量最多。其颗粒直径小于2 m,膨胀性较小,具有较高的阳离子代换量,并富含钾 (K2O 4~7%)。
土壤环境化学
土壤环境化学土壤环境化学是环境科学与化学交叉的一门学科。
它研究土壤中各种化学元素的分布、特性和作用,探讨土壤物质的结构与性质,分析生态系统和人类活动对土壤环境的影响,为改善土壤质量和保护生态环境提供理论和技术支持。
下面从几个方面对土壤环境化学进行分析和探讨。
1.土壤中化学元素的分布与作用土壤中含有丰富的化学元素,其中有些元素对植物生长和土壤质量有着重要作用。
例如,土壤中的氮、磷、钾等元素是植物生长所必需的养分元素,它们对植物营养生长和产量起着重要作用;而铁、锰等微量元素则对生物酶活性和土壤微生物的生长起到促进作用。
因此,研究土壤中各种化学元素的分布与作用,对于保持土壤生态平衡和提高土壤生产力具有重要意义。
2.土壤化学性质及其测定方法土壤的化学性质包括pH值、电导率、有机质、离子交换等,这些性质对于土壤物质的性质和土壤生态系统的平衡起着重要作用。
测定土壤中各种元素的含量和范围,对于判断土壤质量和土壤养分状况具有重要意义。
常用的土壤化学性质测定方法包括pH试剂法、离子交换色谱法、原子吸收光谱法等。
3.土壤环境污染及其防治土壤污染对于土壤生态环境和人类健康产生严重威胁。
土壤污染的主要来源包括农业生产、工业生产、城市人类活动等。
土壤环境化学研究土壤污染的来源、性质、分布规律等,为土壤污染防治提供科学依据。
土壤环境污染的防治手段包括土壤修复、土壤保护、土地整治和土壤资源综合利用等。
4.土壤有机质及其作用土壤有机质指在枯枝、落叶、残渣等废弃物的分解作用下形成的含碳物质。
有机质对土壤的肥力、结构和水分保持能力起着重要作用,同时还能促进土壤微生物生长,参与土壤健康发展。
因此,研究土壤有机质的来源、形成和作用对于提高土壤生产力和改善生态环境具有重要意义。
总的来说,土壤环境化学是一门涵盖广泛,应用领域广泛的交叉学科,它在促进土地资源的合理管理和提高土壤生产力方面拥有重要作用,也对保护生态环境和人民健康具有重要意义。
土壤环境化学
以cmol/kg表示。 在一般矿质土壤中, 由交换性铝离子产生
的酸度, 比由交换性氢离子产生的酸度重要。 只有盐基不饱和的土壤,才有潜性酸。
43
潜性酸表现其酸性的机制
► 土壤胶体上氢离子的解离 ► 胶体上氢离子被其它阳离子代换到溶液中 ► 土壤胶体上铝离子作用:
原生矿物:各种岩石受到程度不同的物理风化而未
经化学风化的碎屑物,其原来的化学组成和结晶构 造都没有改变。
次生矿物:大多数是由原生矿物经化学风化后形成
的新矿物,其化学组成和晶体结构都有所改变。
12
(1)原生矿物 主要四类——硅酸盐类矿物、氧化物类矿物、硫化 物类矿物、磷酸盐类矿物。
(2)次生矿物 分为三类——简单盐类、三氧化物类、次生铝硅酸 盐类。
9
一、土壤的组成
土壤固体 土壤矿物质
土壤有机质、生物
孔隙
液相 (水分-溶液)
气相(空气)
矿物质38% (98%质量)
有机质12% (5%质量)
土壤水分 15%~35%
土壤空气 15%~25%
10
பைடு நூலகம்
11
►1.土壤矿物质(Minerals in Soil )
► 土壤矿物质是岩石经过物理风化和化学风化形成的。 按成因类型分类:
44
根据测定潜性酸度的提取液不同,可分为 代换性酸度 水解性酸度
45
代换性酸度
用过量的中性盐(KCl、NaCl等) 淋洗土 壤,溶液中金属离子与土壤中H+、Al3+离 子交换:
土壤胶体 -H+ + KCl → 土壤胶体 -K+ + HCl 土壤胶体 -Al3++ 3KCl→土壤胶体 -3K+ + AlCl3
《土壤环境化学》重点习题及参考答案
《土壤环境化学》重点习题及参考答案1.什么是土壤的活性酸度与潜性酸度?试用它们二者的关系讨论我国南方土壤酸度偏高的原因。
根据土壤中H+的存在方式,土壤酸度可分为活性酸度与潜性酸度两大类。
(1)活性酸度:土壤的活性酸度是土壤溶液中氢离子浓度的直接反映,又称有效酸度,通常用pH表示。
(2)潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+与Al3+。
当这些离子处于吸附状态时,是不显酸性的,但当它们经离子交换作用进入土壤溶液后,即可增加土壤溶液的H+浓度,使土壤pH值降低。
南方土壤中岩石或者成土母质的晶格被不一致程度破坏,导致晶格中Al3+释放出来,变成代换性Al3+,增加了土壤的潜性酸度,在一定条件下转化为土壤活性酸度,表现为pH值减小,酸度偏高。
2.土壤的缓冲作用有哪几种?举例说明其作用原理。
土壤缓冲性能包含土壤溶液的缓冲性能与土壤胶体的缓冲性能:(1)土壤溶液的缓冲性能:土壤溶液中H2CO3、H3PO4、H4SiO4、腐殖酸与其他有机酸等弱酸及其盐类具有缓冲作用。
以碳酸及其钠盐为例说明。
向土壤加入盐酸,碳酸钠与它生成中性盐与碳酸,大大抑制了土壤酸度的提高。
Na2CO3 + 2HCl2NaCl + H2CO3当加入Ca(OH)2时,碳酸与它作用生成难溶碳酸钙,也限制了土壤碱度的变化范围。
H2CO3 + Ca(OH)2CaCO3 + 2H2O土壤中的某些有机酸(如氨基酸、胡敏酸等)是两性物质,具有缓冲作用,如氨基酸既有氨基,又有羧基,对酸碱均有缓冲作用。
RCHNH 2COOH + HCl NH 3Cl R CHCOOH + NaOH + H 2OR CHNH 2COOH R CH NH 2COONa(2)土壤胶体的缓冲作用:土壤胶体吸附有各类阳离子,其中盐基离子与氢离子能分别对酸与碱起缓冲作用。
对酸缓冲(M -盐基离子):土壤胶体 M +HCl土壤胶体 H +MCl对碱缓冲: 土壤胶体 H +MOH 土壤胶体 M +H 2OAl 3+对碱的缓冲作用:在pH 小于5的酸性土壤中,土壤溶液中Al 3+有6个水分子围绕,当OH -增多时,Al 3+周围的6个水分子中有一、二个水分子离解出H +,中与OH -:2Al(H 2O)63+ + 2OH - [Al 2(OH)2(H 2O)8]4+ + 4H 2O3.植物对重金属污染产生耐性作用的要紧机制是什么?不一致种类的植物对重金属的耐性不一致,同种植物由于其分布与生长的环境各异可能表现出对某种重金属有明显的耐性。
土壤环境化学
土壤环境化学土壤环境化学是研究土壤中化学元素和化学反应的科学领域。
土壤是地球表面的重要自然资源,其化学性质对农作物生长、环境保护和生态平衡具有重要影响。
了解土壤环境化学的基本原理和特点,有助于科学合理地利用土壤资源,保护生态环境。
土壤中的化学元素是土壤环境化学研究的重点之一。
土壤中的主要化学元素包括有机物质、矿物质和无机盐等。
有机物质是土壤中的重要组成部分,可以提供植物生长所需的营养元素和能量。
矿物质是土壤中的无机物质,其主要成分包括氧化物、碳酸盐、硅酸盐等。
无机盐是土壤中的无机离子,包括氮、磷、钾等元素。
这些化学元素在土壤中以不同形式存在,对土壤的肥力和生物活性起着重要作用。
土壤中的化学反应是土壤环境化学研究的另一个重要方面。
土壤中的化学反应包括氧化还原反应、酸碱中和反应、络合反应等。
氧化还原反应是土壤中氧气与有机物质或无机物质之间的化学反应,可以释放能量或吸收能量,影响土壤中微生物的代谢和植物的生长。
酸碱中和反应是土壤中酸性物质与碱性物质之间的中和反应,可以调节土壤的酸碱度,影响土壤中微生物的生长和植物的吸收营养。
络合反应是土壤中金属离子与有机物质或无机物质之间的络合作用,可以影响土壤中金属元素的迁移和转化。
土壤环境化学还涉及土壤中的污染物质和其化学行为。
土壤中的污染物质包括重金属、有机污染物、放射性物质等。
这些污染物质会影响土壤的生物多样性和生态平衡,对人类健康和环境造成危害。
了解土壤中污染物质的化学性质和行为规律,有助于科学合理地治理土壤污染,保护生态环境。
土壤环境化学是一门综合性的学科,涉及土壤中化学元素、化学反应、污染物质等多个方面。
通过深入研究土壤环境化学的基本原理和特点,可以更好地利用土壤资源,保护生态环境,实现可持续发展。
希望通过不断努力和探索,能够更好地认识和理解土壤环境化学,为建设美丽家园贡献自己的力量。
土壤的主要成分及它们在环境化学中的作用
土壤的主要成分及它们在环境化学中的作用土壤是由无机和有机物质组成的复杂体系。
以下是土壤的主要成分及其在环境化学中的作用:1. 矿物质:矿物质是土壤的主要无机成分,包括石英、长石、黏土矿物等。
矿物质在环境化学中具有以下作用:-提供土壤的物理支持和结构稳定性。
-影响土壤的质地、保水性和透气性。
-可以吸附和释放养分,影响土壤肥力。
-可能吸附有机污染物和重金属,影响它们在土壤中的迁移和生物可及性。
2. 有机质:有机质是由已死和正在分解的植物和动物残体形成的有机物质。
有机质在环境化学中具有以下作用:-提供土壤的肥力和营养素。
-促进土壤结构的形成和稳定。
-提供微生物生长和活动所需的碳源和能量。
-可以吸附和解毒有机污染物。
3. 水分:水是土壤中的重要组成部分,对环境化学过程有重要影响:-水是溶解和迁移物质的介质,通过溶解作用可以促进养分和污染物在土壤中的迁移。
-水的存在和分布状况影响土壤的氧气和二氧化碳扩散,从而影响土壤中的生物活性和化学反应。
4. 气体:土壤中的气体包括空气中的氮气、氧气、二氧化碳等。
气体在环境化学中的作用包括:-影响土壤中微生物的呼吸和代谢过程。
-参与土壤中的氧化还原反应,如氮的硝化和脱氮过程。
5. 生物:土壤中存在着丰富的生物群落,包括细菌、真菌、线虫、蚯蚓等。
生物在环境化学中的作用包括:-分解有机物质,促进有机质的转化和循环。
-参与氮循环和其他生物地球化学过程。
-影响土壤中污染物的生物降解和转化。
综上所述,土壤的主要成分包括矿物质、有机质、水分、气体和生物。
它们在环境化学中发挥着关键的作用。
在环境化学中,土壤的成分与作用之间存在着密切的相互关系。
以下是一些关键的作用:1. 营养元素的储存和释放:土壤中的矿物质和有机质可以吸附和储存营养元素,如氮、磷、钾等。
这些养分对植物的生长至关重要。
土壤中的微生物和根系也参与了养分的循环和转化过程。
当植物需要时,土壤可以释放储存的营养元素,满足植物的需要。
环境化学第四章土壤环境化学
环境化学第四章土壤环境化学第四章土壤环境化学1、土壤圈:处于岩石圈最外面的一层疏松的部分,具有支持植物和微生物生长繁殖的能力。
是联系有机界和无机界的中心环节,还具有同化和代谢外界进入土壤的物质的能力。
主要元素O、Si、Al、Fe、C、Ca、K、Na、Mg、Ti、N、S、P等。
2、土壤是由固体、液体和气体三相共同组成的多相体系。
其本质属性是具有肥力土壤固相包括土壤矿物质和土壤有机质。
土壤矿物质:是岩石经过物理和化学风化的产物,由原生矿物和次生矿物构成。
土壤有机质:土壤中含碳有机物的总称,是土壤形成的标志,土壤肥力的表现。
土壤水分:来自大气降水和灌溉土壤中的空气:成分与大气相似,不连续,二氧化碳比氧气多。
3、土壤具有缓和其酸碱度发生激烈变化的能力,它可以保持土壤反应的相对稳定,称为土壤的缓冲性能。
4、土壤中存在着由土壤动物、土壤微生物和细菌组成的生物群体。
5、典型土壤随深度呈现不同层次,分别为覆盖层、淋溶层、淀积层和母质层。
6、土壤的显著特点是具有:隐蔽性、潜在性和不可逆性。
7、岩石化学风化分为氧化、水解和酸性水解三个过程。
8、什么是土壤的活性酸度与潜性酸度?根据土壤中H+的存在方式,土壤酸度可分为活性酸度与潜性酸度两大类。
(1)活性酸度:土壤的活性酸度是土壤溶液中氢离子浓度的直接反映,又称有效酸度,通常用pH表示。
(2)潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和Al3+。
当这些离子处于吸附状态时,是不显酸性的,但当它们经离子交换作用进入土壤溶液后,即可增加土壤溶液的H+浓度,使土壤pH值降低。
根据测定潜性酸度的提取液不同,可分为代换性酸度、水解性酸度:代换性酸度:用过量的中性盐(KCl、NaCl等) 淋洗土壤,溶液中金属离子与土壤中H+、Al3+离子交换。
用强碱弱酸盐淋洗土壤,溶液中金属离子可将土壤胶体吸附的H+、Al3+离子代换出来,同时生成弱酸,此时测定该弱酸的酸度称水解性酸度。
土壤环境化学
第一节 土壤的组成与性质 第二节 污染物在土壤植物体系中的迁移 第三节 土壤中农药的迁 移转化 第四节 土壤中污染物的 治理以及修复
第一节 土壤的组成与性质
土壤是由地壳岩石及矿物经过长期风化形 成的。
在风化过程中,岩石、矿物变成碎屑(土壤母质),它 们在生物及其遗骸、微生物作用下,通过腐殖质形成地 表疏松层,它是陆生植物赖以生存的物质基础,是一切 农业的基础,除可生产食物外,也是外界同化和代谢物 及大部分污染物的承受体,是维持全球人口生存的重要 因素。
颗粒名称
石块 石砾 粗砾 细砾 砂粒 粗砂粒 细砂粒 粉粒 粗粉粒 细粉粒 黏粒 粗黏粒 粗黏粒
粒 径(mm) >10
10~3 3~1
1~0.25 0.25~0.05 0.05~0.01 0.01~0.005
0.005~0.001 <0.001
各粒级的主要矿物成分和理化特性
(1)石块和石砾
多为岩石碎块,直径大于1mm。土壤中含石块和石砾多时,其空隙 过大,水分和养分易流失。
2.土壤质地分组及特性
国际制土壤质地分类
质地分类
类别
质地名称
砾土类 壤土类 黏壤土类
黏土类
砂土及填质砂土
砂质壤土 壤土
粉砂质壤土
砂质黏壤土 黏壤土
粉质黏壤土
砂质黏土 壤质黏土 粉质黏土
黏土 重黏土
各级土粒重量
黏粒
粉砂粒
(<0.002mm) (0.02~0.002mm)
0~15 0~15 0~15 0~15
(4)黏粒
主要是次生矿物,粒径<0.001mm。含黏粒多的土壤,营养元素含 量丰富,团聚能力较强,有良好的保水保肥能力,但通气和透水性 差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chap 41原生矿物:它们是各种岩石(主要是岩浆岩)受到程度不同的物理风化而未经化学风化的碎屑物,其原来的化学组成和结晶构造都没有改变;土壤中最主要的原生矿物有四类:硅酸盐类矿物、氧化物类矿物、硫化物类矿物和磷酸盐类矿物。
其中硅酸盐类矿物占岩浆岩重量的80%以上。
次生矿物:它们大多数是由原生矿物经化学风化后形成的新矿物,其化学组成和晶体结构都有所改变。
在土壤形成过程中,原生矿物以不同的数量与次生矿物混合成为土壤矿物质。
简单盐类、三氧化物类和次生铝硅酸盐类。
2 土壤有机质主要来源于动植物和微生物残体。
非腐殖物质(蛋白质、糖类、树脂、有机酸)腐殖质(腐殖酸、富里酸、腐黑酸等)。
3土壤空气与大气组成有较大的差别: (1)土壤空气是一个不连续的体系。
(2)CO2含量一般远比在大气中高,氧的含量则低于大气。
造成这种差别的原因是土壤中植物根系的呼吸作用、微生物活动中有机物的降解及合成时消耗其中的O2,放出CO2。
(3)土壤空气一般比大气含有较高的水量。
土壤含水量适宜时,相对湿度接近100%。
(4)除此之外,由于土壤空气经常被水汽所饱和,在通气不良情况下,厌氧细菌活动产生的少量还原性气体如CH4、H2S、H2也积累在土壤空气中。
4 由不同的粒级混合在一起所表现出来的土壤粗细状况,称为土壤质地(或土壤机械组成)。
5国际制和美国制均采用三级分类法,即按砂粒、粉砂粒、粘粒三种粒级的百分数,划分为砂土、壤土、粘壤土和粘土四类十二级。
6土壤胶体的性质:1)土壤胶体具有巨大的比表面和表面能:(2)土壤胶体的电性:(3)土壤胶体的凝聚性和分散性 ,影响因素:土壤胶体的电动电位和扩散层厚度及土壤溶液中电解质浓度、pH值影响土壤凝聚性能。
7 离子交换作用包括阳离子交换吸附作用和阴离子交换吸附作用。
阳离子交换能力的强弱主要依赖于以下因素:①电荷数:离子电荷数越高,阳离子交换能力越强。
②离子半径及水化程度:同价离子中,离子半径越大,水化离子半径就越小,因而具有较强的交换能力。
8每千克干土中所含全部阳离子总量,称为阳离子交换量 (cmol/kg) ,不同土壤的阳离子交换量不同:①不同种类胶体的阳离子交换量的顺序为:有机胶体>蒙脱石>水化云母>高岭土>含水氧化铁、铝。
②土壤质地越细,阳离子交换量越高。
③土壤胶体中SiO2/R2O3比值越大,其阳离子交换量越大,当SiO2/R2O3<2,阳离子交换量显著降低。
④pH值下降阳离子交换量降低;反之,交换量增大。
9 可交换性阳离子有两类:一类是致酸离子,H+和A13+;另一类是盐基离子,Ca2+、Mg2+、NH4+、K+、Na+等。
当土壤胶体上吸附的阳离子均为盐基离子,且已达到吸附饱和时的土壤,称为盐基饱和土壤。
当土壤胶体上吸附的阳离子有一部分为致酸离子,则这种土壤为盐基不饱和土壤。
在土壤交换性阳离子中盐基离子所占的百分数称为土壤盐基饱和度:10活性酸度:土壤的活性酸度是土壤溶液中H+浓度的直接反映,又称为有效酸度,通常用pH表示。
土壤溶液中H+的来源:土壤中CO2溶于水形成的碳酸;有机物分解产生的有机酸;土壤中矿物质氧化产生的无机酸;无机肥料中残余的无机酸;大气污染形成的大气酸沉降。
(2)潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和A13+。
当这些离子处于吸附状态时,是不显酸性的,但当它们通过离子交换作用进入土壤溶液之后,即可增加土壤溶液的H+浓度,使土壤pH值降低。
只有盐基不饱和土壤才有潜性酸度,其大小与土壤代换量和盐基饱和度有关。
根据测定土壤潜性酸度所用的提取液,可以把潜性酸度分为代换性酸度和水解酸度。
①代换性酸度:用过量中性盐溶液淋洗土壤,溶液中金属离子与土壤中H+和A13+发生离子交换作用,而表现出的酸度,称为代换性酸度。
②水解性酸度:用弱酸强碱盐(如醋酸钠)淋洗土壤,溶液中金属离子可以将土壤胶体吸附的H+和A13+代换出来,同时生成某弱酸(醋酸)。
此时,所测定出的该弱酸的酸度称为水解性酸度。
水解性酸度一般比交换性酸度高。
由于中性盐所测出的代换性酸度只是水解性酸度的一部分,当土壤溶液在碱性增大时,土壤胶体上吸附的H+较多地被代换出来,所以水解酸度较大。
11活性酸度与潜性酸度的关系:土壤的活性酸度与潜性酸度是同一个平衡体系的两种酸度。
二者可以互相转化,在一定条件下处于暂时平衡状态。
土壤活性酸度是土壤酸度的根本起点和现实表现。
土壤胶体是H+和A13+的贮存库,潜性酸度则是活性酸度的贮备。
土壤的潜性酸度往往比活性酸度大得多,12谁来提供缓冲:(1)土壤溶液的缓冲作用:土壤溶液中含有碳酸、硅酸、磷酸、腐殖酸等弱酸及其盐类,构成一个良好的缓冲体系,对酸碱具有缓冲作用。
(2)土壤胶体的缓冲作用:土壤胶体吸附有各种阳离子,其中盐基离子和氢离子能分别对酸和碱起缓冲作用。
土壤胶体的数量和盐基代换量越大,土壤的缓冲性能就越强。
在代换量相等的条件下,盐基饱和度愈高,土壤对酸的缓冲能力愈大;反之,盐基饱和度愈低,土壤对碱的缓冲能力愈大。
一般土壤缓冲能力:腐殖质土﹥粘土﹥砂土13重金属在土壤中的结合态:Exchangeable(可交换态,活性最高)bound to carbonates(碳酸盐结合态)bound to Iron and Manganese oxides(铁锰氧化物结合态)bound to organic matter (有机结合态)Residue(残渣态)14重金属在土壤—植物中的迁移转化机制非常复杂,影响因素很多,主要有:土壤的理化性质重金属的种类、浓度、在土壤中的存在形态植物种类、生育期复合污染施肥15 汞和镉在土壤中的迁移转化及特性:镉一般在土壤表层0-15cm处累积。
在土壤中,镉主要以CdCO3、Cd3(PO4)2和Cd(OH)2的形态存在,其中以CdCO3为主,尤其在碱性土壤中。
大多数土壤对镉的吸附率在80%-95%之间,不同土壤吸附顺序为:腐殖质土壤>重壤质土壤>壤质土>砂质冲积土。
因此镉的吸附与土壤中胶体的性质有关。
汞:汞在自然界含量很少,岩石圈中汞含量约为0.1mg/kg。
土壤中汞的含量为0.01-0.3 mg/kg, 平均为0.03 mg/kg。
由于土壤的粘土矿物和有机质对汞的强烈吸附作用,汞进入土壤后,95%以上能被土壤迅速吸附或固定,因此汞容易在表层积累。
植物能直接通过根系吸收汞。
在很多情况下,汞化合物在土壤中先转化为金属汞或甲基汞后才被植物吸收。
植物吸收和积累汞与汞的形态有关,其顺序是:氧化甲基汞>氯化乙基汞>醋酸苯汞>氯化汞>氧化汞>硫化汞。
从这个顺序也可看出,挥发性高、溶解度大的汞化合物容易被植物吸收。
汞在植物各部分的分布是根>茎、叶>种子。
这种趋势是由于汞被植物吸收后,常与根中的蛋白质反应沉积于根上,阻碍了向地上部分的运输。
16具有较大logKow(>3)的有机化合物(如TCDD,PCBs,酞酸酯类,PAHs)容易被土壤或植物根部吸附,不易被植物吸收。
具有中等logKow(0.5~3)的有机化合物(BTEX,卤代烃类,芳香族化合物,许多农药等)容易被植物吸收,并且传输到地上部分。
传输速率取决于植株蒸腾速率和分子及其极性大小。
水溶性有机质, logKow>0.5,不会充分吸着到根上,而易通过植物膜转移至植物体内。
17土壤中农药迁移的基本特征主要通过扩散、质体流动和吸附分配来完成。
在前两者的过程中,农药迁移可以以蒸汽或非蒸汽的形式进行。
影响农药在土壤中扩散的因素 a.土壤湿度(水分含量)水含量在4~20%,以气态扩散占50%以上;超过30%时,主要以非气态形式扩散。
b.吸附 c.紧实度 d.温度 e.气流f.农药种类18吸附分配以非离子型有机农药为例,其主要由分配作用决定(1)特点:a.吸附等温线呈线性b.不存在竞争吸附c.其分配系数(能力)随溶解度变化发生规律性变化。
d.土壤湿度显著影响农药的分配过程吸附(Sorption): 在两相中(主要是固液两相)某种化学物质在液相中的浓度下降而在固相中的浓度上升的现象。
这是一种表观吸附现象,包括使得液相中溶质转入固相的所有反应,如物理吸附和化学吸附、分配、沉淀、络合、水解以及共沉淀等化学反应。
分配(Partition): 主要是指有机化合物(尤其是非离子性有机化合物)通过溶解作用分配到土壤有机质、水生生物脂肪即以植物有机质中去,经过一定时间达到分配平衡的过程。
吸附(adsorption):主要是指有机物质在固相上的表面现象,它包括物理化学范畴内的物理吸附和化学吸附,是土壤矿物表面的电荷和各种化学键力作用的结果。
19分配作用和吸附作用(adsorption)的比较:(1)作用力partition:主要通过分子力,将溶质分配到土壤或沉积物的有机质中去,这过程十分类似于有机化合物分配到水相和有机溶剂相中去。
adsorption:物理吸附—范德华力;化学吸附—各种化学键力,如氢键、配位键、π键等。
2)吸附热partition:放出高吸附热adsorption放出的反应热较少3)吸附等温线(isotherm) partition:线性Linearadsorption: 非线性Nonlinear,是L、F型等温线线性等温线:G=kC其中,G—吸附量,C—液相浓度,k—分配系数 Freundlich: G=kC1/n (n=1时线性) Langmuir: G=Gо/(A+C) (取倒数,得到直线)(4)吸附竞争性partition :不存在竞争吸附。
因为分配作用实际上是种溶解作用,只与溶解度有关,与表面吸附位无关。
adsorption:存在竞争吸附,对吸附位发生竞争。