高中数学第二章统计章末综合检测二含解析新人教A版必修3110558
高中数学章末综合测评2含解析新人教A版选修2
![高中数学章末综合测评2含解析新人教A版选修2](https://img.taocdn.com/s3/m/ce9cacc7eff9aef8951e0669.png)
章末综合测评(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设离散型随机变量X 的分布列为:则p 的值为( ) A.12 B.14 C.13D.16 C [由16+13+16+p =1得p =13.故选C.]2.P (AB )=110,P (A )=13,则P (B |A )等于( )A.130 B.310 C.15D.115B [P (B |A )=P (AB )P (A )=11013=310,故选B.]3.已知随机变量X ~B ⎝⎛⎭⎫6,12,则D (2X +1)等于( ) A .6 B .4 C .3D .9A [∵X ~B ⎝⎛⎭⎫6,12,∴D (X )=6×12×12=32, ∴D (2X +1)=4D (X )=4×32=6.故选A.]4.已知甲投球命中的概率是12,乙投球命中的概率是35.假设他们投球命中与否相互之间没有影响.如果甲、乙各投球1次,那么恰有1人投球命中的概率为( )A.16 B.14 C.23D.12D [记“甲投球1次命中”为事件A ,“乙投球1次命中”为事件B .根据互斥事件的概率公式和相互独立事件的概率公式,得所求的概率为P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=12×⎝⎛⎭⎫1-35+⎝⎛⎭⎫1-12×35=12.] 5.在每次比赛中,如果运动员A 胜运动员B 的概率都是23,那么在五次比赛中,运动员A 恰有三次获胜的概率是( )A.40243B.80243C.110243D.20243 B [运动员A 恰有三次获胜的概率P =C 35⎝⎛⎭⎫233×⎝⎛⎭⎫1-232=80243.故选B.]6.设X ~N ⎝⎛⎭⎫-2,14,则X 落在(-3.5,-0.5]内的概率是( ) A .95.44% B .99.73% C .4.56%D .0.26%B [由X ~N ⎝⎛⎭⎫-2,14知μ=-2,σ=12,P (-3.5<X ≤-0.5)=P (-2-3×0.5<X ≤-2+3×0.5)=0.997 3.]7.已知10件产品中有3件是次品,任取2件,若X 表示取到次品的件数,则E (X )等于( )A.35 B.815 C.1415D .1A [由题意知,随机变量X 的分布列为∴E (X )=0×715+1×715+2×115=915=35.]8.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是( )A.35 B.25 C.110D.59D [记“第一次摸到正品”为事件A ,“第二次摸到正品”为事件B ,则P (A )=C 16C 19C 110C 19=35,P (AB )=C 16C 15C 110C 19=13.故P (B |A )=P (AB )P (A )=59.] 9.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的C [X =k 表示取出的螺丝钉恰有k 只为好的,则P (X =k )=C k 7C 4-k 3C 410(k =1,2,3,4).∴P (X =1)=130,P (X =2)=310,P (X =3)=12,P (X =4)=16,故310表示恰好有2个是好的.]10.已知甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,若目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75D [令事件A ,B 分别表示甲、乙两人各射击一次击中目标,由题意可知P (A )=0.6,P (B )=0.5,令事件C 表示目标被击中,则C =A ∪B ,则P (C )=1-P (A )P (B )=1-0.4×0.5=0.8, 所以P (A |C )=P (AC )P (C )=0.60.8=0.75.]11.某地区高二女生的体重X (单位:kg)服从正态分布N (50,25),若该地区有高二女生2 000人,则体重在50 kg ~65 kg 间的女生约有( )A .683人B .954人C .997人D .994人C [由题意知,μ=50,σ=5, ∴P (50-3×5<X ≤50+3×5)≈0.997 3. ∴P (50<X ≤65)=12×0.997 3=0.498 65,∴体重在50 kg ~65 kg 的女生大约有2 000×0.498 65≈997(人).]12.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116A [由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C 36=20.根据古典概型的概率计算公式得,所求概率P =2064=516.故选A.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知随机变量ξ~B ⎝⎛⎭⎫5,13,随机变量η=2ξ-1,则E (η)=________. 73 [ξ~B ⎝⎛⎭⎫5,13,∴E (ξ)=5×13=53, ∴E (η)=E (2ξ-1)=2E (ξ)-1=2×53-1=73.]14.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X 的均值为________个,方差为________.98.5 1.477 5 [由题意可知X ~B (100,98.5%), ∴E (X )=np =100×98.5%=98.5,D (X )=np (1-p )=100×98.5%×1.5%=1.477 5.]15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.0.18 [记事件M 为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P (M )=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.]16.一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为43;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是________.①②④ [①所求概率P =C 12C 24C 36=2×620=35,故①正确;②取到红球的次数X ~B ⎝⎛⎭⎫6,23,其方差为6×23×⎝⎛⎭⎫1-23=43,故②正确;③设A ={第一次取到红球},B ={第二次取到红球},则P (A )=23,P (AB )=4×36×5=25,所以P (B |A )=P (AB )P (A )=35,故③错;④每次取到红球的概率P =23,所以至少有一次取到红球的概率为1-⎝⎛⎭⎫1-233=2627,故④正确.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7、0.6,且每次试跳成功与否相互之间没有影响,求:(1)甲试跳三次,第三次才成功的概率;(2)甲、乙两人在第一次试跳中至少有一人成功的概率.[解] 记“甲第i 次试跳成功”为事件A i ,“乙第i 次试跳成功”为事件B i ,依题意得P (A i )=0.7,P (B i )=0.6,且A i ,B i (i =1,2,3)相互独立.(1)“甲第三次试跳才成功”为事件A 1 A 2A 3,且三次试跳相互独立,则P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=0.3×0.3×0.7=0.063.所以甲第三次试跳才成功的概率为0.063.(2)设“甲、乙两人在第一次试跳中至少有一人成功”为事件C .法一:(直接法)因为C =A 1B 1+A 1B 1+A 1B 1,且A 1B 1,A 1B 1,A 1B 1彼此互斥, 所以P (C )=P (A 1B 1)+P (A 1B 1)+P (A 1B 1)=P (A 1)P (B 1)+P (A 1)P (B 1)+P (A 1)P (B 1)=0.7×0.4+0.3×0.6+0.7×0.6=0.88.法二:(间接法)P (C )=1-P (A 1)P (B 1)=1-0.3×0.4=0.88. 所以甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.18.(本小题满分12分)甲\乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X ,Y ,X 和Y 的分布列如下表.试对这两名工人的技术水平进行比较.[解] 工人甲生产出次品数X 的数学期望和方差分别为E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.工人乙生产出次品数Y 的数学期望和方差分别为 E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人生产出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.19.(本小题满分12分)某班有6名班干部,其中男生4人,女生2人,任取3人参加学校的义务劳动.(1)设所选3人中女生人数为X ,求X 的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ). [解] (1)X 的所有可能取值为0,1,2. 依题意得P (X =0)=C 34C 36=15,P (X =1)=C 24C 12C 36=35,P (X =2)=C 14C 22C 36=15.∴X 的分布列为(2)设“甲、乙都不被选中”为事件C ,则P (C )=C 34C 36=15,∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12,P (B |A )=P (AB )P (A )=C 14C 36C 25C 36=410=25.20.(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.(1)求ξ的分布列; (2)求ξ的数学期望.[解] (1)必须要走到1号门才能走出,ξ可能的取值为1,3,4,6. P (ξ=1)=13.P (ξ=3)=13×12=16.P (ξ=4)=13×12=16.P (ξ=6)=2×⎝⎛⎭⎫13×12×1=13. ∴ξ的分布列为:(2)E (ξ)=1×13+3×16+4×16+6×13=72(小时).21.(本小题满分12分)进货商当天以每份1元的进价从报社购进某种报纸,以每份2元的价格售出.若当天卖不完,剩余报纸以每份0.5元的价格被报社回收.根据市场统计,得到这个月的日销售量X (单位:份)的频率分布直方图(如图所示),将频率视为概率.(1)求频率分布直方图中a的值;(2)若进货量为n(单位:份),当n≥X时,求利润Y的表达式;(3)若当天进货量n=400,求利润Y的分布列和数学期望E(Y).[解](1)由题图可得,100a+0.002×100+0.003×100+0.003 5×100=1,解得a=0.001 5.(2)因为n≥X,所以Y=(2-1)X-0.5(n-X)=1.5X-0.5n.(3)销售量X的所有可能取值为200,300,400,500,由第(2)问知对应的Y分别为100,250,400.由频率分布直方图可得P(Y=100)=P(X=200)=0.20,P(Y=250)=P(X=300)=0.35,P(Y=400)=P(X≥400)=0.45.利润Y的分布列为Y 100250400P 0.200.350.45所以E(Y)=0.20×100+0.35×250+0.45×400=287.5.22.(本小题满分12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X的分布列及数学期望.[解](1)记“甲队以3∶0胜利”为事件A1,“甲队以3∶1胜利”为事件A2,“甲队以3∶2胜利”为事件A3,由题意知,各局比赛结果相互独立,故P (A 1)=⎝⎛⎭⎫233=827, P (A 2)=C 23⎝⎛⎭⎫232⎝⎛⎭⎫1-23×23=827,P (A 3)=C 24⎝⎛⎭⎫232⎝⎛⎭⎫1-232×12=427. 所以甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4, 由题意知,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎫1-232⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427. 由题意知,随机变量X 的所有可能的取值为0,1,2,3,根据事件的互斥性得 P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627.又P (X =1)=P (A 3)=427,P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327,故X 的分布列为所以E (X )=0×1627+1×427+2×427+3×327=79.。
2021_2022学年高中数学第2章数列章末综合测评含解析新人教A版必修5
![2021_2022学年高中数学第2章数列章末综合测评含解析新人教A版必修5](https://img.taocdn.com/s3/m/c9e52bc259eef8c75ebfb361.png)
章末综合测评(二) 数列(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列1, 3,5,7,3,11,…,2n-1,…,则21是这个数列的( ) A.第10项B.第11项C.第12项D.第21项B[观察可知该数列的通项公式为a n=2n-1(事实上,根号内的数成等差数列,首项为1,公差为2),令21=2n-1,解得n=11,故选B.]2.一个各项均正的等比数列,其每一项都等于它后面的相邻两项之和,则公比q=( )A.32B. 5C.5-12D.1+52C[由题意知a n=a n+1+a n+2=a n q+a n q2,即q2+q-1=0,解得q=5-12(负值舍去),故选C.]3.等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( )A.8 B.-8C.±8 D.以上选项都不对A[∵a2+a6=34,a2·a6=64,∴a24=64,且a2>0,a6>0,∴a4=a2q2>0(q为公比),∴a4=8.]4.《X丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布约有( )A .0.55尺B .0.53尺C .0.52尺D .0.5尺A [设每天多织d 尺,由题意a 1=5,{a n }是等差数列,公差为d ,所以S 30=30×5+30×292d =390,解得d ≈0.55.]5.“远望嵬嵬塔七层,红光点点倍加增,共灯三百八十一,请问尖头几碗灯?”源自明代数学家吴敬所著的《九章詳註比纇算法大全》,通过计算得到的答案是( )A .2B .3C .4D .5B [由题意设尖头a 盏灯,根据题意由上往下数第n 层有2n -1a 盏灯,所以一共有(1+2+4+8+16+32+64)a =381盏灯,解得a =3.]6.已知S n 是数列{a n }的前n 项和,log 2S n =n (n =1,2,3,…),则数列{a n }( ) A .是公比为2的等比数列 B .是公差为2的等差数列 C .是公比为12的等比数列D .既非等差数列,也非等比数列 D [∵log 2S n =n ,∴S n =2n ,则a 1=2. 当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1.∵a 1=2不适合上式,∴{a n }既非等差数列,也非等比数列.]7.已知等差数列{a n }中,a 1>0,前n 项和是S n ,且S 14=S 8,则当S n 取得最大值时,n 为( )A .8B .9C .10D .11D [∵S 14=S 8,∴a 9+a 10+a 11+a 12+a 13+a 14=3(a 11+a 12)=0. ∵a 1>0,∴d <0,∴a 11>0,a 12<0,∴n =11.]8.已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0 B [依题意a 24=a 3a 8,所以(a 1+3d )2=(a 1+2d )(a 1+7d ),解得a 1=-53d ,所以S 4=2(a 1+a 4)=2(a 1+a 1+3d )=-23d ,所以a 1d =-53d 2<0,dS 4=-23d 2<0.]9.已知公差不为0的等差数列{a n }的前23项的和等于前8项的和.若a 8+a k =0,则k =( )A .22B .23C .24D .25C [等差数列的前n 项和S n 可看做关于n 的二次函数(图象过原点).由S 23=S 8,得S n 的图象关于n =312对称,所以S 15=S 16,即a 16=0,所以a 8+a 24=2a 16=0,所以k =24.]10.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230.那么a 3·a 6·…·a 30等于( )A .210B .215C .220D .216C [法一:a 1·a 2·a 3·…·a 30=a 301q (1+2+3+…+29)=(a 101q 145)3,a 3·a 6·a 9·…·a 30=a 101q (2+5+8+…+29)=a 101q 155. 所以a 3·a 6·a 9·…·a 30=(a 1·a 2·a 3·…·a 30)13q 10=(230)13·210=220.故选C.法二:a 1·a 4·a 7·…·a 28,a 2·a 5·a 8·…·a 29,a 3·a 6·a 9·…·a 30构成等比数列,公比为210. 设a 3·a 6·a 9·…·a 30=x ,则有a 1·a 2·a 3·…·a 30=x 220·x210·x =230.所以x 3=260,故a 3·a 6·a 9·…·a 30=220.故选C.]11.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( )A .15B .19C .21D .30B [由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d )2=(a 2-d )·(4a 2+2d ),化简得3d 2=2a 2d ,又d ≠0,∴a 2=3,d =2,a 1=1,∴a n =1+2(n -1)=2n -1,∴a 10=19.]12.将数列{3n -1}按“第n 组有n 个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A .34 950B .35 000C .35 010D .35 050A [在“第n 组有n 个数”的规则分组中,各组数的个数构成一个以1为首项,1为公差的等差数列.因前99组数的个数共有(1+99)×992=4 950个,故第100组中的第1个数是34 950.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=.-6[S 8=8×(a 1+a 8)2=4(a 3+a 6),由于S 8=4a 3,所以a 6=0.又a 7=-2,所以a 8=-4,a 9=-6.]14.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=.768[由a n +1=3S n ,得S n +1-S n =3S n ,即S n +1=4S n ,所以数列{S n }是首项为1,公比为4的等比数列,所以S n =4n -1,所以a 6=S 6-S 5=45-44=3×44=768.]15.已知公差不为零的正项等差数列{a n }中,S n 为其前n 项和,lg a 1,lg a 2,lg a 4也成等差数列,若a 5=10,则S 5=.30[设{a n }的公差为d ,则d ≠0.由lg a 1,lg a 2,lg a 4也成等差数列, 得2lg a 2=lg a 1+lg a 4,∴a 22=a 1a 4, 即(a 1+d )2=a 1(a 1+3d ),d 2=a 1d .又d ≠0,故d =a 1,a 5=5a 1=10,d =a 1=2, S 5=5a 1+5×42×d =30.]16.已知等差数列{a n }中,a 3=7,a 6=16,将此等差数列的各项排成如图所示的三角形数阵:a 1 a 2a 3 a 4a 5a 6 a 7a 8a 9a 10……………则此数阵中第20行从左到右的第10个数是.598[第1行有1项,第2行有2项,第3行有3项,故前19行共有19×1+19×182×1=190(项),第20行第10项为数列{a n }中的第200项.又a 3=7,a 6=16,∴d =a 6-a 36-3=16-73=3,∴a n =a 3+(n -3)·d =7+3(n -3)=3n -2,∴a 200=3×200-2=598.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知数列{a n }为等差数列,且a 3=5,a 7=13. (1)求数列{a n }的通项公式;(2)若数列{b n }满足a n =log 4b n ,求数列{b n }的前n 项和T n . [解](1)设a n =a 1+(n -1)d ,则⎩⎪⎨⎪⎧a 1+2d =5,a 1+6d =13,解得a 1=1,d =2. 所以{a n }的通项公式为a n =1+(n -1)×2=2n -1.(2)依题意得b n =4a n =42n -1, 因为b n +1b n=42n +142n -1=16, 所以{b n }是首项为b 1=41=4,公比为16的等比数列,所以{b n }的前n 项和T n =4×(1-16n )1-16=415(16n -1).18.(本小题满分12分)等差数列{a n }中,前三项分别为x ,2x ,5x -4,前n 项和为S n ,且S k =2 550.(1)求x 和k 的值;(2)求T =1S 1+1S 2+1S 3+…+1S n的值.[解](1)由4x =x +5x -4,得x =2,所以a n =2n ,S n =n (n +1),所以k (k +1)=2 550,得k =50. (2)因为S n =n (n +1),所以1S n =1n (n +1)=1n -1n +1,所以T =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.19.(本小题满分12分)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及其前n 项和T n .[解](1)因为{a n }是首项为a 1=19,公差为d =-2的等差数列, 所以a n =19-2(n -1)=-2n +21,S n =19n +n (n -1)2·(-2)=-n 2+20n .(2)由题意得b n -a n =3n -1,所以b n =3n -1-2n +21,则T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12. 20.(本小题满分12分)已知函数f (x )=xx +1,数列{a n }满足a 1=1,并且a n +1=f (a n ).(1)求数列{a n }的通项公式; (2)若b n =1n +1a n ,求数列{b n }的前n 项和S n .[解](1)由题意得a n +1=a na n +1,∴1a n +1=a n +1a n=1+1a n ,即1a n +1-1a n =1,∴数列⎩⎨⎧⎭⎬⎫1a n 是一个等差数列,公差为1,首项为1a 1=1,从而1a n=n ,∴a n =1n.(2)由(1)得b n =1n +1a n =1n (n +1)=1n -1n +1, ∴S n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.21.(本小题满分12分)已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n b n }的通项公式; (2)求数列{a n b n }的前n 项和T n .[解](1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5.设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2. ∵b n >0,∴d =-10应舍去,∴d =2, ∴b 1=3,∴b n =2n +1. 故a n b n =(2n +1)·3n -1.(2)由(1)知T n =3×1+5×3+7×32+…+(2n -1)3n -2+(2n +1)3n -1,①3T n =3×3+5×32+7×33+…+(2n -1)3n -1+(2n +1)3n ,②①-②,得-2T n =3×1+2×3+2×32+2×33+…+2×3n -1-(2n +1)3n =3+2(3+32+33+…+3n -1)-(2n +1)3n =3+2×3-3n1-3-(2n +1)3n=3n -(2n +1)3n =-2n ·3n . ∴T n =n ·3n .22.(本小题满分12分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).[解](1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4500-52d ,a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d=32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322·a n -2-32d -d =…=(32)n -1a 1-d [1+32+(32)2+…+(32)n -2]. 整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d [(32)n -1-1]=⎝ ⎛⎭⎪⎫32n -1·(3 000-3d )+2d .由题意知a m =4 000,所以⎝ ⎛⎭⎪⎫32m -1·(3 000-3d )+2d =4 000,解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000⎝ ⎛⎭⎪⎫32m -1=1 000(3m -2m +1)3m -2m.故该企业每年上缴资金d 的值为1 000(3m -2m +1)3m -2m万元时,经过m (m ≥3)年企业的剩余资金为4 000万元.故当这幢宿舍楼的楼高层数为20层时,费用最少,最少总费用为1 000A 元.。
人教版高中数学选择性必修第二册 全册模块综合检测2(含解析)
![人教版高中数学选择性必修第二册 全册模块综合检测2(含解析)](https://img.taocdn.com/s3/m/c4343854a7c30c22590102020740be1e650ecc2c.png)
人教版高中数学选择性必修第二册全册模块综合检测2(原卷版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f(x)=e2x+1,则f′(0)=()A.0B.eC.2e D.e22.在等差数列{a n}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9的值为() A.27B.30C.33D.363.已知a>0,b>0,a,b的等比中项为2,则a+1b+b+1a的最小值为()A.3B.4 C.5D.424.函数y=x-12x+1在(1,0)处的切线与直线l:y=ax垂直,则a=() A.-3B.3C.13D.-135.已知等差数列{a n}的前n项和S n满足:S37-S23=a,则S60=()A.4a B.307aC.5a D.407a6.函数f(x)=(x2+2x)e2x的图象大致是()7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸8.已知函数f(x)=x3-x和点P(1,-1),则过点P与该函数图象相切的直线条数为() A.1B.2C.3D.4二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+211.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1<0,则下列结论正确的是()a7-1A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T612.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=ln x,f(1)=12,则下列结论正确的是()A.xf(x)在(1,+∞)单调递增B.xf(x)在(0,1)单调递减C.xf(x)在(0,+∞)上有极大值12D.xf(x)在(0,+∞)上有极小值12三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n}中,a4=8,a8=4,则其通项公式a n=________.a1a9,则a n=________,数列14.已知正项等比数列{a n}满足a1=1,a2a6a7=116{log2a n}的前n项和为________.15.函数f(x)=12x2-ln x的单调递减区间是________.16.已知函数f(x)=ln x+mx,若函数f(x)的极小值不小于0,则实数m的取值范围为________.四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式a n;(2)若a3,a5分别是等差数列{b n}的第4项和第16项,求数列{b n}的通项公式及前n项和S n.18.(12分)已知函数f(x)=12x2-3ln x.(1)求f(x)在(1,f(1))处的切线方程;(2)试判断f(x)在区间(1,e)上有没有零点.若有,判断零点的个数.19.(12分)设数列{a n}是等差数列,其前n项和为S n,且a3=2,S9=54.(1)求数列{a n}的通项公式;(2)证明:1a1+3+1a2+3+1a3+3+…+1a100+3>13.20.(12分)设函数f(x)=e x-ax-1(a∈R).(1)若a=2,求函数f(x)在区间[0,2]上的最大值和最小值;(2)当x≥0时,f(x)≥0,求a的取值范围.21.(12分)等差数列{a n}中,S3=21,S6=24,(1)求数列{a n}的前n项和公式S n;(2)求数列{|a n|}的前n项和T n.22.(12分)已知a,b∈R,设函数f(x)=e x-ax-b x2+1.(1)若b=0,求f(x)的单调区间;(2)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:e=2.71828…为自然对数的底数.人教版高中数学选择性必修第二册全册模块综合检测2(解析版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f (x )=e 2x +1,则f ′(0)=()A .0B .e C .2e D .e 2C解析:∵f (x )=e 2x +1,∴f ′(x )=2e 2x +1,∴f ′(0)=2e.故选C .2.在等差数列{a n }中,a 1+a 4+a 7=36,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为()A .27B .30C .33D .36B解析:因为a 1+a 4+a 7=3a 4=36,所以a 4=12.因为a 2+a 5+a 8=33,所以a 5=11.所以d=a 5-a 4=-1,所以a 3+a 6+a 9=3a 6=3(a 5+d )=30.故选B .3.已知a >0,b >0,a ,b 的等比中项为2,则a +1b +b +1a 的最小值为()A .3B .4C .5D .42C解析:∵a +1b +b +1a =(a +b )+a +b ab=(a +b =54(a +b )≥54·2ab =5,等号成立当且仅当a =b =2,原式的最小值为5.4.函数y =x -12x +1在(1,0)处的切线与直线l :y =ax 垂直,则a =()A .-3B .3C .13D .-13A解析:∵y ′=3(2x +1)2,∴y ′|x =1=13,∴函数在(1,0)处的切线的斜率是13,所以,与此切线垂直的直线的斜率是-3,∴a =-3.故选A .5.已知等差数列{a n }的前n 项和S n 满足:S 37-S 23=a ,则S 60=()A .4aB .307a C .5aD .407aB 解析:因为S 37-S 23=a 24+a 25+…+a 37=a 24+a 372×14=7(a 24+a 37)=a .所以S 60=a 1+a 602×60=30(a 24+a 37)=307a .故选B .6.函数f (x )=(x 2+2x )e 2x 的图象大致是()A 解析:由于f ′(x )=2(x 2+3x +1)·e 2x ,而y =x 2+3x +1的判别式Δ=9-4=5>0,所以y=x 2+3x +1开口向上且有两个根x 1,x 2.不妨设x 1<x 2,所以f (x )在(-∞,x 1),(x 2,+∞)上递增,在(x 1,x 2)上递减.所以C ,D 选项不正确.当x <-2时,f (x )>0,所以B 选项不正确.由此得出A 选项正确.故选A .7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸B解析:由题知各节气日影长依次成等差数列,设为{a n },S n 是其前n 项和,则S 9=9(a 1+a 9)2=9a 5=85.5,所以a 5=9.5,由题知a 1+a 4+a 7=3a 4=31.5,所以a 4=10.5,所以公差d =a 5-a 4=-1.所以a 12=a 5+7d =2.5尺.故选B .8.已知函数f (x )=x 3-x 和点P (1,-1),则过点P 与该函数图象相切的直线条数为()A .1B .2C .3D .4B解析:因为f (1)=13-1=0,所以点P (1,-1)没有在函数的图象上.设切点坐标为(x 0,y 0),则y 0=x 30-x 0,则f ′(x )=3x 2-1.由导数的几何意义可知,过切点的斜率为k =3x 20-1,过P (1,-1)和切点的斜率表示为k =y 0+1x 0-1,-x0,3x20-1,化简可得x20(2x0-3)=0,所以x0=0或x0=32.所以切点有两个,因而有两条切线方程.故选B.二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值BD解析:由题意,当n=1时,S1=2a1-2,解得a1=2,当n≥2时,S n-1=2a n-1-2,所以S n-S n-1=a n=2a n-2-(2a n-1-2)=2a n-2a n-1,所以a na n-1=2,数列{a n}是以a1=2为首项,q=2为公比的等比数列,a n=2n,故选项A错误,选项B正确;数列{a2n}是以a21=4为首项,q1=4为公比的等比数列,所以a21+a22+…+a2n=a21(1-q n1)1-q1=4×(1-4n)1-4=4n+1-43,故选项C 错误;a m a n=2m2n=2m+n=64=26,所以m+n=6为定值,故选项D正确.故选BD.10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+2AD解析:对于选项A,f(x)=2-x,则g(x)=e x f(x)=e x·2-x为实数集上的增函数;对于选项B,f(x)=3-x,则g(x)=e x f(x)=e x·3-x为实数集上的减函数;对于选项C,f(x)=x3,则g(x)=e x f(x)=e x·x3,g′(x)=e x·x3+3e x·x2=e x(x3+3x2)=e x·x2(x+3),当x<-3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于选项D,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2x e x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.故选AD.11.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1a7-1<0,则下列结论正确的是()A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T6AD 解析:易知q >0,若q >1,则a 6>1,a 7>1,与a 6-1a 7-1>0矛盾,故0<q <1.所以0<a 7<1.所以a 6a 8=a 27<1.因为a 7>0,a 8>0,所以S n 的最大值一定不为S 7.因为0<a 7<1,a 6>1,所以T n 的最大值为T 6,故选AD .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论正确的是()A .xf (x )在(1,+∞)单调递增B .xf (x )在(0,1)单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12ABD解析:由x 2f ′(x )+xf (x )=ln x 得x >0,则xf ′(x )+f (x )=ln x x ,由[xf (x )]′=ln xx .设g (x )=xf (x ),即g ′(x )=ln xx>0得x >1.由g ′(x )<0得0<x <1,即xf (x )在(1,+∞)单调递增,在(0,1)单调递减,即当x =1时,函数g (x )=xf (x )取得极小值g (1)=f (1)=12.故选ABD .三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________.12-n 解析:∵等差数列{a n }中,a 4=8,a 8=4,4=a 1+3d =8,8=a 1+7d =4,解得a 1=11,d =-1,∴a n =11+(n -1)×(-1)=12-n .14.已知正项等比数列{a n }满足a 1=1,a 2a 6a 7=116a 1a 9,则a n =________,数列{log 2a n }的前n 项和为________.2-n +1-n (n -1)2解析:由a 1=1,a 2a 6a 7=1161a 9得a 5=a 1q 4=116,q =12,a n -1=2-n+1.而log 2a n =-n +1,所以{log 2a n }的前n 项和为-n (n -1)2.15.函数f (x )=12x 2-ln x 的单调递减区间是________.(0,1]解析:f (x )=12x 2-ln x ,则f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x≤0,故0<x ≤1.16.已知函数f (x )=ln x +mx,若函数f (x )的极小值不小于0,则实数m 的取值范围为________.1e,+∞解析:由f (x )=ln x +m x 得f ′(x )=1x -m x 2=x -mx2,定义域为(0,+∞).当m ≤0时,f ′(x )>0,函数y =f (x )单调递增,函数无极值;当m >0时,令f ′(x )=0⇒x =m ,当x ∈(0,m )时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(m ,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以当x =m 时,函数y =f (x )取极小值,且为f (m )=ln m +1.依题意有ln m +1≥0⇒m ≥1e ,因此,实数m 的取值范围是1e ,+∞四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式a n ;(2)若a 3,a 5分别是等差数列{b n }的第4项和第16项,求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2,所以a n =2n .(2)由(1)得a 3=8,a 5=32,则b 4=8,b 16=32.设{b n }的公差为d b 1+3d =8,b 1+15d =32,b 1=2,d =2.从而b n =2+2(n -1)=2n .所以数列{b n }的前n 项和S n =(2+2n )n2=n 2+n .18.(12分)已知函数f (x )=12x 2-3ln x .(1)求f (x )在(1,f (1))处的切线方程;(2)试判断f (x )在区间(1,e)上有没有零点.若有,判断零点的个数.解:(1)由已知得f ′(x )=x -3x ,有f ′(1)=-2,f (1)=12,∴在(1,f (1))处的切线方程为y -12=-2(x -1),化简得4x +2y -5=0.(2)由(1)知f ′(x )=(x -3)(x +3)x ,因为x >0,令f ′(x )=0,得x = 3.所以当x ∈(0,3)时,有f ′(x )<0,则(0,3)是函数f (x )的单调递减区间;当x ∈(3,+∞)时,有f ′(x )>0,则(3,+∞)是函数f (x )的单调递增区间;当x ∈(1,e)时,函数f (x )在(1,3)上单调递减,在(3,e)上单调递增.又因为f (1)=12,f (e)=12e 2-3>0,f (3)=32(1-ln 3)<0,所以f (x )在区间(1,e)上有两个零点.19.(12分)设数列{a n }是等差数列,其前n 项和为S n ,且a 3=2,S 9=54.(1)求数列{a n }的通项公式;(2)证明:1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.(1)解:设数列{a n }的公差为d ,∵S 9=9a 5=54,∴a 5=6,∴d =a 5-a 35-3=2,∴a n =a 3+(n -3)d =2n -4.(2)证明:∵1a n +3=12n -1>22n -1+2n +1=2n +1-2n -1,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>(3-1)+(5-3)+…+(201-199)=201-1>14-1=13,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.20.(12分)设函数f (x )=e x -ax -1(a ∈R ).(1)若a =2,求函数f (x )在区间[0,2]上的最大值和最小值;(2)当x ≥0时,f (x )≥0,求a 的取值范围.解:(1)f (x )=e x -2x -1,取f ′(x )=e x -2=0,即x =ln 2,函数在[0,ln 2]上单调递减,在(ln 2,2]上单调递增,且f (0)=0,f (2)=e 2-5,f (ln 2)=1-2ln 2,故函数的最大值为f (2)=e 2-5,最小值为f (ln 2)=1-2ln 2.(2)f (x )=e x -ax -1,f ′(x )=e x -a ,f (0)=0.当a ≤0时,f ′(x )=e x -a >0,函数单调递增,故f (x )≥f (0)=0,成立;当a >0时,f ′(x )=e x -a =0,即x =ln a ,故函数在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (ln a )<f (0)=0,不成立.综上所述,a 的取值范围为(-∞,0].21.(12分)等差数列{a n }中,S 3=21,S 6=24,(1)求数列{a n }的前n 项和公式S n ;(2)求数列{|a n |}的前n 项和T n .解:(1)设{a n }首项为a 1,公差为d ,由S 3=21,S 6=24,a 1+3×22d =21,a 1+6×52d =24,1=9,=-2.∴S n =n ×9+n (n -1)2×(-2)=-n 2+10n .(2)由(1)知,a n =9+(n -1)×(-2)=-2n +11,由a n ≥0得-2n +11≥0,即n ≤112.当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n ;当n ≥6时,T n =|a 1|+…+|a 5|+|a 6|+…+|a n |=(a 1+a 2+…+a 5)-(a 6+…+a n )=S 5-(S n -S 5)=n 2-10n +50.综上,T nn 2+10n (n ≤5),2-10n +50(n ≥6).22.(12分)已知a ,b ∈R ,设函数f (x )=e x -ax -b x 2+1.(1)若b =0,求f (x )的单调区间;(2)当x ∈[0,+∞)时,f (x )的最小值为0,求a +5b 的最大值.注:e =2.71828…为自然对数的底数.解:(1)f (x )=e x -ax ,f ′(x )=e x -a ,当a ≤0时,f ′(x )=e x -a ≥0恒成立,函数单调递增;当a >0时,f ′(x )=e x -a =0,x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0,函数单调递减;当x ∈(ln a ,+∞)时,f ′(x )>0,函数单调递增.综上所述,a ≤0时,f (x )在R 上单调递增;a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)f (x )=e x-ax -bx 2+1≥0在x ∈[0,+∞)上恒成立,=e -12a -52b ≥0,故a +5b ≤2e ,现在证明存在a ,b ,a +5b =2e ,使f (x )的最小值为0.取a =3e 4,b =5e 4(此时可使f 0),f ′(x )=e x -a -bx x 2+1,f ″(x )=e x -b (x 2+1)x 2+1,b =5e 4<1,故当x ∈[0,+∞)时,(x 2+1)x 2+1≥1,e x ≥1,故f ″(x )≥0,f ′(x )在[0,+∞)上单调递增,f 0,故f (x )在0f (x )min =0.综上所述,a +5b 的最大值为2 e.。
高中数学第二章统计2.1.2系统抽样练习含解析新人教A版必修3110552
![高中数学第二章统计2.1.2系统抽样练习含解析新人教A版必修3110552](https://img.taocdn.com/s3/m/31b1b958aeaad1f347933f1c.png)
高中数学第二章统计2.1.2系统抽样练习含解析新人教A版必修3110552[A 基础达标]1.(2019·黑龙江省哈尔滨市第三中学期末考试)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样两种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2, 则( )A.p1>p2B.p1<p2C.p1=p2D.p1≠p2解析:选C.简单随机抽样和系统抽样都是反映概率的,具有等效性.故选C.2.(2019·四川省绵阳市期末教学质量测试)用系统抽样法从130件产品中抽取容量为10的样本,将130件产品从1~130编号,按编号顺序平均分成10组(1~13号,14~26号,…,118~130号),若第9组抽出的号码是114,则第3组抽出的号码是( ) A.36 B.37C.38 D.39解析:选A.由题,可知系统抽样的组数为10组,间隔为13,设第一组抽取的号码为x,由系统抽样的法则,可知第n组抽取的号码为x+13(n-1),所以第9组抽取的号码为x+13(9-1)=114,解得x=10.所以第3组抽取的号码为10+13(3-1)=36.故选A.3.(2019·湖南省张家界市期末联考)有50件产品,编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的第一个样本编号为7,则第三个样本编号是( ) A.12 B.17C.27 D.37解析:选C.样本间隔为50÷5=10,第一个编号为7,则第三个样本编号是7+2×10=27.故选C.4.(2019·福建师范大学附属中学期末考试)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是( )A.10 B.11C.15 D.16解析:选D.由题可得,系统抽样的间距为13,则3+13=16在样本中.故选D.5.(2019·广东省惠州市期末考试)从编号为0,1,2,3,…,79的80件产品中,采用系统抽样的方法抽取容量为5的一组样本,若编号为42的产品在样本中,则该组样本中产品的最小编号为( )A .8B .10C .12D .14解析:选B.系统抽样的分段间隔为805=16,设样本中产品的最小编号是x ,42是第三个编号,因此x +2×16=42⇒x =10.故选B.6.若总体中含有1 600个个体,现在要采用系统抽样法从中抽取一个容量为50的样本,则编号应均分为________段,每段有________个个体.解析:因为1 60050=32,所以应均分为50段,每段32个个体. 答案:50 327.(2019·广西玉林市期末考试)玉林市有一学校为了从254名学生中选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为________.解析:学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.因为254=42×6+2,故应从总体中随机剔除个体的数目是2.答案:28.为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3, (1000)(3)将总体按编号顺序均分成50部分,每部分包含20个个体.(4)在编号为1,2,3,…,20的第一部分个体中,利用简单随机抽样抽取一个号码,比如抽取的号码是18.(5)以18为起始号码,这样得到一个容量为50的样本:18,38,58,…,978,998.9.某中学举行了为期3天的新世纪教职工体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校教职工中产生的影响,对全校500名教职工进行了问卷调查.如果要在所有答卷中抽出10份用于评估,应该如何抽样?请详细叙述抽样过程.解:法一:采用随机数表法,步骤如下:(1)先将500份答卷编号,可以编号为000,001,002, (499)(2)在随机数表中随机选取一个起始位置.(3)规定向右连续读取数字,以3个数为一组,如果读取的三位数大于499,则跳过去不读,如果遇到前面已经读过的,也跳过去不读,这样一直到取满10个号码为止.法二:系统抽样法,步骤如下:(1)将500份答卷编号:1,2,3, (500)(2)按1~50,51~100,101~150,…,451~500分成10组,每组50个编号.(3)在第一组中运用抽签法随机选择一个编号(步骤略),比如所选号码为17,则其他各组应取出的号码分别为67,117,167,217,267,317,367,417,467.(4)将上述10个号码代表的答卷取出作为样本即可.[B 能力提升]10.下列有关系统抽样的说法正确的是( )①从某厂生产的2 000个电子元件中随机抽取50个入样,适宜用系统抽样法;②有1 252名学生的成绩,采用系统抽样的方法抽取一个容量为50的样本,则总体中随机剔除的个体数目是2,但对于被剔除的2名学生来说,这样做是不公平的;③从1 252个个体中采用系统抽样的方法抽取一个容量为50的样本,因为要从总体中随机剔除2个个体,所以每个个体被抽到的可能性为501 250=125.A.①B.①③C.②③D.①②③解析:选A.①正确,因为总体容量较大,适宜用系统抽样法;②错误,整个抽样过程中每个个体被抽到的可能性仍然相等,因为每个个体被抽到的机会相等,所以每个个体被剔除的机会也相等;③错误,若总体中的个体数N被样本容量n整除,则每个个体入样的可能性是nN,若N不能被n整除,需要剔除m个个体,此时每个个体入样的可能性仍是nN,而不是nN-m,所以③中每个个体被抽到的可能性为501 252=25626.故选A.11.(2019·贵州省铜仁市第一中学期中考试)一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为i,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为i+k或i+k-10(i+k≥10),则当i=7时,所抽取的第6个号码是________________.解析:由题意,第0组抽取的号码为7;则第1组抽取的号码的个位数为7+1=8,所以选18;第2组抽取的号码的个位数为8+1=9,所以选29;第3组抽取的号码的个位数为9+1-10=0,所以选30;第4组抽取的号码为10+1-10=1,所以选取41;第5组抽取的号码的个位数为1+1=2,所以选52.答案:5212.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?解:交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.13.(选做题)某班共分5个组,每个组都有8名学生,学生的座次是按照个子高矮进行排列的.为调查此班学生的身高情况,李立是这样做的:分段间隔是8,按照每个小组的座次顺序进行编号.你觉得这样抽取的样本具有代表性吗?解:假设这个班的学生是这样编号(这个编号也代表他们的身高)的:第一组a1<a2<a3<a4<a5<a6<a7<a8;第二组b1<b2<b3<b4<b5<b6<b7<b8;第三组c1<c2<c3<c4<c5<c6<c7<c8;第四组d1<d2<d3<d4<d5<d6<d7<d8;第五组e1<e2<e3<e4<e5<e6<e7<e8.如果按照李立的抽样方法,比如在第一组抽取了8号,也就是a8,那么所抽取的样本为a8,b8,c8,d8,e8所对应的学生的身高.显然,这样的样本不具有代表性,他们代表的身高偏高.。
高中数学 第二章 统计章末综合检测(含解析)新人教A版必修3
![高中数学 第二章 统计章末综合检测(含解析)新人教A版必修3](https://img.taocdn.com/s3/m/75710075f78a6529657d530d.png)
【优化方案】2013-2014学年高中数学第二章统计章末综合检测(含解析)新人教A版必修3(时间:100分钟;满分:120分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.①学校为了了解高一学生情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400 m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为()A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样解析:选D.①中总体容量较大,个体之间无明显差异,宜采用系统抽样;②中个体之间有明显差异,宜采用分层抽样;③中样本容量较小,宜适合简单随机抽样,选D.2.下列说法中,正确的是()①数据4,6,6,7,9,4的众数是4和6;②平均数、众数与中位数从不同的角度描述了一组数据的集中趋势;③平均数是频率分布直方图的“重心”;④频率分布直方图中各小长方形的面积等于相应各组的频数.A.①②③B.②③C.②④D.①③④解析:选A.结合众数、平均数及频率分布直方图的基本概念可知①②③正确,对于④频率分布直方图中各小长方形的面积等于相应各组的频率,而不是频数,故选A.3.在下列各图中的两个变量具有线性相关关系的是()解析:选B.显然从散点图上看B是线性相关,故选B.4.某大学数学系共有本科生5 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40C.60 D.20解析:选B.200×210=40.5.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A .1B .2C .3D .4解析:选D.因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s 甲=3,s 乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确,故选D. 6.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[60,70)内的汽车辆数大约是( )A .8B .80C .65D .70解析:选 B.时速在[60,70)内的汽车的频率为0.04×10=0.4,汽车大约有200×0.4=80(辆).7.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x -和y -,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x --3y -B .2x --3y -+1C .4x --9y -D .4x --9y -+1解析:选B.设z i =2x i -3y i +1(i =1,2,…,n ),则z -=1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+(1+1+…+1)n =2x--3y -+1.8.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是( )A .高一的中位数大,高二的平均数大B .高一的平均数大,高二的中位数大C .高一的平均数、中位数都大D .高二的平均数、中位数都大解析:选A.由茎叶图可以看出,高一的中位数为93,高二的中位数为89,所以高一的中位数大.由计算得,高一的平均数为91,高二的平均数为6477,所以高二的平均数大.故选A.9.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x (cm) 174 176 176 176 178儿子身高y (cm)175175 176 177 177则y 对x A.y ^=x -1B.y ^=x +1 C.y ^=88+12xD.y ^=176解析:选C.法一:设y 对x 的回归方程为y ^=b ^x +a ^,则由题中数据得x -=176,y -=176,∑i =15x i y i =154 884,∑i =15x 2i =154 888.由公式得b ^=154 884-5×176×176154 888-5×176×176=12,a ^=y --b ^x -=176-12×176=88,所以y 对x 的回归方程为y ^=12x +88.故选C.法二:由题中数据可得x -=176,y -=176, ∴样本中心点为(176,176), ∵回归直线方程过样本中心点, ∴把点(176,176)代入验证可知C 正确.故选C.10.某工厂对一批产品进行了抽样检测,是根据抽样检测后的产品净重(单位:克)数据绘制了频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品个数是( )A .90B .75C .60D .45解析:选A.产品净重小于100克的频率 P =(0.050+0.100)×2=0.3,设样本容量为n ,由已知得36n =0.3,∴n =120.而净重大于或等于98克而小于104克的产品的频率P ′=(0.100+0.150+0.125)×2=0.75.∴个数为0.75×120=90.故选A.二、填空题(本大题共5小题,把答案填在题中横线上)11.为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共抽取25名,则高一学生抽取的人数是________.解析:设抽取人数为x,则25500=x800,得x =40.答案:4012.某校开展“爱我海西,爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________.解析:最低分为88,最高分若为90+x ,则计算平均分x -=6407≠91,所以最高分应为94,则有91×7-(89×2+92×2+93+91)=91,∴x =1.答案:1 13.(2013·广州调研)某种产品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下一组数据:广告费 2 4 5 6 8 销售额 30 40 60 50 70则回归方程为解析:x -=5,y -=50,∑i =15x 2i =145,∑i =15x i y i =1 380,把数据代入公式,可求得a ^=17.5,b ^=6.5,故回归方程为y ^=6.5x +17.5.答案:y ^=6.5x +17.514.甲、乙两种冬小麦试验品连续5年的平均单位面积产量如下(单位:t/hm 2):品种 第一年 第二年 第三年 第四年 第五年 甲 9.8 9.9 10.1 10 10.2 乙 9.4 10.3 10.8 9.7 9.8解析:由题意,需比较s 2甲与s 2乙的大小.由于x -甲=x -乙=10,则s 2甲=0.02,s 2乙=0.244,s 2甲<s 2乙, 因此甲产量比较稳定. 答案:甲15.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.估计这次测试中数学成绩的平均分为________.解析:利用组中值估算学生的平均分为45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72.答案:72三、解答题(本大题共5小题,解答应写出文字说明、证明过程或演算步骤) 16.有以下三个案例:案例一:从同一批次同类型号的10袋牛奶中抽取3袋检测其三聚氰胺含量;案例二:某公司有员工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.从中抽取容量为40的样本,了解该公司职工收入情况;案例三:从某校1 000名高一学生中抽取10人参加一项主题为“学雷锋,树新风”的志愿者活动.(1)你认为这些案例应采用怎样的抽样方式较为合适? (2)在你使用的分层抽样案例中写出抽样过程;(3)在你使用的系统抽样案例中按以下规定取得样本编号:如果在起始组中随机抽取的号码为L (编号从0开始),那么第K 组(组号K 从0开始,K =0,1,2,…,9)抽取的号码的百位数为组号,后两位数为L +31K 的后两位数.若L =18,试求出K =3及K =8时所抽取的样本编号.解:(1)案例一用简单随机抽样,案例二用分层抽样,案例三用系统抽样. (2)①分层,将总体分为高级职称、中级职称、初级职称及其余人员四层;②确定抽样比例k =40800=120;③按上述比例确定各层样本数分别为8人、16人、10人、6人; ④按简单随机抽样方式在各层确定相应的样本; ⑤汇总构成一个容量为40的样本.(3)K =3时,L +31K =18+31×3=111,故第三组样本编号为311.K =8时,L +31K =18+31×8=266,故第8组样本编号为866.17.某制造商为运动会生产一批直径为40 mm 的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm ,保留两位小数)如下:40.02 40.00 39.98 40.00 39.99 40.00 39.98 40.01 39.98 39.99 40.00 39.99 39.95 40.01 40.02 39.98 40.00 39.99 40.00 39.96(1)完成下面的频率分布表,并画出频率分布直方图;分组 频数 频率 频率组距[39.95,39.97) [39.97,39.99) [39.99,40.01) [40.01,40.03]合计(2)假定乒乓球的直径误差不超过0.02 mm为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.解:(1)分组频数频率频率组距[39.95,39.97)20.10 5[39.97,39.99)40.2010[39.99,40.01)100.5025[40.01,40.03]40.2010合计20150(2)∵抽样的20只产品中在[39.98,40.02]范围内有18只,∴合格率为1820×100%=90%,∴10 000×90%=9 000(只).即根据抽样检查结果,可以估计这批产品的合格只数为9 000. 18.某班甲、乙两学生的高考备考成绩如下:甲:512554528549536556534541522538 乙:515558521543532559536548527531(1)用茎叶图表示两学生的成绩;(2)分别求两学生成绩的中位数和平均数.解:(1)两学生成绩的茎叶图如图所示:(2)将甲、乙两学生的成绩从小到大排列为:甲:512 522 528 534 536 538 541 549 554 556 乙:515 521 527 531 532 536 543 548 558 559 从以上排列可知甲学生成绩的中位数为 536+5382=537, 乙学生成绩的中位数为532+5362=534.甲学生成绩的平均数为500+12+22+28+34+36+38+41+49+54+5610=537,乙学生成绩的平均数为500+15+21+27+31+32+36+43+48+58+5910=537.19.农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20 乙:8,14,13,10,12,21(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.解:(1)茎叶图如图所示:(2)x -甲=9+10+11+12+10+206=12,x -乙=8+14+13+10+12+216=13,s 2甲≈13.67,s 2乙≈16.67.因为x -甲<x -乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐. 20.一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:转速x (转·秒-1) 16 14 12 8 每小时生产有缺点的零件数y (件)11 9 8 5(1)(2)如果y 对x 有线性相关关系,求回归方程;(3)若实际生产中,允许每小时生产的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?解:(1)散点图如下:(2)由散点图可知,两变量之间具有线性相关关系.列表,计算:i 1 2 3 4 x i 16 14 12 8 y i 11 9 8 5 x i y i 176 126 96 40 x 2i 256 196 144 64x -=12.5,y -=8.25,∑i =14x 2i =660,∑i =14x i y i =438设所求回归方程为y =b x +a ,则由上表可得b ^=∑i =14x i y i -4x -y-∑i =14x 2i -4x-2=438-4×12.5×8.25660-4×12.52=25.535=5170, a ^=y --b ^x -=8.25-5170×12.5=-67.∴回归方程为y ^=5170x -67.(3)由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14.9转/秒内.。
2020_2021学年高中数学第二章统计单元质量评估二习题含解析新人教A版必修3
![2020_2021学年高中数学第二章统计单元质量评估二习题含解析新人教A版必修3](https://img.taocdn.com/s3/m/b7ec0490f61fb7360b4c6595.png)
第二章单元质量评估(二)时间:120分钟满分:150分一、选择题(每小题5分,共60分)1.某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为(C) A.40 B.48 C.50 D.80解析:因为高一、二、三年级的人数比为4∶3∶5,所以从高三应抽取的人数为120×512=50.2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为(C)A.93 B.123 C.137 D.167解析:初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137.3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论:①这组数据的众数是3 ②这组数据的众数与中位数的数值不等③这组数据的中位数与平均数的数值相等④这组数据的平均数与众数的数值相等其中正确的结论有(A)A.1个B.2个C.3个D.4个解析:由中位数、众数、平均数的概念知只有①是正确的.4.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如右图所示),则该样本的中位数、众数、极差分别是(A)A.46,45,56 B.46,45,53C .47,45,56D .45,47,53解析:由概念知中位数是中间两数的平均数,即45+472=46,众数是45,极差为68-12=56.故选A.5.某班学生在一次数学考试中成绩分布如下表:A .0.18,0.47B .0.47,0.18C .0.18,0.50D .0.38,0.75解析:由分布表可知样本容量为2+5+6+8+12+6+4+2=45,在[100,110)中的频数为8,故频率为845≈0.18,不满110的频率为2+5+6+845≈0.47.6.某次数学检测中,某一题目的得分情况如下:其中众数是A .37.0% B .20.2% C .0分 D .4分解析:由于众数是出现次数最多的数,由表可知,0分出现的百分率最大,所以众数是0分.7.有甲、乙两种水稻,测得每种水稻各10株的分叉数后,计算出样本方差分别为s 2甲=11,s 2乙=3.4,由此可以估计( C )A .甲种水稻比乙种水稻分叉整齐B .甲、乙两种水稻分叉整齐程度相同C .乙种水稻比甲种水稻分叉整齐D .甲、乙两种水稻分叉整齐程度不能比较解析:由于方差反映了样本数据的稳定性,且s 2甲>s 2乙,所以乙种水稻比甲种水稻分叉整齐.8.2018年,中国部分商品价格出现了上涨.某市为了稳定市场,确保农民增收,某农产品三月份以后的每月市场收购价格与其前三个月的市场收购价格有关,并使其与前三个月的市场收购价格之差的平方和最小,下表列出的是该产品今年前六个月的市场收购价格:A.757B.767 C .11 D.787解析:设7月份的市场收购价格为x ,则f (x )=(x -71)2+(x -72)2+(x -70)2=3x 2-426x+15 125=3(x -71)2+2,则当x =71时,7月份的市场收购价格与前三个月的市场收购价格之差的平方和最小,即7月份的市场收购价格为71.计算前七个月该产品的市场收购价格的平均数是71,方差是767.9.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e ,众数为m 0,平均值为x ,则( D )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x解析:由题图可知,30名学生的得分情况依次为:2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,由于5分出现的次数最多,故m 0=5.x =2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈6,所以m 0<m e <x .10.某班有56名同学,一次数学考试,经过运算得到平均成绩为75分,标准差为s ,后来发现登记有错误,某甲得90分却记为70分,某乙80分误记为100分,更正后重新计算标准差s 1,则s 与s 1的大小关系是( C )A .s =s 1B .s <s 1C .s >s 1D .不能确定 解析:这两次计算的平均分没有变化,则s =(70-x )2+(100-x )2+…n,s 1=(90-x )2+(80-x )2+…n,∴s >s 1.11.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的相关系数为( D )A .-1B .0 C.12D .1解析:由所有样本点都在直线y =12x +1上,即相关性最强,且为正相关,故相关系数为1.故选D.12.小波一星期的总开支分布如图(1)所示,一星期的食品开支如图(2)所示,则小波一星期的鸡蛋开支占总开支的百分比为( C )A .30%B .10%C .3%D .不能确定解析:由题图可知,小波一星期的食品开支为30+40+100+80+50=300(元),小波一星期的总开支为30030%=1 000(元),则小波一星期的鸡蛋开支占总开支的百分比为301 000×100%=3%.故选C.二、填空题(每小题5分,共20分)13.为了检验某自来水消毒设备的效果,现从消毒后的水中随机抽取50升,化验每升水中大肠杆菌的个数,化验结果如下:每升水中大肠杆菌个数0 1 2 3 4 升数172010211个大肠杆菌的含量为1个.解析:50升水中平均含有大肠杆菌0×17+1×20+2×10+3×2+4×150=1(个/升),这是样本平均值,可以用它估计总体.14.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为9.解析:设样本容量为n ,则(0.1+0.12)n =11,解得n =50,故气温不低于25.5 ℃的城市个数为50×0.18=9.故填9.15.设样本数据x 1,x 2,…,x 2 018的方差是5,若y i =3x i +1(i =1,2,…,2 018),则y 1,y 2,…,y 2 018的方差是45.解析:根据题意,设x 1,x 2,…,x 2 018的平均数为x ,y 1,y 2,…,y 2 018的方差为s 2, 则x =12 018(x 1+x 2+…+x 2 018),5=12 018[(x 1-x )2+(x 2-x )2+…+(x 2 018-x )2], 若y i =3x i +1(i =1,2,…,2 018),则y 1,y 2,…,y 2 018的平均数为12 018[(3x 1+1)+(3x 2+2)+…+(3x 2 018+1)]=3x +1,则y 1,y 2,…,y 2 018的方差为s 2=12 018[(3x 1-1-3x +1)2+(3x 2-1-3x +1)2+…+(3x 2 018-1-3x +1)2]=9×12 018[(x 1-x )2+(x 2-x )2+…+(x 2 018-x )2]=45.16.某产品的广告费用x (万元)与销售额y (万元)的统计数据如下表:广告费用x /万元 3 4 5 6 销售额y /万元25304045根据上表可得回归方程y ^=b ^x +a ^中的b ^为7.据此模型预测广告费用为10万元时销售额为73.5万元.解析:由题表可知,x =4.5,y =35,代入回归方程y ^=7x +a ^,得a ^=3.5,所以回归方程为y ^=7x +3.5,所以当x =10时,y ^=7×10+3.5=73.5(万元).三、解答题(本题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题10分)工厂用传输带将产品送入包装车间,检验人员从传输带上每隔5 min 抽一件产品进行检验,这是一种什么抽样方法?若已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程.解:这是将总体分成均匀的若干部分,再从每一部分按预先订出的规则抽取一个个体,得到所需要的样本,故它是系统抽样.因为总体来自三个不同车间,故适宜用分层抽样.因为甲、乙、丙三个车间一天内生产产品数量之比为151312,所以需从甲、乙、丙车间抽取产品分别为15件、13件、12件.具体抽样过程为:将甲车间的150件产品按000,001,…,149编号,将乙车间的130件产品按000,001,…,129编号,将丙车间的120件产品按000,001,…,119编号,用随机数法分别从甲、乙、丙三个车间抽取15件,13件,12件产品,这样就取得了一个容量为40的样本.18.(本小题12分)在某中学举行的电脑知识竞赛中,将高一两个班的参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制出如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?解:(1)第二小组的频率为1-0.30-0.15-0.10-0.05=0.40,频率分布直方图如图阴影部分所示.(2)400.40=100.19.(本小题12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.(1)求直方图中x 的值.(2)求月平均用电量的众数和中位数.(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值为0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,则(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,解得a =224,即中位数为224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽取比例为1125+15+10+5=15,所以从月平均用电量在[220,240)的用户中应抽取25×15=5(户).20.(本小题12分)为选派一名学生参加全市实践活动技能竞赛,A ,B 两位同学在学校学习基地现场进行加工直径为20 mm 的零件的测试,他俩各加工的10个零件的相关数据如下面的图表所示(单位:mm).数据 平均数 方差 完全符合要求的个数A 20 0.026 2 B20s 2B5(1)考虑平均数与完全符合要求的个数,你认为谁的成绩好些.(2)计算出s 2B的大小,考虑平均数与方差,说明谁的成绩好些. (3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由.解:(1)因为A ,B 两位同学成绩的平均数相同,B 同学加工的零件中完全符合要求的个数较多,由此认为B 同学的成绩好些.(2)因为s 2B =110×[5×(20-20)2+3×(19.9-20)2+(20.1-20)2+(20.2-20)2]=0.008,且s 2A =0.026,所以s 2A >s 2B ,在平均数相同的情况下,B 同学的波动小,所以B 同学的成绩好些.(3)从题图中折线走势可知,尽管A 同学的成绩前面起伏大,但后来逐渐稳定,误差小,预测A 同学的潜力大,而B 同学前期稳定,后面起伏变大,潜力小,所以选派A 同学去参赛较合适.21.(本小题12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (件)908483807568(1)求回归方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解:(1)x =16(x 1+x 2+x 3+x 4+x 5+x 6)=16×(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(y 1+y 2+y 3+y 4+y 5+y 6)=16×(90+84+83+80+75+68)=80,a ^=y -b ^x =80-(-20)×8.5=250,∴回归方程为y ^=-20x +250.(2)设工厂获得的利润为L 元,依题意得:L =x (-20x +250)-4(-20x +250)=-20x 2+330x -1 000=-20⎝⎛⎭⎫x -3342+361.25, 当且仅当x =334=8.25时,L 取得最大值,故当单价定为8.25元时,工厂可获得最大利润.22.(本小题12分)某工厂有工人1 000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A 类工人中和B 类工人中各抽查多少工人?(2)A 类工人的抽查结果和B 类工人的抽查结果分别如下表1和表2.①先确定x ,y ,再补全下列频率分布直方图.就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).解:(1)A 类工人中和B 类工人中分别抽查25名和75名.(2)①由4+8+x +5+3=25,得x =5,6+y +36+18=75,得y =15. 频率分布直方图如下:从直方图可以判断:B类工人中个体间的差异程度更小.②x A=425×105+825×115+525×125+525×135+325×145=123,x B=675×115+1575×125+3675×135+1875×145=133.8,x=25100×123+75100×133.8=131.1.A类工人生产能力的平均数、B类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.。
高中数学第二章统计单元综合检测课时跟踪训练含解析新人教A版必修
![高中数学第二章统计单元综合检测课时跟踪训练含解析新人教A版必修](https://img.taocdn.com/s3/m/c5629c8eb84ae45c3a358c53.png)
学习资料单元综合检测(二)时间:120分钟满分:150分一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:A、B、D均为函数关系,C是相关关系.答案:C2.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是() A.1,2,…,106B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:由随机数抽取原则可知选D.答案:D3.某题的得分情况如下:其中众数是()A。
37.0%C.0分D.4分解析:因为众数出现的频率最大,所以应选C。
答案:C4.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了80人,则n的值为() A.193 B.192C.191 D.190解析:1 000×错误!=80,求得n=192。
答案:B5.如图茎叶图表示甲、乙两人在5次测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()A.错误!B。
错误!C.错误!D。
错误!答案:C6.某商品的销售量y(件)与销售价格x(元/件)存在线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为错误!=-10x+200,则下列结论正确的是()A.y与x具有正的线性相关关系B.若r表示变量y与x之间的线性相关系数,则r=-10C.当销售价格为10元时,销售量为100件D.当销售价格为10元时,销售量在100件左右解析:y与x具有负的线性相关关系,所以A项错误;当销售价格为10元时,销售量在100件左右,因此C错误,D正确;B项中-10是回归直线方程的斜率.答案:D7.如图是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为()A.11 B.11。
2021-2022年高中数学 第二章统计检测题 新人教A版必修3
![2021-2022年高中数学 第二章统计检测题 新人教A版必修3](https://img.taocdn.com/s3/m/115ff6deba1aa8114531d958.png)
精品文档2021-2022年高中数学第二章统计检测题新人教A版必修3本试卷分第I卷(选择题)和第Ⅱ卷(非选择题),全卷满分100分,检测时间120分钟.一.选择题(共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.现从80件产品中随机抽出10件进行质量检验,下列说法正确的是()A.80件产品是总体 B.10件产品是样本 C.样本容量是80 D.样本容量是102.为了了解某校1252名中学生对某一电视节目的喜好,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2B.3C.4D.53. 要从已编号(1~50)的50枚最新研制的奥运会特型烟花中随机抽取5枚来进行燃放试验。
用每部分选取的号码间隔一样的系统抽样的方法确定所选取的5枚烟花的编号可能是()A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,324.某工厂生产某种产品,用传送带将产品送至下一工序,质量员每隔10分钟在传送带某一位置取一件产品进行检验,这种抽样的方法为()A.分层抽样 B.简单随机抽样 C.系统抽样 D.其它抽样方式5.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性占总体的()A. B. C. D.6.在频率分布直方图中,各个长方形的面积表示( )A.落在相应各组内的数据的频数B.相应各组的频率C.该样本可分的组数D.该样本的样本容量A . B. C. D.8.由小到大排列的一组数据,其中每个数据都小于,则对于样本的中位数是( ) A . B. C. D.9.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为,中位数为,众数为,则有: A. B. C. D.10. 一个容量为32的样本,已知某组的频率为0.125,则该组的频数为( ) A. B. C.D.11.下列两个变量不是相关关系的是( ) A .人的身高和体重 B .降雪量和交通事故发生率C .匀速行驶的车辆的行驶距离和时间D .每亩施用肥料量和粮食亩产量12. 右图所示茎叶统计图表示某城市一台自动售货机的销售额情况,那么这组数据的极差是:A. B. C. D. 13. 为了解某校高二学生的视力情况,随机地抽查了该校100名高二学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为,视力在4.6到5.0之间的学生数为,则的值分别为A .B .C .D .14.对于线性回归方程,下列说法中不正确...的是( ) A .直线必经过点 B .增加一个单位时,平均增加个单位C .样本数据中时,可能有D .样本数据中时,一定有参考公式:回归直线方程中公式 1221ˆni ii nii x y nx ybxnx==-=-∑∑,参考答案2 81 23 80 2 3 70 2 89第Ⅱ卷(非选择题,共58分)二 填空题(共4道小题,每题4分,共16分. 把答案填在题中横线上.)15.为了了解名在校就餐的学生对学校食堂饭菜质量的意见,打算从中抽取一个容量为的样本,采取选取的号码间隔一样的系统抽样的方法来确定所选取的样本,则抽样的间隔应该是 40 。
高中数学模块综合检测(二)(含解析)新人教A版必修2(2021学年)
![高中数学模块综合检测(二)(含解析)新人教A版必修2(2021学年)](https://img.taocdn.com/s3/m/74d37b12fab069dc512201a0.png)
2017-2018学年高中数学模块综合检测(二)(含解析)新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学模块综合检测(二)(含解析)新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学模块综合检测(二)(含解析)新人教A版必修2的全部内容。
模块综合检测(二)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.若直线ax+2y+3a=0与直线3x+(a-1)y=-7+a平行,则实数a=( )A.3 ﻩB.-2C.-2或3 ﻩ D.-3或2解析:选A因两直线平行,所以a(a-1)-2×3=0,解得a=3或a=-2.经检验,当a=-2时,两直线重合,故选A。
2.若空间直角坐标系中,x轴上一点P到点Q(3,1,1)的距离为错误!,则点P的坐标为( )A.(3,0,0) ﻩB.(2,0,0)C.(4,0,0) ﻩD.(2,0,0)或(4,0,0)解析:选D 由题意,设P(a,0,0),则|PQ|=\r(a-32+1+1)=错误!,解得a=2或a=4。
3.直线l:ax+by=0和圆C:x2+y2+ax+by=0在同一坐标系的图形只能是( )解析:选D 可知圆心C错误!,半径r=错误!错误!,则圆心到直线的距离为d=错误!=错误!\r(a2+b2)=r,∴直线与圆相切,由此排除A,B,C,选D。
4.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线l:x-y-1=0对称,则圆C2的方程为( )A.(x-2)2+(y+2)2=1B.(x+2)2+(y-2)2=1C.(x-2)2+(y-2)2=1D.(x-2)2+(y-1)2=1解析:选A 可知C1(-1,1),直线l的斜率为1,设圆C2的圆心坐标为(a,b),则kC1C=错误!,线段C1C2的中点为错误!.∵圆C2与圆C1关于直线l对称,∴线段C1C2被直线l垂直2平分,∴有错误!解得错误!∴圆C2的方程为(x-2)2+(y+2)2=1,故选A.5.面积为Q的正方形,绕其一边旋转一周,则所得几何体的侧面积为( )A.πQﻩ B.2πQC.3πQﻩD.4πQ解析:选B 设正方形边长为a,则a=错误!,S侧=2π·a·a=2πQ。
高中数学人教A版必修二 章末综合测评2 Word版含答案.doc
![高中数学人教A版必修二 章末综合测评2 Word版含答案.doc](https://img.taocdn.com/s3/m/f5b7ae4da32d7375a5178014.png)
章末综合测评(二) 点、直线、平面之间的位置关系(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b是异面直线,直线c∥a,则c与b的位置关系是() A.相交B.异面C.平行D.异面或相交【解析】根据空间两条直线的位置关系和公理4可知c与b异面或相交,但不可能平行.【答案】 D2.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直【解析】A、B、C显然正确.易知过一条直线有无数个平面与已知平面垂直.选D.【答案】 D3.(2015·太原高二检测)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面【解析】对于A,通过常见的图形正方体判断,从同一个顶点出发的三条棱两两垂直,故A错;对于B,因为l1⊥l2,所以l1,l2所成的角是90°,又因为l2∥l3,所以l1,l3所成的角是90°,所以l1⊥l3,故B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选B.【答案】 B4.设a、b为两条直线,α、β为两个平面,则正确的命题是()【导学号:09960089】A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b【解析】A中,a、b可以平行、相交或异面;B中,a、b可以平行或异面;C中,α、β可以平行或相交.【答案】 D5.(2016·山西山大附中高二检测)如图1,在正方体ABCD-A1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、B1C1的中点,则异面直线EF与GH所成的角等于()图1A.45°B.60°C.90°D.120°【解析】如图,连接A1B、BC1、A1C1,则A1B=BC1=A1C1,且EF∥A1B、GH∥BC1,所以异面直线EF与GH所成的角等于60°.【答案】 B6.设l为直线,α,β是两个不同的平面.下列命题中正确的是() A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β【解析】选项A,平行于同一条直线的两个平面也可能相交,故选项A错误;选项B,垂直于同一直线的两个平面互相平行,选项B正确;选项C,由条件应得α⊥β,故选项C错误;选项D,l与β的位置不确定,故选项D错误.故选B.【答案】 B7.(2015·洛阳高一检测)如图2,△ADB和△ADC都是以D为直角顶点的等腰直角三角形,且∠BAC=60°,下列说法中错误的是()图2A.AD⊥平面BDCB.BD⊥平面ADCC.DC⊥平面ABDD.BC⊥平面ABD【解析】由题可知,AD⊥BD,AD⊥DC,所以AD⊥平面BDC,又△ABD与△ADC均为以D为直角顶点的等腰直角三角形,所以AB=AC,BD=DC=22AB.又∠BAC=60°,所以△ABC为等边三角形,故BC=AB=2BD,所以∠BDC=90°,即BD⊥DC.所以BD⊥平面ADC,同理DC⊥平面ABD.所以A、B、C项均正确.选D.【答案】 D8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为26,则侧面与底面所成的二面角为() A.30°B.45°C.60°D.90°【解析】由棱锥体积公式可得底面边长为23,高为3,在底面正方形的任一边上,取其中点,连接棱锥的顶点及其在底面的射影,根据二面角定义即可判定其平面角,在直角三角形中,因为tan θ=3 (设θ为所求平面角),所以二面角为60°,选C.【答案】 C9.将正方形ABCD沿BD折成直二面角,M为CD的中点,则∠AMD 的大小是()A.45°B.30°C.60°D.90°【解析】 如图,设正方形边长为a ,作AO ⊥BD ,则AM =AO 2+OM 2=⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫12a 2=32a , 又AD =a ,DM =a 2,∴AD 2=DM 2+AM 2,∴∠AMD =90°.【答案】 D10.在矩形ABCD 中,若AB =3,BC =4,P A ⊥平面AC ,且P A =1,则点P 到对角线BD 的距离为( )A.292B.135C.175D.1195【解析】 如图,过点A 作AE ⊥BD 于点E ,连接PE .∵P A ⊥平面ABCD ,BD ⊂平面ABCD ,∴P A ⊥BD ,∴BD ⊥平面P AE ,∴BD ⊥PE .∵AE =AB ·AD BD =125,P A =1,∴PE =1+⎝ ⎛⎭⎪⎫1252=135. 【答案】 B11.(2016·大连高一检测)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A与平面ABC所成角的大小为()【导学号:09960090】A.75°B.60°C.45°D.30°【解析】如图所示,P为正三角形A1B1C1的中心,设O为△ABC 的中心,由题意知:PO⊥平面ABC,连接OA,则∠P AO即为P A与平面ABC所成的角.在正三角形ABC中,AB=BC=AC=3,则S=34×(3)2=334,VABC-A1B1C1=S×PO=94,∴PO= 3.又AO=33×3=1,∴tan ∠P AO=POAO=3,∴∠P AO=60°.【答案】 B12.正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是()A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°【解析】 因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH .又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,A 正确.因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角.因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.设平面α∥平面β,A 、C ∈α,B 、D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =________.【解析】 由面面平行的性质得AC ∥BD ,AS BS =CS SD ,解得SD =9.【答案】 914.如图3,四棱锥S -ABCD 中,底面ABCD 为平行四边形,E 是SA上一点,当点E满足条件:________时,SC∥平面EBD.图3【解析】当E是SA的中点时,连接EB,ED,AC.设AC与BD的交点为O,连接EO.∵四边形ABCD是平行四边形,∴点O是AC的中点.又E是SA的中点,∴OE是△SAC的中位线.∴OE∥SC.∵SC⊄平面EBD,OE⊂平面EBD,∴SC∥平面EBD.【答案】E是SA的中点15.如图4所示,在正方体ABCD-A1B1C1D1中,M,N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN等于________.图4【解析】∵B1C1⊥平面A1ABB1,MN⊂平面A1ABB1,∴B1C1⊥MN,又∠B1MN为直角,∴B1M⊥MN,而B1M∩B1C1=B1.∴MN⊥平面MB1C1,又MC1⊂平面MB1C1,∴MN⊥MC1,∴∠C1MN=90°.【答案】90°16.已知四棱锥P-ABCD的底面ABCD是矩形,P A⊥底面ABCD,点E、F分别是棱PC、PD的中点,则①棱AB与PD所在直线垂直;②平面PBC与平面ABCD垂直;③△PCD的面积大于△P AB的面积;④直线AE与直线BF是异面直线.以上结论正确的是________.(写出所有正确结论的序号)【解析】由条件可得AB⊥平面P AD,∴AB⊥PD,故①正确;若平面PBC⊥平面ABCD,由PB⊥BC,得PB⊥平面ABCD,从而P A∥PB,这是不可能的,故②错;S△PCD=12CD·PD,S△P AB=12AB·P A,由AB=CD,PD>P A知③正确;由E、F分别是棱PC、PD的中点,可得EF∥CD,又AB∥CD,∴EF∥AB,故AE与BF共面,④错.【答案】①③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)如图5所示,已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC,求证:AD⊥平面SBC.图5【证明】∵∠ACB=90°,∴BC⊥AC.又∵SA⊥平面ABC,∴SA⊥BC,∵SA∩AC=A,∴BC⊥平面SAC,∴BC⊥AD.又∵SC⊥AD,SC∩BC=C,∴AD⊥平面SBC.18.(本小题满分12分)如图6,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.图6(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.【证明】(1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于O点,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)(2016·德州高一检测)某几何体的三视图如图7所示,P是正方形ABCD对角线的交点,G是PB的中点.(1)根据三视图,画出该几何体的直观图;(2)在直观图中,①证明:PD∥面AGC;②证明:面PBD⊥面AGC.图7【解】(1)该几何体的直观图如图所示:(2)证明:①连接AC,BD交于点O,连接OG,因为G为PB的中点,O为BD的中点,所以OG∥PD.②连接PO,由三视图知,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,所以AO⊥平面PBD.因为AO⊂平面AGC,所以平面PBD⊥平面AGC.20.(本小题满分12分)(2016·济宁高一检测)如图8,正方形ABCD 和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF=1.图8(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.【导学号:09960091】【证明】(1)如图,设AC与BD交于点G.因为EF ∥AG ,且EF =1, AG =12AC =1,所以四边形AGEF 为平行四边形. 所以AF ∥EG .因为EG ⊂平面BDE ,AF ⊄平面BDE , 所以AF ∥平面BDE . (2)连接FG ,∵EF ∥CG ,EF =CG =1, ∴四边形CEFG 为平行四边形, 又∵CE =EF =1,∴▱CEFG 为菱形, ∴EG ⊥CF .在正方形ABCD 中,AC ⊥BD .∵正方形ABCD 和四边形ACEF 所在的平面互相垂直, ∴BD ⊥平面CEFG .∴BD ⊥CF . 又∵EG ∩BD =G ,∴CF ⊥平面BDE .21.(本小题满分12分)(2015·山东高考)如图9,三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.图9(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.【解】(1)证法一:连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则M为CD的中点.又H为BC的中点,所以MH∥BD.又MH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF =H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形.所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.22.(本小题满分12分)(2016·重庆高一检测)如图10所示,ABCD 是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.图10(1)求证:P A∥平面BDE;平面P AC⊥平面BDE;(2)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.【解】(1)证明:连接OE,如图所示.∵O、E分别为AC、PC的中点,∴OE∥P A.∵OE⊂平面BDE,P A⊄平面BDE,∴P A∥平面BDE.∵PO⊥平面ABCD,∴PO⊥BD.在正方形ABCD中,BD⊥AC,又∵PO∩AC=O,∴BD⊥平面P AC.又∵BD ⊂平面BDE ,∴平面P AC ⊥平面BDE . (2)取OC 中点F ,连接EF . ∵E 为PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO . 又∵PO ⊥平面ABCD , ∴EF ⊥平面ABCD . ∵OF ⊥BD ,∴OE ⊥BD .∴∠EOF 为二面角E -BD -C 的平面角, ∴∠EOF =30°. 在Rt △OEF 中, OF =12OC =14AC =24a ,∴EF =OF ·tan 30°=612a ,∴OP =2EF =66a . ∴V P -ABCD =13×a 2×66a =618a 3.。
2020_2021学年高中数学第2章统计章末综合提升学案含解析新人教A版必修3
![2020_2021学年高中数学第2章统计章末综合提升学案含解析新人教A版必修3](https://img.taocdn.com/s3/m/567451fe4b73f242336c5fda.png)
高中数学:统计[巩固层·知识整合][提升层·题型探究]用样本的频率分布估计总体分布名考生中用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图),则这10 000名考生的数学成绩在[140,150]内的约有________人.思路点拨:根据频率分布直方图求出样本中数学成绩在[140,150]内的频率,可估计总体中成绩在[140,150]内的人数.800[由样本的频率分布直方图知数学成绩在[140,150]内的频率是相应小矩形的面积,即0.008×10=0.08,因此这10 000名考生中数学成绩在[140,150]内的约有10 000×0.08=800(人).]用样本的频率分布估计总体分布通常要对样本数据进行列表、作图处理.这类问题采取的图表主要有:条形图、直方图、茎叶图、频率分布折线图、扇形图等.它们的主要优点是直观,能够清楚表示总体的分布走势.除茎叶图外,其他几种图表法的缺点是原始数据信息有丢失.[跟进训练]1.已知总体数据均在[10,70]内,从中抽取一个容量为20的样本,分组后对应组的频数如下表所示:分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70] 频数234542A .0.5B .0.25C .0.6D .0.7D [由频率分布表可知样本数据在区间[10,50)内的频数等于[10,20),[20,30),[30,40),[40,50)四个分组的频数之和,即2+3+4+5=14,频率为1420=0.7.由样本的频率分布估计总体分布的思想可知,总体数据在区间[10,50)内的频率约为0.7.]用样本的数字特征估计总体的数字特征下表:甲 9 6 7 6 2 7 7 9 8 9 乙24687897910思路点拨:规则不同,评判结果有所不同.[解] 为了分析的方便,先计算两人的统计指标如下表所示.平均环数方差 中位数 命中10环次数甲 7 4 7 0 乙75.47.51规则1:平均环数和方差相结合,平均环数高者胜.若平均环数相等,则再看方差,方差小者胜,则甲胜.规则2:平均环数与中位数相结合,平均环数高者胜.若平均环数相等,则再看中位数,中位数大者胜,则乙胜.规则3:平均环数与命中10环次数相结合,平均环数高者胜.若平均环数相等,则再看命中10环次数,命中10环次数多者胜,则乙胜.以上规则都是以平均环数为第一标准,如果比赛规则是看命中7环以上或10环的次数,那么就不需要先看平均环数了.样本的数字特征可分为两大类,一类反映样本数据的集中趋势,包括样本平均数、众数、中位数;另一类反映样本数据的波动大小,包括样本方差及标准差.通常,我们用样本的数字特征估计总体的数字特征.有关样本平均数及方差的计算和应用是高考考查的热点.[跟进训练]2.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差B[甲的成绩极差为31,所以最高成绩为39.x=9;由乙平均值是24,得y=24×5-(12+25+26+31)-20=6;由茎叶图知乙成绩的中位数为26,对比甲、乙成绩分布发现,乙成绩较集中,其方差较小. ]用线性回归方程对总体进行估计【例3】理论预测某城市2020到2024年人口总数与年份的关系如下表所示:年份202x(年)01234人口数y(十万)5781119(1)请画出上表数据的散点图;(2)指出x与y是否线性相关;(3)若x与y线性相关,请根据上表提供的数据,用最小二乘法求出y关于x的回归方程y^=b^x+a^;(4)据此估计2025年该城市人口总数.(参数数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)[解](1)数据的散点图如图:(2)由散点图可知,样本点基本上分布在一条直线附近,故x与y呈线性相关.(3)由表知:x=15×(0+1+2+3+4)=2,y=15×(5+7+8+11+19)=10.∴b^=∑i=15x i y i-5x y∑i=15x2i-5x2=3.2,a^=y-b^x=3.6,∴回归方程为y^=3.2x+3.6.(4)当x=5时,y^=19.6(十万)=196万.故2025年该城市人口总数约为196万.对两个变量进行研究,通常是先作出两个变量之间的散点图,根据散点图直观判断两个变量是否具有线性相关关系,如果具有,就可以应用最小二乘法求线性回归直线方程.由于样本可以反映总体,所以可以利用所求的线性回归直线方程,对这两个变量所确定的总体进行估计,即根据一个变量的取值,预测另一个变量的取值.[跟进训练]3.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于t 的回归方程y =b t +a ;(2)用所求回归方程预测该地区2018年(t =6)的人民币储蓄存款. [解] (1)列表计算如下:这里n =5,t =1n ∑i =1n t i =155=3,y =1n ∑i =1n y i =365=7.2.∑i =1nt 2i -n t 2=55-5×32=10, ∑i =1nt i y i -n t y =120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y -b ^t =7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2018年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).。
高中数学《第二章 统计》章末质量评估 新人教A版必修3
![高中数学《第二章 统计》章末质量评估 新人教A版必修3](https://img.taocdn.com/s3/m/6181a2fade80d4d8d05a4fcc.png)
高中数学《第二章 统计》章末质量评估 新人教A 版必修3(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k 为 ( ). A .40 B .30 C .20 D .12解析 系统抽样也叫间隔抽样,抽多少个就分成多少组,总数÷组数=间隔数,即k =1 20040=30. 答案 B2.下列说法错误的是 ( ).A .在统计里,把所需考察对象的全体叫做总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大 解析 平均数不大于最大值,不小于最小值. 答案 B3.有一个容量为80的样本,数据的最大值是140,最小值是51,组距为10,则可以分为( ).A .10组B .9组C .8组D .7组 解析 据题意:最大值与最小值的差为89,8910=8.9,故应分9组较合适.答案 B4.某大学数学系共有本科生1 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为 ( ). A .80 B .40 C .60 D .20 解析 样本的抽取比例为2001 000=15,应抽取三年级的学生数为200×15=40.答案 B5.对一个样本容量为100的数据分组,各组的频数如下:区间[17,19)[19,21)[21,23)[23,25)[25,27)[27,29)[29,31)[31,33]频数113318162830估计小于29的数据大约占总体的 ( ).A.42% B.58% C.40% D.16%解析样本中小于29的数据频数为1+1+3+3+18+16=42.所以小于29的数据大约占总体的42100×100%=42%.答案 A6.下列说法:①一组数据不可能有两个众数;②一组数据的方差必须是正数;③将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率,其中错误的有 ( ).A.0个 B.1个 C.2个 D.3个解析一组数据的众数不唯一,即①不对;一组数据的方差必须是非负数,即②不对;根据方差的定义知③正确;根据频率分布直方图的概念知④正确.答案 C7.一批热水器共有98台,其中甲厂生产的有56台,乙厂生产的有42台,用分层抽样从中抽出一个容量为14的样本,那么甲、乙两厂各抽得的热水器的台数是 ( ).A.甲厂9台,乙厂5台B.甲厂8台,乙厂6台C.甲厂10台,乙厂4台D.甲厂7台,乙厂7台解析甲厂抽中台数为56×1498=8,乙厂抽中台数为42×1498=6.答案 B8.下列叙述中正确的是 ( ).A.从频率分布表可以看出样本数据对于平均数波动的大小B.频数是指落在各个小组内的数据C.每小组的频数与样本容量之比是这个小组的频率D.组数是样本平均数除以组距解析A中可以看出样本数据在各个范围内的取值比例;B中,频数是指落在各个小组内的数据的个数;D中,组数=极差÷组距.答案 C9.(2011·重庆高考)从一堆苹果中任取10只,称得它们的质量如下(单位:克):125 120 122 105 130 114 116 95 120 134则样本数据落在[114.5,124.5)内的频率为( ).A .0.2B .0.3C .0.4D .0.5解析 落在[114.5,124.5)内的样本数据为120,122,116,120,共4个,故所求频率为410=25=0.4. 答案 C10.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a >b >cB .b >c >aC .c >a >bD .c >b >a 解析 a =14.7,b =15,c =17. 答案 D二、填空题(本题共4小题,每小题4分,共16分.把答案填在题中横线上)11.(2011·山东高考)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________. 解析 抽样比为40150+150+400+300=4100,因此从丙专业应抽取4100×400=16(人). 答案 1612.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.性 别人数生活能否自理男 女 能 178 278 不能2321则该地区生活不能自理的老人中男性比女性约多________人.解析 由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).答案 6013.(2011·辽宁高考)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980 h,1 020 h,1 032 h ,则抽取的100件产品的使用寿命的平均值为________h.解析 x =980×1+1 020×2+1 032×14=1 013(h).答案 1 01314.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班67787 乙班 6 7 6 79则以上两组数据的方差中较小的一个为s 2=________.解析 由题中表格得,x 甲=7,s 2甲=15(12+02+02+12+02)=25;x 乙=7,s 2乙=15(12+02+12+02+22)=65.∵s 2甲<s 2乙.∴两组数据的方差中较小的一个为s 2=s 2甲=25.答案 25三、解答题(本大题共5小题,共54分.解答时应写出文字说明、证明过程或演算步骤) 15.(10分)某工厂有工人1 021人,其中高级工程师20人.现从中抽取普通工人40人,高级工程师4人组成代表队参加某项活动,你认为应该如何抽取? 解 先在1 001名普通工人中抽取40人,用系数抽样法抽样过程如下: 第一步,将1 001名普通工人用随机方式编号.第二步,从总体中用抽签法剔除1人,将剩下的 1 000名工人重新编号(分别为000,001,…,999),并分成40段.第三步,在第1段000,001,…,024这25个编号中,用简单随机抽样法抽出一个(如003)作为起始号.第四步,将编号为003,028,053,…,978的工人抽出作为代表参加此项活动. 再从20人中抽取4人,用抽签法:第一步,将20名工程师随机编号(1,2,…,20). 第二步,将这20个号码分别写在一张纸条上,制成号签. 第三步,把得到的号签放入一个不透明的盒子里,充分搅匀. 第四步,从盒子里逐个抽取4个号签,并记录上面的编号.第五步,从总体中将与抽到的号签的编号相一致的工程师抽出,作为代表参加此项活动.由以上两种方法得到的人员便是代表队成员.16.(10分)某次运动会甲、乙两名射击运动员的成绩如下:甲:9.4 8.7 7.5 8.4 10.1 10.5 10.7 7.27.8 10.8乙:9.1 8.7 7.19.8 9.7 8.5 10.1 9.2 10.19.1(1)用茎叶图表示甲、乙两人的成绩;(2)根据茎叶图分析甲、乙两人的成绩;(3)分别计算两个样本的平均数x和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.解(1)如下图所示,茎表示成绩的整数环数,叶表示小数点后的数字.(2)由茎叶图可看出:乙的成绩大致对称.因此乙发挥稳定性好,甲波动性大.(3)x甲=110×(9.4+8.7+7.5+8.4+10.1+10.5+10.7+7.2+7.8+10.8)=9.11,s2甲=110×[(9.4-9.11)2+(8.7-9.11)2+…+(10.8-9.11)2] 故s甲≈1.3;x乙=110×(9.1+8.7+7.1+9.8+9.7+8.5+10.1+9.2+10.1+9.1)=9.14,s2乙=110×[(9.1-9.14)2+(8.7-9.14)2+…+(9.1-9.14)2],故s乙≈0.9.因为s甲>s乙,这说明了甲运动员成绩的波动程度大于乙运动员的波动程度.所以我们估计乙运动员的成绩比较稳定.17.(10分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.解 (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 2甲≈13.67,s 2乙≈16.67.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐.18.(12分)下表数据是水温度x (℃)对黄酮延长性y (%)效应的试验结果,y 是以延长度计算的,且对于给定的x ,y 为变量.x (℃) 300 400 500 600 700 800 y (%)405055606770(1)画出散点图;(2)指出x ,y 是否线性相关;(3)若线性相关,求y 关于x 的回归方程;(4)估计水温度是1 000 ℃时,黄酮延长性的情况. 解 (1)散点图如下:(2)由散点图可以看出样本点分布在一条直线的附近,可见y 与x 线性相关. (3)列出下表并用科学计算器进行有关计算.i1 2 3 4 5 6 x i 300 400 500 600 700 800 y i 40 5055606770x i y i1220 000 27 500 36 000 46 900 56 000000x 2i90000 160 000 250 000 360 000 490 000 640 000x =550;y =57;∑i =16x 2i =1 990 000;∑i =16x i y i =198 400于是可得b ^=∑i =16x i y i -6x y∑i =16x 2i -6x 2=198 400-6×550×571 990 000-6×5502≈0.058 86, a ^=y -b ^x =57-0.05 886×550=24.627.因此所求的回归直线的方程为:y ^=0.058 86x +24.627. (4)将x =1 000代入回归方程得y =0.058 86×1 000+24.627=83.487,即水温度是 1 000 ℃时,黄酮延长性大约是83.487%19.(12分)为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:分组 频数 频率 [50,60) 4 0.08 [60,70) 8 0.16 [70,80) 10 0.20 [80,90) 160.32[90,100] 合计(1)填充频率分布表中的空格;(2)不具体计算频率/组距,补全频率分布直方图. 解 (1)40.08=50,即样本容量为50.第五小组的频数为50-4-8-10-16=12, 第五小组的频率为1250=0.24.又各小组频率之和为1,所以频率分布表中的四个空格应分别填12,0.24,50,1.(2)根据小长方形的高与频数成正比,设第一个小长方形的高为h 1,第二个小长方形的高为h 2,第五个小长方形的高为h 5.由等量关系得h 1h 2=48,h 1h 5=412,所以h 2=2h 1,h 5=3h 1.这样即可补全频率分布直方图如下:。
高中数学人教A版必修三 第二章 统计 章末综合测评及答案
![高中数学人教A版必修三 第二章 统计 章末综合测评及答案](https://img.taocdn.com/s3/m/e3f86f2850e2524de4187edc.png)
章末综合测评
(时间 120 分钟,满分 150 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题 给出的四个选项中,只有一项是符合题目要求的) 1.某学校为了调查高一年级的 200 名学生完成课后作业所需时间, 采取了两种抽样调查的方式:第一种由学生会的同学随机抽取 20 名同 学进行抽查;第二种由教务处对该年级的学生进行编号,从 001 到 200, 抽取学号最后一位为 2 的同学进行调查.则这两种抽样的方法依次是 () A.分层抽样,简单随机抽样 B.简单随机抽样,分层抽样 C.分层抽样,系统抽样 D.简单随机抽样,系统抽样 【解析】 由抽样方法的概念知,第一种是简单随机抽样,第二 种是系统抽样. 【答案】 D 2.小波一星期的总开支分布如图 1①所示,一星期的食品开支如 图 1②所示,则小波一星期的鸡蛋开支占总开支的百分比为( )
为 58,60,60,61,61,61,61,62,62,62,因此 A 样本的众数为
55,B 样本的众数为 61,A 选项错误;A 样本的平均数为 54.8,B 样本
的平均数为 60.8,B 选项错误;A 样本的中位数为 55,B 样本的中位
数为 61,C 选项错误;事实上,在 A 样本的每个数据上加上 6 后形成
B 样本,样本的稳定性不变,因此两个样本的标准差相等,故选 D.
【答案】 D
9.如图 3 茎叶图记录了甲、乙两组各五名学生在一次英语听力测
试中的成绩.(单位:分)
图3
已知甲组数据的平均数为 17,乙组数据的中位数为 17,则 x,y
的值分别为( )
A.2,6
B.2,7
C.3,6
D.5,7
【解析】 依题意得 9+10×2+2+x+20×2+7+4=17×5,即
2020学年高中数学第二章统计章末综合检测(二)(含解析)新人教A版必修3(最新整理)
![2020学年高中数学第二章统计章末综合检测(二)(含解析)新人教A版必修3(最新整理)](https://img.taocdn.com/s3/m/a39ef49f1711cc7930b7166b.png)
章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法错误的是( )A.在统计里,把所需考察对象的全体叫作总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大解析:选B。
平均数不大于最大值,不小于最小值.2.(2019·河北省石家庄市期末考试)一个年级有22个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为19的学生留下进行交流,这里运用的是() A.分层抽样法B.抽签法C.随机数表法D.系统抽样法解析:选D.每个班同学以1~50排学号,要求每班学号为19的同学留下来交流,则数据之间的间距差相同,都为50,所以根据系统抽样的定义可知,这里采用的是系统抽样的方法.故选D。
3.从某一总体中抽取一个个体数为200的样本,得到分组与频数如下:[10,15),6;[15,20),8;[20,25),13;[25,30),35;[30,35),46;[35,40),34;[40,45),28;[45,50),15;[50,55),10;[55,60],5。
则样本在[35,60]上的频率是()A.0.69 B.0。
46C.1 D.不存在解析:选 B.由题可知,样本在[35,60]上的频率应为(34+28+15+10+5)÷200=0.46。
4.2017年高考某题的得分情况如下:其中众数是(A.37.0% B.20。
2%C.0分D.4分解析:选C.因为众数出现的频率最大.5.(2019·湖北省华中师范大学第一附属中学期末考试)某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A.15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第二章统计章末综合检测二含解析新人教A版必修3110558章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法错误的是( )A.在统计里,把所需考察对象的全体叫作总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大解析:选B.平均数不大于最大值,不小于最小值.2.(2019·河北省石家庄市期末考试)一个年级有22个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为19的学生留下进行交流,这里运用的是( ) A.分层抽样法B.抽签法C.随机数表法D.系统抽样法解析:选D.每个班同学以1~50排学号,要求每班学号为19的同学留下来交流,则数据之间的间距差相同,都为50,所以根据系统抽样的定义可知,这里采用的是系统抽样的方法.故选D.3.从某一总体中抽取一个个体数为200的样本,得到分组与频数如下:[10,15),6;[15,20),8;[20,25),13;[25,30),35;[30,35),46;[35,40),34;[40,45),28;[45,50),15;[50,55),10;[55,60],5.则样本在[35,60]上的频率是( ) A.0.69 B.0.46C.1 D.不存在解析:选B.由题可知,样本在[35,60]上的频率应为(34+28+15+10+5)÷200=0.46.4.2017年高考某题的得分情况如下:其中众数是A.37.0% B.20.2%C.0分D.4分解析:选C.因为众数出现的频率最大.5.(2019·湖北省华中师范大学第一附属中学期末考试)某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A .15.5B .15.6C .15.7D .16解析:选B.由频率分布直方图可以计算出各组频率分别为0.1,0.2,0.25,0.25,0.15,0.05,频数分别为3,6,7.5,7.5,4.5,1.5,则平均值为11×3+13×6+15×7.5+17×7.5+19×4.5+21×1.530=15.6.故选B.6.(2019·吉林省辽源市田家炳高级中学联考)高二某班共有学生60名,座位号分别为01, 02, 03,…, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( )A .31号B .32号C .33号D .34号解析:选C.学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为60÷4=15,已知03号,18号被抽取,所以应该抽取18+15=33(号).故选C.7.若数据x 1,x 2,…,x n 的平均数为x -,方差为s 2,则3x 1+5,3x 2+5,…,3x n +5的平均数和标准差分别为( )A.x -,s B .3x -+5,sC .3x -+5,3sD .3x -+5,9s 2+30s +25解析:选C.因为x 1,x 2,…,x n 的平均数为x -, 所以3x 1+5,3x 2+5,…,3x n +5的平均数为3x -+5,s ′2=1n[(3x 1+5-3x --5)2+…+(3x n +5-3x --5)2]=1n×32[(x 1-x -)2+…+(x n -x -)2]=9s 2.所以s ′=3s .8.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 成正线性相关关系B .当商品销售价格提高1元时,商品的销售量减少200件C .当销售价格为10元/件时,销售量为100件D .当销售价格为10元/件时,销售量为100件左右解析:选D.由y ^=-10x +200,知y 与x 成负线性相关关系,所以A 项错误;当商品销售价格提高1元时,商品的销售量约减少10件,所以B 项错误;当销售价格为10元/件时,销售量在100件左右,因此C 项错误,D 项正确.故选D.9.(2019·四川省雅安市期末考试)某校高三年级共有学生900人,将其编号为1,2,3,…,900并从小到大依次排列,现用系统抽样的方法从中抽取一个容量为45的样本,若抽取的第一个样本编号为5,则第三个样本的编号为( )A .15B .25C .35D .45解析:选D.用系统抽样的方法从900人抽取一个容量为45的样本,抽取样本编号间隔为90045=20,因为抽取的第一个样本编号为5,所以第二个样本的编号为5+20=25.则第三个样本的编号为25+20=45.故选D.10.(2018·高考全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图所示的饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A.设新农村建设前经济收入的总量为x ,则新农村建设后经济收入的总量为2x . 建设前种植收入为0.6x ,建设后种植收入为0.74x ,故A 不正确; 建设前其他收入为0.04x ,建设后其他收入为0.1x ,故B 正确; 建设前养殖收入为0.3x ,建设后养殖收入为0.6x ,故C 正确;建设后养殖收入与第三产业收入的总和占建设后经济收入总量的58%,故D正确.故选A.11.设矩形的长为a,宽为b,其比满足b∶a=5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确的结论是( )A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定解析:选A.计算可得甲批次样本的平均数为0.617,乙批次样本的平均数为0.613,由此估计两个批次的总体平均数分别为0.617,0.613,则甲批次的总体平均数与标准值更接近.故选A.12.对“小康县”的经济评价标准:①年人均收入不小于7 000元;②年人均食品支出不大于收入的35%.某县有40万人,调查数据如下:年人均收入/元0 2 000 4 000 6 0008 00010 00012 00016 000人数/万人6355675 3则该县( )A.是小康县B.达到标准①,未达到标准②,不是小康县C .达到标准②,未达到标准①,不是小康县D .两个标准都未达到,不是小康县解析:选B.由图表可知:年人均收入为7 050>7 000,达到了标准①;年人均食品支出为2 695,而年人均食品支出占收入的2 6957 050×100%≈38.2%>35%,未达到标准②,所以不是小康县.二、填空题:本题共4小题,每小题5分.13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人)篮球组 书画组 乐器组高一 45 30 a高二151020组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.解析:由题意知,1245+15=30120+a ,解得a =30.答案:3014.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的极差为a ,乙加工零件个数的平均数为b ,则a +b =________.解析:由茎叶图,知甲加工零件个数的极差a =35-18=17,乙加工零件个数的平均数b =110×(10×3+20×4+30×3+17+11+2)=23,则a +b =40. 答案:4015.一组数据按从小到大的顺序排列为1,2,2,x ,5,10,其中x ≠5,已知该组数据的中位数是众数的32倍,则该组数据的标准差为________.解析:由题意,可得该组数据的众数为2,所以2+x 2=32×2=3,解得x =4,故该组数据的平均数为1+2+2+4+5+106=4.所以该组数据的方差为16×[(1-4)2+(2-4)2+(2-4)2+(4-4)2+(5-4)2+(10-4)2]=9,即标准差为3.答案:316.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.解析:在频率分布直方图中,所有小长方形的面积和为1,设[70,80)的小长方形面积为x ,则(0.01+0.015×2+0.025+0.005)×10+x =1, 解得x =0.3, 即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:71三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .求抽到的人中,做问卷B 的人数.解:从960人中用系统抽样的方法抽取32人,则抽样间隔为k =96032=30.因为第一组号码为9,则第二组号码为9+1×30=39,…,第n 组号码为9+(n -1)×30=30n -21. 由451≤30n -21≤750, 即151115≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10(人).18.(本小题满分12分)某校高三年级在5月份进行了一次质量考试,考生成绩情况如下表所示:[0,400) [400,480)[480,550)[550,750]文科考生 67 35196理科考生53x y z已知用分层抽样的方法在不低于550分的考生中随机抽取5名考生进行质量分析,其中文科考生抽取了2名.(1)求z 的值;(2)如图是不低于550分的6名文科考生的语文成绩的茎叶图,计算这6名考生的语文成绩的方差.解:(1)依题意26=5-2z ,得z =9.(2)这6名文科考生的语文成绩的平均分为 111+120+125+128+132+1346=125,则这6名考生的语文成绩的方差为s 2=16×[(111-125)2+(120-125)2+(125-125)2+(128-125)2+(132-125)2+(134-125)2]=16×(142+52+02+32+72+92)=60. 19.(本小题满分12分)某校高二期末统一测试,随机抽取一部分学生的数学成绩,分组统计如下表.(1)求出表中m ,n ,M ,N 的值,并根据表中所给数据在给出的坐标系中画出频率分布直方图;分组 频数 频率 [0,30] 3 0.03 (30,60] 3 0.03 (60,90] 370.37(90,120] mn(120,150] 150.15合计M N(2)若全校参加本次考试的学生有600人,试估计这次测试中全校成绩在90分以上的人数.解:(1)由频率分布表得M =30.03=100, 所以m =100-(3+3+37+15)=42,n =42100=0.42,N =0.03+0.03+0.37+0.42+0.15=1.频率分布直方图如图所示.(2)由题意,知全校成绩在90分以上的学生的人数约为42+15100×600=342.20.(本小题满分12分)(2019·山西省大同市铁路一中期末考试)近年来,国产手机因为其炫酷的外观和强大的功能,深受国人喜爱,多次登顶智能手机销售榜首.为了调查本市市民对某款国产手机的满意程度,专卖店的经理策划了一次问卷调查,让顾客对手机的“外观”和“性能”打分(满分100分),其相关得分情况统计如茎叶图所示,且经理将该款手机上市五个月以来在本市的销量按月份统计如下:月份代码t 1 2 3 4 5 销售量y (千台)5.65.766.26.5(1)记“外观”得分的平均数以及方差分别为x -1,s 21,“性能”得分的平均数以及方差分别x -2,s 22.若x -1=x -2,求茎叶图中字母m 表示的数;并计算s 21与s 22;(2)根据上表中数据,建立y 关于t 的线性回归方程,并预测第6个月该款手机在本市的销售量.附:对于一组数据(t i ,y i )(i =1,2,…,n ),其回归直线y ^=b ^t +a ^的斜率和截距的最小二乘估计公式分别为b ^=解:(1)由茎叶图可知 x -1=110×(73+75+78+79+87+88+89+95+98+98)=86, x -2=110×(73+80+80+81+80+m +86+92+95+95+96)=86,解得m =2.s 21=110×(132+112+82+72+12+22+32+92+122+122)=78.6, s 22=110×(132+62+62+52+42+02+62+92+92+102)=58.0. (2)由题意知t =3,y -=6,a ^=y --b ^t -=6-0.23×3=5.31,所求回归方程为y ^=0.23t +5.31. 令t =6,y ^=0.23×6+5.31=6.69.故预测第6个月该款手机在本市的销售量为6.69千台.21.(本小题满分12分)甲、乙两人在相同的条件下各射靶10次,每次射靶成绩(单位:环)如图所示:(1)填写下表:平均数 方差 中位数 命中9环及以上甲 71.2 1 乙5.43(2)①从平均数和方差结合分析偏离程度; ②从平均数和中位数结合分析谁的成绩好些;③从平均数和命中9环及以上的次数相结合看谁的成绩好些; ④从折线图上两人射击命中环数及走势分析谁更有潜力. 解:(1)乙的射靶环数依次为2,4,6,8,7,7,8,9,9,10. 所以x -乙=110×(2+4+6+8+7+7+8+9+9+10)=7;乙的射靶环数从小到大排列为2,4,6,7,7,8,8,9,9,10, 所以中位数是7+82=7.5;甲的射靶环数从小到大排列为5,6,6,7,7,7,7,8,8,9, 所以中位数为7.于是填充后的表格如表所示:平均数 方差 中位数 命中9环及以上甲 7 1.2 7 1 乙75.47.53甲乙平均数的程度大.②甲、乙的平均水平相同,而乙的中位数比甲大,说明乙射靶成绩比甲好.③甲、乙的平均水平相同,而乙命中9环以上(包含9环)的次数比甲多2次,可知乙的射靶成绩比甲好.④从折线图上看,乙的成绩呈上升趋势,而甲的成绩在平均线上波动不大,说明乙的状态在提升,更有潜力.22.(本小题满分12分)(2019·四川省棠湖中学期末考试)简阳羊肉汤已入选成都市级非遗项目,成为简阳的名片.当初向各地作了广告推广,同时广告对销售收益也有影响.在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图,计算图中各小长方形的宽度;(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);(3)按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x (单位:万元) 1 2 3 45 销售收益y (单位:百万元)2327y 关于x 的回归方程.(回归直线的斜率和截距的最小二乘估计公式分别为b ^=∑ni =1x i y i -n x -y -∑n i =1x 2i -n x-2,a^=y --b ^x -)解:(1)设各小长方形的宽度为m ,由频率分布直方图各小长方形面积总和为1,可知(0.08+0.1+0.14+0.12+0.04+0.02)·m =0.5m =1,故m =2.(2)由(1)知各小组依次是[0,2),[2,4),[4,6),[6,8),[8,10),[10,12), 其中点分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0,28,0.24,0.08,0.04,故可估计平均值为1×0.16+3×0.2+5×0.28+7×0.24+9×0.08+11×0.04=5. (3)由(2)知空白栏中填5,由题意可知,x -=1+2+3+4+55=3,y -=2+3+2+5+75=3.8,根据公式,可求得b ^=69-5×3×3.855-5×32=1210=1.2,a ^=3.8-1.2×3=0.2, 即回归直线的方程为y ^=1.2x +0.2.。