一个等腰直角三角形的旋转问题的探究
解决旋转问题的思路方法
解决旋转问题的思路方法1.把一个平面图形F绕平面内一点O按一定方向(顺时针或逆时针)旋转一定角度α得到图形F'的变换称为旋转变换,点O叫做旋转中心,角度α叫做旋转角.特别地,旋转角为180°的旋转变换就是中心对称变换.2.旋转变换的性质:对应图形全等,对应线段相等,对应角相等,对应线段所在直线的夹角中有一个等于旋转角,对应点到旋转中心的距离相等.中心对称的性质:连结对应点的线段都经过对称中心且被对称中心平分,对应线段平行且相等,对应角相等.3.旋转变换应用时常见的有下面三种情况:(1)旋转90°角.当题目条件中有正方形或等腰直角三角形时,常将图形绕直角顶点旋转90°.(2)旋转60°角.当题目条件中有等边三角形时,常将图形绕等边三角形一顶点旋转60°.(3)旋转度数等于等腰三角形顶角度数.当题目条件中有等腰三角形时,常将图形绕等腰三角形顶角的顶点旋转顶角的度数.例1.已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径长等于CA的扇形CEF绕点C旋转,且直线CE、CF分别与直线AB交于点M、N.(1)当扇形绕点C在∠ACB的内部旋转时,如图1所示,求证:MN2=AM2+BN2.(2)当扇形CEF绕点C旋转至如图2所示的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.规律技巧:本题利用旋转变换,将结论中的分散线段通过等量代换集中到了一个三角形中,再证明该三角形为直角三角形,运用勾股定理证明.本题还体现了动态几何问题的一个共同特征:运动的图形与静止的图形的相对位置虽然发生了变化,但有些结论仍然保持不变,且证明方法也是一样的.这也正是动态几何问题的魅力所在.本题也可通过运用轴对称变换作辅助线,将△ACM沿直线CE对折,得△DCM,连结DN.再证△DCN≌△BCN.例2.如图所示,在梯形ABCD 中,BC>AD ,AD//BC ,∠D=90°,BC=CD=12,∠ABE=45°.若AE=10,则CE 的长为 .思路分析:本题已知条件多,但比较分散,而且题设和结论间的关系也不是很明显,不易沟通,此时我们是否考虑用旋转变换来铺路架桥.规律技巧:本题中条件与结论间不能直接找到关系时,我们想到了用旋转法,但旋转法解题一般用在正方形、正三角形中较多.故本题先把直角梯形补成一个正方形,然后根据正方形中特殊三角形旋转的前后关系,使问题得到解决.本题如果通过在Rt △ADE 、Rt △CEB 和△BAE 中直接求出EC几乎是不可能的.例3.如图所示,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分∠BAF 交边BC 于点E.(1)求证:AF=DF+BE.(2)设DF=x ()01x ≤≤,△ADF 与△ABE 的面积和S 是否存在最大值?若存在,求出此时x 的值及S 的最大值;若不存在,请说明理由.思路分析:求证AF=DF+BE ,观察图形可知线段AF 、DF 、BE 不在同一个三角形内,所以考虑添加辅助线帮助解题,考虑到AF 、DF 在Rt △ADF 中,又AD 是正方形ABCD 的边长,所以试着延长CB 到点G ,使BG=DF ,又AB=AD ,进一步推理,可使问题获解.规律技巧:利用旋转构造等腰三角形是证明第(1)题的关键.通常在正方形中存在共顶角图形(或等腰三角形存在共顶点图形)时,往往利用旋转的思想;第(2)题是求S 的最大值,往往结合几何图形,实际上就是要求AF 的最大值,显然,当AF 为对角线时取得最大值.由此可见,恰当的数形结合,能简洁明了地解决问题.。
中考数学复习指导:双等腰直角三角形问题前解法分析
中考数学复习指导:双等腰直角三角形问题前解法分析双等腰直角三角形问题前解法分析一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.一、共直角顶点的两个等腰直角三角形例1.如图1,已知ACB ?和ECD ?都是等腰直角三角形,90,ACB ECD D ∠=∠=°为AB 边上一点.(1)求证: ACE BCD ;(2)求证: 2222CD AD DB =+.分析当两等腰直角三角形绕着公共的直角顶点进行旋转时,必会出现全等三角形,此题第(1)问运用“通性”直接证明全等.第(2)问借助第(1)问的结论,利用等腰直角三角形两锐角互余,以及勾股定理,证明等式成立.注意到等腰三角形中的两腰相等,则旋转使两腰重合往往是解题中常用的途径之一.例2.如图2,在四边形ABCD 中,点,E F 分别是,AB CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连结,,,AG BG CG DG ,且AGD BGC ∠=∠.(1)求证: AD BC =;(2)求证: AGD EGF ??:;(3)如图3,若,AD BC 所在直线互相垂直,求AD EF的值.分析初看此题是一组对边相等的四边形问题,可仔细分析条件可以发现,DGC ?和AGB ?均为等腰三角形,当四边形ABCD 中AD BC ⊥时,两等腰三角形即变为等腰直角三角形,题中三个问题层次分明,逐级递进.第(1)问利用垂直平分线性质直接证全等;第(2)问利用顶用相等的两等腰三角形相似得到对应边成比例,再借用夹角相等证相似;第(3)问通过对四边形中相等的一组对边特殊化,形成两等腰直角三角形,把两条线段的比转化为等腰直角三角形中斜边与直角边的比.虽然通过中点,转化的方法较多(相似、中位线、中位倍长构全等),但本质上均需要构造等腰直角三角形.二、共底角顶点的两个等腰直角三角形例3.如图4, ,A B 分别在射线,OM ON 上,且MON ∠为钝角,现以线段,OA OB 为斜边向MON ∠外侧作等腰直角三角形,分别是,OAP OBQ ??,点,,C D E 分别是,,OA OB AB 的中点.(1)求证: PCE EDQ ;(2)延长,PC QD 交于点R .①如图5,若150MON ∠=°,求证:ABR ?为等边三角形;②如图6,若ARB PEQ ??:,求MON ∠的大小和AB PQ的值.分析本题中两等腰直角三角形OAP ?与OBQ ?中的一底角顶点O 重合,通过OAP ?绕点O 旋转来设计相关问题.第(1)问利用三角形中位线定理和直角三角形斜边上的中线结合平行四边形性质证明全等(边角边).第(2)①问从对称的角度,通过添加辅助线(连结OC )过度,利用线段中垂线证线段相等;第(2)②问,需要对(2)①问逆向思考,通过证PE EQ ⊥这一中间环节,得出PEQ ?与ARB ?为等腰直角三角形,利用直角三角形斜边上的中线性质与等腰直角三角形三边关系求出两线段的比值.值得注意的是,此题与例2图形相近,解法相近,考查的核心知识点相近.例4.已知两个共顶点的等腰三角形Rt ABC ?和Rt CEF ?,90ABC CEF ∠=∠=°,连结,AF M 是AF 的中点,连结,MB ME .(1)如图7,当CB 与CE 在同一直线上时,求证: //MB CF ;(2)如图7,若,2CB a CE a ==,求BM ,ME 的长;(3)如图8,当45BCE ∠=°时,求证: BM ME =.分析两个共底角顶点的双等腰直角三角形中,当两腰在一条直线上时,另两腰必平行.第(1)问利用这个性质结合M 点为中点直接证全等;(2)问在(1)问的基础上,证明BEM ?为等腰直角三角形;第(3)问研究在CEF ?绕点C 旋转45°时,BME ?的形状问题.图形形状发生了改变,但结论不变,方法不变,仍可借助中点构造等腰直角三角形,利用中位线性质进行转化证明.三、一直角顶点和一底角顶点重合的两个等腰直角三角形例5.如图9,在Rt ABC ?中,90,BAC AB AD ∠=°=,点D 是AC 的中点,将一块等腰直角三角板如图放置,使三角板斜边的两个端点分别与,A D 重合,连结,BE EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.分析等腰直角ADE ?的底角顶点A 与等腰直角ABD ?的直角顶点A 重合,借助BAE EDC 证明BEC ?为等腰直角三角形.相当于共直角顶点等腰三角形ADE ?与BEC ?旋转问题的逆问题.例6 如图10 , ABC ?和ACD ?是两个等腰直角三角形,90ACB ADC ∠=∠=°,延长DA 至点E ,使AE AD =,连结,,EB EC BD .(1)求证: BDA BEA ;(2)若BC =BE 的长.分析本题中一等腰直角三角形的直角边与另一等腰直角三角形的斜边重合,此种情况下一等腰直角三角形的斜边必与另一等腰直角三角形一直角边垂直.第(1)问即在此基础上通过“三线合一”构造等腰三角形;第(2)问是根据等腰直角三角形的边角特征,借助勾股定理求线段长.四、一直角顶点和一底边中点重合的两个等腰直角三角形例7如图11,在等腰直角ABC ?中,90,ACB CO AB ∠=°⊥于点O ,点,D E 分别在边,AC BC 上,且AD CE =,连结DE 交CO 于点P ,给出以上结论:①DOE ?是等腰直角三角形;②CDE COE ∠=∠;③1AC =,则四边形CEOD 的面积为14; ④22222AD BE OP DP PE +?=?. 其中所有正确结论正确的序号是 .分析本题表面上看,是一个等腰直角三角形通过作出斜边上的高探究相关结论的问题,实质上是等腰直角DOE ?的直角顶点O 在等腰直角ABC ?斜边中点O 处的结论探究问题.对于选项④利用“四点共圆”,并借助“共角共边的母子”相似三角形,能起到事半攻倍的效果,五、一底角顶点和一底边中点重合的两个等腰直角三角形例8 如图12,等腰直角三角形ABC ?和ODE ?,点O 为BC 中点,90,BAC ODE OD ∠=∠=°交BA 于,M OE 交AC 于N ,试求,,BM NM NA 的关系,并说明理由.分析 DOE ?绕等腰直角ABC ?的底边中点O 旋转,在图12~图14三种情况中,对应的线段和差关系分别是,BM MN NA MN BM NA =+=+.此时DOE ?为等腰直角三角形并不是必备条件,本质上45MON ∠=°才是这一模型的必备条件,其基本的解题途径是,构造共直角顶点的两个等腰直角三角形,通过截长补短解决线段的和差问题.等腰直角三角形底边中点具有独特的性质,以双等腰直角三角形为背景的几何图形,常常具有中点(隐含中点)这一条件,并且图形中常常包含全等三角形,发现其中的全等三角形往往是解题的突破口,而基本的辅助线便是借助中点构造新的等腰直角三角形.。
等边三角形、等腰直角三角形之间的旋转问题(精华)
4、已知:如图1,点C为线段AB上一点,△ACM,△CBN都Байду номын сангаас等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;
(4)根据以上证明、说理、画图,归纳你的发现.
(3)此小题图形不惟一,如图第(1)中的结论仍成立.(4)根据以上证明、说理、画图,归纳如下:如图A,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.
2、如图, 和 都是等边三角形, ,试说明: (综合全等和勾股定理)
(3)将△ACM绕点C按逆时针方向旋转90 O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).
5、如图所示,已知△ABC和△BDE都是等边三角形。下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=600,⑤△BFG是等边三角形;⑥FG∥AD。其中正确的有()
(1)当直线MN绕点C旋转到图1位置时,求证:① ;② ;
(2)当直线MN绕点C旋转到图2位置时,试问:DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
(3)当直线MN绕点C旋转到图3位置时,试问:DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
2.(1)如图1,若点P为正方形ABCD边上一点,以PA为一边作正方形AEFP,连BE、DP,并延长DP交BE于点H.求证: .
A 3个B 4个C 5个D 6个
等腰直角三角形
等腰直角三角形等腰直角三角形是指一个三角形的两条边相等,并且其中一个角度为90度。
它是几何学中的常见图形,具有一些独特的性质和特点。
下面将从不同的角度来探究等腰直角三角形的性质和应用。
首先,我们可以从等腰直角三角形的定义开始讨论。
等腰直角三角形由两条长度相等的边和一个90度的直角所构成。
根据直角三角形的性质,直角的两边相互垂直。
而等腰直角三角形的两条边又相等,因此我们可以得出结论:在等腰直角三角形中,直角的两边相互垂直且相等。
其次,等腰直角三角形还满足勾股定理。
勾股定理是指直角三角形中,直角边的平方等于斜边两边的平方和。
由于等腰直角三角形的两个直角边相等,那么我们可以得出:等腰直角三角形的直角边的平方等于等腰直角三角形斜边的平方的一半。
这一性质可以方便地用于解决一些与等腰直角三角形有关的问题。
在几何学中,等腰直角三角形的性质具有广泛的应用。
首先,等腰直角三角形被广泛应用于建筑和工程中的测量和布局。
在建筑设计中,往往需要根据一些特定的角度和尺寸来进行设计,而等腰直角三角形正好满足这些要求。
例如,在设计房屋的墙面、地面和天花板时,常常需要考虑到直角和相等的边。
等腰直角三角形的性质可以帮助我们准确地测量和布局,确保建筑物的结构和比例符合要求。
此外,等腰直角三角形还在数学中有着重要的地位。
它是许多其他几何形状的基础,例如正方形和长方形。
等腰直角三角形的性质可以帮助我们理解和推导这些几何形状的性质和定理。
例如,我们可以通过将一个等腰直角三角形分成两个直角三角形,来证明正方形的对角线相等。
这种推理和证明方法在数学中起着重要的作用,有助于培养逻辑思维和推理能力。
此外,等腰直角三角形还有一些有趣的性质。
例如,等腰直角三角形的两个直角边的长度不一定是整数,也可能是无理数。
这一性质在数学中有着重要的地位,与勾股定理和平方根的概念有关。
等腰直角三角形还可以通过平移和旋转等变换产生其他形状,例如正方形和正五边形。
这种变换性质在几何学中起着重要的作用,有助于研究和理解不同形状之间的关系。
初中数学《几何旋转》重难点模型汇编(四大题型)含解析
专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
等边三角形、等腰直角三角形之间的旋转问题(精华)
等边三⾓形、等腰直⾓三⾓形之间的旋转问题(精华)等边三⾓形、等腰直⾓三⾓形之间的旋转问题(精华)1、图(1)中,C点为线段AB上⼀点,△ACM,△CBN是等边三⾓形,AN与BM相等吗?说明理由;如图(2)C点为线段AB上⼀点,等边三⾓形ACM和等边三⾓形CBN在AB的异侧,此时AN与BM 相等吗?说明理由;如图(3)C点为线段AB外⼀点,△ACM,△CBN是等边三⾓形,AN与BM相等吗?说明理由.2、如图(1)所⽰,点C为线段AB上⼀点,△ACM、△CBN是等边三⾓形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针⽅向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成⽴,说明理由.3、如图,已知△ABC是等边三⾓形,E是AC延长线上⼀点,选择⼀点D,使得△CDE是等边三⾓形,如果M是线段AD的中点,N是线段BE的中点,求证:△CMN是等边三⾓形.(根据△ACD≌△BCE,得出AD=BE,AM=BN;⼜△AMC≌△BNC,可得CM=CN,∠ACM=∠BCN,证明∠NCM=∠ACB=60°即可证明△CMN是等边三⾓形;)1、(锦州)如图A,△ABC和△CEF是两个⼤⼩不等的等边三⾓形,且有⼀个公共顶点C,连接AF 和BE.(1)线段AF和BE 有怎样的⼤⼩关系?请证明你的结论;(2)将图A中的△CEF绕点C旋转⼀定的⾓度,得到图B,(1)中的结论还成⽴吗?作出判断并说明理由;(3)若将图A中的△ABC 绕点C旋转⼀定的⾓度,请你画⼭⼀个变换后的图形C(草图即可),(1)中的结论还成⽴吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.(3)此⼩题图形不惟⼀,如图第(1)中的结论仍成⽴.(4)根据以上证明、说理、画图,归纳如下:如图A,⼤⼩不等的等边三⾓形ABC和等边三⾓形CEF有且仅有⼀个公共顶点C,则以点C 为旋转中⼼,任意旋转其中⼀个三⾓形,都有AF=BE.2、如图,ADC ?和BCE ?都是等边三⾓形,ο30=∠ABC ,试说明:222BC AB BD +=(综合全等和勾股定理)3、△DAC, △EBC 均是等边三⾓形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三⾓形(4)MN ∥BC4、已知:如图1,点C 为线段AB 上⼀点,△ACM ,△CBN 都是等边三⾓形,AN 交MC 于点E ,BM 交CN 于点F . (1)求证:AN=BM ; (2)求证:△CEF 为等边三⾓形;(3)将△ACM 绕点C 按逆时针⽅向旋转90 O ,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两⼩题的结论是否仍然成⽴(不要求证明).5、如图所⽰,已知△ABC 和△BDE 都是等边三⾓形。
人教版九年级上册(新)第23章《旋转》教材分析 (文字稿)
第二十三章 《旋转》教材分析一、本章知识的地位与作用“图形与变换”是义务教育阶段数学课程中“空间与图形”领域的一个重要内容,在教材中占有重要的地位.和平移、轴对称一样,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简洁形式之一.旋转是工具性的知识. 学习旋转的基本性质, 欣赏并体验旋转在现实生活中的广泛应用, 不仅是初中学习的重要目标之一, 也是密切数学与现实之间联系的重要桥梁之一.旋转变换在平面几何中有着广泛的应用, 特别是在解(证)有关等腰三角形(主要是等腰直角三角形、等边三角形)以及正方形等问题时, 更是经常用到的思维方法. 此前, 学生已学习了平移、轴对称两种图形变换, 对图形变换已具有一定的认识, 通过本章的学习, 学生对图形变换的认识会更完整, 同时, 也能对平移、轴对称有更深的认识. 进一步建立的几何变换的意识可帮助我们用运动的观点认识图形,从而使解决问题的思路更加简明、清晰.二、主要内容三、课程学习目标(一)课标要求1. 通过具体实例认识平面图形关于旋转中心的旋转, 探索旋转的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等.2. 能够按要求画出简单平面图形旋转后的图形, 欣赏旋转在现实生活中的应用.3. 通过具体实例认识中心对称、中心对称图形的概念,探索它们的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 了解线段、平行四边形是中心对称图形.,认识并欣赏自然界和现实生活中的中心对称图形.4. 探索图形之间的变化关系(轴对称、平移、旋转及其组合),会运用轴对称、平移、旋转的组合进行图案设计.旋转及其性质 中心对称 关于原点对称的点的坐标图案设计中心对称图形旋转的基本知识特殊的旋转 --中心对称 平移、旋转、轴对称的综合运用平移及其性质 轴对称及其性(二)实际教学要求1.基本要求:①了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心的连线所成角彼此相等(等于旋转角)的性质;——什么是旋转?旋转的三要素是什么?旋转前、后图形之间对应元素具有哪些性质?②通过具体实例认识旋转, 能依据旋转前后的图形,指出旋转中心和旋转角及旋转前后的对应点;——怎样确定旋转中心与旋转角?③能够按要求作出简单平面图形旋转后的图形,利用旋转进行简单的图案设计;④通过具体实例认识中心对称,掌握作与已知图形中心对称的图形的方法,并能指出图形的对称中心;⑤了解中心对称图形的概念,能识别中心对称图形.了解线段、平行四边形是中心对称图形,了解中心对称与中心对称图形的区别.——旋转与中心对称之间具有怎样的联系?中心对称与中心对称图形之间具有怎样的关系?⑥了解关于原点对称的点的坐标之间的关系.2.略高要求:①探索它们的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质,旋转前、后的图形全等;②探索中心对称的基本性质,理解对应点所连线段被对称中心平分的性质;③能运用旋转的知识解决简单的计算问题.3.较高要求:①能运用旋转的知识进行图案设计;②能综合运用平移、对称、旋转等变换解决相对复杂的问题.(三)2015中考说明中对旋转的要求基本要求:认识平面图形关于旋转中心的旋转;理解旋转的基本性质;了解中心对称、中心对称图形的概念;理解中心对称的基本性质.略高要求:能画出平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.较高要求:运用旋转的有关内容解决有关问题.四、课时安排本章教学时间约需9课时, 具体分配如下(仅供参考):23.1图形的旋转2课时23.2中心对称2课时23.3课题学习图案设计1课时(补充)旋转的应用(计算与证明) 2- 3课时数学活动、小结1课时五、教学重点难点重点:1. 图形旋转的基本性质.2. 中心对称的基本性质.3. 两个点关于原点对称时, 它们坐标之间的关系.难点:1. 图形旋转的基本性质的归纳与运用.2. 中心对称的基本性质的归纳与运用.六、教学建议:1、注重与学生已学的图形变换的经验联系,类比学习.在本章学习前,学生已经学习了平移、轴对称,对图形变换已经有所认识,一般地,学习一种图形变换大致包括以下内容⑴通过具体实例认识图形变换; ⑵探索图形变换的性质;⑶作出一个图形变换后的图形⑷利用图形的变换进行图案设计;⑸用坐标表示图形变换.本章“旋转”的学习也是从以上几个方面展开的. 关于⑸,本章正文中只涉及一些特殊旋转用坐标表示的问题,如以原点为对称中心的中心对称的坐标表示,在数学活动和习题中则涉及用坐标表示以原点为旋转中心,旋转角为直角的旋转.2、注意揭示旋转概念的实际背景与广泛应用旋转与现实生活联系紧密, 为此, 在教学中应列举大量实例来使学生认识和感受它们, 增强学生对旋转的理解. 利用图形变换进行图案设计、解决实际问题既可以进一步促进学生对知识的理解,又加强了图形变换与现实生活的联系.3、注意培养动手操作的意识教材在探索旋转的性质、中心对称的性质以及如何设计图案最美观等问题时, 安排了转动硬纸板、转动三角板、转动模板等应用动手操作来探索结论的内容. 动手操作是解决问题的一种方法, 应给学生操作的时间和体验,加强学生主动进行动手操作的意识.4、注意安排对重要结论的探究教材在发现旋转的性质、中心对称的性质、关于原点对称的点的坐标特征、图形之间的变换关系、如何设计图案最美观、从坐标的角度揭示中心对称与轴对称的关系等问题中,教科书注意安排画图、分析、归纳等探究活动.教学中,应充分利用这些资源,进行开放式探究,重视培养学生观察、发现、比较、归纳、说理等综合能力,从而逐步提高学生的探究能力.5、注意概念之间的区别与联系⑴平移、旋转、轴对称学习旋转变换与学习平移、轴对称的过程基本一致, 主要都是研究变换过程中的不变量, 是研究几何问题、发现几何结论的有效工具. 平移、轴对称、旋转都是全等变换, 只改变图形的位置, 不改变图形的形状和大小. 由于变换方式的不同, 故变换前后具有各自的性质.⑵旋转与中心对称中心对称是一种特殊的旋转(旋转180°), 满足旋转的性质, 由旋转的性质可以得到中心对称性质⑶中心对称与轴对称教材中P74的数学活动1还从坐标的角度揭示了中心对称与轴对称的关系. 作点A关于x轴的对称点B,作点B关于y轴的对称点C,则点A与点C关于原点对称. 由此可知,将一点作上述两次轴对称变换相当于作出这个点关于原点的对称点.⑷两个图形成中心对称与中心对称图形6、注意用计算机辅助教学利用几何画板的旋转功能, 可以方便地作出一个图形绕某一点旋转某个角度后的图形.利用几何画板的度量功能, 可以发现旋转变换中的不变量; 关于原点对称的点的坐标特征. 进行图案设计时, 利用计算机, 可以让学生直观地看到改变旋转中心、旋转角会出现不同的效果. 同时利用计算机, 可以直观地看到图形运动变换的过程,对图形性质的探究和发现会很有帮助.7、培养学生良好的作图习惯,加强学生对图形的认识和理解.几何作图是本章教学过程中不可缺少的重要组成部分. 通过作图可以加深学生对旋转的认识和理解. 旋转的过程中, 实际上其运动轨迹均为圆, 利用圆规构造旋转变换的图形是学生应该掌握并熟练应用的. 在教学中,教师应当指导学生利用尺规和其它工具规范作图, 培养学生良好的作图习惯.本章主要作图有:OA'①按要求作旋转后的图形;②已知旋转前后的图形,确定旋转中心、旋转角;③作一个图形关于一点成中心对称的图形;④已知成中心对称的两个图形(或已知某一图形是中心对称图形), 确定对称中心;⑤在平面直角坐标系中, 作一个图形关于原点对称的图形.上述五种作图是本章的基本技能. 在教学中一定要让学生动手完成.8、从三个层面理解借助旋转移动图形:①从旋转的角度认识静态图形,发现图形关系,实际不需要移图;②图形按指令语言(题干)要求移动,解决在图形移动过程中形成的问题;③根据题目需要和图形特征有目的的旋转图形的某一部分,形成新的图形关系,从而将分散的条件集中,使知识与知识之间形成紧密的联系,产生新的信息,有利于解决问题。
中考数学压轴题分析:等腰直角三角形与动点轨迹问题
中考数学压轴题分析:等腰直⾓三⾓形与动点轨迹问题本⽂内容选⾃2021年郴州中考数学⼏何压轴题。
题⽬以等腰直⾓三⾓形的旋转为背景,涉及动点轨迹问题,以及等腰三⾓形的存在性问题。
题⽬难度⼀般,不过问法⽐较典型,值得研究。
【中考真题】(2021·郴州)如图1,在等腰直⾓三⾓形中,,点,分别为,的中点,为线段上⼀动点(不与点,重合),将线段绕点逆时针⽅向旋转得到,连接,.(1)证明:;(2)如图2,连接,,交于点.①证明:在点的运动过程中,总有;②若,当的长度为多少时为等腰三⾓形?【分析】(1)由旋转的性质得到边⾓等量关系,再根据SAS证明全等即可。
(2)①由图2可以发现△AEH≌△AFG,由于∠HAG=90°,若要证明∠HFG=90°,只需得到四边形AHFG对⾓互补即可。
由于全等可以得到∠AHE=∠AGF,结论易得。
②当△AGQ为等腰三⾓形时,需要进⾏分类讨论。
需要分3种情况,但是由于点H在线段EF上运动,且不与点E、F重合,那么只需分为两种情况讨论即可。
即类型⼀:当AQ=GQ时,∠AQG=90°。
还有类型⼆:当AG=GQ时,∠GAQ=∠GQA=75°。
【答案】(1)证明:如图1,由旋转得:,,,,,;(2)①证明:如图2,在等腰直⾓三⾓形中,,,点,分别为,的中点,是的中位线,,,,,,,,,,,;②分两种情况:如图3,时,,,,,,,,,,,四边形是正⽅形,,,,当的长度为时,为等腰三⾓形;如图4,当时,,,,,,当的长度为2时,为等腰三⾓形;综上,当的长度为或2时,为等腰三⾓形.。
等腰直角三角形旋转问题的分类探析
等腰直角三角形旋转问题的分类探析
等腰直角三角形旋转可以分为内旋转和外旋转这两种类型。
内旋转是指三角形以坐标原点为中心点,把三角形以某一角为基准,以顺时针或者逆时针
方向旋转,这种旋转属于位置之内不改变三角形的形状以及三个边的长度。
外旋转是指三角形不以坐标原点为中心点,而是将三角形的顶点向外或者向内三角形旋转,形成新的三角形。
这种方式可以改变三角形的形状,改变三个边的长度。
两种旋转方式会产生不同的解法。
因为长方形旋转中有三角形和它的对边,那么可以推导
出对应的三角形的边长。
这就是内旋转的解决方案。
外旋转的解决方案则更为复杂,因为
在旋转之后,三角形的形状和边长都发生了改变,需要先把改变后的三角形按照已有信息
重新拟合并进行外旋转解决方案,从而确定新三角形的顶点坐标。
从上面可以看出,等腰直角三角形旋转分为内旋转和外旋转两种类型,其中内旋转需要利
用已有信息,推导出三角形的边长;而外旋转需要把改变后的三角形按照已有信息重新拟
合并进行外旋转,从而确定新三角形的顶点坐标。
2022-2023学年初二数学第二学期培优专题04 旋转之角度问题
2022-2023学年初二数学第二学期培优专题04 旋转之角度问题【模型讲解】【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=11,求∠APB的度数.【解答】(1)如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP,∴∠PBP′=90°,BP′=BP=2,AP′=CP=3,在Rt△PBP′中,BP=BP′=2,∴∠BPP′=45°,根据勾股定理得,PP′=2BP=22,∵AP=1,∴AP2+PP′2=1+8=9,∵AP′2=32=9,∴AP2+PP′2=AP′2,∴△APP′是直角三角形,且∠APP′=90°,∴∠APB=∠APP′+∠BPP′=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP,∴∠PBP′=90°,BP′=BP=1,AP′=CP=11,在Rt△PBP′中,BP=BP′=1,∴∠BPP′=45°,根据勾股定理得,PP′=2BP=2,∵AP=3,∴AP2+PP′2=9+2=11,∵AP′2=(11)2=11,∴AP2+PP′2=AP′2,∴△APP′是直角三角形,且∠APP′=90°,∴∠APB=∠APP′﹣∠BPP′=90°﹣45°=45°.【模型演练】1.如图,已知点P 是等边三角形ABC 内一点,且6PA =,8PB =,10PC =(1)在图中画出将BPC △绕点B 逆时针旋转60︒后得到的BEA △.(2)求APB ∠的度数.2.如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将ABE 绕点B 顺时针旋转90︒到CBF 的位置,连接EF ,EF 的长为22.(1)求BF 的长;(2)若1,3AE EC ==,求AEB ∠的度数.3.一节数学课上,老师提出一个这样的问题:如图,点P 是正方形ABCD 内一点,P A =1,PB =2,PC =3,你能求出∠APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△PBC 绕点B 逆时针旋转90°,得到△P 'BA ,连接P P ',求出∠APB 的度数.思路二:将△APB 绕点B 顺时针旋转90°,得到△C P 'B ,连接P P ',求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程.4.已知△AOB ,将△AOB 绕O 点旋转到△COD 位置,使C 点落在OB 边上,连接AC 、BD .(1)若∠AOB =90°(如图1),小亮发现∠BAC =∠BDC ,请你证明这个结论;(2)若∠AOB =60°(如图2),小亮发现的结论是否仍然成立?说明理由;(3)若∠AOB 为任意角α(如图3),小亮发现的结论还成立吗?说明理由;5.如图1,在正方形ABCD 中,4=AD ,点E 是AD 的中点,以DE 为边作正方形DEFG ,连接AG CE 、.将正方形DEFG 绕点D 顺时针旋转,旋转角为()090αα︒<<︒.(1)如图2,在旋转过程中,判断AGD △与CED △是否全等,并说明理由;(2)如图3,延长CE 交直线AG 于点P .①求证:AG CP ⊥;②在旋转过程中,线段PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.6.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至''CE FD ,旋转角为α.(1)当点D 恰好落在边EF 上时,点D 到边DC 的距离为____________,旋转角α=____________︒;(2)如图2,G 为BC 的中点,且090α︒<<︒,求证:GD E D ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△能否全等?若能,直接写出旋转角α的值;若不能,说明理由.7.已知:在Rt ABC 中,90ABC ∠=︒,30BAC ∠=︒,将ABC 绕点A 顺时针旋转一定的角度α得到AED △,点B 、C 的对应点分别是E 、D .(1)如图1,若60α=︒时,连接BE ,求证:AB BE =;(2)如图2,当点E 恰好在AC 上时,求CDE ∠的度数;(3)如图3,点B 、C 的坐标分别是()0,0,()0,2,点Q 是线段AC 上的一个动点,点M 是线段AO 上的一个动点,是否存在这样的点Q 、M 使得CQM 为等腰三角形且AQM 为直角三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由.8.同题提出 如图(1),已知ABC ,90ABC ∠=︒,将边AB 绕点A 顺时针旋转α︒至AD 处,连接CD ,O 为CD 的中点,E 为边BC 中垂线上一点,EO AO ⊥.探究BEC ∠的值.问题探究 (1)先将问题特殊化.①如图(2),当180α=︒时,不存在确定的E 点,请说明理由;②如图(3),当D 在CA 的延长线上时,连接DE ,发现180BEC α∠=︒-︒,请证明这个结论; (2)再探究一般情形.如图(1),当90180α︒<<︒时,证明(1)②中的结论仍然成立.问题拓展 (3)当0360α<≤︒︒时,若AO OE =,请直接写出α的值.9.问题提出(1)如图,点M 、N 是直线l 外两点,在直线l 上找一点K ,使得MK NK +最小.问题探究(2)在等边三角形ABC 内有一点P ,且3PA =,4PB =,5PC =,求APB ∠度数的大小.问题解决(3)如图,矩形ABCD 是某公园的平面图,303AB =60BC =米,现需要在对角线BD 上修一凉亭E ,使得到公园出口A 、B ,C 的距离之和最小.问:是否存在这样的点E ?若存在,请画出点E 的位置,并求出EA EB EC ++的和的最小值;若不存在,请说明理由.10.【问题背景】如图1,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,连接EF ,我们可以通过把ABE 绕点A 逆时针旋转90°到ADG △,容易证得:EF BE DF =+.(1)【迁移应用】如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E 、F 分别在边BC 、CD 上,45EAF ∠=︒,若B ∠、D ∠都不是直角,且180B D ∠+∠=︒,试探究EF 、BE 、DF 之间的数量关系,并说明理由.(2)【联系拓展】如图3,在ABC 中,90BAC ∠=︒,AB AC =,点D 、E 均在边BC 上,且45DAE =︒∠.猜想BD 、DE 、EC 满足的等量关系(直接写出结论,不需要证明).11.【发现奥秘】(1)如图1,在等边三角形ABC 中,2AB =,点E 是ABC 内一点,连接,,AE EC BE ,分别将,AC EC 绕点C 顺时针旋转60°得到,DC FC ,连接,,AD DF EF .当B ,E ,F ,D 四个点满足______时,BE AE CE ++的值最小,最小值为_______.【解法探索】(2)如图2,在ABC 中,90,ACB AC BC ∠=︒=,点P 是ABC 内一点,连接,,PA PB PC ,请求出当PA PB PC ++的值最小时BCP ∠的度数,并直接写出此时::PA PB PC 的值.(提示:分别将,PC AC 绕点C 顺时针旋转60°得到,DC EC ,连接,,PD DE AE )【拓展应用】(3)在ABC 中,90,30,2ACB BAC BC ︒︒∠=∠==,点P 是ABC 内一点,连接,,PA PB PC ,直接写出当PA PB PC ++的值最小时,::PA PB PC 的值.12.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P 是正方形ABCD 内一点,P A =1,PB =2,PC =3.你能求出∠APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=11,求∠APB的度数.答案与解析【模型讲解】【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=11,求∠APB的度数.【解答】(1)如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP,∴∠PBP′=90°,BP′=BP=2,AP′=CP=3,在Rt△PBP′中,BP=BP′=2,∴∠BPP′=45°,根据勾股定理得,PP′=2BP=22,∵AP=1,∴AP2+PP′2=1+8=9,∵AP′2=32=9,∴AP2+PP′2=AP′2,∴△APP′是直角三角形,且∠APP′=90°,∴∠APB=∠APP′+∠BPP′=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△AB P′≌△CBP,∴∠PBP′=90°,BP′=BP=1,AP′=CP=11,在Rt△PBP′中,BP=BP′=1,∴∠BPP′=45°,根据勾股定理得,PP′=2BP=2,∵AP=3,∴AP2+PP′2=9+2=11,∵AP′2=(11)2=11,∴AP2+PP′2=AP′2,∴△APP′是直角三角形,且∠APP′=90°,∴∠APB=∠APP′﹣∠BPP′=90°﹣45°=45°.【模型演练】 1.如图,已知点P 是等边三角形ABC 内一点,且6PA =,8PB =,10PC =(1)在图中画出将BPC △绕点B 逆时针旋转60︒后得到的BEA △.(2)求APB ∠的度数. 【答案】(1)见解析(2)150︒【分析】(1)根据要求作出图形即可;(2)证明PBE △是等边三角形,利用勾股定理的逆定理证明90APE ∠=︒即可.【解答】(1)(1)如图,BEA △即为所求;(2)∵PBC EBA ≌,∴PB =EB ,60EBP =ABC =∠∠︒,∴PBE △为等边三角形,∴8PE =PB =,60EPB =∠︒,∵10AE =PC =,6PA =,∴222PE AP =AE +,∴APE 为直角三角形,∴90APE =∠︒,∴9060150APB ==∠︒+︒︒.【点评】本题主要考查的是全等三角形的性质、等边三角形的判定、勾股定理的逆定理的应用,证得PBE △为等边三角形、APE 为直角三角形是解题的关键.2.如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将ABE 绕点B 顺时针旋转90︒到CBF 的位置,连接EF ,EF 的长为22.(1)求BF 的长;(2)若1,3AE EC ==,求AEB ∠的度数. 【答案】(1)BF =2(2)∠AEB =135°【分析】(1)由旋转的性质得到△BEF 为等腰直角三角形,根据勾股定理即可求出BF 的长; (2)根据AE =1,可得1CF AE ==,根据勾股定理逆定理()2222122CF EF +=+=9=32=CE 2得出90EFC ∠=︒,根据等腰直角三角形可求45EFB ∠=︒,再求135BFC EFB EFC ∠=∠+∠=︒,根据旋转性质,可得135AEB BFC ∠=∠=︒即可.(1)解:∵△ABE 绕点B 顺时针旋转90°得到△CBF ,∴BE =BF ,∠EBF =∠ABC =90°∴△BEF 为等腰直角三角形,设 BE =BF =x ,则x 2+x 2=(22)2 ,解得: x =2;(2)解:∵△ABE 绕点B 顺时针旋转90°得到△CBF ,∴∠AEB = ∠BFC ,AE =CF =1,在△CEF 中,EF =22,CF =1,EC =3,∵CF 2+EF 2=12+(22)2=9,CE 2=9,∴CF 2+EF 2=CE 2,∴△CEF 为直角三角形,∠EFC =90°,∴∠BFC =∠BFE +∠CFE =135°,∴∠AEB =135°.【点评】本题考查正方形的性质,旋转性质,等腰直角三角形判定与性质,勾股定理逆定理,掌握,三角形旋转性质,等腰直角三角形判定与性质,勾股定理逆定理是解题关键.3.一节数学课上,老师提出一个这样的问题:如图,点P 是正方形ABCD 内一点,P A =1,PB =2,PC =3,你能求出∠APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△PBC 绕点B 逆时针旋转90°,得到△P 'BA ,连接P P ',求出∠APB 的度数.思路二:将△APB 绕点B 顺时针旋转90°,得到△C P 'B ,连接P P ',求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程. 【答案】∠APB =135°,解答过程见解析【分析】利用旋转法构造全等三角形以及直角三角形即可解决问题.【解答】解:思路一:如图1,将△BPC 绕点B 逆时针旋转90°,得到△B P 'A ,连接P P ',则△AB P '≌△CBP ,A P '=CP =3,B P '=BP =2,∠PB P '=90°∴∠BP P '=45°,根据勾股定理得,224422P P PB P B ''=+=+=,∵AP =1,∴22189AP P P '+=+=,又∵2239P A '==,∴222AP P P P A ''+=,∴△AP P '是直角三角形,且∠AP P '=90°,∴∠APB =∠AP P '+∠BP P '=90°+45°=135°.思路二:将△P AB 绕点B 顺时针旋转90°,得到△P 'CB ,连接P P ',∴P 'B =PB =2,P 'C =AP =1,∠P 'BP =90°,∠APB =∠B P 'C ,∴∠B P 'P =45°,224422P P PB P B ''=+=+=,∵PC =3,P 'C =1,∴222P C PP PC ''+=,∴∠P P 'C =90°,∴∠B P 'C =∠B P 'P +∠P P 'C =45°+90°=135°,∴∠APB =∠B P 'C =135°.【点评】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理等知识,利用旋转法构造全等三角形是解题的关键.4.已知△AOB ,将△AOB 绕O 点旋转到△COD 位置,使C 点落在OB 边上,连接AC 、BD .(1)若∠AOB =90°(如图1),小亮发现∠BAC =∠BDC ,请你证明这个结论;(2)若∠AOB =60°(如图2),小亮发现的结论是否仍然成立?说明理由;(3)若∠AOB 为任意角α(如图3),小亮发现的结论还成立吗?说明理由;【答案】(1)证明见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析.【分析】(1)根据旋转的性质得OA =OC ,OB =OD ,∠BAO =∠DCO ,根据等腰直角三角形的性质得∠CAO=∠OCA=45°,∠ODB=∠OBD=45°,根据BAC BAO CAO∠=∠-∠,BDC DCO DBO∠=∠-∠,即可得;(2)根据旋转的性质得OA=OC,OB=OD,∠BAO=∠DCO,即可得△ACO、△OBD是等边三角形,即可得∠OCA=∠OBD=∠OAC=60°,推出∠OCA=∠OBD=∠OAC=60°,根据∠BAC=∠BAO﹣∠CAO=∠BAO﹣60°,∠BDC=∠DCO﹣∠DBO=∠DCO﹣60°,即可得;(3)根据旋转的性质得OA=OC,OB=OD,∠BAO=∠DCO,推出∠CAO=∠ACO,∠OBD=∠ODB,根据三角形内角和定理和角之间的关系得∠CAO=∠OBD,根据∠BAC=∠BAO﹣∠CAO,∠BDC=∠DCO﹣∠DBO,即可得.【解答】(1)证明:∵将△AOB绕O点旋转到△COD位置,∴OA=OC,OB=OD,∠BAO=∠DCO,∵∠AOB=∠COD=90°,∴∠CAO=∠OCA=45°,∠ODB=∠OBD=45°,∴BAC BAO CAO∠=∠-∠,∠=∠-∠,BDC DCO DBO∠=∠;∴BAC BDC(2)仍成立,理由如下:解:将△AOB绕O点旋转到△COD位置,∴OA=OC,OB=OD,∠BAO=∠DCO,∵∠AOB=∠COD=60°,∴△ACO、△OBD是等边三角形,∴∠OCA=∠OBD=∠OAC=60°,∴∠BAC=∠BAO﹣∠CAO=∠BAO﹣60°,∠BDC=∠DCO﹣∠DBO=∠DCO﹣60°,∴∠BAC=∠BDC;(3)仍成立,理由如下:解:将△AOB绕O点旋转到△COD位置,∴OA=OC,OB=OD,∠BAO=∠DCO,∴∠CAO=∠ACO,∠OBD=∠ODB,∵∠CAO+∠ACO+∠AOB=180°,∠OBD +∠ODB +∠BOD =180°,∴∠CAO =∠OBD ,∵∠BAC =∠BAO ﹣∠CAO ,∠BDC =∠DCO ﹣∠DBO ,∵∠BAO =∠DCO ,∴∠BAC =∠BDC .【点评】本题考查了等腰直角三角形,三角形内角和定理,等边三角形的判定,旋转的性质,解题的关键是掌握这些知识点.5.如图1,在正方形ABCD 中,4=AD ,点E 是AD 的中点,以DE 为边作正方形DEFG ,连接AG CE 、.将正方形DEFG 绕点D 顺时针旋转,旋转角为()090αα︒<<︒.(1)如图2,在旋转过程中,判断AGD △与CED △是否全等,并说明理由;(2)如图3,延长CE 交直线AG 于点P .①求证:AG CP ⊥;②在旋转过程中,线段PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【答案】(1)C AGD ED ≅.理由见解析(2)①见解析;②存在,PC 的最大值为223+【解答】(1)如图2中,结论:C AGD ED ≅.证明:∵四边形EFGD 是正方形,∴DG DE =,90GDE ∠=︒,∵DA DC =,90ADC ∠=︒,∴GDE ADC ∠=∠,∴ADG CDE ∠=∠,∴C AGD ED ≅(SAS ).(2)①证明:如图3中,设AD 交PC 于O .∵C AGD ED ≅,∴DAG DCE ∠=∠,∵COD AOP ∠=∠,∴在APO 与COD 中90APO ADC ∠=∠=︒,∴CP AG ⊥.②存在∵90CPA ∠=︒,AC 是定值,∴当AP 最小时,PC 的值最大,∴当DE PC ⊥时,ACP ∠的值最小,此时PC 的值最大,此时点F 与P 重合,∵9042CED CD DE ∠===︒,,,∴22224223EC CD DE =-=-=,∵2EF DE ==, ∴223CP CE EF =+=+,∴PC 的最大值为223+.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会寻找特殊位置解决最值问题,属于中考压轴题. 6.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至''CE FD ,旋转角为α.(1)当点D 恰好落在边EF 上时,点D 到边DC 的距离为____________,旋转角α=____________︒;(2)如图2,G 为BC 的中点,且090α︒<<︒,求证:GD E D ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△能否全等?若能,直接写出旋转角α的值;若不能,说明理由.【答案】(1)1,30(2)见解析(3)能,α为135︒或315︒【分析】(1)根据矩形的性质可知点D 到边DC 的距离等于F 到边DC 的距离,即DF =1,可知点D 到边DC 的距离为1;根据旋转的性质得2CD CD '==,即可判定30CD E ,然后根据平行线的性质即可得到30CD E α'∠=∠=︒ ;(2)由G 为BC 中点可得CG =CE ,然后根据“SAS” 可判断E GCD CD ''≌△△,则GD E D ''=; (3)根据正方形的性质得CB =CD ,而CD CD '=,则 BCD '和DCD '为腰相等的两等腰三角形,当两顶角相等时它们全等,当 BCD '和DCD '为钝角三角 形时,可计算出α=135°,当 BCD '和DCD '为锐角三角形时,可计算得到α=315°.(1)解:由题意可知,当点D 恰好落在边EF 上时,点D 到边DC 的距离等于F 到边DC 的距离,即DF =1, ∴点D 到边DC 的距离为:1,∵CE =1,2CD '=,∴在Rt CED '△中,30CD E ,∵CD EF ∥,∴30CD E α'∠=∠=︒,故答案为:1,30;(2)证明:∵G 为BC 中点,∴1CG =,∴CG CE =,∵长方形CEFD 绕点C 顺时针旋转至CE F D ''',∴90,'∠=∠=︒''==D CE DCE CE CE CG ,∴90∠=∠+'︒='GCD DCE α,在GCD '△和E CD '△中,∵CD CD GCD DCE CG CE =⎧⎪∠=∠⎨⎪=''⎩' ∴(SAS)''△≌△GCD E CD ,∴GD E D ''=;(3)能,理由如下:∵四边形ABCD 为正方形,∴CB =CD ,∵CD CD '=,∴BCD '和DCD '为腰相等的两等腰三角形,当BCD DCD ''∠=∠时,BCD DCD ''≅,当BCD '和DCD '为钝角三角形时,则旋转角α=360901352︒-︒=︒, 当BCD '和DCD '为锐角三角形时,1452BCD DCD BCD ''∠=∠=∠=︒ , 则α=903603152︒︒-=︒, 即旋转角α的值为135°或315°时,BCD '和DCD '全等.【点评】此题属于四边形的综合题,考查了旋转的性质、正方形的性质、矩形的性质以及三角形全等的判定与性质,注意掌握旋转前后图形的对应关系是解此题的关键.7.已知:在Rt ABC 中,90ABC ∠=︒,30BAC ∠=︒,将ABC 绕点A 顺时针旋转一定的角度α得到AED △,点B 、C 的对应点分别是E 、D .(1)如图1,若60α=︒时,连接BE ,求证:AB BE =;(2)如图2,当点E 恰好在AC 上时,求CDE ∠的度数;(3)如图3,点B 、C 的坐标分别是()0,0,()0,2,点Q 是线段AC 上的一个动点,点M 是线段AO 上的一个动点,是否存在这样的点Q 、M 使得CQM 为等腰三角形且AQM 为直角三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)见解析;(2)15°;(3)存在,23,03M ⎛⎫ ⎪⎝⎭或()423,0- 【分析】(1)由旋转的性质可知, ABE 是等边三角形,即可求证;(2)由旋转的性质可知,CA AD =,从而()118030752ACD ADC ∠=∠=︒-︒=︒,即可求解; (3)分两种情况:若90QMA ∠=︒,CQ MQ =时;若90AQM ∠=︒,CQ QM =时,分别求解即可.【解答】(1)证明:由旋转的性质可知60BAE α∠==︒,BA BE =,∴ABE 是等边三角形,∴AB BE =.(2)解:∵90ABC ∠=︒,30BAC ∠=︒,∴60ACB ∠=︒,∵ABC 绕点A 顺时针旋转α得到AED △,点E 恰好在AC 上,∴CA AD =,30EAD BAC ︒∠=∠=,∴()118030752ACD ADC ∠=∠=︒-︒=︒, ∵60EDA ACB ∠=∠=︒,∴15CDE ADC EDA ∠=∠-∠=︒.(3)存在,理由如下:∵点B 、C 的坐标分别是()0,0,()0,2,∴2BC =,∵90ABC ∠=︒,30BAC ∠=︒,∴24AC BC ==,223AB AC BC 2=-=,如图1,若90QMA ∠=︒,CQ MQ =时,图1设CQ QM x ==,∵30CAB ∠=︒,∴22==AQ QM x ,223=-=AM AQ QM x ,∴234=+=+==AC AQ CQ x x x ,∴43x =,∴433AM =, ∴43232333BM AB AM =-=-=, ∴点23,03M ⎛⎫ ⎪ ⎪⎝⎭.如图2,若90AQM ∠=︒,CQ QM =时,图2设CQ QM x ==,30CAB ∠=︒,∴22==AM QM x ,223=-=AQ AM QM x ,∴34AC x x =+=,∴232x =-,∴434AM =-,∴()23434423BM =--=-,∴点()423,0M -; 综上所述:23,03M ⎛⎫ ⎪⎝⎭或()423,0-. 【点评】本题主要考查了图形的变换——旋转,等边三角形的判定和性质,等腰三角形的性质,勾股定理,能够利用旋转的性质和分类讨论的思想是解题的关键.8.同题提出 如图(1),已知ABC ,90ABC ∠=︒,将边AB 绕点A 顺时针旋转α︒至AD 处,连接CD ,O 为CD 的中点,E 为边BC 中垂线上一点,EO AO ⊥.探究BEC ∠的值.问题探究 (1)先将问题特殊化.①如图(2),当180α=︒时,不存在确定的E 点,请说明理由;②如图(3),当D 在CA 的延长线上时,连接DE ,发现180BEC α∠=︒-︒,请证明这个结论; (2)再探究一般情形.如图(1),当90180α︒<<︒时,证明(1)②中的结论仍然成立.问题拓展 (3)当0360α<≤︒︒时,若AO OE =,请直接写出α的值. 【答案】(1)①见解析.②见解析;(2)180BEC α∠=︒-︒.(3)90︒或270︒.【分析】(1)①当180α=︒时,在图中找到BC 的中垂线,看能否满足EO AO ⊥即可;②先证明DEA △≌BEA △,根据D ABE ∠=∠,得到BAC BEC ∠=∠,最后利用180DAB BAC ∠+∠=︒,即可证明结论;(2)先证明出AOD FOC ≅△△,得到AE FE =,再证明出ABE CFE ≅△△,通过性质可证明出AOD FOC ≅△△,得到D DCF ∠=∠,根据AD GC ∥,得到AGC DAB α∠=∠=︒,最后根据180AGC BGC ∠+∠=︒,即可得证;(3)仿照(2)的过程依次证明AOE FOE ≅,ABE CFE ≅△△,再通过角的转换即可得到答案.【解答】解:(1)①当180α=︒时,AO 为DBC △的中位线,经过O 点的AO 的垂线与BC 的中垂线重合,∴此时E 点在BC 的中垂线上任何位置都能满足EO AO ⊥,故不存在确定的E 点.②证明:连接AE .∵OE 垂直平分DC ,∴DE EC =,∴D ECD ∠=∠.∵E 在BC 的中垂线上,∴BE CE =,∴DE BE =.∵AD AB =,∴DEA △≌BEA △.∴D ABE ∠=∠.∴ABE ACE =∠∠.∴BAC BEC ∠=∠.∵180DAB BAC ∠+∠=︒,∴180BEC α∠=︒-︒.(2)延长AO 至F ,使得OF AO =,连接AE ,EF .连接CF 并延长交AB 于点G .∵OD OC =,AOD FOC ∠=∠,∴AOD FOC ≅△△.∴FC AD AB ==.∵OE AF ⊥,AO OF =,∴AE FE =.又∵BE CE =,∴ABE CFE ≅△△.∴ABE FCE ∠=∠,∴BGC BEC ∠=∠.∵AOD FOC ≅△△,∴D DCF ∠=∠.∴AD GC ∥.∴AGC DAB α∠=∠=︒,∵180AGC BGC ∠+∠=︒,∴180BEC α∠=︒-︒.(3)延长AO 至F ,使得OF AO =,连接EF 、CF 并延长交AB 于点G ,连接AE ,∵AO OE ⊥,AO OE =,∴45EAO OEA ∠=∠=︒,90AOE ∠=︒,∴()AOE FOE SAS ≅,∴45OEF ∠=︒,∵AE EF ⊥,由(2)可得()ABE CFE SAS ≅,∴AEB CEF ∠=∠,90BEC AEF ∠=∠=︒,∴18090BEC α∠=︒-=︒,∴90α=︒,当180360α︒<<︒时,延长AO 至F ,使得OF AO =,连接EF 、CF ,同理可得90BEC ∠=︒,∵36090BAD α∠=︒-=︒∴270α=︒,综上所述,α的值为90︒或270︒.【点评】本题考查三角形旋转的综合问题、全等三角形的性质和判定及辅助线作图,解题关键是作出正确的辅助线并找出三角形全等.9.问题提出(1)如图,点M 、N 是直线l 外两点,在直线l 上找一点K ,使得MK NK +最小.问题探究(2)在等边三角形ABC 内有一点P ,且3PA =,4PB =,5PC =,求APB ∠度数的大小.问题解决(3)如图,矩形ABCD 是某公园的平面图,303AB =米,60BC =米,现需要在对角线BD 上修一凉亭E ,使得到公园出口A 、B ,C 的距离之和最小.问:是否存在这样的点E ?若存在,请画出点E 的位置,并求出EA EB EC ++的和的最小值;若不存在,请说明理由.【答案】(1)见解析(2)150︒(3)对角线BD 上不存在这样的点E ,使得到公园出口A 、B ,C 的距离之和最小,理由见解析【分析】(1)根据两点间线段距离最短,连接点MN ,与直线l 交于点K ,点K 即为所求.;(2)把APB △绕点A 逆时针旋转60︒得到AP C '△,由旋转的性质可知APP '是等边三角形,从而得到60AP P ∠'=︒,由勾股定理逆定理可知90PP C ∠'=︒,从而求得150AP C ∠'=︒,即可求解;(3)连接AC ,设在ABC 内一点M ,把ABM 绕点B 逆时针旋转60︒得到GBM ',,由旋转的性质,M BM '、GAB △是等边三角形,根据两点间线段距离最短,可得当MA MB MC GC ++=时最短,从而得到MA MB MC ++最小值为BF 的长,点M 为CG 、BF 的交点,即可求解.【解答】(1)解:如图1,连接点MN ,与直线l 交于点K ,点K 即为所求.(2)解:如图2,把APB △绕点A 逆时针旋转60︒得到AP C '△,由旋转的性质,3P A PA '==,4P C PB '==,60PAP ∠'=︒,APP '∴是等边三角形,3PP PA '∴==,60AP P ∠'=︒,22223425PP P C '+'=+=,22525PC ==,222PP P C PC ∴'+'=,90PP C ∴∠'=︒,6090150AP C AP P PP C ∴∠'=∠'+∠'=︒+︒=︒;故150APB AP C ∠=∠'=︒;(3)解:如图,连接AC ,设在ABC 内一点M ,把ABM 绕点B 逆时针旋转60︒得到GBM ',由旋转的性质,303GB AB ==,BM BM '=,GM AM =,GB AB =,60M BM '∠=︒,60GBA ∠=︒, ∴M BM '、GAB △是等边三角形,BM MM '∴=,MA MB MC GM MM MC '∴++='++,根据两点间线段距离最短得:当MA MB MC GC ++=时最短,GAB 是等边三角形,∴以AC 为一边作等边三角形ACF ,MA MB MC ∴++最小值为BF 的长,此时点M 在线段BF 上,∴点M 为CG 、BF 的交点.若点M 与点E 重合,即M 在对角线BD 上,则点M 为BF 与BD 的交点,此时点M (E )与点B 重合,显然不符合题意,故点M 不在对角线BD 上,即对角线BD 上不存在这样的点E ,使得到公园出口A 、B ,C 的距离之和最小.【点评】本题是四边形综合题,主要考查了旋转知识、三角形全等、特殊角直角三角形、等边三角形的性质和勾股定理,熟练掌握旋转知识构建全等三角形是解题的关键.10.【问题背景】如图1,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,连接EF ,我们可以通过把ABE 绕点A 逆时针旋转90°到ADG △,容易证得:EF BE DF =+.(1)【迁移应用】如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E 、F 分别在边BC 、CD 上,45EAF ∠=︒,若B ∠、D ∠都不是直角,且180B D ∠+∠=︒,试探究EF 、BE 、DF 之间的数量关系,并说明理由.(2)【联系拓展】如图3,在ABC 中,90BAC ∠=︒,AB AC =,点D 、E 均在边BC 上,且45DAE =︒∠.猜想BD 、DE 、EC 满足的等量关系(直接写出结论,不需要证明). 【答案】(1)EF BE DF =+,理由见解析(2)222DE BD EC =+【分析】(1)把ABE 绕点A 逆时针旋转90°到ADG △,证明()AFG AFE SAS △≌△,进而即可得到结论;(2)把ACE △绕点A 逆时针旋转90°到ABF △,连接DF ,证明()ADF ADE SAS ≌,从而得90DBF ABF ABC ∠=∠+∠=,进而即可得到结论.(1)解:数量关系是EF BE DF =+,理由如下:由题意得,AB AD =,90BAD ∠=︒,把ABE 绕点A 逆时针旋转90°到ADG △,如图2所示,则DAG BAE ∠∠=,ADG B ∠=∠,AG AE =,∵180B ADC ∠+∠=︒,∴180ADG ADC ∠+∠=︒,∴点F 、D 、G 在同一条直线上;∵45EAF ∠=︒,∴904545GAF DAG DAF BAE DAF ∠=∠+∠=∠+∠=︒-︒=︒,∴GAF EAF ∠=∠,∵AF AF =,∴()AFG AFE SAS △≌△,∴EF GF DG DF BE DF ==+=+.(2)解:数量关系是222DE BD EC =+,理由如下:把ACE △绕点A 逆时针旋转90°到ABF △,连接DF ,如图3所示,∴ABF ACE ≌△△,90FAE ∠=,∴FAB CAE ∠=∠,BF CE =,ABF C ∠=∠,∴90FAE BAC ∠=∠=,∵45DAE ∠=,∴904545FAD ∠=-=,∴45FAD DAE ∠=∠=,在ADF △和ADE 中,AF AE FAD DAE AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()ADF ADE SAS ≌,∴DF =DE ,∵90BAC ∠=,AB =AC ,∴45ABC C ∠=∠=,∴45C ABF ∠=∠=,∴90DBF ABF ABC ∠=∠+∠=,∴BDF 是直角三角形,∴222DF BD BF =+,∴222DE BD EC =+.【点评】本题主要考查了全等三角形的性质和判定,勾股定理,图形旋转的性质等知识,关键是正确画出图形.11.【发现奥秘】(1)如图1,在等边三角形ABC 中,2AB =,点E 是ABC 内一点,连接,,AE EC BE ,分别将,AC EC 绕点C 顺时针旋转60°得到,DC FC ,连接,,AD DF EF .当B ,E ,F ,D 四个点满足______时,BE AE CE ++的值最小,最小值为_______.【解法探索】(2)如图2,在ABC 中,90,ACB AC BC ∠=︒=,点P 是ABC 内一点,连接,,PA PB PC ,请求出当PA PB PC ++的值最小时BCP ∠的度数,并直接写出此时::PA PB PC 的值.(提示:分别将,PC AC 绕点C 顺时针旋转60°得到,DC EC ,连接,,PD DE AE )【拓展应用】(3)在ABC 中,90,30,2ACB BAC BC ︒︒∠=∠==,点P 是ABC 内一点,连接,,PA PB PC ,直接写出当PA PB PC ++的值最小时,::PA PB PC 的值.【答案】(1)四点共线,23(2)PA PB PC ++的值最小时45BCP ∠=,此时()::2:2:31PA PB PC =- (3)::4:2:1PA PB PC =【分析】(1)证明AEC DFC 得到AE DF =进而得到B ,E ,F ,D 四个点满足四点共线时,BE AE CE ++的值最小为BD ,再由等边△ABC 及2AB =求出BD 的长;(2)同(1)中思路证明()APC EDC SAS △≌△得到PA DE =,当B ,P ,D ,E 四点共线时,PA PB PC ++的值最小为BE ;进一步得到150BCE ∠=︒,BC CE =即可求出45BCP ∠=,再过点C 作CF AB ⊥于点F ,利用30FBP 即可求出::PA PB PC 的值;(3)同(2)中思路即可求解.(1)解:由旋转的性质,可知,,60CE CF CA CD ECFACD , 60ACE ECF ACF ACF ,60DCF ACDACF ACF , ∴ACE DCF ∠=∠,∴()ACE DCF SAS △≌△,∴AE DF =,且EC EF =,∴BE AE CE BE DF EF ,∴当B ,E ,F ,D 四点共线时,BE DF EF ++的值最小为BD ,如图所示:连接AC ,设AC 与BD 交于点O ,∵ABCD 为菱形,∴AC ⊥BD ,∵△ABC 为等边三角形,∴∠OCB =60°,∴332322BO BC ,此时223BD BO ==.(2)解:由旋转的性质,可知,,60PC CD AC CE PCD ACE ==∠=∠=︒, 60PCA PCD ACD ACD ,60DCE ACE ACD ACD ,∴PCA DCE ,∴()APC EDC SAS △≌△,∴PA DE =,且PDC ACE △,△均为等边三角形,PC PD =, ∴PA PB PC DE PB PD ++=++,∴当B ,P ,D ,E 四点共线时,PA PB PC ++的值最小,如图1所示.∵PDC ACE △,△均为等边三角形, ∴1209060150BPC CDE CPA BCE ,,∵,AC BC AC CE ==,∴BC CE =.∴15PBC DEC ∠=∠=︒,∴45BCP ∠=︒,∴当B ,P ,D ,E 四点共线时,PA PB PC ++的值最小,此时45BCP ∠=︒; 过点C 作CF AB ⊥于点F ,如图1所示.∵,PB PA CB CA ,∴CP 是线段AB 的中垂线,∴C ,P ,F 三点共线,45FBC FAC ∠=∠=︒∴,30PA PB FBP FAP =∠=∠=︒,设1PF =,则2,3PB PA CF BF ====.∴31PC =-,∴::2:2:(31)PA PB PC =-.(3)解:分别将,PC AC 绕点C 顺时针旋转60°得到,DC EC ,连接,,PD DE AE ,过点E 作EF BC ⊥,交BC 的延长线于点F ,如图2所示:由(2)可知,当B ,P ,D ,E 四点共线时,PA PB PC ++的值最小,此时120BPC CDE CPA ∠=∠=∠=︒, 由(2)知:9060150APC EDC BCE △≌△,,∴30ECF ∠=︒,∵2BC =,∴23AC CE ==,∴3,3EF CF ==.∴235BF =+=,∴在Rt BEF △中由勾股定理得到22225(3)27BE BF EF =+=+=,过点C 作CG BE ⊥,垂足为G ,如图2所示. ∵1122BCE S BC EF BE CG =⨯⨯=⨯⨯△, ∴11232722CG ⨯=⨯⨯⨯, ∴217CG =, ∴3217377PG DG , ∴在Rt BCG 中由勾股定理得到22222157277BG BC CG , ∴27577472,7777PD PC PG BP BG PG ====-=-=, ∴47278727777PD DE BE BP PD ==--=--=, ∴::4:2:1PA PB PC =.【点评】本题考察了图形旋转的性质、三角形全等的判定方法、勾股定理求线段长等知识点,本题综合性强,难度大,需要根据题意做出合适的辅助线,属于中考常考压轴题.。
有关等腰三角形的探究题解析
即
上P Ⅳ;
:
( 2 ) 成立. 设A E与 C相 交于点 D , ‘ . ‘ △ C B : 和 △E c D是等腰直角三角形, :
’ . . .
二、 变换探究等腰三角形
例2 ( 2 0 1 6年丹 东 中考 )如 图 1 ①, AAB C与 △C D E是 等腰 直 角三 角形 ,直 角边 AC 、 C D在 同一 条直 线上 , 点 、 Ⅳ分 别是 斜 边 A B、 D E的 中点 , 点 P为 AD的 中点 , 连接 A E、
・ ‘ . ‘ 一 . .
、
‘
A. 1 3c m
B. 1 4 e m
.
.
△ AC E △BC D( S AS ) ,
‘ . .
C .1 3 e m或 1 4 c m D . 以上都 不 对 点 、 Ⅳ分别是斜 边 A B 、 D E的 中点 , 点 解: 当4 c m 为等 腰 三 角形 的腰 时 , 三 角形 P为 D 的 中 点 , 的三边 长分别是 4 c m、 4 c m、 5 c m, 符 合 三 角 形 的 1 1 P M = B D. P N =÷ A E, . P M= P N, 三 边 关 系 . 周长 为 1 3 c m;
= L BDC , L
C ・ 一 .
+ BD C=9 0。 . M PN=9 0 。 ,
点评 : 由于等腰 三角形边或 角的不确定性 , 在没有 明确哪 两条边是腰 、 哪 两个角是底 角时,
就 需要 进 行 分 类 , 一般 分 类 时 可 以按 边 分 类 .
等腰( j ) 三 角形 是最 常见 的特殊 三角 形 , 考试 中常 常 以它 为载 体 ,与其 他 知识 结 合 编 制成综 合 性较 强 的问 题 ,一是 将 它 与 图形 的 轴对 称 、 旋 转 与变 换 相结 合 , 探 究 数形 结 合 与 分类讨论问题 ; 二是将它与反 比例函数、 二次 阐① 嘲③ 嗣 ③ 函数等函数结合 , 探究 函数 、 方程思想的应用 问题 ; 三是 将 它与 运 动 问题结 合 , 涉 及三 角 形 图 1 全等 、 三 角形 相 似 、 特 殊 四边 形等 知 识 , 探 究 ( 3 )若 图 l ② 中的等腰直角三角形变成 等腰 三角 形 的存 在性 问题 . 有关 等腰 三 角形 直 角 三 角形 , 使B C = k AC , ∞= ∞, 如图 1 ③, 的综 合题 是 中考必 考 的一 个 热点 问题 ,等腰 写 出 朋 与 P Ⅳ的数 量关 系 , 并 加 以证 明. 解: ( 1 ) P M= P N, 上P Ⅳ, 理 由如下 : 三角 形存 在性 问题 的重点 和难 点 在 于应 用分 △AC B和 △E C D是 等 腰 直 角三 角 形 , 类 思想 和数 形结 合 的思想 准 确地进 行分 类 . C=BC, EC=CD 。 A( = / EC / 3 I =9 0 。 . 等腰 三角形中体现 的分类思 想 f A C C 例 1( 2 0 1 6年湘 西 州 中考 ) 一 个 等 腰 三 在 △A 和 △日 C D中, { A = EC D= 9 c } o , 角 形 的一边 长 为 4 c m, 另一 边 长 为 5 c m, 那 么 I C吕 D 这个等腰三角形 的周长是 ( ) .
诺把一个斜边长为两厘米 的 等腰直角三角形绕其直边所在直线旋转一周 则所形成的
诺把一个斜边长为两厘米的等腰直角三角形绕其直边所在
直线旋转一周则所形成的
根据给出条件,当一个斜边长为两厘米的等腰直角三角形绕其直边所
在直线旋转一周时,将会形成一个椭圆。
它的形状就如一个甜甜圈,
中间有一个小的开口,两边的斜边自然形成了两个半圆形。
首先,以旋转一周的等腰直角三角形的右直角为中心,开始旋转,右
上角先向右转,直转到与初始时位置重合,由于已完成一个周期,三
角形也就完成了一周的旋转。
在旋转的过程中,等腰直角三角形的斜边一直沿着旋转的方向,改变
着弧度的方向,这样三角形的边会一点点伸长,最后在原来的基础上,斜边就变成了一条曲线,并且恰好形成了一个圆弧。
当旋转的距离等于斜边的长度,也就完成了一周的旋转,如此,在原
等腰直角三角形的基础上,斜边就形成了一个圆弧形,两段直线也就
形成了一整个椭圆形,这样就将一个斜边长为两厘米的等腰直角三角
形绕其直边所在直线旋转一周,所形成的椭圆就完成了。
通过这个椭圆形,我们可以看出,斜边绕过360度旋转,椭圆形变化
原来的角度,再加上原本的两条直线,使原本具有等边角的三角形变
成了一个椭圆形,椭圆轮廓是由旋转的三角形的斜边和两条原本的直
线组成的,这也表明了旋转三角形的重要性,它是形成椭圆的关键。
专题03 三角形中的旋转综合问题(解析版)
专题03 三角形中的旋转综合问题1、如图,点P是∠MON内的一点,过点P作PA⊥OM于点A,PB⊥ON于点B,且OA=OB.(1)求证:PA=PB;(2)如图②,点C是射线AM上一点,点D是线段OB上一点,且∠CPD+∠MON=180°,若OC=8,OD=5.求线段OA的长.(3)如图③,若∠MON=60°,将PB绕点P以每秒2°的速度顺时针旋转,12秒后,PA开始绕点P以每秒10°的速度顺时针旋转,PA旋转270°后停止,此时PB也随之停止旋转.旋转过程中,PA所在直线与OM所在直线的交点记为G,PB所在直线与ON所在直线的交点记为H.问PB旋转几秒时,PG=PH?(1)证明:如图①中,连接OP.∵PA⊥OM,PB⊥ON,∴∠OAP=∠OBP=90°,∵OA=OB,OP=OP,∴Rt△OPA≌Rt△OPB(HL),∴PA=PB.(2)如图②中,∵∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠CPD+∠AOB=180°,∴∠CPD=∠APB,∴∠APC=∠BPD,∵PA=PB,∠PAC=∠PBD=90°,∴△PAC≌△PBD(ASA),∴AC=BD,∴OC+OD=OA+AC+OB﹣BD=2OA=13,∴OA=6.5.(3)设点P的旋转时间为t秒.①当0<t<12时,不存在.②当12≤t<21时,如图3﹣1中,∠APG=(10t﹣120)°,∠BPH=2t°,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣120=2t,t=15.③当21≤t<30时,如图3﹣2中,∠APG=180°﹣∠APA′=180°﹣(10t﹣120)°=(300﹣10t)°,∠BPH =2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时300﹣10t=2t,t=25.④当30≤t<39时,如图3﹣3中,∠APG=(10t﹣300)°,∠BPH=2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣300=2t,t=37.5,综上所述,满足条件的t的值为15s或25s或37.5s.2、(1)问题发现:如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究:如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,CD=2OD,AB=2OB,连接AC交BD的延长线于点M.请求出的值及∠AMB的度数,并说明理由;(3)拓展延伸:在(2)的条件下,将△OCD绕点O在平面内旋转,AC、BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=50°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=50°,∴∠OAB+∠ABO=130°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣130°=50°,故答案为:①1;②50°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DOC=90°,CD=2DO,∴∠DCO=30°,∴=tan30°=,同理得:=tan30°=,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图1,同(2)得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴,整理得:x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,∴x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图2,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴+(x+2)2=,整理得x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.3、已知在平面直角坐标系中,A(a,0),B(b,0)、C(0,c),其中a、b、c满足=0.(1)求△ABC的面积;(2)将线段BC向右平移至AD(点B对应点A,点C对应点D).①当点M为x轴上任意点(不与原点重合),ME、CF分别平分∠CMO与∠DCM,若∠AME=α,∠DCF=β,试用含α的代数式表示β;②点P为线段CD上一点(不与点C、D重合),P的横坐标为t,连接BP、AC,BP交y轴于点E,交AC于点Q,若△CQE与△PQA的面积分别为S1,S2,试用含t的代数式表示S2﹣S1.解:(1)如图1中,∵=0,又∵≥0,|b+2|≥0,(c﹣4)2≥0,∴a=5,b=﹣2,c=4,∴A(5,0),B(﹣2,0),C(0,4),∴OA=5,OB=2,OC=4,∴AB=OB+OA=2+5=7,∴S△ABC=•AB•OC=×7×4=14.(2)①如图2﹣1中,当点E在射线OB上时,α+β=90°理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∵∠DCF=∠DCM=β,∠AME=∠AMC=α,∴α+β=90°.当点M在线段AB上时,如图2﹣2中,α+β=180°.理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∠DCM=∠CMB,∵∠DCM=2∠DCF=2β,∠FCM=∠DCM,∠EMC=∠CMB,∴∠FCM=∠EMC=β,∴∠AMC=180°﹣2β,∵∠AME=∠AMC+∠EMC,∴α=β+180°﹣2β,∴α+β=180°.当点M在线段OA的延长线上时,如图2﹣3中,α=β.理由::∵CD∥AM,∴∠DCM=∠CMB,∵∠DCF=∠DCM,∠AME=∠CMB,∴∠DCF=∠AME,∴α=β.②如图3中,设E(0,m).由题意:P(t,4),A(5,0),B(﹣2,0),C(0,4),∴S△BCP=S△BCE+S△ECP,∴×t×4=×(4﹣m)×2+×(4﹣m)×t,∴m=,∴S2﹣S1=S△PCA﹣S△PCE′=×t×4﹣×t×(4﹣)=.4、如图,在平面直角坐标系中,O为原点,点A(0,4),B(﹣4,0),C(4,0).(Ⅰ)如图①,若∠BAD=15°,AD=3,求点D的坐标;(Ⅱ)如图②,AD=2,将△ABD绕点A逆时针方向旋转得到△ACE,点B,D的对应点分别为C,E.连接DE,BD的延长线与CE相交于点F.①求DE的长;②证明:BF⊥CE.(Ⅲ)如图③,将(Ⅱ)中的△ADE绕点A在平面内旋转一周,在旋转过程中点D,E的对应点分别为D1,E1,点N,P分别为D1E1,D1C的中点,请直接写出△OPN面积S的变化范围.解:(Ⅰ)∵OA=OB=4,∠AOB=90°,∴∠OAB=∠ABO=45°.∴∠DAO=∠OAB﹣∠DAB=30°.如图①中,过点D作DG⊥OA,垂足为G.在Rt△ADG中,∠DAG=30°,∴,,∴,∴点D的坐标为.(Ⅱ)①如图②中,∵∠DAE=∠BAC=90°,AD=AE=2,∴在Rt△DAE中,,②∵OA=OB=OC=4,∠AOB=∠AOC=90°,∴∠OAB=∠ABO=∠ACO=∠OAC=45°,∴∠BAC=90°,∵△ABD旋转得到△ACE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△BFC中,则有∠FBC+∠FCB=∠FBC+∠BCA+∠ACE=∠FBC+∠BCA+∠ABD=∠ABC+∠BCA=90°,∴BF⊥CE.(Ⅲ)如图③中,∵OB=OC,PC=PD1,NE1=ND1,∴OP=BD1,PN=E1C,OP∥BD1,PN∥CE1∵BD1⊥E1C,BD1=E1C,∴OP⊥PN,OP=PN,∴△OPN是等腰直角三角形,∵AB=4,AD1=2,∴4﹣2≤BD1≤4+2,∴2﹣1≤OP≤2+1,∴△OPN面积的最小值=(2﹣1)2=﹣2,△OPN的面积的最大值=+2,∴.5、问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴BH=CD=2,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∴==,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.6、已知△ABC是等边三角形,D是BC上一点,△ABD绕点A逆时针旋转到△ACE的位置.(1)如图,旋转中心是,∠DAE=°;(2)如图,如果M是AB的中点,那么经过上述旋转后,点M转动了度;(3)如果点D为BC边上的三等分点,且△ABD的面积为3,那么四边形ADCE的面积为.解:(1)∵△ABC为等边三角形,∴∠BAC=60°∵△ABD绕点A逆时针旋转到△ACE的位置,∴旋转中心是点A,∠DAE=∠BAC=60°;(2)∵AB和AC为对应边,∴经过上述旋转后,点M转到了AC的中点位置,如图,∴∠MAM′=60°,∴点M转动了60°;(3)∵△ABD绕点A逆时针旋转到△ACE的位置,∴△ABD≌△ACE,∵BD=BC,或BD=BC,∴CD=2BD,或CD=BD,∴S△ABC=3S△ABD=3×3=9,或S△ABC=S△ABD=3×=,∴S四边形ADCE=S△ABC=9或.故答案为点A,60;60;9或.7、如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.8、如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)结论:AE=BD,AE⊥BD.理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,∴EH=DH,CH=DE=5,在Rt△ACH中,∵AC=13,CH=5,∴AH==12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH﹣DH=12﹣5=7,综上所述,满足条件的AD的值为17或7.9、如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.(1)问题发现当α=0°时,=;β=°.(2)拓展探究试判断:当0°≤α<360°时,和β的大小有无变化?请仅就图2的情形给出证明.(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.解:(1)如图1中,∵∠B=90°,BA=BC,∴∠A=45°,AC=AB,∵点D、E分别是边AB、AC的中点,∴BD=AB,EC=AC,∴=,β=45°,故答案为,45°.(2)结论:和β的大小无变化.理由:如图2中,延长CE交AB于点O,交BD于K.∵AE=AD,AC=AB,∴==,∴=,∵∠DAE=∠BAC,∴∠DAB=∠EAC,∴△DAB∽△EAC,∴==,∠OBK=∠OCA,∵∠BOK=∠COA,∠BKO=∠CAO=45°,∴和β的大小无变化.(3)当点E在线段AB上时,S△BCE=×4×(4﹣2)=8﹣4,当点E在线段BA的延长线上时,S△BCE=×4×(4+2)=8+4.综上所述,△BCE的面积为8﹣4或8+4.10、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.11、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.解:(1)如图1中,连接EC,BD.结论:BD=CE.理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS).∴BD=CE.(2)如图2中,由题意:∠CAE=45°,∵AC=AB,∠CAB=90°,∴∠ACB=∠ABC=45°,∴AE∥BC.∴△CBE的面积与△ABC的面积相等.∵△ABC的面积为4.5,∴△CBE的面积4.5.(3)如图3中,延长AM到N,使得MN=AM,连接CN,DM.∵AM=MN,CM=MD,∴四边形ADNC是平行四边形,∴AD=CN=1,∵AC=3,∴3﹣1≤AN≤3+1,∴2≤2AM≤4,∴1≤AM≤2,∴AM的最小值为1.故答案为1.12、综合与实践问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题(1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;(4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)解:(1)如图①中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.(3)如图③中,作CH⊥AD于H.∵∴AC=CD=AB=2,∵B,A,E共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A,E,D,C四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD,CH⊥AD,∴AH=DH=AC•cos30°=,∴AD=2,∴BD===2.(4)如图①中,设DE交BC于T.因为含有30°的直角三角形的三边之比为1::2,由(1)可知△BDT,△DCT,△ECT都是含有30°的直角三角形,∴△BDT,△DCT,△ECT符合条件.。
人教版九年级数学旋转模型含详细解析
知识结构60,使得1-1-b)中的一个【例题】 如图:(1-1):设P 是等边ABC ∆内的一点,PA=3, PB=4,PC=5,APB ∠的度数是________.1509060.3,'''''''=+=+∠=∠∴≅==∠=∠PB P APP APB RT PBP APP CAP BAP B P AP AP CAP BAP ABC △为为正三角形,△。
易证△△则△,连结且的外侧,作简解:在△‘(二)正方形类型在正方形ABCD 中,P 为正方形ABCD 内一点,将ABP ∆绕B 点按顺时针方向旋转90,使得BA 与BC 重合。
经过旋转变化,将图(2-1-a )中的PA 、PB 、PC 三条线段集中于图(2-1-b )中的'CPP ∆中,此时'CPP ∆为等腰直角三角形。
【例题】 如图(2-1):P 是正方形ABCD 内一点,点P 到正方形的三个顶点A 、B 、C 的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD 。
面. 8292132324422*********,23,21,,,=++=++=∴====+=++=∴∴=+=∠+∠+∠=∠∴=∠+∠∠=∠∠=∠==∴=≅≅=∠=∠S S S S PFC RT EPA RT EPF RT ABCD RT EPF FP EP EF EPF DF DF ED EF F D E ADC FDC EDA EDF PBC PBA PBC FDC PBA EDA PF PE AP EAP BPC DFC DFC ABP ADE EP AP AE BAP DAE AED △△△正方形△为可知△由勾股定理的逆定理,,,中,在△,在一条直线上、、点又同理,为等腰三角形,又易证△。
△且有△同样方法,作△△则△连结使作△简解:(三)等腰直角三角形类型在等腰直角三角形ABC ∆中, 90C ∠=, P 为ABC ∆内一点,将APC ∆绕C 点按逆时针方向旋转90,使得AC 与BC 重合。
中考重点等腰直角三角形中的定角及定线旋转问题
中考重点等腰直角三角形中的定角及定线旋转问题中心思想正方形的一组邻边和一条对角线形成了一个等腰直角三角形,正方形对角线相交形成四个全等的等腰直角三角形,这些等腰直角三角形绕着公共点旋转时,就出现了典型的定角(直角)旋转问题,旋转过程中会涉及全等或相似,另外某条定线(射线或直线)绕端点旋转45°也可转化成等腰直角三角形的旋转和翻折问题,下面的分析的重点是:强化共角共边的相似模型以及两定点形成的线段旋转45°的模型的运用,归纳解题方法。
原题再现沈阳市和平区2019-2020学年度上学期期末24题追根溯源【试题来源】北师大版九上数学习题1.8联系拓广第 4 题:4.如图,正方形 ABCD 的对角线相交于点 O,正方形ABCD 的边长相等,在正方形′′′绕点 O 旋转的过程中,两个正方形重叠部分的面积与正方形 ABCD 的面积有什么关系?请证明你的结论.【课程标准】(1)理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;(2)探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。
正方形具有矩形和菱形的一切性质破解前提破解策略原题延伸总结一道题带给我的思考就是无论用什么方法,只要解决了就是好方法,如果你非得找寻简单做法,那就要知道自己擅长什么解法,你掌握了几种方法模型,我们都说方法贵精不贵多,如果你全身心对待一道题,就会有你意想不到的好处,另外作为试题的分析者,深深体会到命题者的精心设计,让我受益匪浅,我虽然很认真去分析,但也只是提出了一些局限性的见解,不足之处,请大家批评指正!。
专题3.1旋转重难点模型(5大类型)(原卷版)
专题3.1 旋转重难点模型(5大类型)【题型1 手拉手模型】【题型2 “半角”模型】【题型3 构造旋转模型解题】【题型4 奔驰模型】【题型5 费马点模型】模型一:“手拉手”模型模型特征:两个等边三角形或等腰直角三角形或正方形共顶点。
模型说明:如图1,▲ABE,▲ACF都是等边三角形,可证▲AEC≌▲ABF。
如图2,▲ABD,▲ACE都是等腰直角三角形,可证▲ADC≌▲ABE如图2,四边形ABEF,四边形ACHD都是正方形,可证▲ABD≌▲AFC模型二:“半角”模型模型特征:大角含半角+有相等的边,通过旋转“使相等的边重合,拼出特殊角”模型说明:(1)如图,在正方形ABCD中,∠EAF=45°,将▲ADF绕点A顺时针旋转90°,得到▲ABG 可证▲AEF≌AEG,所以可到DF+BE=EF(2)如图,在等腰直角▲ABC中,∠MAN=45°,将▲ACN绕点A顺时针旋转90°,得到▲ABQ,可证▲AMN≌▲AMQ,所以可得CN²+BM²=MN²(3)如图,等腰▲ABC中,AB=BC,∠DBE=将▲CBD绕点B逆时针旋转∠CBA 的度数得到▲ABD’可证▲DBE≌▲D’BE。
模型三:构造旋转模型解题方法指导:若一个图形中含有相等的线段和特殊的角度,通常是以等线段的公共端点为旋转中心进行旋转,使得相等的边重合,得出特殊的图形.常见图形旋转:方法归纳:将等边三角形内的一个小三角形,旋转60度,从而使小三角形的一边与原等边三角形的边重合,连接小三角形的钝角顶点,得三角形.通过旋转将不相关的线段转化到同一个三角形中,将分散的已知条件集中起来,使问题得以解决.模型四:奔驰模型模型五:费马点模型【费马点问题】问题:如图1,如何找点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?图文解析:如图1,把△APC绕C点顺时针旋转60°得到△A′P′C,连接PP′.则△CPP′为等边三角形,CP=PP′,PA=P′A′,△PA+PB+PC= P′A′+PB+PP′BC′.△点A′可看成是线段CA绕C点顺时针旋转60°而得的定点,BA′为定长△当B、P、P′、A′ 四点在同一直线上时,PA+PB+PC最小.最小值为BA.′【典例1】(2022春•西安期末)如图,在△ABC中,BC=5,以AC为边向外作等边△ACD,以AB为边向外作等边△ABE,连接CE、BD.(1)若AC=4,∠ACB=30°,求CE的长;(2)若∠ABC=60°,AB=3,求BD的长.【变式11】(2022秋•荔湾区校级期中)以△ABC的AB,AC为边分别作正方形ADEB,正方形ACGF,连接DC,BF.(1)CD与BF有什么数量与位置关系?说明理由.(2)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的.【变式12】(2022九上·吉林期末)如图①,在△ABC中,∠C=90°,AC=BC=√6,点D,E分别在边AC,BC上,且CD=CE=√2,此时AD=BE,AD⊥BE成立.(1)将△CDE绕点C逆时针旋转90°时,在图②中补充图形,并直接写出BE的长度;(2)当△CDE绕点C逆时针旋转一周的过程中,AD与BE的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将△CDE绕点C逆时针旋转一周的过程中,当A,D,E三点在同一条直线上时,请直接写出AD的长度.【典例2】(秋•锦江区期末)在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.(1)如图1,当∠BAC=90°,∠EAF=45°时,直接写出线段BE,CF,EF的数量关系;(不必证明)(2)如图2,当∠BAC=60°,∠EAF=30°时,已知BE=3,CF=5,求线段EF的长度;(3)如图3,当∠BAC=90°,∠EAF=135°时,请探究线段CE,BF,EF的数量关系,并证明.【变式21】(春•金牛区校级期中)类比探究:(1)如图1,等边△ABC内有一点P,若AP=8,BP=15,CP=17,求∠APB的大小;(提示:将△ABP绕顶点A旋转到△ACP′处)(2)如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°.求证:EF2=BE2+FC2;(3)如图3,在△ABC中,∠C=90°,∠ABC=30°,点O为△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,若AC=1,求OA+OB+OC的值.【变式22】(2022春•西山区校级月考)如图,已知正方形ABCD,点E、F分别是AB、BC边上,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:△EDF≌△MDF;(2)若正方形ABCD的边长为5,AE=2时,求EF的长?【变式23】(2022秋•山西期末)阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为45°的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:如图1,在正方形ABCD中,以A为顶点的∠EAF=45°,AE、AF与BC、CD边分别交于E、F两点.易证得EF=BE+FD.大致证明思路:如图2,将△ADF绕点A顺时针旋转90°,得到△ABH,由∠HBE=180°可得H、B、E三点共线,∠HAE=∠EAF=45°,进而可证明△AEH≌△AEF,故EF=BE+DF.任务:如图3,在四边形ABCD中,AB=AD,∠B=∠D=90°,∠BAD=120°,以A为顶点的∠EAF=60°,AE、AF与BC、CD边分别交于E、F两点.请参照阅读材料中的解题方法,你认为结论EF=BE+DF是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.【典例3】(九上·江津期中)请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB= √3,PC=1、求△BPC 度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以△AP′B=150°,而△BPC=△AP′B=150°,进而求出等边△ABC的边长为√7,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= √5,BP= √2,PC=1.求△BPC度数的大小和正方形ABCD的边长.【变式31】(九上·南昌月考)如图,在等边三角形ABC内有一点P,且PA=2,PB=√3,PC=1,求∠BPC的度数和等边三角形ABC的边长.【变式32】(九上·德州期中)当图形具有邻边相等的特征时,我们可以把图形的一部分绕着公共端点旋转,这样将分散的条件集中起来,从而达到解决问题的目的.(1)如图1,等腰直角三角形ABC内有一点P,连接AP,BP,CP,△APB=135°,为探究AP,BP,CP三条线段间的数量关系,我们可以将△ABP,绕点A逆时针旋转90°得到△ACP',连接PP',则PP'=AP,△CPP'是三角形,AP,BP,CP三条线段的数量关系是.(2)如图2,等边三角形ABC内有一点P,连接AP、BP、CP,△APB=150°,请借助第一问的方法探究AP、BP、CP三条线段间的数量关系.(3)如图3,在四边形ABCD中,AD△BC,点P在四边形的内部,且PD=PC,△CPD =90°,△APB=135°,AD=4,BC=5,请直接写出AB的长.【典例4】(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且P A=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且P A=,PB=1,PD=,则∠APB的度数等于,正方形的边长为;(2)如图4,在正六边形ABCDEF内有一点P,且P A=2,PB=1,PF=,则∠APB的度数等于,正六边形的边.【变式41】(2023春•广东期中)18.如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将△P AC绕点A逆时针旋转后,得到△MAB.(1)∠MAP=°,连接PM,则PM=;(2)求∠APB的度数.【变式42】(2023春•古田县期中)阅读材料,解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为5,12,13,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段P A、PB、PC转化到一个三角形中,从而求出∠APB=;(2)请你利用第(1)题的解答思想方法,解答下面问题,已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.【变式44】(2022春•侯马市期末)如图①,△ABC和△ADE中,∠BAC=∠DAE=90°,点D、E分别在边AB、AC上,∠ABC=∠ADE=45°.(1)如图②,将△ADE绕点A逆时针旋转到如图位置,若∠BAD=30°,求∠BAE的度数;(2)如图②,将△ADE绕点A逆时针旋转过程中,当旋转角度α=时,直线AC与DE垂直(0°<α≤360°);(3)如图③,△ADE绕点A在平面内自由旋转,连接BD,且AD=4,AB=10,求BD的最大值和最小值.【典例5】(秋•邗江区期末)背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CP A=120°,此时,P A+PB+PC的值最小.解决问题:(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段P A,PB,PC转化到一个三角形中,从而求出∠APB=;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF =45°,判断BE,EF,FC之间的数量关系并证明;能力提升:(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求P A+PB+PC的值.【变式51】(2022秋•大冶市期末)如图,D是等边三角形ABC外一点,连接AD,BD,CD,已知BD=8,CD=3,则当线段AD的长度最小时,①∠BDC=;②AD的最小值是.【变式52】(2022•荷塘区模拟)在△ABC中,若其内部的点P满足∠APB=∠BPC=∠CP A=120°,则称P为△ABC的费马点.如图所示,在△ABC中,已知∠BAC=45°,设P为△ABC的费马点,且满足∠PBA=45°,P A=4,则△P AC的面积为.。
初中三角形旋转经典例题
初中三角形旋转经典例题示例文章篇一:哎呀呀,说起初中三角形旋转的经典例题,那可真是让我又爱又恨呢!记得有一次上数学课,老师在黑板上画了一个三角形,然后神秘兮兮地说:“同学们,今天咱们来研究一下这个三角形旋转的问题。
” 我当时心里就嘀咕:“这能有多难?”老师给出的例题是这样的:有一个等腰直角三角形ABC,直角顶点是C,把这个三角形绕着点C 顺时针旋转90 度,得到三角形A'B'C,让咱们求旋转后的三角形和原来三角形重合部分的面积。
我看着那个图,眼睛都快花了,心里直犯愁:“这可咋整啊?” 同桌小明倒是挺自信,他拿着笔在纸上比划着,嘴里还念念有词:“这还不简单,先找出旋转后的对应边和对应角呗。
” 我白了他一眼,说:“你倒是会说,那你快做出来给我看看呀!”这时,前桌的小红转过头来,说:“别着急,咱们一起想想。
” 我们三个人就凑在一起,开始研究起来。
我就想啊,这三角形旋转就好像是一个人在跳舞,转了一圈又一圈,但是它的形状和大小可没变。
这不就跟咱们玩的万花筒似的,看起来图案变来变去,其实那些碎片还是那些碎片嘛。
我们先把能找到的条件都标出来,发现重合部分也是个三角形。
小明突然一拍脑袋,说:“我知道啦,咱们可以通过三角形的相似来求面积。
” 我赶紧问:“咋相似啊?” 他说:“你看,这两个三角形的对应角相等,对应边成比例,不就是相似嘛。
” 小红也点点头,说:“对呀对呀,那咱们就能算出边长的比例,进而求出面积啦。
”经过一番计算,我们终于算出了答案。
老师看到我们做出来了,笑着说:“不错不错,继续努力!” 那一刻,我心里别提多高兴了,就像吃了蜜一样甜。
你说,这三角形旋转的问题是不是很有趣?它就像是一个藏着宝藏的迷宫,只要我们认真思考,就能找到通往答案的路。
我觉得啊,数学虽然有时候让人头疼,但当我们解开难题的时候,那种成就感真是无与伦比!所以,可别害怕难题,只要咱们勇敢去探索,就一定能战胜它们!示例文章篇二:哎呀,一提到初中三角形旋转的经典例题,我这脑袋瓜就开始嗡嗡响啦!你们能想象得到吗?那一个个三角形就像调皮的小精灵,不停地转呀转。
2024年中考数学高频考点专题复习——旋转综合题(含解析)
2024年中考数学高频考点专题复习——旋转综合题1.如图,△ABC 和△DEF 关于某点对称(1)在图中画出对称中心O ;(2)连结AF 、CD ,判断四边形ACDF 的形状,并说明理由.2.在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位.(1)画出关于原点O 的中心对称图形;(2)在(1)的条件下,请分别写出点A 、B 、C 的对应点、、的坐标.ABC ABC 111A B C 1A 1B 1C3.如图1,图2,△ABC 是等边三角形,D 、E 分别是AB 、BC 边上的两个动点(与点A 、B 、C 不重合),始终保持BD=CE.(1)当点D 、E 运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE 绕着A 点顺时针旋转60°到△ABF 的位置(如图2),分别连结DF 、EF.①找出图中所有的等边三角形(△ABC 除外),并对其中一个给予证明;②试判断四边形CDFE 的形状,并说明理由.4.如图,矩形 中, ,将矩形 绕点C 顺时针旋转得到矩形 .设旋转角为 ,此时点 恰好落在边 上,连接 .(1)当 恰好是 中点时,此时 ;(2)若 ,求旋转角 及 的长.5.将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转α(0°<α<120°)得到线段AD ,连接CD 、BD .(1)如图,若α=80°,则∠BDC 的度数为 ;(2)请探究∠BDC 的大小是否与角α的大小有关,并说明理由.ABCD 4BC =ABCD A B C D ''''αB 'AD B B 'B 'AD α=75AB B ︒∠='αAB6.在平面直角坐标系中,小方格都是边长为1的正方形,△ABC ≌△DEF ,其中点A 、B 、C 、都在格点上,请你解答下列问题:(1)如图(a )在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号为 .(2)画出△ABC 关于y 轴对称的△A 1B 1C 1;画出△ABC 绕点P (1,﹣1)顺时针旋转90°后的△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2成中心对称吗?若成中心对称请你求出对称中心的坐标;若不成,则说明理由.7.图1是某小型汽车的侧面示意图,其中矩形 表示该车的后备箱,在打开后备箱的过程中,箱盖 可以绕点A 逆时针方向旋转,当旋转角为 时,箱盖 落在 的位置(将后备箱放大后如图2所示).已知 厘米, 厘米, 厘米.在图2中求: (1)点 到 的距离(结果保留根号);(2)E 、 两点的距离(结果保留根号).ABCD ADE 60︒ADE AD E ''90AD =30DE =40EC =D 'BC E '8.如图, 是等腰直角三角形, 是直角三角形, ,点 为边 中点将 绕点 顺时针旋转,旋转角记为 ,点 为边 的中点.(1)如图,求初始状态时 的大小;(2)如图,在旋转过程中,若点 构成平行四边形,请直接写出此时 的值;(3)在旋转过程中,若点 和点 重合,请在图中画出 并连接 ,判断此时是否有 ?如果成立,请证明;如果不成立,请说明理由.ABC 90,ABC BDE ∠=︒ 30E ∠=︒D BC BDE D (0360)αα<<︒F BE AEC ∠,,,B D F B 'a F B ,B DE ' AE AE ED ⊥9.如图,在菱形 中, ,将边 绕点 逆时针旋转至 ,记旋转角为 .过点 作 于点 ,过点 作 直线 于点 ,连接 .(1)(探索发现)填空:当 时, = .的值是 (2)(验证猜想)当 时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(拓展应用)在(2)的条件下,若 ,当 是等腰直角三角形时,请直接写出线段 的长.ABCD 120BAD ∠= AB A 'AB αD DF BC ⊥F B BE ⊥'B D E EF 60α= 'EBB ∠ 'EF DB 0360α<< AB =BDE ∆EF10.如图(1),在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作APCD,AC与PD 相交于点E,已知∠ABC=∠AEP= (0°< <90°).(1)求证: ∠EAP=∠EPA;(2)APCD是否为矩形?请说明理由;(3)如图(2),F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.αα11.定义:有一组邻边相等,且它们的夹角为60°的四边形叫做半等边四边形.(1)已知在半等边四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°.①如图1,若∠B=∠D ,求证:BC=CD ;②如图2,连结AC ,探索线段AC 、BC 、CD 之间的数量关系,并说明理由;(2)如图3,已知∠MAC=30°,AC=10+10,点D 是射线AM 上的一个动点,记∠DCA=a ,点B 在直线AC 的下方,若四边形ABCD 是半等边四边形,且CB=CD .问:当点D 在15°≤a≤45°的变化过程中运动时,点B 也随之运动,请直接写出点B 所经过的路径长.12.已知,把45°的直三角板的直角顶点E 放在边长为6的正方形ABCD 的一边BC 上,直三角板的一条直角边经过点D ,以DE 为一边作矩形DEFG ,且GF 过点A ,得到图1.(1)求矩形DEFG 的面积;(2)若把正方形ABCD 沿着对角线AC 剪掉一半得到等腰直角三角形ABC ,把45°的直三角板的一个45°角的顶点与等腰直角三角形ABC 的直角顶点B 重合,直三角板夹这个45°角的两边分别交CA 和CA 的延长线于点H 、P ,得到图2.猜想:CH 、PA 、HP 之间的数量关系,并说明理由;(3)若把边长为6的正方形ABCD 沿着对角线AC 剪掉一半得到等腰直角三角形ABC ,点M 是Rt △ABC 内一个动点,连接MA 、MB 、MC ,设MA+MB+MC =y ,直接写出 的最小值.2y13.(1)观察猜想:如图①,在Rt △ABC 和Rt △BDE 中,∠ABC =∠EBD =90°,AB =BC ,BE =BD ,连接AE ,点F 是AE 的中点,连接CD 、BF ,当点D 、B 、C 三点共线时,线段CD 与线段BF 的数量关系是 ,位置关系是 .(2)探究证明:在(1)的条件下,将Rt △BDE 绕点B 顺时针旋转至图②位置时,(1)中的结论是否仍然成立?如果成立,请你就图②的情形进行证明;如果不成立,请说明理由;(3)拓展延伸:如图③,在Rt △ABC 和Rt △BDE 中,∠ABC =∠EBD =90°,BC =2AB =8,BD =2BE =4,连接AE ,点F 是AE 的中点,连结CD 、BF ,将△BDE 绕点B 在平面内自由旋转,请直接写出BF 的取值范围,14.请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1,如图1,在等腰直角三角形ABC 中, , ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作BC 边上的高DE ,则DE 与BC 的数量关系是 , 的面积为 ;(2)探究2,如图2,在一般的 中, ,( , ),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,请用含m ,n 的式子表示 的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC 中, , ( ,, ),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,试探究用含a ,b ,c 的式子表示 的面积,要有探究过程.90ACB ∠=︒5BC =BCD Rt ABC 90ACB ∠=︒22()()BC m n m n =+--0m >0n >BCD AB AC =BC a b c =++0a >0b >0c >BCD15.如图1,在△ABC中,∠A=120°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接BE,点M,N,P分别为DE,BE,BC的中点,连接NM,NP.(1)图1中,线段NM,NP的数量关系是 ,∠MNP的度数为 ;(2)把△ADE绕点A顺时针旋转到如图2所示的位置,连接MP.求证:△MNP是等边三角形;(3)把△ADE绕点A在平面内旋转,若AD=2,AB=5,请直接写出△MNP面积的最大值.16.(1)问题发现:如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为 .(2)问题探究:如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD =CD,连接DQ,求DQ的最小值;(3)问题解决:“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.17.如图14-1,在平面直角坐标系xOy 中,直线l 2:y=与x 轴交于点B ,与直线l 1交于点c ,c点到x 轴的距离CD 为2 ,直线1交x 轴于点A(-3,0) .(1)求直线l 1的函数表达式;(2)如图14-2,y 轴上的两个动点E 、F(E 点在F 点上方)满足线段EF 的长为 ,连接CE 、AF ,当线段CE+EF+AF 有最小值时,求出此时点F 的坐标,以及CE+EF+AF 的最小值;(3)如图14-3,将△ACB 绕点B 逆时针方向旋转60°,得到△BGH ,使点A 与点H 重合,点C 与点G 重合(C 、G 两点恰好关于x 轴对称),将ABGH 沿直线BC 平移,记平移中的△BGH 为△B'G'H',在平移过程中,设直线B'H'与x 轴交于点M ,是否存在这样的点M ,使得△B'MG'为等腰三角形?若存在,请直接写出此时点M 的坐标;若不存在,说明理由.18.如图(1)问题发现:如图1,已知点C 为线段 上一点,分别以线段 为直角边作两个等腰直角三角形, ,连接 ,线段 之间的数量关系为 ;位置关系为 .(2)拓展研究:如图2,把 绕点C 逆时针旋转,线段 交于点F ,则 之间的关系是否仍然成立,说明理由;x AB ,AC BC 90,,ACD CA CD CB CE ︒∠===,AE BD ,AE BD Rt ACD ∆,AF BD ,AE BD(3)解决问题:如图3,已知 ,连接 ,把线段AB 绕点A 旋转,若 ,请直接写出线段 的取值范围.19.如图1,在 中, , ,点 分别是 的中点,连接 .(1)探索发现:图1中,的值为 ; 的值为 ;(2)拓展探究若将 绕点 逆时针方向旋转一周,在旋转过程中的大小有无变化,请仅就图2的情形给出证明;(3)问题解决当 旋转至 三点在同一直线时,直接写出线段 的长.,,90AC CD BC CE ACD BCE ︒==∠=∠=,,AB AE AD 7,5AB AC ==AE ABC 2AB AC ==120BAC ∠=︒,D E ,AC BC DE AB BC AD BE CDE C AD BECDE ,,A D E BE20.有两个形状、大小完全相同的直角三角板ABC 和CDE ,其中∠ACB =∠DCE =90°.将两个直角三角板ABC 和CDE 如图①放置,点A ,C ,E 在直线MN 上.(1)三角板CDE 位置不动,将三角板ABC 绕点C 顺时针旋转一周,①在旋转过程中,若∠BCD =35°,则∠ACE = ▲ °;②在旋转过程中,∠BCD 与∠ACE 有怎样的数量关系?请依据图②说明理由.(2)在图①基础上,三角板ABC 和CDE 同时绕点C 顺时针旋转,若三角板ABC 的边AC 从CM 处开始绕点C 顺时针旋转,转速为12°/秒,同时三角板CDE 的边CE 从CN 处开始绕点C 顺时针旋转,转速为2°/秒,当AC 旋转一周再落到CM 上时,两三角板都停止转动.如果设旋转时间为t 秒,则在旋转过程中,当∠ACE =2∠BCD 时,t 为多少秒?21.我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.把两块边长为4的等边三角形板 和 叠放在一起,使三角形板 的顶点 与三角形板 的AC 边中点 重合,把三角形板 固定不动,让三角形板 绕点 旋转,设射线 与射线 相交于点M ,射线 与线段 相交于点N.ABC DEF DEF D ABC O ABC DEF O DE AB DF BC(1)如图1,当射线 经过点 ,即点N 与点 重合时,易证△ADM ∽△CND.此时,AM·CN= .(2)将三角形板 由图1所示的位置绕点 沿逆时针方向旋转,设旋转角为 .其中 ,问AM·CN 的值是否改变?说明你的理由.(3)在(2)的条件下,设AM= x ,两块三角形板重叠面积为 ,求 与 的函数关系式.(图2,图3供解题用)22.已知抛物线(,,是常数,)的顶点为,与轴相交于,两点(点在点的左侧),与轴相交于点.(1)若点,求点和点的坐标;(2)将点绕点逆时针方向旋转,点的对应点为,若,两点关于点中心对称,求点的坐标和抛物线解析式:(3)在(1)的条件下,点为直线下方抛物线上的一个动点,过点作轴,与相交于点,过点作轴,与轴相交于点,求的最大值及此时点的坐标.DF B B DEF O α090α<< y y x 2y ax bx c =++a b c 0a ≠()14M -,x A B A B y C ()03C -,A B A B 90︒A 1A A 1A M 1A P BC P PD x BC D P PE y x E PD PE +P答案解析部分1.【答案】(1)解:对称中心O 如图所示;(2)解:∵A 与F ,C 与D 是对应点,∴AO=DO ,CO =FO ,∴四边形ACDF 是平行四边形.2.【答案】(1)解:如图所示:(2)解:由图可知:,,.3.【答案】(1)证明:∵△ABC 是正三角形,∴BC=CA ,∠B=∠ECA=60°.又∵BD=CE ,∴△BCD ≌△CAE.∴CD=AE.(2)解:① 图中有2个正三角形,分别是△BDF ,△AFE.由题设,有△ACE ≌△ABF ,∴CE=BF ,∠ECA=∠ABF=60°又∵BD=CE ,∴BD=CE=BF ,∴△BDF 是正三角形,∵AF=AE ,∠FAE=60°,∴△AFE 是正三角形.1(12)A -,1(33)B -,1(40)C ,② 四边形CDFE 是平行四边形.∵∠FDB=∠ABC =60°∴FD ∥EC.又∵FD=FB=EC ,∴四边形CDFE 是平行四边形.4.【答案】(1)60°(2)解:∵四边形 是矩形,∴ ,∴ .由旋转的性质得 ,∴ ,∴ ,即旋转角 为30°.作 于点E.则 .5.【答案】(1)30°(2)解:无关.理由如下:由旋转变换可知:∠BAC=60°,∠CAD=α, = , AB=AC=AD ,∴ ,,ABCD //AD BC 75CBB AB B ︒'∠=∠='CB CB ='75CB B CBB ︒∠'=∠='180757530BCB ︒︒︒︒∠--='=αB E BC '⊥122AB B E CB '='==()1180602ADB α∠=︒-+︒⎡⎤⎣⎦1202α︒-()11802ADC α∠=︒-()11202ADB α︒∠=-∴∠BDC=∠ADC-∠ADB= - =30° ,∴∠BDC 的大小与ɑ的度数无关.6.【答案】(1)②(2)解:如图(3)解:如图所示:△A 1B 1C 1与△A 2B 2C 2成中心对称图形,对称中心的坐标为:(1,0).7.【答案】(1)解:过点 作 ,垂足为点H ,交 于点F .由题意得 (厘米), .∵四边形 是矩形,∴ , .在 中, 又∵ , ,∴ .∴ (厘米)答:点 到 的距离是 (厘米).(2)解:连结 、 、 .()11802α︒-()11202α︒-D 'D H BC '⊥AD 90AD AD =='60DAD ∠='︒ABCD AD BC 90AFD BHD ∠'=∠='︒Rt AD F ∆'sin 90sin 60D F AD DAD ︒=⋅∠=⋅='''40CE =30DE =70FH=70)D H D F FH ='++'=D 'BC ()70+AE AE 'EE '由题意得 , .∴ 是等边三角形.∴ .∵四边形 是矩形,∴ .在 中, , ,∴(厘米)答:E 、 两点的距离是厘米.8.【答案】(1)解:∵∠BED =30°,△BDE 是直角三角形,∴∠EBD =90°-∠BED =60°.又∵D 是BC 的中点,∴DE 是BC 的垂直平分线.∵BE =CE ,∠BEC =60°,∴△BCE 是等边三角形.∴BC =BE .∵△ABC 是等腰三角形,∠ABC =90°,∴AB =BC .∴BE =AB .∵AB ⊥BC ,DE ⊥BC ,∴AB ∥DE ,∴∠ABE =∠BED =30°.∴∠BAE =∠BEA = (180°-∠ABE)=75°.∴∠AEC =∠BAE +∠BEC =135°.(2)解:∵四边形BDFB '是平行四边形,∠FB 'D =60°∴B 'F ∥BD ,∴∠B D B '=∠FB 'D =60°AE AE ='60EAE ∠='︒AEE ∆'EE AE '=ABCD 90ADE ∠=︒Rt ADE ∆90AD =30DE =AE ===E '12即 =60°.(3)解:△B 'DE 如图所示,AE ⊥DE 不成立,理由如下:DE 与AB 相交于点G ,假设AE ⊥DE ,则△AEG ∽△DBG ,设BG =a ,∠BDG =30°,∴DG =2a ,BD = a ,AB =2 BD = a .∴AG =AB -BG =(-1)a ,B 'D =BD =a .∴DE = =3a.∴GE =DE -DG=3a -2a =a .∴ , .∴ 与假设矛盾.∴AE ⊥DE 不成立.9.【答案】(1)30(2)解:当 时, (1)中的结论仍然成立.证明:如图1,连接 .a tan 30B D'AG DG ==1GE a GB a ==AG GE DG GB≠0360α<< BD,, . , . . .,即 . ,, . .,(3)解:线段 的长为 或 .连接 , 交于点 .,, ,,∵DE=BE ,∠DEB=90°,∴∠EDB=∠EBD=45°,. ,∠B′EB=90°,, . , . .'AB AD AB == 1'(180)9022AB B αα∴∠=︒-=︒-1'[180(120)]3022AB D αα∠=︒-︒-=︒+'180''180(90)(306022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒'30EBB ∴∠=︒11(180)3022CBD ABC BAD∠=∠=︒-∠=︒ 'EBB CBD ∴∠=∠'''EBB FBB CBD FBB ∴∠+∠=∠+∠'DBB EBF ∠=∠cos BF DBF BD ∠== cos ''BE EBB BB ∠=='BF BE BD BB ∴='DBB FBE ∆∆∽''EF BE DB BB ∴==EF 3+3-AC BD O AC DB ⊥ 1602BAO BAD ∠=∠=︒sin OB AB BAO ∴=⋅∠=2BD OB ∴==sin DE BE BD DBE ∴==⋅∠=='AB AD AB == 1'(180)9022AB B αα∴∠=︒-=︒-1'[180(120)]3022AB D αα∠=︒-︒-=︒+'180''180(90)(306022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒'30EBB ∴∠=︒'tan '2EB BE EBB ∴=⋅∠==分两种情况: 如图,,∵∠B′BE=∠DBF=30°,∴cos ∠B′BE=cos ∠DBF=,又∵∠B′BE+∠EBD=∠EBD+∠DBF ,∴∠B′BD=∠EBF ,∴△B′BD ∽△EBF ,∴ , . 如图,.①''2B D DE BE =+=+EB FB B B DB ='=EB FB EF B B DB B D '='2)3EF D '∴==+=②''2B D DE B E =-=∵∠B′BE=∠DBF=30°,∴cos ∠B′BE=cos ∠DBF=,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF ,∴△B′BD ∽△EBF ,∴ ,.综上所述,线段 的长为或 .10.【答案】(1)证明:(1)在△ABC 和△AEP 中,∠ABC=∠AEP,∠BAC=∠EAP, ∠ACB=∠APE,在△ABC 中,AB=BC. ∠ACB=∠BAC,∠EPA=∠EAP,(2)解: APCD 是矩形.四边形APCD 是平行四边形,AC=2EA,PD=2EP.由(1)知, ∠EPA=∠EAP.EA=EP ,进而AC=PDAPCD 是矩形.(3)解:EM=ENEA=EP, ∠EPA=90° - ∠EAM=180°-∠EAP =180°-∠EPA= 180°-(90°-)=90°+ 由(2)知, ∠CPB=90°,F 是BC 的中点, FP=FB,∠FPB=∠ABC= ,∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90° -+ =90°+ ∠EAM=∠EPN∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN ,EB FB B B DB ='=EB FB EF B B DB B D '='2)3EF B D ∴===-'EF 33 ∴∴∴ ∴∴∴ ∴12α∴12α12α∴∴α∴12αα12α∴∠AEP-∠AEN =∠MEN-∠AEN,即∠MEA=∠NEP.△EAM ≌△EPN,EM=EN.11.【答案】(1)解:①证明:连结AC ,∵∠A+∠B+∠C+∠D=360°,且∠A=60°,∠C=120°,∴∠B+∠D=180°,且∠B=∠D ,∴∠B=∠D=90°,∵AB=AD ,AC=AC ,∴△ABC ≌△ADC (HL ),∴BC=DC ;②解:延长CB ,使得CD=BE ,∵∠BAD=60°,∠BCD=120°,∴∠ABC+∠D=180°,且∠ABC+∠ABE=180°,∴∠D=∠ABE ,又∵AB=AD∴△ABE ≌△ADC ,∴AE=AC,∴∴∴∠BAE=∠DAC ,∴∠EAC=∠BAE+∠BAC=∠DAC+∠BAC=∠BAD=60°,∴△ACE 是等边三角形,∴AC=CE=CB+BE=CB+CD(2)解:如图,设∠ACD=15°,∠DCD‘=30°,作CM ⊥AD ,D‘H ⊥AC ,由旋转图形的特点可知,CB=CD ,CB‘=CD’,∠BCB'=DCD‘=30°,∴△∠BCB'≌△DCD‘,BB'=DD’,设D'H=x ,由勾股定理得:, HC=x,则,解得x=10, 即D'H=10,得,AD’=20,在Rt △AMC 中,∵,∠DAC=30°,∴,AM=(,-5,,∴DD’为D 点的运动路程,则BB‘的运动路程也为10 .12.【答案】(1)解:∵四边形ABCD 是正方形,∴∠ADC =∠DCE =90°,∵四边形DEFG 是矩形,∴∠AGD =∠GDE =90°,∴∠DCE =∠AGD =90°,∠ADC =∠GDE =90°,∴∠ADC ﹣∠ADE =∠GDE ﹣∠ADE ,∴∠EDC =∠ADG ,∵∠EDC =∠ADG ,∠DCE =∠AGD =90°,∴△ECD ∽△AGD ,∴ ,∴DG•DE =DC•DA =6×6=36,∴矩形DEFG 的面积=DG•DE =36;(2)解: ,证明:把△BAP 绕着点B 顺时针旋转90°得到△BCK ,连接KH ,由旋转得△BAP ≌△BCK ,∴BK =BP ,∠PBA =∠KBC ,∠BCK =∠BAP = ,∴∠HCK = = ,∴由勾股定理得, ,∵∠PBE =45°,∴∠PBA+∠ABE =45°,∵∠PBA =∠KBC ,∴∠KBC+∠ABE =45°,∵∠ABC =90°,∴∠HBK =45°,∵∠PBE =45°,∴∠HBK =∠PBE =45°,∵BK =BP ,∠HBK =∠PBE ,BH =BH ,∴△BHP ≌△BHK (SAS ),CD DE DG DA=222CH PA HP +=18045135︒-︒=︒BCK BCA ∠-∠1354590︒-︒=︒222CH PA KH +=∴HK =HP ,∵ ,∴ ;(3)解:把△BMC 绕着点B 顺时针旋转60°得到△BKN ,连接MK ,BN ,NC ,由旋转得,△BMC ≌△BKN ,∴MC =KN ,BM =BK ,∵BM =BK ,∠MBK =60°,∴△BKM 是等边三角形,∴MK =BM ,∴MA+MB+MC =AM+MK+KN ,当A ,M ,K ,N 四点共线时,AN 就是所求的MA+MB+MC 的最小值,过N 作NQ ⊥AB 交AB 的延长线于Q ,∵ ,∠BQN =90°,∴QN =BN•sin30°=6× =3,BQ =BN•cos30°= ,∴AQ =AB+BQ =,在Rt △AQN 中,由勾股定理得,,∴ 的最小值为 .13.【答案】(1)CD=2BF ;BF ⊥CD(2)解:BF ⊥CD ,CD=2BF 成立,证明:∵△ABC 与△DBE 都是等腰直角三角形,∴AB=BC ,DB=EB ,∠ABC=∠DBE=90°,222CH PA KH +=222CH PA HP +=180906030NBQ ∠︒-︒-︒=︒=126=6+(222226372AN AQ QN +=++=+=2y 72+如图②,将△ABE 绕点B 顺时针旋转90°得到△CBG ,点E 、F 的对应点分别是G 、H ,连BH , 则△ABE ≌△CBG ,BE=BG ,AE=CG ,BF=BH ,∠FBH=∠EBG=90°,AF=CH ,EF=GH , ∴BF ⊥BH ,∵AF=EF ,∴CH=GH ,∵∠DBE=90°,∴∠DBE+∠EBG=180°,∴D 、B 、G 三点共线,∴BH ∥CD ,,∴BF ⊥CD ,,即CD=2BF ,∴BF ⊥CD ,CD=2BF 成立;(3)14.【答案】(1)DE=BC ;12.5(2)解:过点D 作BC 边上的高DE ,如图,∵∠ABC+∠A=90°,∠ABC+∠DBE=90°,∴∠A=∠DBE ,又∵∠ACB=∠E=90°,AB=BD ,∴ ,∴,12BH CD =12BF CD =13BF ≤≤ACB BED ≌BC DE =又 .∴ 的面积为:.(3)解:作 于G ,过点D 作BC 边上的高DE ,如图,由(2)同理,可证 ,∴ ,又 ,∵AB=AC , ,∴ .∴ 的面积为: .15.【答案】(1)NM=NP ;60°(2)证明:由旋转得:∠BAD=∠CAE ,又∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠ABD=∠ACE ,∵点M ,N ,P 分别为DE ,BE ,BC 的中点,∴MN= BD ,PN= CE ,MN ∥BD ,PN ∥CE ,∴MN=PN ,∠ENM=∠EBD ,∠BPN=∠BCE ,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB ,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE ,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°-∠BAC=60°,∴△MNP 是等边三角形;(322()()4mn BC m n m n =+--=BCD 221448m n 2mn mn ⨯⨯=AGB BED ≌BG DE =BC a b c =++BC a b c =++11()22BG BC a b c ==++BCD 2111()()()224a b c a b c a b c ⨯++⨯++=++121216.【答案】(1)4(2)解:如图②中,连接BD ,取AC 的中点O ,连接OB ,OD.∵∠ABD =∠ADC =90°,AO =OC ,∴OA =OC =OB =OD ,∴A ,B ,C ,D 四点共圆,∴∠DBC =∠DAC ,∵DA =DC ,∠ADC =90°,∴∠DAC =∠DCA =45°,∴∠DBQ =45°,根据垂线段最短可知,当QD ⊥BD 时,QD 的值最短,DQ 的最小值=BQ =5 .(3)解:如图③中,将△BDC 绕点D 顺时针旋转90°得到△EDA , ∵∠ABC+∠ADC =180°,∴∠BCD+∠BAD =∠EAD+BAD =180°,∴B ,A ,E 三点共线,∵DE =DB ,∠EDB =90°,∴BE = BD ,∴AB+BC =AB+AE =BE =BD,∴BC+BC+BD =( +1)BD ,∴当BD 最大时,AB+BC+BD 的值最大,∵A ,B ,C ,D 四点共圆,∴当BD 为直径时,BD 的值最大,∵∠ADC =90°,∴AC 是直径,∴BD =AC 时,AB+BC+BD 的值最大,最大值=600( +1).17.【答案】(1)解:∵点C 的纵坐标为2 ,点c 在直线l 2:y= ∴点C(-1,2 )设l 1的表达式为y= kx+ b将A(-3,0)、C(-1,2)代入, 解得故直线l 1的表达式为:y=x+3 (2)解:作点a关于y 轴的对称点A(3,0),将点a4向上平移个单位长度得E (3,)连接E'C 交y 轴于点E ,在E下方取EF= ,则点F是所求点,将点C 、E' 的坐标代入一次函数表达式,同理可得: CE' 的函数表达式为:y= 故点E(0,),点F(0,)CE+EF+4F 的最小值=FE+CE'= +.(3)M(5+8,0)或(5-8,0)或(-3,0)或(-19,0) x +03k bk b=-+⎧⎪⎨=-+⎪⎩k b ⎧=⎪⎨=⎪⎩x +18.【答案】(1)AE=BD ;AE ⊥BD(2)解: 仍然成立.由题意得,∵△ACD 和△BCE 是等腰直角三角形即 ,∴∴ .∴∴ .(3)解: 连接BD.由(2)可知,AE=BD ,在△ABD 中,且 ,所以 即 在AB 绕点A 旋转过程中,当A ,B ,D 三点在一条直线上时, 或者,AE BD AE BD =⊥90ACD DCE ECB DCE DCE ︒∴∠+∠=∠+∠=+∠,,ACE DCB AC CD EC CB ∠=∠==ACE DCB∆≅∆,12AE DB =∠=∠180(4512)90EFB ︒︒︒∠=--∠+∠=AE BD⊥77AE -≤≤7AD AB ===77BD <<+77AE -<<+7AE =7AE =∴ ≤AE≤ 19.【答案】(1(2)解:无变化,理由: 由(1)知,CD=1, ,∴,∴ ,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD ∽△BCE,∴,(3)解:线段BE 的长为或 ,理由如下: 当点D 在线段AE 上时,如图2,过点C 作CF ⊥AE 于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴ ,∴,7-7+CE BE ==CD CE =AC BC =CD AC CE BC ==AD AC BE BC ==1122DF CD ==CF ==在Rt △AFC 中,AC=2,根据勾股定理得, ,∴AD=AF+DF=,由(2)知, ,∴当点D在线段AE 的延长线上时,如图3,过点C 作CG ⊥AD 交AD 的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴ ,∴ ,在Rt △ACG 中,根据勾股定理得,,∴ ,由(2)知,,∴即:线段BE 的长为或.AF ==AD BE =BE ==1122DG CD ==CG ==AG =AD AG DG =-=AD BE =BE ==20.【答案】(1)①145;②∠BCD+∠ACE =180°,理由如下:∵∠ACE =∠ACB+∠BCE ,∴∠BCD+∠ACE =∠BCD+∠ACB+∠BCE =∠ACB+∠DCE =90°+90°=180°;(2)解:三角板ABC 和CDE 重合之前,∠ACE =180°-10°t ,∠BCD =10°t ,依题意有180°-10°t =2×10°t ,解得t =6;三角板ABC 和CDE 重合之后,∠ACE =10°t-180°,∠BCD =360°-10°t ,依题意有10°t-180°=2×(360°-10°t ),解得t =30.故当t =6或30秒时,有∠ACE =2∠BCD .故答案为:6或30.21.【答案】(1)4(2)解:AM•CN 的值不会改变.连接BD ,在△ADM 与△CND 中,∵∠A=∠C=60°,∠DNC=∠DBN+∠BDN=30°+α,∠ADM=30°+α,∴∠ADM=∠CND ,∴△ADM ∽△CND∴ ,∴AM•CN=AD•CD=2×2=4,∴AM•CN 的值不会改变;(3)解:情形1,当0°<α<60°时,1<AM <4,即1<x <4,此时两三角形板重叠部分为四边形AD AM CN CD如图2,过D 作DQ ⊥AB 于Q ,DG ⊥BC 于G ,∴DQ=DG= ,由(2)知,AM•CN=4,得CN=,于是y=(1<x <4); 情形2,当60°≤α<90°时,AM≥4时,即x≥4,此时两三角形板重叠部分为△DPN ,如图3,过点D 作DH ∥BC 交AM 于H ,易证△MBP ∽△MHD ,∴ ,又∵MB=x-4,MH=x-2,DH=2,∴BP=,∴PN=4- ,于是y= ,综上所述,1<x <4时,y=;x≥4时,y= 22.【答案】(1)解:设抛物线解析式为,将点代入得,4x 21122AB AM DQ CN DG x -⋅-⋅=BP MB DH MH=282x x --4282x x x ---114284222x PN DG x x -⎛⎫⋅=--= ⎪-⎝⎭x ()214y a x =--()03C -,解得:∴抛物线解析式为当时,解得:,∵点在点的左侧,∴,;(2)解:∵,抛物线,与轴相交于,两点∴,对称轴为直线,设,则,∴∵点绕点逆时针方向旋转得到,则点一定在第四象限,如图所示,则,,∵,两点关于点中心对称,∴解得:,则∴,1a =()214y x =--0y =()2140x --=1213x x =-=,A B ()10A -,()30B ,()14M -,2y ax bx c =++x A B 0a >1x =()0A m ,()20B m -,222AB m m m=--=-A B 90︒A 'A '22BA BA m ='=-()222A m m '--,A 1A M 228m -=-3m =-()58A '-,()30A -,()50B ,将点代入得,解得:∴抛物线解析式为;(3)解:如图所示,设交于点,由(1)可得,,设直线的解析式为,将点代入得,解得所以直线的解析式为,∵抛物线解析式为,设,则,∴,∵轴,轴,由∵则是等腰直角三角形,∴()30A -,()214y a x =--1640a -=14a =()21144y x =--PE BC F ()30B ,()03C -,BC 3y kx =-()30B ,330k -=1k =BC 3y x =-()221423y x x x =--=--()223P t t t --,()0E t ,()3F t t -,223233FP t t t t t =--++=-+223PE t t =-++PD x PE y OC OB=OCB 45FDP OBC ∠=∠=︒∴也是等腰直角三角形,∴∴∴当时,取得最大值此时,即.PDF PD PF=PD PE+22323t t t t =-+-++2253t t =-++252525232168t t ⎛⎫=--+++ ⎪⎝⎭2549248t ⎛⎫=--+ ⎪⎝⎭54t =PD PE +498225632314416t t ⎛⎫--=--=- ⎪⎝⎭563416P ⎛⎫- ⎪⎝⎭。
中考数学教学指导:等腰直角三角形旋转问题的分类探析
等腰直角三角形旋转问题的分类探析等腰直角三角形在旋转变换下的探究性问题,是近几年中考数学命题的热点,其探究过程常与三角形的全等和相似、勾股定理、正方形的性质以及函数方程等知识有关,是一类对能力要求较高的问题。
现以中考试题为例,具体归纳为以下几种类型进行分析. 一、90°角绕直角顶点旋转例1 .在Rt ABC ∆中,90,4,,A AC AB D E ∠=︒==分别是边,AB AC 的中点.若等腰Rt ADE ∆绕点A 逆时针旋转,得到等腰11Rt AD E ∆,设旋转角为(0180)αα<≤︒,记直线1BD 与1CE 的交点为P .(1)如图1,当90α=︒时,线段1BD 的长等于 ,线段1CE 的长等于 ;图1 图2(2)如图2,当135α=︒时,求证:11BD CE =,且11BD CE ⊥;(3)求点P 到AB 所在直线的距离的最大值(直接写出结果).解(1)(2)当135α=︒时,Rt ADE ∆ 旋转135°到11Rt AD E ∆, 1111,135AD AE D AB E AC ∴=∠=∠=︒.1,A B A C D A B =∴∆ ≌1E AC ∆,又‘:L1=L2,1111,BD CE D BA E CA ∴=∠=∠.又12∠=∠ ,90CPB CAB ∴∠=∠=︒,即11BD CE ⊥;(3)最大值二、90°角绕斜边中点旋转例2 将一副三角尺如图3摆放(在Rt ABC ∆中,90,60ACB B ∠=︒∠=︒;在Rt DEF ∆中,90,45EDF E ∠=︒∠=︒,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .)(1)求ADE ∠的度数;(2)如图3,将DEF ∆绕点D 顺时针方向旋转角(060)αα︒<<︒,此时的等腰直角三角尺记为DE F ''∆, DE '交AC 于点M ,DF '交BC 于点N ,试判断PM CN 的值是否随着α的变化而变化?如果不变,请求出PM CN 的值;反之,请说明理由.图3解 (1)由题意,知CD 是Rt ABC ∆中斜边AB 上的中线,AD BD CD ∴==.在BCD ∆中,BD CD =且60B ∠=︒, BCD ∴∆为等边三角形,60BCD BDC ∴∠=∠=︒,180180609030ADE BDC EDF ∴∠=︒-∠-∠=︒-︒-︒=︒. (2)PM CN的值不会随着α的变化而变化,理由如下: APD ∆ 的外角MPD ∠303060A ADE =∠+∠=︒+︒=︒,60MPD BCD ∴∠=∠=︒.在MPD ∆和NCD ∆中,60,MPD BCD PDM CDN α∴∠=∠=︒∠=∠=,MPD ∴∆∽NCD ∆,PM PD CN CD∴=. 又由(1)知AD CD =,PM PD PD CN CD AD∴==. 在APD ∆中,30A ADE ∠=∠=︒, ∴在等腰APD ∆中,3PD AD ==, PM PD PD CN CD AD ∴===三、45°角绕直角顶点旋转例3 在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且45EAF CEF ∠=∠=︒.(1)将ADF ∆绕着点A 顺时针旋转90°,得到ABG ∆(如图4).求证: AEG ∆≌AEF ∆;(2)若直线EF 与AB 、AD 的延长线分别交于点M 、N (如图5),求证:222EF ME NF =+;图4 图5(3)将正方形改为长与宽不等的长方形,若其余条件不变(如图6),请你直接写出线段EF 、BE 、DF 之间的数量关系.图6解 (1)ADF ∆ 绕着点A 旋转90°到ABG ∆,,90,AF AG FAG ∴=∠=︒ 45GAE FAG EAF EAF ∴∠=∠-∠=︒=∠,AE AE AGE =∴∆ ≌AFE ∆.(2) ADF ∆绕着点A 旋转90°到ABG ∆,如图7,得DF BG =.图7ABCD 是正方形,,90,BC DC C ABC ADC ∴=∠=∠=∠=︒9045,90CFE CEF CEF BEM MBE NDF ∴∠=︒-∠=︒=∠=∠∠=∠=︒,45,CE CF DFN CFE BEM ∴=∠=∠=︒=∠,BE DF BG ∴==BEM ∴∆≌,,,45,DFN MG ME FN ME MG MGE BEM ∆=∴==∠=∠=︒180454590,GME ∴∠=︒-︒-︒=︒222GE MG ME ∴=+.AGE ∆ ≌,,AFE EF GE ∆∴=222EF FN ME ∴=+.四、45°角绕斜边中点旋转例 4 如图8 ,ABC ∆和DEF ∆是两个全等的等腰直角三角形,L 90BAC EDF ∠=∠=︒,DEF ∆的顶点E 与ABC ∆的斜边BC 的中点重合.将DEF ∆绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图8,当点Q 在线段AC 上,且AP AQ =时,求证: BPE ∆≌CQE ∆.(2)如图9,当点Q 在线段CA 的延长线上时,求证:BPE ∆∽CEQ ∆;并求当9,2B P a C Q a ==时,P 、Q 两点间的距离(用含a 的代数式表示).图8 图9解 (1)略.(2)连结PQ (如图10).ABC ∆ 和DEF ∆是两个全等的等腰直角三角形,45B C DEF ∴∠=∠=∠=︒ .图10 ,B E Q E Q CC ∠=∠+∠ 即,BEP DEF EQC C ∠+∠=∠+∠4545,BEP EQC ∴∠+︒=∠+︒BEP EQC ∴∠=∠,BPE ∴∆∽CEQ ∆,BP BE CE CQ∴=. 9,,,2BP a CQ a BE CE === 92a BE BE a ∴=,即BE CE ==,BC ∴=,sin 453,AB AC BC a ∴==⋅︒=32AQ CQ AC a ∴=-=,2PA AB BP a =-=. ∴在Rt APQ ∆中,52PQ a ===.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 2 图 1 图 3 图 5 图4 图 6 图
7 一个等腰直角三角形旋转问题的探讨
原题:在△ABC 中,AC=BC,∠ACB=90O
, △ADE 为等腰直角三角形,DE ⊥AD 。
M 为线段EB 的中点, 连结DM 、CM 。
请探究DM 与CM 的关系(如图1)。
证明分析:利用直角三角形斜边中线性质和三角形的内外角和定理不难证明DM 与CM 垂直且相等。
问题:把等腰直角△ADE 绕点A 逆时针旋转,在旋转的过程中,其它条件不变,则上述命题的结论仍然成立吗?
一、特殊位置时结论的证明
旋转一:当线段AD 旋转到线段AC 上时(如图2)。
证明分析(如图3):设线段AE 与线段BC 的延长线相交于点N 。
由直角三角形斜边中线性质可得,AM =EM ;由等腰直角三角形的定义可得,AD=ED ,所以,根据“到线段两端点距离相等的点在线段的垂直平分线上”可得DM ⊥AE ,可证DM ∥AB 。
同理,CM ∥AN ,综合可证△CDM 是等腰直角三角形。
于是,命题得证。
旋转二:当E 、D 、B 三点旋转到同一条直线上时(如图4)。
证明分析(如图5):延长AD 至N ,使DN=DM ,连结CN 。
△EDA 是等腰直角三角形,所以可证得AN=EM=BM 。
由三角形内角和可证∠NAC=∠CBM ,用“SAS ”证明△CBM ≌△CAN 。
得∠MCB=∠NCA ,证
出∠NCM=90O ,再由△CBM ≌△CAN 可得∠N=∠DMC,由四边形内角和可证得∠N=∠DMC =90O ,从而证明四边形DMCN 为正方形。
于是命题得以证明。
旋转三:当点E 、A 、B 三点在同一条直线上时(如图6)。
图8 图11
图10 图12 图13
图14
图15 证明分析(如图7):作DF ⊥BE 于F ,CN ⊥AB 于点N ,设DF =a ,CN=b ,根据等腰直角三角形的定义与性质可得BE=2(a+b),所以有EM=BM=a+b 。
计算证出DF=NM ,FM=CN 。
用“SAS ”证△MDF ≌△CMN ,可证结论成立。
下列四种情况,请读者证明结论的正确性。
已知△ABC 和△ADE 为等腰直角三角形, M 为线段EB 的中点,
连结DM 、CM 。
请探究DM 与CM 的关系。
1)当D 、A 、B 三点在同一条直线上时(如图8)
2)当D 、A 、C 三点在同一条直线上时(如图9)
3) 当D 、E 、B 三点在同直线时(如图10)
4) 当A 、E 、B 三点在同直线时(如图11)
二、一般位置时结论的证明
旋转四:当旋转角度小于45O 时(如图12)。
证明分析:(如图13)作DN ⊥DM ,取DN=DM 。
连结AN 交BE 于点P,连结CN 。
用“SAS ”证△ADN ≌△EDM , 则∠PNO=∠DMO ,在△NPO 和△ODM 中利用内角和定理证明∠NPO=90O ,同理在△PAQ 和△BQC 中证明∠
PAQ=∠CBQ 。
另一方面由△ADN ≌△EDM 可证明AN=EM=BM 。
用“SAS ”证明△CBM ≌△CAN ,仿前变式二
证明∠NCM=90O ,连结DC ,证∠DNC=∠DMC ,利用四边形内角和证∠DNC=∠DMC=90O ,于是可证四边形
DMCN 为正方形,得DM=CM,且DM ⊥CM 。
请读者证明下列几种变化情况。
如下列图14,图15,图16,其它条件不变,即:△ABC 和△ADE 为等腰直角三角形, M 为线段EB 的中点, 连结DM 、CM 。
请探究DM 与CM 的关系。
图9
图
17 图
16
我们对于已做过的习题要有解题后反思。
本题变式多,证明方式也不尽相同,可以说是精彩纷呈,是复习备考中难得的一道好题。
借题发挥,拓宽视野,这样做不仅有助于学生综合而灵活的运用知识,而且能不断提高学生独立探究问题解决的能力,更有助于培养学生思维的深刻性与批判性。
有兴趣的读者可以探讨下列旋转问题。
(2011•黑河)在正方形ABCD 的边AB 上任取一点E ,作EF ⊥AB 交BD 于点F ,取FD 的中点G ,连接EG 、CG ,如图(1),易证 EG=CG 且EG ⊥CG.。
(1)将△BEF 绕点B 逆时针旋转90°,如图(2),则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想。
(2)将△BEF 绕点B 逆时针旋转180°,如图(3),则线段EG 和CG 又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明。