专题47 三角形中的旋转综合问题(解析版)
2020-2021备战中考数学——初中数学 旋转的综合压轴题专题复习附答案解析
2020-2021备战中考数学——初中数学旋转的综合压轴题专题复习附答案解析一、旋转1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.(1)如图1,当a=42时,求b的值;(2)当a=4时,在图2中画出相应的图形并求出b的值;(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.【答案】(1)422)b=8;(3)ab=32.【解析】试题分析:(1)由正方形ABCD的边长为4,可得AC=2,∠ACB=45°.再CE=a=2∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC;(2)通过证明△ACF∽△ECA,即可得;(3)通过证明△ACF∽△ECA,即可得.试题解析:(1)∵正方形ABCD的边长为4,∴AC=42,∠ACB=45°.∵CE=a=42,∴∠CAE=∠AEC=452︒=22.5°,∴∠CAF=∠EAF-∠CAE=22.5°,∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42;(2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC =∠AEC.又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴AC CFEC CA=,∴42442=,∴CF=8,即b=8.(3)ab=32.提示:由(2)知可证△ACF∽△ECA,∴∴AC CFEC CA=,∴4242a=,∴ab=32.3.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG.(1) 求证:EG=CG;(2) 将图①中△BEF 绕B 点逆时针旋转 45∘,如图②所示,取DF 中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】解:(1)CG=EG(2)(1)中结论没有发生变化,即EG=CG.证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,∴△AMG≌△ENG.∴ AG=EG∴ EG=CG.(3)(1)中的结论仍然成立.【解析】试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;试题解析:解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
最新九年级数学中考复习:旋转综合压轴题(角度问题)含答案
2023年九年级数学中考复习:旋转综合压轴题(角度问题)1.如图① ,在①ABC 中,AB =AC =4,①BAC =90°,AD ①BC ,垂足为D .(1)S △ABD = .(直接写出结果)(2)如图①,将①ABD 绕点D 按顺时针方向旋转得到①A′B′D ,设旋转角为α (α<90°),在旋转过程中: 探究一:四边形APDQ 的面积是否随旋转而变化?说明理由; 探究二:当α=________时,四边形APDQ 是正方形.2.如图,在等腰Rt ABC 和等腰Rt CDE 中,90ACB DCE ∠=∠=︒.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的关系是_________;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由; (3)拓展延伸:把CDE △绕点C 在平面内转动一周,若10AC BC ==,5CE CD ==,AE 、BD 交于点P 时,连接CP ,直接写出BCP 最大面积_________.3.如图1,在Rt △ABC 中,①A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,请判断线段PM 与PN 的数量关系和位置关系,并说明理由;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =3,AB =7,请直接写出△PMN 面积的最大值.4.如图1,①ABC 为等腰直角三角形,①BAC =90°,AB =AC ,点D 在AB 边上,点E 在AC 边上,AD =AE ,连接DE ,取BC 边的中点O ,连接DO 并延长到点F ,使OF =OD ,连接CF . (1)请判断①CEF 的形状,并说明理由;(2)将(1)中①ADE 绕点A 旋转,连接CE ,(1)中的结论是否仍然成立,若成立,请仅就图2所示情况给出证明,若不成立,请说明理由;(3)若AB =6,AD =4,将①ADE 由图1位置绕点A 旋转,当点B ,E ,D 三点共线时,请直接写出①CEF 的面积.5.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是AB 外一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE ,BC 与DE 交于点F ,且AB BD ⊥.(1)如图1,若CB =6CE =,求DE 的长;(2)如图2,若点H 、G 分别为线段CF 、AE 的中点,连接HG ,求证:12HG BF =;(3)如图3,在(2)的条件下,若CE =4CF =,将BDF 绕点F 顺时针旋转角3(060)αα︒<≤︒,得到B D F '',连接B G ',取B G '中点Q ,连接BQ ,当线段BQ 最小时,请直接写出BQB '的面积.6.如图1,矩形ABCD 中,15,20AB BC ==,将矩形ABCD 绕着点A 顺时针旋转,得到矩形BEFG .(1)当点E 落在BD 上时,则线段DE 的长度等于________; (2)如图2,当点E 落在AC 上时,求BCE 的面积;(3)如图3,连接AE CE AG CG 、、、,判断线段AE 与CG 的位置关系且说明理由,并求22CE AG +的值;(4)在旋转过程中,请直接写出BCE ABG S S +△△的最大值.7.在平面直角坐标系中,O 为原点,点(4,0)A -,点(0,3),B ABO 绕点B 顺时针旋转,得A BO ''△,点A O 、旋转后的对应点为A O ''、,记旋转角为α.(1)如图①,90α=︒,边OA 上的一点M 旋转后的对应点为N ,当1OM =时,点N 的坐标为_____; (2)90α=︒,边OA 上的一点M 旋转后的对应点为N ,当O M BN '+取得最小值时,在图①中画出点M 的位置,并求出点N 的坐标.(3)如图①,P 为AB 上一点,且:2:1PA PB =,连接PO PA ''、,在ABO 绕点B 顺时针旋转一周的过程中,PO A ''的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.8.如图1,①ABC 和①DEC 均为等腰三角形,且①ACB =①DCE =90°,连接BE ,AD ,两条线段所在的直线交于点P .(1)线段BE 与AD 有何数量关系和位置关系,请说明理由. (2)若已知BC =12,DC =5,①DEC 绕点C 顺时针旋转, ①如图2,当点D 恰好落在BC 的延长线上时,求AP 的长;①在旋转一周的过程中,设①P AB 的面积为S ,求S 的最值.9.如图,在菱形ABCD 中,2AB =,60BAD ∠=,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F .()1如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:13MN AC =; ()2如图2,将EDF 以点D 为旋转中心旋转,其两边'DE 、'DF 分别与直线AB 、BC 相交于点G 、P ,连接GP ,当DGP 的面积等于10.如图1,一副直角三角板满足AB=BC ,AC=DE ,①ABC=①DEF=90°,①EDF=30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中, (1)如图2,当1CEEA=时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC=30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.11.如图1,在①ABC中,①BAC=90°,AB=AC,点D在边AC上,CD①DE,且CD=DE,连接BE,取BE的中点F,连接DF.(1)请直接写出①ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中①ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;①如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.12.已知点E是正方形ABCD的边AB上一点,AB=BE=2.以BE为边向右侧作正方形BEFG,将正方形BEFG绕点B顺时针旋转α度(0≤α≤90°),连结AE,CG(如图).(1)求证:①ABE①①CBG.(2)当点E在BD上时,求CG的长.(3)当90∠时,正方形BEFG停止旋转,求在旋转过程中线段AE扫过的面积.(参考数据:AEB=︒sin28︒≈,sin62︒≈tan28︒≈tan62︒≈)13.如图,矩形ABCD 中,5,6,==AB BC BCG 为等边三角形.点E ,F 分别为,AD BC 边上的动点,且EF AB ∥,P 为EF 上一动点,连接BP ,将线段BP 绕点B 顺时针旋转60︒至BM ,连接,,,PA PC PM GM .(1)求证:=GM PC ;(2)当,,PB PC PE 三条线段的和最小时,求PF 的长;(3)若点E 以每秒2个单位的速度由A 点向D 点运动,点P 以每秒1个单位的速度由E 点向F 点运动.E ,P 两点同时出发,点E 到达点D 时停止,点P 到达点F 时停止,设点P 的运动时间为t 秒. ①求t 为何值时,AEP △与CFP 相似; ①求BMP 的面积S 的最小值.14.如图1,在Rt ABC 中,90,5∠=︒==C AC BC ,点D 是边BC 上的一点,且BD =,过点D 做BC 边的垂线,交AB 边于点E ,将BDE 绕点B 顺时针方向旋转,记旋转角为()0360αα︒≤<︒.(1)【问题发现】当0α=︒时,AECD的值为________,直线,AE CD 相交形成的较小角的度数为________; (2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明; (3)【问题解决】当BDE 旋转至A ,D ,E 三点在同一条直线上时,请直接写出ACD △的面积.15.在中Rt ABC △中.90ABC ∠=︒,AB BC =,点E 在射线CB 上运动.连接AE ,将线段AE 绕点E 顺时针旋转90°得到EF ,连接CF .(1)如图1,点E在点B的左侧运动;①当2BE=,BC=EAB∠=_________°;①猜想线段CA,CF与CE之间的数量关系为_________.(2)如图2,点E在线段CB上运动时,第(1)间中线段CA,CF与CE之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.=,以A,E,C,F为顶点的四边形面积为y,请直接写出(3)点E在射线CB上运动,BC=,设BE xy与x之间的函数关系式(不用写出x的取值范围).16.如图,在①ABC中,AB=,①A=45°,AC=C作直线平行AB,将①ABC绕点A顺时针旋转得到①AB C''(点B,C的对应点分别为B',C'),射线AB',AC'分别交直线l于点P、Q.(1)如图1,求BC的长;(2)如图2,当点C为PQ中点时,求tan①APQ;(3)如图3,当点P,Q分别在线段AB',AC'上时,试探究四边形PQC B''的面积是否存在最大值.若存在,求出其最大值;若不存在,请说明理由.17.已知Rt△ABC中,AC=BC,①C=90°,D为AB边的中点,①EDF=90°,①EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)如图1,当①EDF 绕D 点旋转到DE ①AC 于E 时,易证S △DEF +S △CEF 与S △ABC 的数量关系为__________;(2)如图2,当①EDF 绕D 点旋转到DE 和AC 不垂直时,上述结论是否成立?若成立,请给予证明; (3)如图3,这种情况下,请猜想S △DEF 、S △CEF 、S △ABC 的数量关系,不需证明.18.面直角坐标系中,O 为原点,点(12,0)A ,点(0,5)B ,线段AB 的中点为点C .将ABO 绕着点B 逆时针旋转,点O 对应点为1O ,点A 的对应点为1A .(1)如图①,当点1O 恰好落在AB 上时, ①此时1CO 的长为__________;①点P 是线段OA 上的动点,旋转后的对应点为1P ,连接11,BP PO ,试求11BP PO +最小时点P 的坐标; (2)如图①,连接11,CA CO ,则在旋转过程中,11CAO △的面积是否存在最大值?若存在,直接写出最大值,若不存在,说明理由.19.如图,在Rt ABC 中,90C ∠=︒,5AB =,3sin 5A =.点P 从点A 出发,以每秒4个单位长度的速度向终点B 匀速运动,过点P 作PD AB ⊥交折线AC ,CB 于点D ,连结BD ,将DBP 绕点D 逆时针旋转90︒得到DEF .设点P 的运动时间为t (秒).(1)用含t 的代数式表示线段PD 的长. (2)当点E 落在AB 边上时,求AD 的长. (3)当点F 在ABC 内部时,求t 的取值范围.(4)当线段DP 将ABC 的面积分成1:2 的两部分时,直接写出t 的值.20.如图1,在Rt ABC △中,90B ∠=︒,AB BC =,AO 是BC 边上的中线,点D 是AO 上一点,DE EO ⊥,E 是垂足,DEO 可绕着点O 旋转,点F 是点E 关于点O 的对称点,连接AD 和CF .(1)问题发现:如图2,当1ADDO=时,则下列结论正确的是_______.(填序号)①BE CF =;①点F 是OC 的中点:①AO 是BAC ∠的角平分线;①AD .(2)数学思考:将图2中DEO 绕点O 旋转,如图3,则AD 和CF 具有怎样的数量关系?请给出证明过程;(3)拓展应用:在图1中,若ADx DO=,将DEO 绕着点O 旋转. ①则AD =_______CF ;①若4AB =,1x =,在DEO 旋转过程中,如图4,当点D 落在AB 上时,连结BE ,EC ,求四边形ABEC 的面积.答案21.(1)4(2)四边形APDQ 的面积不会随旋转而变化,理由见详解;当45α=︒时,四边形APDQ 是正方形.22.(1)AE BD =,AE BD ⊥; (2)结论仍成立23.(1)PM =PN ,PM ①PN . (2)△PMN 是等腰直角三角形. (3)S △PMN 最大=25224.(1) ①CEF 是等腰直角三角形;(2)成立,(3)18-18+25.(1)(3)8 26.(1)10;(2)42;(3) AE ①CG 221250CE AG =+;(4)30027.(1)(-3,4);(2)N (-3,92);(3)最大值为283,最小值为8328.(1)BE =AD ,BE 与AD 互相垂直,(2)①AP =8413;①最小47,最大72 29.(2)顺时针或逆时针旋转60.30.探究一:(1)EP=EQ ;证明见解析;(2)1:2,(3)EP :EQ=1:m ,①0<(1)当50cm 2;当75cm 2.(2)50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.31.(1)①ADF =45°,AD (2)①成立,;①1≤S △ADF ≤4.32.(3)3145S π=33.(3)①73;①34.,45︒;(2)无变化(3)121235.(1)①30;①AC +CF CE ;(2)CA -CF;(3)当点E 在点B 左侧运动时,y =21322x +;当点E 在点B 右侧运动时,y 32+.36.(3)存在;21-37.(1)S △DEF +S △CEF =12S △ABC(2)上述结论S △DEF +S △CEF =12S △ABC 成立(3)S △DEF -S △CEF =12S △ABC38.(1)①1.5 ①20,07⎛⎫ ⎪⎝⎭ (2)存在最大值,最大值为6939.(1)3t (2)258 (3)355374t ≤≤40.(1)①①①(2)AD =,①465。
2020年数学中考复习专题:《三角形综合》(后附解析)
中考复习冲刺:《三角形综合》1.如图,在三角形ABC 中,AB =8,BC =16,AC =12.点P 从点A 出发以2个单位长度/秒的速度沿A →>B →C →A 的方向运动,点Q 从点B 沿B →C →A 的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t = 秒时,P 是AB 的中点.(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得BP =2BQ . (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.2.如图,在△ABC 中,BC =7cm ,AC =24cm ,AB =25cm ,P 点在BC 上,从B 点到C 点运动(不包括C 点),点P 运动的速度为2cm /s ;Q 点在AC 上从C 点运动到A 点(不包括A 点),速度为5cm /s .若点P 、Q 分别从B 、C 同时运动,请解答下面的问题,并写出探索主要过程:(1)经过多少时间后,P 、Q 两点的距离为5cm ?(2)经过多少时间后,S △PCQ 的面积为15cm 2?(3)用含t 的代数式表示△PCQ 的面积,并用配方法说明t 为何值时△PCQ 的面积最大,最大面积是多少?3.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)若△ABC是倍角三角形,∠A>∠B>∠C,∠B=30°,AC=4 2 ,求△ABC面积;(3)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.4.如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB 平移至线段CD,使点A的对应点C在y轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD 之间的一个等量关系,并说明理由.5.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.(1)求证:S△ABD =S△ACE;(2)如图2,AM是△ACE的中线,MA的延长线交BD于N,求证:MN⊥BD.6.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.7.定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“和美三角形”,这条边称为“和美边”,这条中线称为“和美中线”.理解:(1)请你在图①中画一个以AB为和美边的和美三角形,使第三个顶点C落在格点上;(2)如图②,在Rt△ABC中,∠C=90°,tan A=.求证:△ABC是“和美三角形”.运用:(3)已知,等腰△ABC是“和美三角形”,AB=AC=20,求底边BC的长(画图解答).8.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC =α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC =7,AD=2.请直接写出线段BE的长为.9.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.10.问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM =EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=,直接写出A、M两点之间的距离.11.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.12.如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;=30,∠CAF=∠ABD,求线段BP的长.(ⅱ)如图2,若AB=10,S△ABC13.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.14.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,过点C作CG⊥AD于点G,过点B作FB⊥CB于点B,交CG的延长线于点F,连接DF交AB于点E.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF;(3)连接AF,试判断△ACF的形状,并说明理由.15.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD =∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC =90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长分别为cm.16.如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF﹣AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为.17.已知△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,M为CE中点.(1)如图1,若D点在BA延长线上,直接写出BM与DM的数量关系与位置关系不必证明.(2)如图2,当C,E,D在同直线上,连BE,探究BE与AB的的数量关系,并加以证明.(3)在(2)的条件下,若AB=AE=2.求BD的长.18.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为.②∠APC的度数为.(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为.19.(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C 重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②∠DCE=120°;(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想:①∠DCE的度数;②线段BD、CD、DE之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结BE,若BE=10,BC=6,直接写出AE的长.20.思维启迪:(1)如图①,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,他出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC=4,AE=DE=,∠ACB=∠AED=90°,将△ADE 绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图②,当△ADE在起始位置时,求证:PC⊥PE,PC=PE.②如图③,当α=90°时,点D落在AB边上,PC与PE的数量关系和位置关系分别为.③当α=135°时,直接写出PC的值.参考答案1.解:(1)∵AB=8,点P的运动速度为2个单位长度/秒,∴当P为AB中点时,即4÷2=2(秒);故答案为:2.(2)由题意可得:当BP=2BQ时,P,Q分别在AB,BC上,∵点Q的运动速度为个单位长度/秒,∴点Q只能在BC上运动,∴BP=8﹣2t,BQ=t,则8﹣2t=2×t,解得t=,当点P运动到BC和AC上时,不存在BP=2BQ;(3)当点P为靠近点A的三等分点时,如图1,AB+BC+CP=8+16+8=32,此时t=32÷2=16,∵BC+CQ=16+4=20,∴a=20÷16=,当点P为靠近点C的三等分点时,如图2,AB +BC +CP =8+16+4=28,此时t =28÷2=14,∵BC +CQ =16+8=24,∴a =24÷14=.综上可得:a 的值为或.2.解:(1)连接PQ ,设经过ts 后,P 、Q 两点的距离为5cm ,ts 后,PC =7﹣2tcm ,CQ =5tcm ,根据勾股定理可知PC 2+CQ 2=PQ 2,代入数据(7﹣2t )2+(5t )2=(5)2; 解得t =1或t =﹣(不合题意舍去);(2)设经过ts 后,S △PCQ 的面积为15cm 2 ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =15解得t 1=2,t 2=1.5,经过2或1.5s 后,S △PCQ 的面积为15cm 2.(3)设经过ts 后,△PCQ 的面积最大,ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =×(﹣2t 2+7t ).=﹣5.∴当t=s时,△PCQ的面积最大,最大值为cm2.3.(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴∠A=2∠C,即△ABC是倍角三角形,(2)解:∵∠A>∠B>∠C,∠B=30°,①当∠B=2∠C,得∠C=15°,过C作CH⊥直线AB,垂足为H,可得∠CAH=45°,∴AH=CH=AC=4.∴BH=,∴AB=BH﹣AH=﹣4,∴S=.②当∠A=2∠B或∠A=2∠C时,与∠A>∠B>∠C矛盾,故不存在.综上所述,△ABC面积为.(3)△ADC和△ABC是倍角三角形,证明如下:∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴∠ADE=∠ADB,BD=DE.又∵AB +AC =BD ,∴AE +AC =BD ,即CE =BD .∴CE =DE .∴∠C =∠BDE =2∠ADC .∴△ADC 是倍角三角形.∵△ABD ≌△AED ,∴∠E =∠ABD ,∴∠E =180°﹣∠ABC ,∵∠E =180°﹣2∠C ,∴∠ABC =2∠C .∴△ABC 是倍角三角形.4.解:(1)∵点A (﹣4,﹣1)、B (﹣2,1),C (k ,0),将线段AB 平移至线段CD , ∴点B 向上平移一个单位,向右平移(k +4)个单位到点D ,∴D (k +2,2);(2)如图1,过点B 作BE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,∵A (﹣4,﹣1)、B (﹣2,1),C (k ,0),D (k +2,2),∴BE =1,CE =k +2,DF =2,EF =k +4,CF =2,∵S 四边形BEFD =S △BEC +S △DCF +S △BCD , ∴=+,解得:k =2.(3)∠BPD =∠BCD +∠A ;理由如下:过点P 作PE ∥AB ,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=∠ABC,∠PDC=∠ADC,∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.5.证明:(1)过B作BM⊥DA于M,过C作CN⊥EA交EA的延长线于N,如图,∵∠BAC=∠DAE=90°,∴∠BAD+∠CAE=180°,∵∠CAN+∠CAE=180°,∴∠BAD=∠CAN∵sin∠BAD=,sin∠CAN=,又∵AB=AC,∴BM=CN,∵DA=AE,S△ABD =DN×BM,S△ACE=AE×CN,∴S△ADB =S△ACE.(2)延长AM到Q使AM=QM,连接CQ、EQ,如图,∵AM是△ACE中线,∴CM=EM,∴四边形ACQE是平行四边形,∴AC=EQ=AB,AE=CQ=AD,AC∥EQ,∴∠CAE+∠AEQ=180°,∵∠BAD+∠CAE=180°,∴∠BAD=∠AEQ,∵在△BAD和△QEA中∴△BAD≌△QEA,∴∠BDA=∠EAM,∵∠DAE=90°,∴∠NAD+∠QAE=90°,∴∠BDA+∠NAD=90°,∴∠DNA=180°﹣90°=90°,∴MN⊥BD.6.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC =∠AEH ,∵AD =AE ,∴△ACD ≌△EHA ,∴CD =AH ,EH =AC =BC ,∵CB =CA ,∴BD =CH ,∵∠EHF =∠BCF =90°,∠EFH =∠BFC ,EH =BC ,∴△EHF ≌△BCF ,∴FH =CF ,∴BD =CH =2CF .(3)如图3中,同法可证BD =2CM .∵AC =3CM ,设CM =a ,则AC =CB =3a ,BD =2a , ∴==.7.解:(1)如图①中,△ABC 1,△ABC 2即为所求.(2)证明:如图②,根据定义Rt △ABC 中,和美中线一定是较长直角边上的中线. 理由:取AC 的中点D ,连结BD ,设AC =2x ,则CD =AD =x ,∵,∴,∴,在Rt△BCD中,∴BD=AC,∴△ABC是“和美三角形:.(3)分两种情况:如图③,当腰上的中线BD=AC时,则AB=BD,过B作BE⊥AD于E,∵AB=AC=20,∴BD=20,,∴CE=10+5=15,∴Rt△BDE中,BE2=BD2﹣DE2=375,∴Rt△BCE中,;如图④,当底边上的中线AD=BC时,则AD⊥BC,且AD=2BD,设BD=x,则x2+(2x)2=202,∴x2=80,又∵x>0,∴,∴.综上所述,底边BC的长为或.8.解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.故答案为:等边,30°;【问题解决】解:∵∠DBC<∠ABC,∴60°<α≤120°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3﹣1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=2,∴DE=,∴BE=BD+DE=7+,故答案为:7+或7﹣.9.解:(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).10.解:问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=AC=.11.(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PFA=∠FPA=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.12.(1)证明:∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,=BC•AF=×10×AF=30,则S△ABC∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,=AC•BD=×2×BD=30,∵S△ABC∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△BPF(HL),∴BG=BF=8,∴AG=AB﹣BG=2,∵AB=CB,BD⊥AC,∴AD=CD=AC=,设AP=x,则PG=PF=6﹣x,在Rt△APG中,由勾股定理得:22+(6﹣x)2=x2,解得:x=,∴AP=,∴PD===,∴BP=BD﹣PD=3﹣=;当点F在点C的右侧时,则∠CAF=∠ACF',∵BD⊥AC,∴∠APD=∠AP'D,∴AP=AP',PD=P'D=,∴BP=+2×=;综上所述,线段BP的长为或.13.解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°﹣∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°﹣∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形14.证明:(1)∵CG⊥AD,∴∠AGC=90°,∴∠GCA+∠CAD=90°,∵∠GCA+∠FCB=90°,∴∠CAD=∠FCB,∵FB⊥BC,∴∠CBF=90°,∵Rt△ABC是等腰三角形,∠ACB=90°,∴AC=BC,∠CBF=∠ACB,在△ACD和△CBF中,∴△ACD≌△CBF(ASA);(2)∵△ACD≌△CBF,∴CD=BF,∵D为BC的中点,∴CD=BD,∴BD=BF,∵△ABC是等腰直角三角形,∠ACB=90°,∴∠DBE=45°,∵∠CBF=90°,∴∠DBE=∠FBE=45°,在△DBE和△FBE中,∴△DBE≌△FBE(SAS),∴DE=FE,∠DEB=∠FEB=90°,∴AB垂直平分DF;(3)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:△CBF≌△ACD,∴CF=AD,由(2)知:AB垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.15.解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=14,∠QMN=30°,∴QN=MN=7,∴MQ===7,由(2)知PQ=QN+QM=7+7,∴PQ==,故答案为:.16.(1)证明:∵CF⊥BD于点F,AE⊥BD,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,又∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∴CF﹣AE=BE﹣BF=EF;(2)证明:如图1,过点C作CF⊥BD于点F,∵BC=CD,∴BF=DF,由(1)得AE=BF,∴AE=DF,∴BD=2AE;(3)解:如图2,过点C作CG⊥MB,交MB的延长线于点G,过点C作CH⊥BE,交BE于点H,∵BM⊥BE,CH⊥BE,CG⊥MB,∴∠NBG=∠CHB=∠CGB=90°,∴四边形BGCH为矩形,∴BG=HC,BH=GC,由(1)得△AEB≌△BHC,∴AE=BH,BE=CH,∵BM=BE,∴BM=CH,∵∠MBN=∠CHN=90°,∠MNB=∠CNH,∴△BMN≌△HCN(AAS),∴BM=CH,BN=HN,∵AE=BH=2,∴BN=1,∴BE=BM=BN+EN=1+4=5,∴=.故答案为:5.17.解:(1)BM=DM,BM⊥DM;如图1,连接AM,∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,∴∠CAE=90°,∵M为CE中点.∴CM=AM,∵BM=BM,BC=BA,∴△BCM≌△BAM(SSS),∴∠CBM=∠MBA=45°,同理可得∠MDA=45°,∴∠BMD=90°,∴BM=DM,BM⊥DM;(2)如图2,延长BM到N,使BM=MN,连EN,DN,BD,BE,∵∠CMB=∠EMN,CM=ME,∴△CBM≌△ENM(SAS),∴BC=EN,∠BCM=∠MEN,∴EN=AB,∵∠CBA=∠ADE=90°,∴∠BCM+∠BAD=180°,∵∠NED+∠MEN=180°,∴∠NED=∠BAD,又∵AD=DE,∴△END≌△ABD(SAS),∴DB=DN,∠NDE=∠BDA,∴∠NDE+∠BDE=90°,∴∠NDB=90°,∴DB⊥DN,∴DM⊥BN,∴BE=EN=BC=AB;(3)如图3,连BE,BD交AE于N,在(2)的条件下,CM=ME,DM⊥BM,∴BE=BC=AE=AB=2,DE=DA=2,∴BD为AE的垂直平分线,∴EN=DN=AN=,∴BN==,∴BD=+.18.解:(1)观察猜想:①如图1,设AE交CD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,S△ACE =S△BCD,∴∠DPO=∠ACO=60°,∴∠APB=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴CP平分∠APB,∴∠APC=60°,故答案为AE=BD,60°.(2)数学思考::①成立,②不成立,理由:设AC交BD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,∴∠DPE=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴∠DPC=60°,∴∠APC=120°,∴①成立,②不成立;拓展应用:设AC交BD于点O.∵∠ACD=∠BCE=90°,CA=CD,CB=CE,∴∠ACE=∠DCB∴△AEC≌△DBC(SAS),∴AE=BD,∠CDB=∠CAE,∵∠AOP=∠COD,∠CDB=∠CAE,∴∠DCO=∠APO=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD.19.证明:(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;(2)∠DCE=90°,BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴CE===8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,DE===,∵△ADE是等腰直角三角形,∴.20.(1)解:∵CD∥AB,∴∠ABP=∠C,∵P是BC的中点,∴PB=PC,在△ABP和△DCP中,,∴△ABP≌△DCP(ASA),∴AB=CD=200米;故答案为:200;(2)①证明:延长EP交BC于F,如图②所示:∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDP=∠FBP,∠DEP=∠BFP,∵点P是线段BD的中点,∴PB=PD,在△FBP和△EDP中,,∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵PE=PF,∴PC⊥EF,PC=EF=PE;②解:PC⊥PE,PC=PE;理由如下:延长ED交BC于H,如图③所示:由旋转的性质得:∠CAE=90°,∵∠AED=∠ACB=90°,∴四边形ACHE是矩形,∴∠BHE=∠CHE=90°,AE=CH,∵AE=DE,∴CH=DE,∠ADE=45°,∴∠EDP=135°,∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵∠BHE=90°,点P是线段BD的中点,∴PH⊥BD,PH=BD=PD,△BPH是等腰直角三角形,∴∠BHP=45°,∴∠CHP=135°=∠EDP,在△CPH和△EPD中,,∴△CPH≌△EPD(SAS),∴PC=PE,∠CPH=∠EPD,∴∠CPE=∠HPD=90°,∴PC⊥PE;故答案为:PC⊥PE,PC=PE;③解:当α=135°时,AD⊥AC,过点D作DF⊥BC于F,连接CD,过点C作CN⊥BD于N,如图④所示:则四边形ACFD是矩形,∴CF=AD=AE=2,DF=AC=4,∴CD===2,BF=BC﹣CF=4﹣2=2,∴BD===2,∵DF•BC=CN•BD,∴CN===,BN===,∴PN=BD﹣BN=×2﹣=,∴PC===.。
题型十一 综合探究题 类型四 与旋转有关的探究题(专题训练)(解析版)
题型十一综合探究题类型四与旋转有关的探究题(专题训练)D为BC的中点,E,F分1.(2022·重庆市B卷)在△ABC中,∠BAC=90°,AB=AC=别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.【答案】(1)解:如图1,连接CP,由旋转知,CF=CG,∠FCG=90°,∴△FCG为等腰直角三角形,∵点P是FG的中点,∴CP⊥FG,∵点D是BC的中点,BC,∴DP=12在Rt△ABC中,AB=AC==4,∴BC=∴DP=2;(2)证明:如图2,过点E作EH⊥AE交AD的延长线于H,∴∠AEH=90°,由旋转知,EG=EF,∠FEG=90°,∴∠FEG=∠AEH,∴∠AEG=∠HEF,∵AB=AC,点D是BC的中点,∴∠BAD=∠CAD=1∠BAC=45°,2∴∠H=90°―∠CAD=45°=∠CAD,∴AE=HE,∴△EGA≌△EFH(SAS),∴AG=FH,∠EAG=∠H=45°,∴∠EAG=∠BAD=45°,∵∠AMF=180°―∠BAD―∠AFM=135°―∠AFM,∵∠AFM=∠EFH,∴∠AMF=135°―∠EFH,∵∠HEF=180°―∠EFH―∠H=135°―∠EFH,∴∠AMF=∠HEF,∵△EGA≌△EFH,∴∠AEG=∠HEF,∵∠AGN=∠AEG,∴∠AGN=∠HEF,∴∠AGN=∠AMF,∵GN=MF,∴△AGN≌△AMF(AAS),∴AG=AM,∵AG=FH,∴AM=FH,∴AF +AM =AF +FH =AH;(3)解:∵点E 是AC 的中点,∴AE =12AC 根据勾股定理得,BE ==由折叠直,BE =B′E∴点B′是以点E由旋转知,EF =EG ,∴点G 是以点E 为圆心,EG 为半径的圆上,∴B′G 的最小值为B′E ―EG ,要B′G 最小,则EG 最大,即EF 最大,∵点F 在AD 上,∴点在点A 或点D 时,EF∴线段B′G2.(湖南省郴州市2021年中考数学试卷)如图1,在等腰直角三角形ABC 中,90BAC Ð=°.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90°得到AG ,连接GC ,HB .(1)证明:AHB AGC V V ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .①证明:在点H 的运动过程中,总有90HFG Ð=°;②若4AB AC ==,当EH 的长度为多少时,AQG V 为等腰三角形?【答案】(1)见详解;(2)①见详解;②当EH 的长度为2时,AQG V 为等腰三角形【分析】(1)由旋转的性质得AH=AG ,∠HAG=90°,从而得∠BAH=∠CAG ,进而即可得到结论;(2)①由AHB AGC V V ≌,得AH=AG ,再证明AEH AFG V V ≌,进而即可得到结论;②AQG V 为等腰三角形,分3种情况:(a )当∠QAG=∠QGA=45°时,(b )当∠GAQ=∠GQA=67.5°时,(c )当∠AQG=∠AGQ=45°时,分别画出图形求解,即可.【详解】解:(1)∵线段AH 绕点A 逆时针方向旋转90°得到AG ,∴AH=AG ,∠HAG=90°,∵在等腰直角三角形ABC 中,90BAC Ð=°,AB=AC ,∴∠BAH=90°-∠CAH=∠CAG ,∴AHB AGC V V ≌;(2)①∵在等腰直角三角形ABC 中,AB=AC ,点E ,F 分别为AB ,AC 的中点,∴AE=AF ,AEF V 是等腰直角三角形,∵AH=AG ,∠BAH =∠CAG ,∴AEH AFG V V ≌,∴∠AEH=∠AFG=45°,∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:90HFG Ð=°;②∵4AB AC ==,点E ,F 分别为AB ,AC 的中点,∴AE=AF=2,∵∠AGH=45°,AQG V 为等腰三角形,分3种情况:(a )当∠QAG=∠QGA=45°时,如图,则∠HAF=90°-45°=45°,∴AH 平分∠EAF ,∴点H 是EF 的中点,∴12==(b)当∠GAQ=∠GQA=(180°-45°)÷2=67.5°时,如图,则∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2;(c)当∠AQG=∠AGQ=45°时,点H与点F重合,不符合题意,舍去,V为等腰三角形.综上所述:当EH的长度为2时,AQG【点睛】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.3.(2021·四川中考真题)在等腰ABC V 中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若60C Ð=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE Ð=________;(2)若60C Ð=°,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连结BE .①在图2中补全图形;②探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE==,且ADE C Ð=Ð,试探究BE 、BD 、AC 之间满足的数量关系,并证明.【答案】(1)30°;(2)①见解析;②CD BE =;见解析;(3)()AC k BD BE =+,见解析【分析】(1)先根据题意得出△ABC 是等边三角形,再利用三角形的外角计算即可(2)①按要求补全图即可②先根据已知条件证明△ABC 是等边三角形,再证明AEB ADC △≌△,即可得出CD BE=(3)先证明AC BC AD DE=,再证明ACB ADE △∽△,得出BAC EAD Ð=Ð,从而证明AEB ADC △≌△,得出BD BE BC +=,从而证明()AC k BD BE =+【详解】解:(1)∵AB AC =,60C Ð=°∴△ABC 是等边三角形∴∠B=60°∵点D 关于直线AB 的对称点为点E∴AB ⊥DE ,∴BDE Ð=30°故答案为:30°;(2)①补全图如图2所示;②CD 与BE 的数量关系为:CD BE =;证明:∵AB AC =,60BAC Ð=°.∴ABC V 为正三角形,又∵AD 绕点A 顺时针旋转60°,∴AD AE =,60EAD Ð=°,∵60BAD DAC Ð+Ð=°,60BAD BAE Ð+Ð=°,∴BAE DAC Ð=Ð,∴AEB ADC △≌△,∴CD BE =.(3)连接AE .∵AB AD k BC DE ==,AB AC =,∴AC AD BC DE=.∴AC BC AD DE =.又∵ADE C Ð=Ð,∴ACB ADE △∽△,∴BAC EAD Ð=Ð.∵AB AC =,∴AE AD =,∴BAD DAC BAD BAE Ð+Ð=Ð+Ð,∴DAC BAE Ð=Ð,∴AEB ADC △≌△,CD BE =.∵BD DC BC +=,∴BD BE BC +=.又∵AC k BC=,∴()AC k BD BE =+.【点睛】本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点4.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα°<≤°,得到矩形'''AB C D [探究1]如图1,当90α=°时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.【答案】[探究1]BC =;[探究2]'D M DM =,证明见解析;[探究3]2MN PN DN =×,证明见解析【分析】[探究1] 设BC x =,根据旋转和矩形的性质得出''//D C DA ,从而得出''D C B ADB D D ∽,得出比例式'''D C D B AD AB=,列出方程解方程即可;[探究2] 先利用SAS 得出''AC D DBA D D ≌,得出'DAC ADB Ð=Ð,'ADB AD M Ð=Ð,再结合已知条件得出''MDD MD D Ð=Ð,即可得出'D M DM =;[探究3] 连结AM ,先利用SSS 得出ADM ADM D D ≌,从而证得MN AN =,再利用两角对应相等得出NPA NAD D D ∽,得出PN AN AN DN=即可得出结论.【详解】[探究1]如图1,设BC x =.∵矩形ABCD 绕点A 顺时针旋转90°得到矩形'''AB C D ,∴点A ,B ,'D 在同一直线上.∴'AD AD BC x ===,'1DC AB AB ===,∴''1D B AD AB x =-=-.∵'90BAD D Ð=Ð=°,∴//D C DA ¢¢.又∵点'C 在DB 延长线上,∴''D C B ADB D D ∽,∴''D C AD 1x =解得1x =2x (不合题意,舍去)∴BC =[探究2] 'D M DM =.证明:如图2,连结'DD .∵'//'D M AC ,∴'''AD M D AC Ð=Ð.∵'AD AD =,''90AD C DAB Ð=Ð=°,''D C AB =,∴()''AC D DBA SAS D D ≌.∴'D AC ADB ¢Ð=Ð,'ADB AD M Ð=Ð,∵AD AD =,''ADD AD D Ð=Ð,∴''MDD MD D Ð=Ð,∴'D M DM =.[探究3]关系式为2MN PN DN =×.证明:如图3,连结AM .∵'D M DM =,'AD AD =,AM AM =,∴()ADM AD M SSS ¢D D ≌.∴'MAD MAD Ð=Ð,∵AMN MAD NDA Ð=Ð+Ð,'NAM MAD NAP Ð=Ð+Ð,∴AMN NAM Ð=Ð,∴MN AN =.在NAP D 与NDA D 中,ANP DNA Ð=Ð,NAP NDA Ð=Ð,∴NPA NAD D D ∽,∴PN AN AN DN=,∴2AN PN DN =×.∴2MN PN DN =×.【点睛】本题考查了矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,解一元二次方程等,解题的关键是灵活运用这些知识解决问题.5.(2021·浙江中考真题)如图,在菱形ABCD 中,ABC Ð是锐角,E 是BC 边上的动点,将射线AE 绕点A 按逆时针方向旋转,交直线CD 于点F .(1)当AE BC EAF ABC ,^Ð=Ð时,①求证:AE AF =;②连结BD EF ,,若25EF BD =,求ABCDn AEF菱形SS的值;(2)当12EAF BAD Ð=Ð时,延长BC 交射线AF 于点M ,延长DC 交射线AE 于点N ,连结AC MN ,,若42AB AC ==,,则当CE 为何值时,AMN V 是等腰三角形.【答案】(1)①见解析;②825;(2)当43CE =或2或45时,AMN V 是等腰三角形.【分析】(1)根据菱形的性质得到边相等,对角相等,根据已知条件证明出BAE DAF Ð=Ð,得到ABE ADF V V ≌,由=AE AF ,CE CF =,得到AC 是EF 的垂直平分线,得到//EF BD ,CEF CBD ∽△△,再根据已知条件证明出AEF BAC V V ∽,算出面积之比;(2)等腰三角形的存在性问题,分为三种情况:当AM AN =时,ANC MAC V V ≌,得到CE=43;当NA NM =时,CEN BEA V V ≌,得到CE=2;当=MA MN 时,CEN BEA ∽△△,得到CE=45.【详解】(1)①证明:在菱形ABCD 中,//AB AD ABC ADC AD BC ,,=Ð=Ð,AE BC AE AD Q ,^\^,90ABE BAE EAF DAF \Ð+Ð=Ð+Ð=°,,EAF ABC BAE DAF Ð=Ð\Ð=ÐQ ,∴ABE ADF V V ≌(ASA),∴=AE AF .②解:如图1,连结AC .由①知,ABE ADF BE DF CE CF V V ≌,,\=\=,AE AF AC EF Q ,=\^.在菱形ABCD 中,//AC BD EF BD CEF CBD V V ,,∽^\\,∴25EC EF BC BD ==,设=2EC a ,则534AB BC a BE a AE a ,,===\=.AE AF AB BC EAF ABC Q ,,==Ð=Ð,∴AEF BAC V V ∽,∴22625=415AEF BAC S AE a S AB a V V æöæöç÷ç÷==ç÷ç÷èøèø,∴1168222525AEF AEF BAC ABCD S S S S V V V 菱形==´=. (2)解:在菱形ABCD 中,1122BAC BAD EAF BAD Q ,Ð=ÐÐ=Ð,BAC EAF BAE CAM ,\Ð=Ð\Ð=Ð,//C AB CD BAE AN ANC CAM Q ,,\Ð=Ð\Ð=Ð,同理,AMC NAC Ð=Ð,∴AC AM MAC ANC CN NAV V ∽,\=.AMN V 是等腰三角形有三种情况:①如图2,当AM AN =时,ANC MAC V V ≌,2CN AC \==,//AB CN CEN BEA Q V V ,∽\,142CE CN AB BE AB Q ,=\==,14433BC CE BC Q ,=\==.②如图3,当NA NM =时,NMA NAM BAC BCA Ð=Ð=Ð=Ð,12AM AC ANM ABC AN AB V V ∽,\==,24CN AC CEN BEA V V ,≌\==\,∴122CE BE BC ===.③如图4,当=MA MN 时,MNA MAN BAC BCA AMN ABC V V ,∽Ð=Ð=Ð=Ð\,1212AM AB CN AC AN AC ,\==\==,14CE CN CEN BEA BE AB QV V ∽,\==,1455CE BC \==.综上所述,当43CE =或2或45时,AMN V 是等腰三角形.【点睛】本题主要考查了菱形的基本性质、相似三角形的判定与性质、菱形中等腰三角形的存在性问题,解决本题的关键在于画出三种情况的等腰三角形(利用两圆一中垂),通过证明三角形相似,利用相似比求出所需线段的长.6.(2020·山东中考真题)在等腰△ABC 中,AC =BC ,ADE V 是直角三角形,∠DAE =90°,∠ADE =12∠ACB ,连接BD ,BE ,点F 是BD 的中点,连接CF .(1)当∠CAB =45°时.①如图1,当顶点D 在边AC 上时,请直接写出∠EAB 与∠CBA 的数量关系是 .线段BE 与线段CF 的数量关系是 ;②如图2,当顶点D 在边AB 上时,(1)中线段BE 与线段CF 的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC 底边上的高CM ,并取BE 的中点N ,再利用三角形全等或相似有关知识来解决问题;思路二:取DE 的中点G ,连接AG ,CG ,并把CAG V 绕点C 逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB =30°时,如图3,当顶点D 在边AC 上时,写出线段BE 与线段CF 的数量关系,并说明理由.【答案】(1)①EAB ABC Ð=Ð,12CF BE =;②仍然成立,证明见解析;(2)BE =,理由见解析.【分析】(1)①如图1中,连接BE ,设DE 交AB 于T .首先证明,,AD AE BD BE ==再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB 的中点M ,BE 的中点N ,连接CM ,MN .证明CMF BMN V V ≌(SAS ),可得结论.解法二:如图2﹣2中,取DE 的中点G ,连接AG ,CG ,并把CAG V 绕点C 逆时针旋转90°得到CBT V ,连接DT ,GT ,BG .证明四边形BEGT 是平行四边形,四边形DGBT 是平行四边形,可得结论.(2)结论:BE =.如图3中,取AB 的中点T ,连接CT ,FT .证明BAE CTF V V ∽,可得结论.【详解】解:(1)①如图1中,连接BE ,设DE 交AB 于T .∵CA=CB,∠CAB=45°,∴∠CAB=∠ABC=45°,∴∠ACB=90°,∵∠ADE=12∠ACB=45°,∠DAE=90°,∴∠ADE=∠AED=45°,∴AD=AE,90,DAEÐ=°Q45, EAB DAT ABC\Ð=Ð=Ð=°∴AT⊥DE,DT=ET,∴AB垂直平分DE,∴BD=BE,∵∠BCD=90°,DF=FB,∴CF=12BD,∴CF=12BE.故答案为:∠EAB=∠ABC,CF=12BE.②结论不变.解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.∵∠ACB =90°,CA =CB ,AM =BM ,∴CM ⊥AB ,CM =BM =AM ,由①得:,AD AE =设AD =AE =y .FM =x ,DM =a ,Q 点F 是BD 的中点,则DF =FB =a+x ,∵AM =BM ,∴y+a =a+2x ,∴y =2x ,即AD =2FM ,∵AM =BM ,EN =BN ,∴AE =2MN ,MN ∥AE ,∴MN =FM ,∠BMN =∠EAB =90°,∴∠CMF =∠BMN =90°,∴CMF BMN V V ≌(SAS ),∴CF =BN ,∵BE =2BN ,∴CF =12BE .解法二:如图2﹣2中,取DE 的中点G ,连接AG ,CG ,并把△CAG 绕点C 逆时针旋转90°得到CBT V ,连接DT ,GT ,BG .∵AD =AE ,∠EAD =90°,EG =DG ,∴AG ⊥DE ,∠EAG =∠DAG =45°,AG =DG =EG ,∵∠CAB =45°,∴∠CAG =90°,∴AC ⊥AG ,∴AC ∥DE ,∵∠ACB =∠CBT =90°,//,AC BT \∴AC ∥BT ∥DE ,∵AG =BT ,∴DG =BT =EG ,∴四边形BEGT 是平行四边形,四边形DGBT 是平行四边形,∴BD 与GT 互相平分,,BE GT =∵点F 是BD 的中点,∴BD 与GT 交于点F ,∴GF =FT ,由旋转可得;,90,CG CT GCT =Ð=°\ GCT V 是等腰直角三角形,∴CF =FG =FT ,∴CF =12BE .(2)结论:BE =.理由:如图3中,取AB 的中点T ,连接CT ,FT .∵CA =CB ,∴∠CAB =∠CBA =30°,∠ACB =120°,∵AT =TB ,∴CT ⊥AB ,tan 30CT AT \°==∴AT ,∴AB =,∵DF =FB ,AT =TB ,∴TF ∥AD ,AD =2FT ,∴∠FTB =∠CAB =30°,∵∠CTB =∠DAE =90°,∴∠CTF =∠BAE =60°,∵∠ADE =12∠ACB =60°,tan 60AE AD\°==∴AE =,∴AB AE CT FT==,∴BAE CTF V V ∽,∴BE BA CF CT ==,∴BE =.【点睛】本题属于相似形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,锐角三角函数的应用,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.7.(2021·江苏中考真题)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周.(1)如图①,连接BG 、CF ,求CF BG的值;(2)当正方形AEFG 旋转至图②位置时,连接CF 、BE ,分别去CF 、BE 的中点M 、N ,连接MN 、试探究:MN 与BE 的关系,并说明理由;(3)连接BE 、BF ,分别取BE 、BF 的中点N 、Q ,连接QN ,AE=6,请直接写出线段QN 扫过的面积.【答案】(12)1;2MN BE MN BE ^=;(3)9p 【分析】(1)由旋转的性质联想到连接AF AC 、,证明CAF BAG D D ∽即可求解;(2)由M 、N 分别是CF 、BE 的中点,联想到中位线,故想到连接BM 并延长使BM=MH ,连接FH 、EH ,则可证BMC HMF D D ≌即可得到HF BC BA ==,再由四边形BEFC 内角和为360°可得BAC HFE Ð=Ð,则可证明BAE HFE D D ≌,即BHE D 是等腰直角三角形,最后利用中位线的性质即可求解;(3)Q 、N 两点因旋转位置发生改变,所以Q 、N 两点的轨迹是圆,又Q 、N 两点分别是BF 、BE 中点,所以想到取AB 的中点O ,结合三角形中位线和圆环面积的求解即可解答.【详解】解:(1)连接AF AC、Q 四边形ABCD 和四边形AEFG 是正方形,,90AB BC AG FG BAD GAE CBA AGF \==Ð=Ð=Ð=Ð=°Q AF AC 、分别平分,EAG BADÐÐ45BAC GAF \Ð=Ð=°BAC CAG GAF CAG \Ð+Ð=Ð+Ð即BAG CAFÐ=Ð且,ABC AGF D D 都是等腰直角三角形AC AF AB AG\==CAF BAG \D D ∽CF AC BG AB \==(2)连接BM 并延长使BM=MH ,连接FH 、EHM Q 是CF 的中点CM MF\=又CMB FMHÐ=ÐCMB FMH\D D ≌,BC HF BCM HFM\=Ð=Ð在四边形BEFC 中360BCM CBE BEF EFC Ð+Ð+Ð+Ð=°又90CBA AEF Ð=Ð=°3609090180BCM ABE AEB EFC \Ð+Ð+Ð+Ð=°-°-°=°即180HFM EFC ABE AEB Ð+Ð+Ð+Ð=°即180HFE ABE AEB Ð+Ð+Ð=°180BAE ABE AEB Ð+Ð+Ð=°Q HFE BAE\Ð=Ð又四边形ABCD 和四边形AEFG 是正方形,BC AB FH EA EF\===BAE HFE\D D ≌.BE HE BEA HEF\=Ð=Ð90HEF HEA AEF Ð+Ð=Ð=°Q 90BEA HEA BEH\Ð+Ð=°=Ð\三角形BEH 是等腰直角三角形Q M 、N 分别是BH 、BE 的中点1//,2MN HE MN HE \=190,2MNB HEB MN BE \Ð=Ð=°=1,2MN BE MN BE \^=(3)取AB 的中点O ,连接OQ 、ON ,连接AF在ABF D 中,O 、Q 分别是AB 、BF 的中点12OQ AF \=同理可得12ON AE =AF ==Q3OQ ON \==所以QN扫过的面积是以O为圆心,3为半径的圆环的面积(2239\=-=.S p p p【点睛】本题考察旋转的性质、三角形相似、三角形全等、正方形的性质、中位线的性质与应用和动点问题,属于几何综合题,难度较大.解题的关键是通过相关图形的性质做出辅助线.8.(2020•内江)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=1AC,求CE:BC的值;4(3)求证:PF=EQ.【分析】(1)证明△BAP≌△BCQ(SAS)可得结论.AC,可以假设AP=CQ=a,则(2)过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.由AP=14PC=3a,解直角三角形求出CH.BT,利用平行线分线段成比例定理解决问题即可.(3)证明△PGB≌△QEB,推出EQ=PG,再证明△PFG是等腰直角三角形即可.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD 是正方形,∴BA =BC ,∠ABC =90°.∴∠ABC =∠PBQ .∴∠ABC ﹣∠PBC =∠PBQ ﹣∠PBC ,即∠ABP =∠CBQ .在△BAP 和△BCQ 中,∵BA =BC ∠ABP =∠CBQ BP =BQ,∴△BAP ≌△BCQ (SAS ).∴CQ =AP .(2)解:过点C 作CH ⊥PQ 于H ,过点B 作BT ⊥PQ 于T .∵AP =14AC ,∴可以假设AP =CQ =a ,则PC =3a ,∵四边形ABCD 是正方形,∴∠BAC =∠ACB =45°,∵△ABP ≌△CBQ ,∴∠BCQ =∠BAP =45°,∴∠PCQ =90°,∴PQ ==,∵CH ⊥PQ ,∴CH =PC ⋅CQ PQ =,∵BP =BQ ,BT ⊥PQ ,∴PT =TQ ,∵∠PBQ =90°,∴BT =12PQ =,∵CH ∥BT ,∴CEEB =CH BT ==35,∴CE CB =38.(3)解:结论:PF =EQ ,理由是:如图2,当F 在边AD 上时,过P 作PG ⊥FQ ,交AB 于G ,则∠GPF =90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.9.(2020•郴州)如图1,在等腰直角三角形ADC中,∠ADC=90°,AD=4.点E是AD的中点,以DE为边作正方形DEFG,连接AG,CE.将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<90°).(1)如图2,在旋转过程中,①判断△AGD与△CED是否全等,并说明理由;②当CE=CD时,AG与EF交于点H,求GH的长.(2)如图3,延长CE交直线AG于点P.①求证:AG⊥CP;②在旋转过程中,线段PC的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【分析】(1)①结论:△AGD≌△CED.根据SAS证明即可.②如图2中,过点A作AT⊥GD于T.解直角三角形求出AT,GT,再利用相似三角形的性质求解即可.(2)①如图3中,设AD交PC于O.利用全等三角形的性质,解决问题即可.②因为∠CPA=90°,AC是定值,推出当∠ACP最小时,PC的值最大,推出当DE⊥PC时,∠ACP的值最小,此时PC的值最大,此时点F与P重合(如图4中).【解析】(1)①如图2中,结论:△AGD≌△CED.理由:∵四边形EFGD是正方形,∴DG=DE,∠GDE=90°,∵DA=DC,∠ADC=90°,∴∠GDE=∠ADC,∴∠ADG=∠CDE,∴△AGD≌△CED(SAS).②如图2中,过点A作AT⊥GD于T.∵△AGD≌△CED,CD=CE,∴AD=AG=4,∵AT⊥GD,∴TG=TD=1,∴AT==∵EF∥DG,∴∠GHF=∠AGT,∵∠F=∠ATG=90°,∴△GFH∽△ATG,∴GHAG =FGAT,=∴GH∴GH=(2)①如图3中,设AD交PC于O.∵△AGD≌△CED,∴∠DAG=∠DCE,∵∠DCE+∠COD=90°,∠COD=∠AOP,∴∠AOP+∠DAG=90°,∴∠APO=90°,∴CP⊥AG.②∵∠CPA=90°,AC是定值,∴当∠ACP最小时,PC的值最大,∴当DE⊥PC时,∠ACP的值最小,此时PC的值最大,此时点F与P重合(如图4中),∵∠CED=90°,CD=4,DE=2,∴EC==∵EF=DE=2,∴CP=CE+EF=∴PC的最大值为。
备战中考数学——旋转的综合压轴题专题复习含答案
一、旋转真题与模拟题分类汇编(难题易错题)1.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;(2)解:如图②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD=BE+DE;故答案为:AD=BE+DE.(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD=1×6=2,∴AE=AD+DE=2+6=8.12点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.2.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,猜想:△CDE的形状是三角形.(2)请证明(1)中的猜想(3)设OD=m,①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=23,∴△BDE的最小周长=CD+4=23+4;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.3.如图①,在ABCD中,AB=10cm,BC=4cm,∠BCD=120°,CE平分∠BCD交AB于点E.点P从A点出发,沿AB方向以1cm/s的速度运动,连接CP,将△PCE绕点C逆时针旋转60°,使CE与CB重合,得到△QCB,连接PQ.(1)求证:△PCQ是等边三角形;(2)如图②,当点P在线段EB上运动时,△PBQ的周长是否存在最小值?若存在,求出△PBQ周长的最小值;若不存在,请说明理由;(3)如图③,当点P在射线AM上运动时,是否存在以点P、B、Q为顶点的直角三角形?若存在,求出此时t的值;若不存在,请说明理由.(1)(2)(3)【答案】(1)证明见解析;(2)存在,理由见解析;(3)t为2s或者14s.【解析】分析:(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可;(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;(3)根据点的移动的距离,分类讨论求解即可.详解:(1)∵旋转∴△PCE≌△QCB∴CP=CQ,∠PCE =∠QCB,∵∠BCD=120°,CE平分∠BCD,∴∠PCQ=60°,∴∠PCE +∠QCE=∠QCB+∠QCE=60°,∴△PCQ为等边三角形.(2)存在∵CE平分∠BCD,∴∠BCE=60 ,∵在平行四边形ABCD 中,∴AB∥CD∴∠ABC=180°﹣120°=60°∴△BCE为等边三角形∴BE=CB=4∵旋转∴△PCE≌△QCB∴EP=BQ,∴C△PBQ=PB+BQ+PQ=PB+EP+PQ=BE+PQ=4+CP∴CP⊥AB时,△PBQ周长最小当CP⊥AB时,CP=BCsin60°=∴△PBQ周长最小为4+(3)①当点B与点P重合时,P,B,Q不能构成三角形②当0≤t<6时,由旋转可知,∠CPE=∠CQB,∠CPQ=∠CPB+∠BPQ=60°则:∠BPQ+∠CQB=60°,又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°∴∠CBQ=180°—60°—60°=60°∴∠QBP=60°,∠BPQ<60°,所以∠PQB可能为直角由(1)知,△PCQ为等边三角形,∴∠PBQ=60°,∠CQB=30°∵∠CQB=∠CPB∴∠CPB=30°∵∠CEB=60°,∴∠ACP=∠APC=30°∴PA=CA=4,所以AP=AE-EP=6-4=2÷=s所以t=212③当6<t<10时,由∠PBQ=120°>90°,所以不存在④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,而∠BPC>0°,∴∠BPQ>60°∴∠BPQ=90°,从而∠BCP=30°,所以AP=14cm所以t=14s综上所述:t为2s或者14s时,符合题意。
人教版数学九年级上册 旋转几何综合专题练习(解析版)
人教版数学九年级上册旋转几何综合专题练习(解析版)一、初三数学旋转易错题压轴题(难)1.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=22.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.【答案】(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=53.【解析】【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G 在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD =∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC22AB AC+4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中AD ADFAD EADAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=53,即DE=53.【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.2.已知:如图①,在矩形ABCD中,AB=5,203AD=,AE⊥BD,垂足是E.点F是点E 关于AB的对称点,连接AF、BF.(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,求出相应的m 的值; (3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的ABF 为A BF '',在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q ,若△DPQ 为等腰三角形,请直接写出此时DQ 的长.【答案】(1)4;3 (2)3或163 (3)25125253243-、、103 【解析】【分析】(1)由矩形的性质,利用勾股定理求解BD 的长,由等面积法求解AE ,由勾股定理求解BE 即可,(2)利用对称与平移的性质得到:AB ∥A′B′,∠4=∠1,BF =B′F′=3.当点F′落在AB 上时,证明BB′=B′F′即可得到答案,当点F′落在AD 上时,证明△B′F′D 为等腰三角形,从而可得答案,(3)分4种情况讨论:①如答图3﹣1所示,点Q 落在BD 延长线上,证明A′Q =A′B ,利用勾股定理求解',,F Q BQ 从而求解DQ ,②如答图3﹣2所示,点Q 落在BD 上,证明点A′落在BC 边上,利用勾股定理求解,BQ 从而可得答案,③如答图3﹣3所示,点Q 落在BD 上,证明∠A′QB =∠A′BQ ,利用勾股定理求解,BQ ,从而可得答案,④如答图3﹣4所示,点Q 落在BD 上,证明BQ =BA′,从而可得答案.【详解】解:(1)在Rt △ABD 中,AB =5,203AD =,由勾股定理得:253BD ==. 11,22ABD S BD AE AB AD =⋅=⋅. 2532053 4.AB AD AE BD ⨯⋅∴=== 在Rt △ABE 中,AB =5,AE =4,由勾股定理得:BE =3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称的性质可知,∠1=∠2.由平移性质可知,AB ∥A′B′,∠4=∠1,BF =B′F′=3.①当点F′落在AB 上时,∵AB ∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m =3;②当点F′落在AD 上时,∵AB ∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,,AB AD ⊥∴ A′B′⊥AD ,'''',B F D B DF ∴∠=∠∴△B′F′D 为等腰三角形,∴B′D =B′F′=3,2516333BB BD B D ''∴=-=-=,即163m =. (3)DQ 的长度分别为2512525310103243--、、或103. 在旋转过程中,等腰△DPQ 依次有以下4种情形:①如答图3﹣1所示,点Q 落在BD 延长线上,且PD =DQ ,∴ ∠2=2∠Q ,∵∠1=∠3+∠Q ,∠1=∠2,∴∠3=∠Q ,∴A′Q =A′B =5,∴F′Q =F′A′+A′Q =4+5=9.在Rt △BF′Q 中,由勾股定理得:222293310BQ F Q F B ''=+=+=.253103DQ BQ BD ∴=-=-; ②如答图3﹣2所示,点Q 落在BD 上,且PQ =DQ ,∴∠2=∠P ,∵∠1=∠2,∴∠1=∠P ,∴BA′∥PD ,∵PD ∥BC ,∴此时点A′落在BC 边上.∵∠3=∠2,∴∠3=∠1,∴BQ =A′Q ,∴F′Q =F′A′﹣A′Q =4﹣BQ . 在Rt △BQ F′中,由勾股定理得:'2'22,BF F Q BQ +=即:2223(4),BQ BQ +-= 解得:258BQ =, 25251253824DQ BD BQ ∴=-=-=; ③如答图3﹣3所示,点Q 落在BD 上,且PD =DQ ,∴ ∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,149022∴∠︒∠=﹣. ∵∠1=∠2,149012∴∠=︒-∠. 149012A QB ∴∠'∠︒∠==﹣, 118019012A BQ A QB ∴∠'︒∠'∠︒∠=﹣﹣=﹣, ∴∠A′QB =∠A′BQ ,∴A′Q =A′B =5,∴F′Q =A′Q ﹣A′F′=5﹣4=1.在Rt △BF′Q 中,由勾股定理得:223110BQ +=,25103DQ BD BQ ∴=-=-; ④如答图3﹣4所示,点Q 落在BD 上,且PQ =PD ,∴ ∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ =BA′=5,2510533DQ BD BQ ∴=-=-=. 综上所述,DQ 的长度分别为2512525310103243--、、或103.【点睛】本题是几何变换压轴题,涉及旋转与平移变换、矩形、勾股定理、等腰三角形等知识点.第(3)问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论;在计算过程中,注意识别旋转过程中的不变量,注意利用等腰三角形的性质简化计算.3.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(1)56π;(2)3;(3)存在,63+【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=-推出16A CEC=,推出A1C=26nm•,推出BH=A1C=26nm•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到3FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵22125+=∴D 到点D 1所经过路径的长度=30551806ππ⋅⋅=; (2)∵△BCE ∽△BA 2D 2,∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=-, ∴16A C EC=, ∴A 1C=26n m⋅, ∴BH=A 1C=2226n m n m -=⋅, ∴42226n m n m-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴242416n n m m-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形,∴3FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME ,∴FG F FM FE D ==,∵∠DFM=90°,tan FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴FM DM =;在矩形ABCD 中,有AD AB =3=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴2FM DM ===∴6PF PM MF =+=+【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.4.阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF=45°,连结EF ,则EF=BE+DF ,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.【答案】(1)∠B+∠D=180°(或互补);(2)∴【解析】试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED得到DE=EG,由勾股定理即可求得DE的长.(1)∠B+∠D=180°(或互补).(2)∵ AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.则∠B=∠ACG,BD=CG,AD=AG.∵在△ABC中,∠BAC=90°,∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.∴ EC2+CG2=EG2.在△AEG与△AED中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.又∵AD=AG,AE=AE,∴△AEG≌△AED .∴DE=EG.又∵CG=BD,∴ BD2+EC2=DE2.∴.考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.5.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.6.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.7.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH3;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=3FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,EDO FBOOD OBEOD BOF∠∠⎧⎪⎨⎪∠∠⎩===,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH3.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH 3.(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.8.已知,如图:正方形ABCD ,将Rt △EFG 斜边EG 的中点与点A 重合,直角顶点F 落在正方形的AB 边上,Rt △EFG 的两直角边分别交AB 、AD 边于P 、Q 两点,(点P 与点F 重合),如图1所示:(1)求证:EP 2+GQ 2=PQ 2;(2)若将Rt △EFG 绕着点A 逆时针旋转α(0°<α≤90°),两直角边分别交AB 、AD 边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.9.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.10.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.。
2024年中考数学-押江苏南京卷第25-26题(二次函数的综合、三角形旋转问题)(解析版)
押江苏南京卷第25-26题押题方向一:二次函数的综合3年江苏南京卷真题考点命题趋势2023年江苏南京卷第26题二次函数的综合从近年江苏南京中考来看,二次函数的综合的考查,难度较大,综合性比较强;预计2024年江苏南京卷还将继续重视对二次函数的综合问题的考查。
2022年江苏南京卷第26题二次函数的综合2021年江苏南京卷第26题二次函数的综合1.(2023·江苏南京·中考真题)已知二次函数223(y ax ax a =-+为常数,0)a ≠.(1)若0a <,求证:该函数的图象与x 轴有两个公共点.(2)若1a =-,求证:当10x -<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x -<<<,则a 的取值范围是3a >或1a <-.【分析】(1)证明240b ac ->即可解决问题.(2)将1a =-代入函数解析式,进行证明即可.(3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a --⨯⨯=-,又因为0a <,所以40a <,30a -<,所以24124(3)0a a a a -=->,所以该函数的图象与x 轴有两个公共点.(2)将1a =-代入函数解析式得,2223(1)4y x x x =-++=--+,所以抛物线的对称轴为直线1x =,开口向下.则当10x -<<时,是AB 上的动点,连接EF ,G 是EF 上一点,且GFk EF=(k 为常数,0k ≠),分别过点F 、G 作AB 、EF 的垂线相交于点P ,设AF 的长为x ,PF 的长为y .(1)若12k =,4x =,则y 的值为________;(2)求y 与x 之间的函数表达式;(3)在点F 从点A 到点B 的整个运动过程中,若线段CD 上存在点P ,则k 的值应满足什么条件?直接写出k 的取值范围.两点.(1)求b 的值.(2)当1c >-时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m -<<时,结合函数的图像,直接写出a 的取值范围.即1410 93410 a aa a+-->⎧⎨---<⎩,解得a<0;②如图,当0a>时,当=1x -时,14y a =+-∴当3x =时,93y a =--解得45a >,综上,a 的取值范围为a<【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(一、二次函数的图象1.二次函数2ax y =(0≠a )的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点.当0>a 时,抛物线开口向上,顶点是抛物线的最低点;当0<a 时,抛物线开口向下,顶点是抛物线的最高点.2.二次函数()2m x a y -=(0≠a )的图象的顶点坐标是(m,0),对称轴是直线m x =.图象的开口方向:当0>a 时,开口向上;当0<a 时,抛物线开口向下.3.二次函数()k m x a y +-=2(0≠a )的图象的顶点坐标是(m,k),对称轴是直线m x =.图象的开口方向:当0>a 时,开口向上;当0<a 时,抛物线开口向下.4.二次函数c bx ax y ++=2(0≠a )的图象是一条抛物线,它de 对称轴是直线2bx a=-,顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭,当0>a 时,抛物线开口向上,顶点是抛物线上的最低点;当0<a 时,抛物线开口向下,顶点是抛物线上的最高点.二、二次函数的图象与系数的关系二次函数c bx ax y ++=2(0≠a )的系数与图象的关系(1)a 的符号由抛物线c bx ax y ++=2的开口方向决定:0>⇔a 开口向上,0>⇔a 开口向上;(2)b 的符号由抛物线c bx ax y ++=2的对称轴的位置及a 的符号共同决定:对称轴在y 轴左侧b a ,⇔同号,对称轴在y 轴右侧b a ,⇔异号;(3)c 的符号由抛物线c bx ax y ++=2与y 轴的交点的位置决定:与y 轴正半轴相交0>⇔c ,与y 轴正半轴相交0<⇔c 三、二次函数的图象与几何变换1.二次函数的平移(1)平移步骤:①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;②保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位(2)平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.2.二次函数图象的对称(1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4.关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.1.已知二次函数()244y x a x a =-++(a 为常数且4a ≠).(1)求证:不论a 为何值,该函数的图像与x 轴总有两个公共点(2)设该二次函数的图象与x 轴的两个交点分别记为A 、B ,线段AB (含端点)上有若干个横坐标为整数的点,且这些点的横坐标之和为9.①直接写出a 的取值范围;②若a 为负整数,则函数()244y x a x a =-++的图像与函数y x b =+的图像的交点个数随b 的值变化而变化,直接写出交点个数及对应的b 的取值范围.第二种情况:4b <-时,函数(2y x a =-+第三种情况:直线y x b =+经过(),0a 时,则第四种情况:当4b a -<<-时,有2个交点,如图示:当直线y x b =+与函数()244y x a x =-++联立直线y x b =+与函数()24y x a =-++得()244y x b y x a x a =+⎧⎨=-++-⎩,∴()2340x a x b a -+++=,由()2Δ3a =+∴第五种情况:21094a ab -+=时,直线第七种情况:当21094a ab -+>时,有2个交点,如图示:综上,当4a <时,当4b <-时,函数()244y x a x a =-++的图像与函数当4b =-时,函数()244y x a x a =-++的图像与函数当4b a -<<-或21094a ab -+≥时,函数当=-b a 时,函数()244y x a x a =-++的图像与函数当21094a a ab -+-<<时,函数(2y x =-中曲线AB 为反比例函数图像的一部分,BC 为一次函数图像的一部分.(1)求y 与x 之间的函数表达式;(2)已知每年该产品的研发费用为40万元,该产品成本价为4元/件,设销售产品年利润为w (万元),当销售单价为多少元时,年利润最大?最大年利润是多少?(说明:年利润=年销售利润-研发费用)(1)求证:该函数的图像与x 轴总有两个公共点;(2)若该函数图像与x 轴的两个交点坐标分别为()(),0,0x x ₁,₂,且2x x =-₁₁,求证²0a b +=;(3)若()1,A k y ,()26,B y ,()14,C k y +都在该二次函数的图像上,且212y y <<,结合函数的图像,直接写出k 的取值范围.或此时B 的横坐标小于0,不符合题意,舍去;当20k +>,即2k >-时,∵212y y <<,∴画出草图,如下:∴6262k k k k >⎧⎨+->+-⎩,解得6k >;或∴466242622k k k k k k +<⎧⎪-->+--⎨⎪--<+⎩,解得12k <<,综上,12k <<或6k >.【点睛】本题考查了二次函数与一元二次方程,二次函数的图象与性质,一元二次方程根与系数的关系以及根的判别式等知识,明确题意,合理分类讨论,画出函数图象,数形结合列出不等式组是解答第(3)的关键.4.在二次函数221y x mx m =++-中.(1)求证:不论m 取何值,该函数图像与x 轴总有两个公共点(2)当03x ≤≤时,y 的最小值为3-,则m 的值为________.(3)当0m <时,点()2,A n a -,()4,B b ,(),C n a 都在这个二次函数的图象上,且1a b m <<-.则n 的取值范围是________.5.若一次函数y mx n =+与反比例函数k y x=同时经过点(,)P x y 则称二次函数2y mx nx k =+-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =-与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++--,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.(m 为常数).(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m 为何值,该函数的图象经过的定点坐标是.(3)在22x -≤≤的范围中,y 的最大值是2,直接写出m 的值.为常数).(1)若4m =,3n =,求该函数图像与x 轴的两个交点之间的距离;(2)若函数2y x mx n =++的图象与x 轴有两个交点,将该函数的图像向右平移()0k k >个单位长度得到新函数y '的图象,且这两个函数图象与x 轴的四个交点中任意相邻两点之间的距离都相等.①若函数2y x mx n =++的图象如图所示,直接写出新函数y '的表达式;②若函数2y x mx n =++的图象经过点()1,3,当1k =时,求m n ,的值.押题方向二:三角形的旋转3年江苏南京卷真题考点命题趋势2023年江苏南京卷第27题三角形的旋转从近年江苏南京中考来看,三角形的旋转的考查,难度较大,常常与全等和相似三角形结合一起考查,综合性比较强;预计2024年江苏南京卷还将继续重视对三角形的旋转的综合问题的考查。
专题47 三角形中的旋转综合问题(解析版)
专题47 三角形中的旋转综合问题1、如图,点P是∠MON内的一点,过点P作PA⊥OM于点A,PB⊥ON于点B,且OA=OB.(1)求证:PA=PB;(2)如图②,点C是射线AM上一点,点D是线段OB上一点,且∠CPD+∠MON=180°,若OC=8,OD=5.求线段OA的长.(3)如图③,若∠MON=60°,将PB绕点P以每秒2°的速度顺时针旋转,12秒后,PA开始绕点P以每秒10°的速度顺时针旋转,PA旋转270°后停止,此时PB也随之停止旋转.旋转过程中,PA所在直线与OM所在直线的交点记为G,PB所在直线与ON所在直线的交点记为H.问PB旋转几秒时,PG=PH?(1)证明:如图①中,连接OP.∵PA⊥OM,PB⊥ON,∴∠OAP=∠OBP=90°,∵OA=OB,OP=OP,∴Rt△OPA≌Rt△OPB(HL),∴PA=PB.(2)如图②中,∵∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠CPD+∠AOB=180°,∴∠CPD=∠APB,∴∠APC=∠BPD,∵PA=PB,∠PAC=∠PBD=90°,∴△PAC≌△PBD(ASA),∴AC=BD,∴OC+OD=OA+AC+OB﹣BD=2OA=13,∴OA=6.5.(3)设点P的旋转时间为t秒.①当0<t<12时,不存在.②当12≤t<21时,如图3﹣1中,∠APG=(10t﹣120)°,∠BPH=2t°,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣120=2t,t=15.③当21≤t<30时,如图3﹣2中,∠APG=180°﹣∠APA′=180°﹣(10t﹣120)°=(300﹣10t)°,∠BPH =2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时300﹣10t=2t,t=25.④当30≤t<39时,如图3﹣3中,∠APG=(10t﹣300)°,∠BPH=2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣300=2t,t=37.5,综上所述,满足条件的t的值为15s或25s或37.5s.2、(1)问题发现:如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究:如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,CD=2OD,AB=2OB,连接AC交BD的延长线于点M.请求出的值及∠AMB的度数,并说明理由;(3)拓展延伸:在(2)的条件下,将△OCD绕点O在平面内旋转,AC、BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=50°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=50°,∴∠OAB+∠ABO=130°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣130°=50°,故答案为:①1;②50°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DOC=90°,CD=2DO,∴∠DCO=30°,∴=tan30°=,同理得:=tan30°=,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图1,同(2)得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴,整理得:x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,∴x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图2,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴+(x+2)2=,整理得x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.3、已知在平面直角坐标系中,A(a,0),B(b,0)、C(0,c),其中a、b、c满足=0.(1)求△ABC的面积;(2)将线段BC向右平移至AD(点B对应点A,点C对应点D).①当点M为x轴上任意点(不与原点重合),ME、CF分别平分∠CMO与∠DCM,若∠AME=α,∠DCF=β,试用含α的代数式表示β;②点P为线段CD上一点(不与点C、D重合),P的横坐标为t,连接BP、AC,BP交y轴于点E,交AC于点Q,若△CQE与△PQA的面积分别为S1,S2,试用含t的代数式表示S2﹣S1.解:(1)如图1中,∵=0,又∵≥0,|b+2|≥0,(c﹣4)2≥0,∴a=5,b=﹣2,c=4,∴A(5,0),B(﹣2,0),C(0,4),∴OA=5,OB=2,OC=4,∴AB=OB+OA=2+5=7,∴S△ABC=•AB•OC=×7×4=14.(2)①如图2﹣1中,当点E在射线OB上时,α+β=90°理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∵∠DCF=∠DCM=β,∠AME=∠AMC=α,∴α+β=90°.当点M在线段AB上时,如图2﹣2中,α+β=180°.理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∠DCM=∠CMB,∵∠DCM=2∠DCF=2β,∠FCM=∠DCM,∠EMC=∠CMB,∴∠FCM=∠EMC=β,∴∠AMC=180°﹣2β,∵∠AME=∠AMC+∠EMC,∴α=β+180°﹣2β,∴α+β=180°.当点M在线段OA的延长线上时,如图2﹣3中,α=β.理由::∵CD∥AM,∴∠DCM=∠CMB,∵∠DCF=∠DCM,∠AME=∠CMB,∴∠DCF=∠AME,∴α=β.②如图3中,设E(0,m).由题意:P(t,4),A(5,0),B(﹣2,0),C(0,4),∴S△BCP=S△BCE+S△ECP,∴×t×4=×(4﹣m)×2+×(4﹣m)×t,∴m=,∴S2﹣S1=S△PCA﹣S△PCE′=×t×4﹣×t×(4﹣)=.4、如图,在平面直角坐标系中,O为原点,点A(0,4),B(﹣4,0),C(4,0).(Ⅰ)如图①,若∠BAD=15°,AD=3,求点D的坐标;(Ⅱ)如图②,AD=2,将△ABD绕点A逆时针方向旋转得到△ACE,点B,D的对应点分别为C,E.连接DE,BD的延长线与CE相交于点F.①求DE的长;②证明:BF⊥CE.(Ⅲ)如图③,将(Ⅱ)中的△ADE绕点A在平面内旋转一周,在旋转过程中点D,E的对应点分别为D1,E1,点N,P分别为D1E1,D1C的中点,请直接写出△OPN面积S的变化范围.解:(Ⅰ)∵OA=OB=4,∠AOB=90°,∴∠OAB=∠ABO=45°.∴∠DAO=∠OAB﹣∠DAB=30°.如图①中,过点D作DG⊥OA,垂足为G.在Rt△ADG中,∠DAG=30°,∴,,∴,∴点D的坐标为.(Ⅱ)①如图②中,∵∠DAE=∠BAC=90°,AD=AE=2,∴在Rt△DAE中,,②∵OA=OB=OC=4,∠AOB=∠AOC=90°,∴∠OAB=∠ABO=∠ACO=∠OAC=45°,∴∠BAC=90°,∵△ABD旋转得到△ACE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△BFC中,则有∠FBC+∠FCB=∠FBC+∠BCA+∠ACE=∠FBC+∠BCA+∠ABD=∠ABC+∠BCA=90°,∴BF⊥CE.(Ⅲ)如图③中,∵OB=OC,PC=PD1,NE1=ND1,∴OP=BD1,PN=E1C,OP∥BD1,PN∥CE1∵BD1⊥E1C,BD1=E1C,∴OP⊥PN,OP=PN,∴△OPN是等腰直角三角形,∵AB=4,AD1=2,∴4﹣2≤BD1≤4+2,∴2﹣1≤OP≤2+1,∴△OPN面积的最小值=(2﹣1)2=﹣2,△OPN的面积的最大值=+2,∴.5、问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴BH=CD=2,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∴==,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.6、已知△ABC是等边三角形,D是BC上一点,△ABD绕点A逆时针旋转到△ACE的位置.(1)如图,旋转中心是,∠DAE=°;(2)如图,如果M是AB的中点,那么经过上述旋转后,点M转动了度;(3)如果点D为BC边上的三等分点,且△ABD的面积为3,那么四边形ADCE的面积为.解:(1)∵△ABC为等边三角形,∴∠BAC=60°∵△ABD绕点A逆时针旋转到△ACE的位置,∴旋转中心是点A,∠DAE=∠BAC=60°;(2)∵AB和AC为对应边,∴经过上述旋转后,点M转到了AC的中点位置,如图,∴∠MAM′=60°,∴点M转动了60°;(3)∵△ABD绕点A逆时针旋转到△ACE的位置,∴△ABD≌△ACE,∵BD=BC,或BD=BC,∴CD=2BD,或CD=BD,∴S△ABC=3S△ABD=3×3=9,或S△ABC=S△ABD=3×=,∴S=S△ABC=9或.四边形ADCE故答案为点A,60;60;9或.7、如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN=2+5=7,最大∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.8、如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)结论:AE=BD,AE⊥BD.理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,∴EH=DH,CH=DE=5,在Rt△ACH中,∵AC=13,CH=5,∴AH==12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH﹣DH=12﹣5=7,综上所述,满足条件的AD的值为17或7.9、如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.(1)问题发现当α=0°时,=;β=°.(2)拓展探究试判断:当0°≤α<360°时,和β的大小有无变化?请仅就图2的情形给出证明.(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.解:(1)如图1中,∵∠B=90°,BA=BC,∴∠A=45°,AC=AB,∵点D、E分别是边AB、AC的中点,∴BD=AB,EC=AC,∴=,β=45°,故答案为,45°.(2)结论:和β的大小无变化.理由:如图2中,延长CE交AB于点O,交BD于K.∵AE=AD,AC=AB,∴==,∴=,∵∠DAE=∠BAC,∴∠DAB=∠EAC,∴△DAB∽△EAC,∴==,∠OBK=∠OCA,∵∠BOK=∠COA,∠BKO=∠CAO=45°,∴和β的大小无变化.(3)当点E在线段AB上时,S△BCE=×4×(4﹣2)=8﹣4,当点E在线段BA的延长线上时,S△BCE=×4×(4+2)=8+4.综上所述,△BCE的面积为8﹣4或8+4.10、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.11、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.解:(1)如图1中,连接EC,BD.结论:BD=CE.理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS).∴BD=CE.(2)如图2中,由题意:∠CAE=45°,∵AC=AB,∠CAB=90°,∴∠ACB=∠ABC=45°,∴AE∥BC.∴△CBE的面积与△ABC的面积相等.∵△ABC的面积为4.5,∴△CBE的面积4.5.(3)如图3中,延长AM到N,使得MN=AM,连接CN,DM.∵AM=MN,CM=MD,∴四边形ADNC是平行四边形,∴AD=CN=1,∵AC=3,∴3﹣1≤AN≤3+1,∴2≤2AM≤4,∴1≤AM≤2,∴AM的最小值为1.故答案为1.12、综合与实践问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题(1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;(4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)解:(1)如图①中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.(3)如图③中,作CH⊥AD于H.∵∴AC=CD=AB=2,∵B,A,E共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A,E,D,C四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD,CH⊥AD,∴AH=DH=AC•cos30°=,∴AD=2,∴BD===2.(4)如图①中,设DE交BC于T.因为含有30°的直角三角形的三边之比为1::2,由(1)可知△BDT,△DCT,△ECT都是含有30°的直角三角形,∴△BDT,△DCT,△ECT符合条件.。
全等模型专题:全等三角形中的常见压轴题五种模型全攻略(解析版)
全等模型专题:全等三角形中的常见压轴题五种模型全攻略【考点导航】目录【典型例题】1【解题模型一四边形中构造全等三角形解题】【解题模型二一线三等角模型】【解题模型三三垂直模型】【解题模型四倍长中线模型】【解题模型五旋转模型】【典型例题】【解题模型一四边形中构造全等三角形解题】1(2023春·广东梅州·八年级校联考开学考试)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.【答案】见解析【分析】连接BD,已知两边对应相等,加之一个公共边BD,则可利用SSS判定△ABD≌△CBD,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD,∵AB=CB,BD=BD,AD=CD,∴△ABD≌△CBD(SSS).∴∠A=∠C.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS,SAS,ASA,HL等.【变式训练】1(2023秋·云南昆明·八年级统考期末)放风筝是中国民间的传统游戏之一,风筝又称风琴,纸鹞,鹞子,纸鸢.如图1,小华制作了一个风筝,示意图如图2所示,AB=AC,DB=DC,他发现AD不仅平分你觉得他的发现正确吗?请说明理由.∠BAC,且平分∠BDC,【答案】他的发现正确,理由见解析【分析】根据全等三角形的判定和性质直接证明即可.【详解】解:他的发现正确,理由如下:在△ABD与△ACD中,AB=AC,BD=CDAD=AD∴△ABD≌△ACD,∴∠BAD=∠CAD,∠ADB=∠ADC,∴AD不仅平分∠BAC,且平分∠BDC.【点睛】题目主要考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题关键.2(2023秋·湖南常德·八年级统考期末)中国现役的第五代隐形战斗机歼-20的机翼如图,为适应空气必须相等.动力的要求,两个翼角∠A,∠B(1)实际制造中,工作人员只需用刻度尺测量PA=PB,CA=CB就能满足要求,说明理由;(2)若∠A=30°,∠P=40°,求∠ACB的度数.【答案】(1)见解析(2)100°【分析】(1)连接PC,证明△APC≌△BPC,即可解答.(2)由三角形的外角的性质即可解答.【详解】(1)证明:如图,连接PC,在△APC 和△BPC 中,PA =PBCA =CB PC =PC,∴△APC ≌△BPC (SSS ),∴∠A =∠B .(2)∵△APC ≌△BPC ,∠A =30°,∠P =40°,∴∠A =∠B =30°,∵∠ACB =∠ACE +∠BCE ,∠ACE =∠APC +∠A ,∠BCE =∠BPC +∠B ,∴∠ACB =∠APC +∠A +∠BPC +∠B =∠A +∠BPA +∠B =2×30°+40°=100°.【点睛】本题考查了三角形全等和外角的性质,掌握三角形全等是解题的关键.3如图,在四边形ABCD 中,CB ⊥AB 于点B ,CD ⊥AD 于点D ,点E ,F 分别在AB ,AD 上,AE =AF ,CE =CF.(1)若AE =8,CD =6,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.【答案】(1)48(2)∠DAB +∠ECF =2∠DFC ,证明见解析【解析】【分析】(1)连接AC ,证明△ACE ≌△ACF ,则S △ACE =S △ACF ,根据三角形面积公式求得S △ACF 与S △ACE ,根据S 四边形AECF =S △ACF +S △ACE 求解即可;(2)由△ACE ≌△ACF 可得∠FCA =∠ECA ,∠FAC =∠EAC ,∠AFC =∠AEC ,根据垂直关系,以及三角形的外角性质可得∠DFC +∠BEC =∠FCA +∠FAC +∠ECA +∠EAC =∠DAB +∠ECF .可得∠DAB +∠ECF =2∠DFC(1)解:连接AC ,如图,在△ACE 和△ACF 中AE =AFCE =CFAC =AC∴△ACE ≌△ACF (SSS ).∴S △ACE =S △ACF ,∠FAC =∠EAC .∵CB ⊥AB ,CD ⊥AD ,∴CD =CB =6.∴S △ACF =S △ACE =12AE ·CB =12×8×6=24.∴S 四边形AECF =S △ACF +S △ACE =24+24=48.(2)∠DAB +∠ECF =2∠DFC证明:∵△ACE ≌△ACF ,∴∠FCA =∠ECA ,∠FAC =∠EAC ,∠AFC =∠AEC .∵∠DFC 与∠AFC 互补,∠BEC 与∠AEC 互补,∴∠DFC =∠BEC .∵∠DFC =∠FCA +∠FAC ,∠BEC =∠ECA +∠EAC ,∴∠DFC +∠BEC =∠FCA +∠FAC +∠ECA +∠EAC=∠DAB +∠ECF .∴∠DAB +∠ECF =2∠DFC【点睛】本题考查了三角形全等的性质与判定,三角形的外角的性质,掌握三角形全等的性质与判定是解题的关键.4在四边形ABDC 中,AC =AB ,DC =DB ,∠CAB =60°,∠CDB =120°,E 是AC 上一点,F 是AB 延长线上一点,且CE =BF .(1)试说明:DE =DF :(2)在图中,若G 在AB 上且∠EDG =60°,试猜想CE ,EG ,BG 之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB =60°,∠CDB =120°改为∠CAB =α,∠CDB =180°-α,G 在AB 上,∠EDG 满足什么条件时,(2)中结论仍然成立?【答案】(1)见解析;(2)CE +BG =EG ,理由见解析;(3)当∠EDG =90°-12α时,(2)中结论仍然成立.【解析】【分析】(1)首先判断出∠C =∠DBF ,然后根据全等三角形判定的方法,判断出ΔCDE ≅ΔBDF ,即可判断出DE =DF .(2)猜想CE 、EG 、BG 之间的数量关系为:CE +BG =EG .首先根据全等三角形判定的方法,判断出ΔABD ≅ΔACD ,即可判断出∠BDA =∠CDA =60°;然后根据∠EDG =60°,可得∠CDE =∠ADG ,∠ADE =∠BDG ,再根据∠CDE =∠BDF ,判断出∠EDG =∠FDG ,据此推得ΔDEG ≅ΔDFG ,所以EG =FG ,最后根据CE =BF ,判断出CE +BG =EG 即可.(3)根据(2)的证明过程,要使CE +BG =EG 仍然成立,则∠EDG =∠BDA =∠CDA =12∠CDB ,即∠EDG =12(180°-α)=90°-12α,据此解答即可.(1)证明:∵∠CAB +∠C +∠CDB +∠ABD =360°,∠CAB =60°,∠CDB =120°,∴∠C +∠ABD =360°-60°-120°=180°,又∵∠DBF +∠ABD =180°,∴∠C=∠DBF ,在ΔCDE 和ΔBDF 中,CD =BD∠C =∠DBFCE =BF∴ΔCDE ≅ΔBDF (SAS ),∴DE =DF .(2)解:如图,连接AD ,猜想CE 、EG 、BG 之间的数量关系为:CE +BG =EG .证明:在ΔABD 和ΔACD 中,AB =ACBD =CD AD =AD,∴ΔABD ≅ΔACD (SSS ),∴∠BDA =∠CDA =12∠CDB =12×120°=60°,又∵∠EDG =60°,∴∠CDE =∠ADG ,∠ADE =∠BDG ,由(1),可得ΔCDE ≅ΔBDF ,∴∠CDE =∠BDF ,∴∠BDG +∠BDF =60°,即∠FDG =60°,∴∠EDG =∠FDG ,在ΔDEG 和ΔDFG 中,DE =DF∠EDG =∠FDGDG =DG∴ΔDEG ≅ΔDFG (SAS ),∴EG =FG ,又∵CE =BF ,FG =BF +BG ,∴CE +BG =EG ;(3)解:要使CE +BG =EG 仍然成立,则∠EDG =∠BDA =∠CDA =12∠CDB ,即∠EDG =12(180°-α)=90°-12α,∴当∠EDG =90°-12α时,CE +BG =EG 仍然成立.【点睛】本题综合考查了全等三角形的性质和判定,此题是一道综合性比较强的题目,有一定的难度,能根据题意推出规律是解此题的关键.【解题模型二一线三等角模型】1(2023春·七年级课时练习)【探究】如图①,点B 、C 在∠MAN 的边AM 、AN 上,点E 、F 在∠MAN 内部的射线AD 上,∠1、∠2分别是△ABE 、△CAF 的外角.若AB =AC ,∠1=∠2=∠BAC ,求证:△ABE ≌△CAF .【应用】如图②,在等腰三角形ABC 中,AB =AC ,AB >BC ,点D 在边BC 上,CD =2BD ,点E 、F 在线段AD 上,∠1=∠2=∠BAC ,若△ABC 的面积为9,则△ABE 与△CDF 的面积之和为.【答案】探究:见解析;应用:6【分析】探究:根据∠A =∠BAE +∠ABE ,∠BAC =∠CAF +∠BAE ,得出∠ABE =∠CAF ,根据∠1=∠2,得出∠AEB =∠CFA ,再根据AAS 证明即可;应用:根据全等三角形的性质得出:S△ABE=S△CAF,进而得出S△CDF+S△CAF=S△ACD,根据CD=2BD,△ABC的面积为9,得出S△ACD=23S△ABC=6,即可得出答案.【详解】探究证明:∵∠A=∠BAE+∠ABE,∠BAC=∠CAF+∠BAE,又∵∠BAC=∠1,∴∠ABE=∠CAF,∵∠1=∠2,∴∠AEB=∠CFA,在△ABE和△CAF中,∠AEB=∠CFA ∠ABE=∠CAF AB=AC∴△ABE≌△CAF AAS;应用解:∵△ABE≌△CAF,∴S△ABE=S△CAF,∴S△CDF+S△CAF=S△ACD,∵CD=2BD ,△ABC的面积为9,∴S△ACD=23S△ABC=6,∴△ABE与△CDF的面积之和为6,故答案为:6.【点睛】本题考查全等三角形的判定与性质,掌握全等三角形的判定是解题的关键.【变式训练】1(2023春·广西南宁·七年级南宁市天桃实验学校校考期末)(1)问题发现:如图1,射线AE在∠MAN 的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,若∠BAC=∠BFE=∠CDE=90°,求证:△ABF≌△CAD;(2)类比探究:如图2,AB=AC,且∠BAC=∠BFE=∠CDE.(1)中的结论是否仍然成立,请说明理由;(3)拓展延伸:如图3,在△ABC中,AB=AC,AB>BC.点E在BC边上,CE=2BE,点D、F在线段AE上,∠BAC=∠BFE=∠CDE.若△ABC的面积为15,DE=2AD,求△BEF与△CDE的面积之比.【答案】(1)证明见详解;(2)成立,证明见详解;(3)1:4【分析】(1)根据∠BAC=∠BFE=∠CDE=90°即可得到∠BAF+∠CAF=90°,∠DCA+∠CAF=90°,从而得到∠BAF=∠DCA,即可得到证明;(2)根据∠BAC=∠BFE=∠CDE得到∠BAF+∠CAF=∠DCA+∠CAF,即可得到∠BAF=∠DCA,即可得到证明;(3)根据△ABC的面积为15,CE=2BE,即可得到S△ABE=5,S△AEC=10,结合DE=2AD可得S△ADC=103,S△EDC =203,根据AB=AC,∠BAC=∠BFE=∠CDE得到△ABF≌△CAD,即可得到S△BEF,即可得到答案;【详解】(1)证明:∵∠BAC=∠BFE=∠CDE=90°,∴∠BFA=∠CDA=90°,∠BAF+∠CAF=90°,∠DCA+∠CAF=90°,∴∠BAF=∠DCA,在△ABF与△CAD中,∵∠BFA=∠CDA ∠BAF=∠DCA AB=AC,∴△ABF≌△CAD(AAS);(2)解:成立,理由如下,∵∠BAC=∠BFE=∠CDE,∴∠BAF+∠CAF=∠DCA+∠CAF,∠BFA=∠CDA,∴∠BAF=∠DCA,在△ABF与△CAD中,∵∠BFA=∠CDA ∠BAF=∠DCA AB=AC,∴△ABF≌△CAD(AAS);(3)解:∵△ABC的面积为15,CE=2BE,∴S△ABE=5,S△AEC=10,∵DE=2AD,∴S△ADC=103,S△EDC =203,∵∠BAC=∠BFE=∠CDE,∴∠BAF+∠CAF=∠DCA+∠CAF,∠BFA=∠CDA,∴∠BAF=∠DCA,在△ABF与△CAD中,∵∠BFA=∠CDA ∠BAF=∠DCA AB=AC,∴△ABF≌△CAD(AAS)∴S△BEF=5-103=53,∴S△BEF:S△CDE=53:203=1:4;【点睛】本题考查三角形全等的判定与性质及同高不同底三角形的面积,解题的关键是根据内外角关系得到三角形全等的条件.2(2023春·广东佛山·七年级校考期中)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F 分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,试判断BE和CF的数量关系,并说明理由.②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件,使①中的结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并说明理由.【答案】(1)①BE=CF;②α+∠BCA=180°(2)EF=BE+AF【分析】(1)①由∠BCA=90°,∠BEC=∠CFA=α=90°,可得∠BCE=∠CAF,从而可证△BCE≌△CAF,故BE=CF;②添加α+∠BCA=180°,可证明∠BCA=∠BEF,则∠ACF=∠CBE,根据AAS可证明△BCE≌△CAF,即可得证①中的结论仍然成立;(2)题干已知条件可证△BCE≌△CAF,故BE=CF,EC=FA,从而可证明EF=BE+AF.【详解】(1)解:①BE=CF,理由如下:∵∠BCA=90°,∴∠ACF+∠BCE=90°,∵∠BEC=∠AFC=α=90°,∴∠ACF+∠CAF=90°,∴∠BCE=∠CAF,∵AC=BC,∴△BCE≌△CAF AAS,∴BE=CF;②添加α+∠BCA=180°,使①中的结论仍然成立,理由如下:∵∠BEC=∠CFA=α,∴∠BEF=180°-∠BEC=180°-α,∵∠BEF=∠EBC+∠BCE,∴∠EBC+∠BCE=180°-α,∵α+∠BCA=180°,∴∠BCA=180°-α,∴∠BCA=∠BCE+∠ACF=180°-α,∴∠EBC=∠ACF,∵AC=BC,∠BEC=∠CFA=α,∴△BCE≌△CAF AAS,∴BE=CF;故答案为:α+∠BCA=180°;(2)EF=BE+AF,理由如下:∵∠BCA=α,∴∠BCE+∠FCA=180°-∠BCA=180°-α,∵∠BEC=α,∴∠EBC+∠BCE=180°-∠BEC=180°-α,∴∠EBC=∠FCA,∵AC=BC,∠BEC=∠CFA=α,∴△BEC≌△CFA AAS,∴BE=CF,EC=FA,∴EF=EC+CF=FA+BE,即EF=BE+AF.【点睛】本题是三角形的综合题,主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.3在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC =∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180°时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在△ABC中,∠BAC是钝角,AB=AC,∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,直线m与CB的延长线交于点F,若BC=3FB,△ABC的面积是12,求△FBD与△ACE的面积之和.【答案】(1)DE=BD+CE(2)DE=BD+CE仍然成立,理由见解析(3)△FBD与△ACE的面积之和为4【解析】【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°-α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,由AAS证得△ADB≌△CAE,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ABF即可得出结果.(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°-α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,∠ABD =∠CAE∠BDA =∠CEA AB =AC,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC •h =12,S △ABF =12BF •h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4,∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.【解题模型三三垂直模型】1(2023春·广东广州·九年级专题练习)如图,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,AD =2.7cm ,DE =1.8cm.(1)求证:△ACD ≌△CBE .(2)求BE 的长.【答案】(1)见解析;(2)BE =0.9cm .【分析】(1)由垂直得∠ADC =∠CEB =90°,求出∠ACD =∠CBE ,然后利用AAS 即可证明△ACD ≌△CBE ;(2)根据全等三角形的性质可得CE =AD =2.7cm ,BE =CD ,根据CD =CE -DE 求出CD 即可得到BE 的长.【详解】(1)证明:∵AD ⊥CE ,BE ⊥CE ,∴∠ADC =∠CEB =90°,∵∠ACB =90°,∴∠ACD =∠ACB -∠BCE =90°-∠BCE ,∵∠CBE =90°-∠BCE ,∴∠ACD =∠CBE ,在△ACD 与△CBE 中,∠ADC =∠CEB∠ACD =∠CBE AC =BC,∴△ACD ≌△CBE AAS ;(2)解:由(1)知,△ACD ≌△CBE ,∴CE =AD =2.7cm ,BE =CD ,∵CD =CE -DE =2.7-1.8=0.9cm ,∴BE =0.9cm .【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理和全等三角形对应边相等的性质是解题的关键.【变式训练】1(2023春·河北邯郸·七年级校考阶段练习)已知:∠ACB =90°,AC =BC ,AD ⊥CM ,BE ⊥CM ,垂足分别为D ,E .(1)如图1,把下面的解答过程补充完整,并在括号内注明理由.①线段CD和BE的数量关系是:CD=BE;②请写出线段AD,BE,DE之间的数量关系并证明.解:①结论:CD=BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=( )在△ACD和△CBE中,,∴△ACD≌△CBE,( )∴CD=BE.②结论:AD=BE+DE.理由:∵△ACD≌△CBE,∴,∵CE=CD+DE=BE+DE,∴AD=BE+DE.(2)如图2,上述结论②还成立吗?如果不成立,请写出线段AD,BE,DE之间的数量关系,并说明理由.【答案】(1)①∠CBE;同角的余角相等;∠ADC=∠BEC,∠ACD=∠CBE,AC=BC;AAS;②AD=CE (2)不成立,DE-BE=AD,见解析【分析】(1)根据同角的余角相等,全等三形的判定方法角角边分析处理;(2)根据同角的余角相等,全等三形的判定方法角角边分析处理,注意观察图形,得出线段间的数量关系;【详解】(1)∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE(同角的余角相等 )在△ACD和△CBE中,∠ADC=∠BEC,∠ACD=∠CBE,AC=BC,∴△ACD≌△CBE,(AAS )∴CD=BE.②结论:AD=BE+DE.理由:∵△ACD≌△CBE,∴AD=CE,∵CE=CD+DE=BE+DE,∴AD=BE+DE.(2)不成立,结论:DE -BE =AD.理由:∵AD ⊥CM ,BE ⊥CM ,∴∠ACB =∠BEC =∠ADC =90°,∴∠ACD +∠BCE =90°,∠BCE +∠CBE =90°,∴∠ACD =∠CBE在△ACD 和△CBE 中,∠ADC =∠CEB∠ACD =∠CBE AC =CB,∴△ACD ≌△CBE ,(AAS )∴AD =CE ,CD =BE ,∴DE -BE =DE -DC =CE =AD .【点睛】本题考查全等三角形的判定和性质,能够由图形的位置关系得出线段之间、角之间的数量关系是解题的关键.2在△ABC 中,∠BAC =90°,AC =AB ,直线MN 经过点A ,且CD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点A 旋转到图1的位置时,∠EAB +∠DAC =度;(2)求证:DE =CD +BE ;(3)当直线MN 绕点A 旋转到图2的位置时,试问DE 、CD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)90°(2)见解析(3)CD =BE +DE ,证明见解析【解析】【分析】(1)由∠BAC =90°可直接得到∠EAB +∠DAC =90°;(2)由CD ⊥MN ,BE ⊥MN ,得∠ADC =∠BEA =∠BAC =90°,根据等角的余角相等得到∠DCA =∠EAB ,根据AAS 可证△DCA ≌△EAB ,所以AD =CE ,DC =BE ,即可得到DE =EA +AD =DC +BE.(3)同(2)易证△DCA≌△EAB,得到AD=CE,DC=BE,由图可知AE=AD+DE,所以CD=BE +DE.(1)∵∠BAC=90°∴∠EAB+∠DAC=180°-∠BAC=180°-90°=90°故答案为:90°.(2)证明:∵CD⊥MN于D,BE⊥MN于E∴∠ADC=∠BEA=∠BAC=90°∵ ∠DAC+∠DCA=90°且∠DAC+∠EAB=90°∴∠DCA=∠EAB∵在△DCA和△EAB中∠ADC=∠BEA=90°∠DCA=∠EABAC=AB∴△DCA≌△EAB(AAS)∴AD=BE且EA=DC由图可知:DE=EA+AD=DC+BE.(3)∵CD⊥MN于D,BE⊥MN于E∴∠ADC=∠BEA=∠BAC=90°∵∠DAC+∠DCA=90°且∠DAC+∠EAB=90°∴∠DCA=∠EAB∵在△DCA和△EAB中∠ADC=∠BEA=90°∠DCA=∠EABAC=AB∴△DCA≌△EAB(AAS)∴AD=BE且AE=CD由图可知:AE=AD+DE∴CD=BE+DE.【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角,也考查了三角形全等的判定与性质.3如图,已知:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN,BE⊥MN.(1)当直线MN绕点C旋转到图(1)的位置时,求证:△ADC≅△CEB;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系:.【答案】(1)见解析;(2)见解析;(3)DE=BE-AD【分析】(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;(2)结论:DE=AD-BE.与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD= CE,CD=BE,即可得到答案.(3)结论:DE=BE-AD.证明方法类似.【详解】解:(1)证明:如图1,∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∠CDA=∠BEC∠DAC=∠ECBAC=BC,∴△ADC≌△CEB(AAS);(2)如图2,∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,∠ACD=∠CBE∠ADC=∠BECAC=BC,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC-CD=AD-BE.(3)DE=BE-AD;如图3,∵∠ACB=90°,∴∠ACD+∠BCE=90°∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,∠ADC=∠CEB ∠DAC=∠ECB AC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.【点睛】本题主要考查了余角的性质,全等三角形的性质和判定等知识点,能根据已知证明△ACD≌△CBE 是解此题的关键,题型较好,综合性比较强.【解题模型四倍长中线模型】1(2023春·山东临沂·八年级统考期中)如图,在△ABC中,AB=3,AC=4,(1)求BC边的长的取值范围?(2)若AD是△ABC的中线,求AD取值范围?【答案】(1)1<BC<7(2)12<AD<72【分析】(1)根据三角形三边的关系求解即可;(2)延长AD至E,使AD=DE,连接BE,证明△ADC≌△EDB,得到AC=BE,由三角形三边关系得到1<AE<7,则12<AD<72.【详解】(1)解:由三角形的三边关系可知:AC-AB<BC<AC+AB,∵AB=3,AC=4,∴1<BC<7;(2)解:延长AD至E,使AD=DE,连接BE ,在△ABE中,∵BD=DC,∠ADC=∠BDE,AD=DE,∴△ADC≌△EDB SAS,∴AC=BE,由三角形的三边关系:BE-AB<AE<BE+AB,∴1<AE<7,∴1 2<AD<72.【点睛】本题主要考查了三角形三边的关系,全等三角形的性质与判定,正确作出辅助线构造全等三角形是解题的关键.【变式训练】1如图,在△ABC中,AD是BC边上的中线.延长AD到点E,使DE=AD,连接BE.(1)求证:△ACD≌△EBD;(2)AC与BE的数量关系是:,位置关系是:;(3)若∠BAC=90°,猜想AD与BC的数量关系,并加以证明.【答案】(1)见解析(2)AC=BE,AC∥BE(3)2AD=BC,证明见解析【分析】(1)根据三角形全等的判定定理SAS,即可证得;(2)由△ACD≌△EBD,可得AC=BE,∠C=∠EBC,据此即可解答;(3)根据三角形全等的判定定理SAS,可证得△BAC≌△ABE,据此即可解答.【详解】(1)证明:∵AD是BC边上的中线,∴BD=CD,在△ACD与△EBD中,AD=ED∠ADC=∠EDB BD=CD,∴△ACD≌△EBD SAS;(2)解:∵△ACD≌△EBD,∴AC=BE,∠C=∠EBC,∴AC∥BE,故答案为:AC=BE,AC∥BE;(3)解:2AD=BC证明:∵△ACD≌△EBD,∴AC=BE,∠C=∠EBC,∴AC∥BE,∵∠BAC=90°∴∠BAC=∠ABE=90°在△BAC和△ABE中,AB=BA∠BAC=∠ABE=90°AC=BE∴△BAC≌△ABE SAS,∴BC=AE=2AD.【点睛】本题考查了全等三角形的判定与性质,平行线的判定与性质,熟练掌握和运用全等三角形的判定与性质是解决本题的关键.2(2023·全国·八年级假期作业)如图1,AD为△ABC的中线,延长AD至E,使DE=AD.(1)试证明:△ACD≌△EBD;(2)用上述方法解答下列问题:如图2,AD为△ABC的中线,BMI交AD于C,交AC于M,若AM=GM,求证:BG =AC.【答案】(1)详见解析;(2)详见解析.【分析】(1)根据中线的定义,即可得到BD =CD ,再根据SAS 即可判定△ACD ≌△EBD .(2)延长AD 到F ,使AD =DF ,连接BF ,根据SAS 证△ADC ≌△FDB ,推出BF =AC ,∠CAD =∠F ,根据AM =GM ,推出∠CAD =∠AGM =∠BGF ,求出∠BGF =∠F ,根据等腰三角形的性质求出即可.【详解】(1)证明:∵AD 是△ABC 的中线,∴BD =CD ,在△ACD 和△EBD 中,CD =BD∠ADC =∠EDB AD =ED,∴△ACD ≌△EBD (SAS ).(2)证明:延长AD 到F ,使AD =DF ,连接BF ,∵AD 是△ABC 中线,∴BD =DC ,∵在△ADC 和△FDB 中,BD =DC∠ADC =∠BDF AD =DF,∴△ADC ≌△FDB (SAS ),∴BF =AC ,∠CAD =∠F ,∵AM =GM ,∴∠CAD =∠AGM ,∵∠AGM =∠BGF ,∴∠BGF =∠CAD =∠F ,∴BG =BF =AC ,即BG =AC .【点睛】此题考查的是全等三角形的判定及性质,掌握倍长中线法构造全等三角形是解决此题的关键.3(2023春·上海·七年级专题练习)某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】(1)如图1,AD 是△ABC 的中线,延长AD 至点E ,使ED =AD ,连接BE ,证明:△ACD ≌△EBD .【理解与应用】(2)如图2,EP 是△DEF 的中线,若EF =5,DE =3,设EP =x ,则x 的取值范围是.(3)如图3,AD 是△ABC 的中线,E 、F 分别在AB 、AC 上,且DE ⊥DF ,求证:BE +CF >EF .【答案】(1)见解析;(2)1<x <4;(3)见解析【分析】(1)根据全等三角形的判定即可得到结论;(2)延长EP 至点Q ,使PQ =PE ,连接FQ ,根据全等三角形的性质得到FQ =DE =3,根据三角形的三边关系即可得到结论;(3)延长FD 至G ,使得GD =DF ,连接BG ,EG ,结合前面的做题思路,利用三角形三边关系判断即可.【详解】(1)证明:CD =BD ,∠ADC =∠EDB ,AD =ED ,∴△ACD ≌△EBD ,(2)1<x <4;如图,延长EP 至点Q ,使PQ =PE ,连接FQ ,在ΔPDE 与ΔPQF 中,PE =PQ∠EPD =∠QPF PD =PF,∴ΔPEP ≅ΔQFP ,∴FQ =DE =3,在ΔEFQ 中,EF -FQ <QE <EF +FQ ,即5-3<2x <5+3,∴x 的取值范围是1<x <4;故答案为:1<x <4;(3)延长FD 至G ,使得GD =DF ,连接BG ,EG ,在△DFC 和△DGB 中,DF =DG ,∠CDF =∠BDG ,DC =DB ,∴△DFC ≌△DGB (SAS ),∴BG =CF ,∵在△EDF 和△EDG 中,DF =DG ,∠FDE =∠GDE =90°,DE =DE ,∴△EDF ≌△EDG (SAS ),∴EF =EG ,在△BEG 中,两边之和大于第三边,∴BG +BE >EG ,又∵EF =EG ,BG =CF,∴BE +CF >EF【点睛】本题考查了全等三角形的判定和性质,三角形的中线的定义,三角形的三边关系,正确的作出图形是解题的关键.【解题模型五旋转模型】1如图,AB =AC ,AE =AD ,∠CAB =∠EAD =α.(1)求证:△AEC≅△ADB;(2)若α=90°,试判断BD与CE的数量及位置关系并证明;(3)若∠CAB=∠EAD=α,求∠CFA的度数.【答案】(1)见详解;(2)BD=CE,BD⊥CE;(3)90°-α2【分析】(1)根据三角形全等的证明方法SAS证明两三角形全等即可;(2)由(1)△AEC≌△ADB可知CE=BD且CE⊥BD;利用角度的等量代换证明即可;(3)过A分别做AM⊥CE,AN⊥BD,易知AF平分∠DFC,进而可知∠CFA【详解】(1)∵∠CAB=∠EAD∴∠CAB+∠BAE=∠EAD+∠BAE,∴∠CAE=∠BAD,∵AB=AC,AE=AD在△AEC和△ADB中,AB=AC∠CAE=∠BAD AE=AD∴△AEC≌△ADB(SAS)(2)CE=BD且CE⊥BD,证明如下:将直线CE与AB的交点记为点O,由(1)可知△AEC≌△ADB,∴CE=BD,∠ACE=∠ABD,∵∠BOF=∠AOC,∠α=90°,∴∠BFO=∠CAB=∠α=90°,∴CE⊥BD.(3)过A分别做AM⊥CE,AN⊥BD 由(1)知△AEC≌△ADB,∴两个三角形面积相等故AM·CE=AN·BD∴AM=AN∴AF平分∠DFC由(2)可知∠BFC=∠BAC=α∴∠DFC=180°-α∴∠CFA=12∠DFC=90°-α2【点睛】本题考查了全等三角形的证明,以及全等三角形性质的应用,正确掌握全等三角形的性质是解题的关键;【变式训练】1如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.【答案】(1)证明见解析;(2)∠BFE=105°.【分析】(1)根据旋转的性质证明△ABE≌△CBD(SAS),进而得证;(2)由(1)得出∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,最后根据三角形内角和定理进行求解即可.【详解】(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,(180°-120°)=30°,∴∠BED=∠BDE=12∴∠BFE=180°-∠BED-∠ABE=180°-30°-45°=105°.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,三角形内角和定理,利用旋转的性质证明是解题的关键.2问题发现:如图1,已知C为线段AB上一点,分别以线段AC,BC为直角边作等腰直角三角形,∠ACD=90°,CA=CD,CB=CE,连接AE,BD,线段AE,BD之间的数量关系为;位置关系为.拓展探究:如图2,把Rt△ACD绕点C逆时针旋转,线段AE,BD交于点F,则AE与BD之间的关系是否仍然成立?请说明理由.【答案】问题发现:AE=BD,AE⊥BD;拓展探究:成立,理由见解析【分析】问题发现:根据题目条件证△ACE≌△DCB,再根据全等三角形的性质即可得出答案;拓展探究:用SAS证ΔACE≅ΔDCB,根据全等三角形的性质即可证得.【详解】解:问题发现:延长BD,交AE于点F,如图所示:∵∠ACD=90°,∴∠ACE=∠DCB=90°,又∵CA=CD,CB=CE,∴ΔACE≅ΔDCB(SAS),∴AE=ED,∠CAE=∠CDB,∵∠CDB+∠CBD=90°,∴∠CAE+∠CBD=90°,∴∠AFD=90°,∴AF⊥FB,∴AE⊥BD,故答案为:AE=BD,AE⊥BD;拓展探究:成立.理由如下:设CE与BD相交于点G,如图1所示:∵∠ACD=∠BCE=90°,∴∠ACE=∠BCD,又∵CB=CE,AC=CD,∴ΔACE≅ΔDCB(SAS),∴AE=BD,∠AEC=∠DBC,∵∠CBD+∠CGB=90°,∴∠AEC+∠EGF=90°,∴∠AFB=90°,∴BD⊥AE,即AE=BD,AE⊥BD依然成立.【点睛】本题考查全等三角形的判定和性质,三角形三边关系,手拉手模型,熟练掌握全等三角形的判定和手拉手模型是解决本题的关键.3(2023春·全国·七年级专题练习)在△ABC中,∠BAC=90°,AC=AB,直线MN经过点A,且CD ⊥MN于D,BE⊥MN于E.(1)当直线MN绕点A旋转到图1的位置时,∠EAB+∠DAC=度;(2)求证:DE=CD+BE;(3)当直线MN绕点A旋转到图2的位置时,试问DE、CD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)90°(2)见解析(3)CD=BE+DE,证明见解析【分析】(1)由∠BAC=90°可直接得到∠EAB+∠DAC=90°;(2)由CD⊥MN,BE⊥MN,得∠ADC=∠BEA=∠BAC=90°,根据等角的余角相等得到∠DCA=∠EAB,根据AAS可证△DCA≌△EAB,所以AD=CE,DC=BE,即可得到DE=EA+AD=DC+ BE.(3)同(2)易证△DCA≌△EAB,得到AD=CE,DC=BE,由图可知AE=AD+DE,所以CD=BE +DE.【详解】(1)∵∠BAC=90°∴∠EAB+∠DAC=180°-∠BAC=180°-90°=90°故答案为:90°.(2)证明:∵CD⊥MN于D,BE⊥MN于E∴∠ADC=∠BEA=∠BAC=90°∵ ∠DAC+∠DCA=90°且∠DAC+∠EAB=90°∴∠DCA=∠EAB∵在△DCA和△EAB中,∠ADC=∠BEA=90°∠DCA=∠EABAC=AB∴△DCA≌△EAB(AAS)∴AD=BE且EA=DC由图可知:DE=EA+AD=DC+BE.(3)∵CD⊥MN于D,BE⊥MN于E∴∠ADC=∠BEA=∠BAC=90°∵∠DAC+∠DCA=90°且∠DAC+∠EAB=90°∴∠DCA=∠EAB∵在△DCA和△EAB中,∠ADC=∠BEA=90°∠DCA=∠EABAC=AB∴△DCA≌△EAB(AAS)∴AD=BE且AE=CD由图可知:AE=AD+DE∴CD=BE+DE.【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角,也考查了三角形全等的判定与性质.4(2023·江苏·八年级假期作业)在△ABC中,AB=AC,∠BAC=90°.将一个含45°角的直角三角尺DEF按图所示放置,使直角三角尺的直角顶点D恰好落在BC边的中点处.将直角三角尺DEF绕点D旋转,设AB交DF于点N,AC交DE于点M,示意图如图所示.(1)【证明推断】求证:DN=DM;小明给出的思路:若要证明DN=DM,只需证明△BDN≌△ADM即可.请你根据小明的思路完成证明过程;(2)【延伸发现】连接AE,BF,如图所示,求证:AE=BF;(3)【迁移应用】延长EA交DF于点P,交BF于点Q.在图中完成如上作图过程,猜想并证明AE和BF的位置关系.【答案】(1)见解析(2)见解析(3)AE⊥BF,见解析【分析】(1)在△ABC中,根据点D是BC的中点,得出AD=BD=BC2,由AD⊥BC,△DEF是直角三角尺,得出∠EDF=90°,从而得到∠BDN=∠ADM,在△BDN和△ADM中,立即证明全等,由性质即可解答DN=DM;(2)根据△BDN≌△ADM,得出BN=AM,∠BND=∠AMD,DN=DM,从而得到∠BNF=∠AME,由于△DEF是含45°直角三角尺,推出FN=EM,利用SAS即可证明△BNF和△AME全等,从而求解;(3)猜想:AE⊥BF,理由:根据△BNF≌△AME和∠FDE=90°,得出∠AEM+∠APD=90°,又根据∠APD=∠FPQ,等量代换得到∠FQP=90°从而证明.【详解】(1)证明:在△ABC中,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,又∵点D是BC的中点,∴AD=BD=BC2,且AD⊥BC,∠BAD=∠CAD=12∠BAC=45°∴∠ADN+∠BDN=90°,又∵△DEF是直角三角尺,∴∠EDF=90°,即∠ADN+∠ADM=90°,∴∠BDN=∠ADM在△BDN和△ADM中,∠B=∠DAM=45°BD=AD∠BDN=∠ADM∴△BDN≌△ADM,∴DN=DM;(2)证明:∵△BDN≌△ADM∴BN=AM,∠BND=∠AMD,DN=DM∴∠BNF=∠AME,且由于△DEF是含45°直角三角尺,∴DF=DE,∴DF-DN=DE-DM即FN=EM在△BNF和△AME中,BN=AM∠BNF=∠AME FN=EM∴△BNF≌△AME,∴AE=BF;(3)解:作图正确(如图所示)猜想:AE⊥BF,理由如下:∵△BNF≌△AME,∴∠BFN=∠AEM,∵∠FDE=90°,∴∠AEM+∠APD=90°又∵∠APD=∠FPQ,∴∠FPQ+∠BFN=90°,∴∠FQP=90°,∴AE⊥BF.【点睛】本题考查了旋转的性质、直角三角尺的特征、全等三角形的判定及性质,解题的关键是掌握三角形全等的判定及性质.。
中考压轴全等三角形问题综合(解析版)
中考压轴:全等三角形问题综合(解析版)一、单选题1.如图,在四边形ABCD中,AD//BC,D90,AD8,BC6,分别以点A,C1为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若2点O是AC的中点,则CD的长为()A.4 2 B.6 C.210 D.8【标准答案】A【思路点拨】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD-AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【详解详析】解:如图,连接FC,∵点O是AC的中点,由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,FAO=BCOO A=OC ,AOF=COB∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,FD=AD-AF=8-6=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+22=62,∴CD=42.故选:A.【名师指导】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.2.如图,如图正方形ABCD内一点E,满足△CDE为正三角形,直线AE交BC于F点,过E点的直线GH AF,交AB于点G,交CD于点H.以下结论:①AFC105;AE EH 2②GH2EF;③2CE EF EH;④,其中正确的有()3A.①②③B.①③④C.①④D.①②③④【标准答案】A【思路点拨】根据等边三角形的性质求出CDE,然后求出ADE30,再根据等腰三角形的性质求出DAE75,然后求出BAF15,根据三角形的一个外角等于与它不相邻的两个内角的和求出AFC105,判断出①正确,过点H作HK AB,可得HK=AD,根据等角的余角相等求出ÐBAF=ÐKHG,再利用“角角边”证明ABF和DHKG,然后根据全等三角形对应边相等可得AF=GH,再根据等边三角形的性质,点E是AF的中点,从而得到GH2EF,判断出②正确;再求出ÐCEF=ÐCEH=45°,过点F作FM CE于M,过点H作HN^CE于N,解直角三角形分别用MF、CN表示出CE,可以得到MF=CN,再表示出CE,即可判AE定③正确;设MF=CN=x,表示出EF、EH,然后求出的值,判断出④错误.EH【详解详析】解:CDE为正三角形,CDE60,\ÐADE=90°-60°=30°,Q AD=DE=CD,1\ÐDAE=ÐDEA=(180°-30°)=75°,2\ÐBAF=90°-75°=15°,\ÐAFC=90°+15°=105°,故①正确;过点H作HK AB,则HK=AD,Q GH^AF,\ÐBAF+ÐAGE=90°,又QÐAGE+ÐKHG=90°,\ÐBAF=ÐKHG,在ABF和DHKG中,ìïÐBAF=ÐKHGïïïíÐB=ÐHKG=90°,ïïïHK=ABïî\DABF@DHKG(AAS),\AF=GH,CDE为正三角形,点E在CD的垂直平分线上,根据平行线分线段成比例定理,点E是AF的中点,AF2EF,\GH=2EF,故②正确;Q GH^AF,ÐDEA=75°,\ÐDEH=90°-75°=15°,\ÐCEH=60°-15°=45°,\ÐCEF=90°-45°=45°,过点F作FM CE于M,过点H作HN^CE于N,则MF=EM,NH=EN,CDE是等边三角形,DCE60,\ÐECF=90°-60°=30°,\CM=3MF,NH=3CN,\CE=3MF+MF=3CN+CN,\MF=CN,2 2\CE=EF+EH,2 2,故③正确;2CE EF EHAE EFEH2MF3CN×3===,故④错误.EH 2 3综上所述,正确的结论是①②③.故选:A.【名师指导】本题考查了四边形综合题型,主要利用了正方形的性质,等边三角形的性质,全等三角形的判断与性质,解直角三角形,等腰直角三角形的判定与性质,作辅助线构造出全等三角形与等腰直角三角形是解题的关键.3.(2021·广东福田·一模)如图,在矩形ABCD中,AD2AB,BAD的平分线交BC于点E.DH AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①AD AE;②AED CED;③OE OD;④BH HF;⑤BC CF2HE,其中正确=的有()A.2个B.3个C.4个D.5个【标准答案】D【思路点拨】(1)由角的平分线的性质和平行线的性质可证AB BE,再结合勾股定理加以判断;(2)在(1)的基础上,结合等腰三角形的性质,通过计算加以判断;(3)可通过在△DOH和△EOH 中计算有关角度加以判断;(4)通过证明△BEH 与HDF能否全等加以判断;(5)在上述判断的基础上,结合线段的和或差加以判断.【详解详析】解:(1)∵AE 平分BAD,1∴BAE DAE BAD45. 2∵AD//BC,∴DAE AEB45.∴AEB BAE45.∴AE 2AB.AB BE.∵AD 2AB,∴AD AE.故①正确;(2)∵AD=AE,∠EAD=45°,1∴ADE AED 1804567.5. 2∴CED 1804567.567.5.∴AED CED.故②正确;BAEDAE(3)在△ABE 和AHD中,ABE AHD,AE ADAAS∴△ABE≌△AHD.∴BE DH.∴AB BE AH HD.∵AB AH,1∵AHB1804567.5,OHE AHB(对顶角相2等),∴∠OHE67.5∠AED.∴OE OH.∵DHO9067.522.5,ODH67.54522.5,∴DHO ODH.∴OH OD.∴OE OD OH.故③正确;(4)∵∠EBH9067.522.5,∴∠EBH∠OHD.EBH OHD22.5在△BEH和HDF中,BE DH ,AEB HDF45∴△BEH≌△HDF ASA.∴BH HF,HE DF.故④正确;(5)∵HE AE AH BC CD,BC CF BC CD∴DFBC CDHEBC CDHE HE HE2HE.故⑤正确.故选:D.【名师指导】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理等知识点.对第一个结论的判断很重要,它是判断后续结论的基础;同时,紧紧围绕“由未知看需知,最后靠拢已知”的分析思路,寻找到解决问题的方法,应成为一种必备的能力.4.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF AE交CB的延长线于F,下列结论正确的有:()10①AP FP;②AE AO;③若四边形OPEQ的面积为4,则该正方形ABCD的面积为236;④CE EF EQDE.A.4个B.3个C.2个D.1个【标准答案】B【思路点拨】连接OE、AF,①利用四点共圆证明∠AFP=∠ABP=45°即可;②设BE=EC=a,求出AE,OA即可解决问题;③利用相似三角形的性质计算求得正方形ABCD的面积为48;④利用相似三角形的性质证明即可.【详解详析】解:如图,连接OE、AF∵四边形ABCD是正方形,∴AC BD,OA=OC=OB=OD,∴BOC=90,∵PF AE,∴APF=ABF=90,∴A,P,B,F四点共圆,∴AFP=ABP=45,∴PAF=PFA=45,∴PA=PF,故①正确,设BE=EC=a,则由勾股定理可得:AE5a,OA OC OB OD2a,AE AO 5a 2a 10 2 102∴ ,即 AEAO ,故②正确, 根据对称性可知, OPE ≌OQE ,1 ∴ SOEQS2,四边形OPEQ2 ∵OB OD ,BEEC ,∴CD2OE ,OE / /CD ,∴ OEQ ∽CDQEQ OE 12, DQ 2EQ∴DQ CD ∴ S ODQ 2SOEQ4,S CDQ4SOEQ8 ,∴ S CDO 12, ∴ S 正方形ABCD 4S CDO48,故③错误,∵EPF =DCE 90,PEFDEC ,∴EPF ∽ECD , EF PE ∴ , ED EC∵ EQPE ,∴CE • EF =EQ • DE ,故④正确, 故选 B 【名师指导】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,四点共圆的 性质等知识,解题的关键是熟练掌握相关基本性质,并灵活运用所学知识解决问题. 5.如图,正方形 ABCD 的边长为 2 ,点 E 从点 A 出发沿着线段 AD 向点 D 运动(不与点 A , D 重合),同时点 F 从点 D 出发沿着线段 DC 向点C 运动(不与点 D ,C 重合),点 E 与点 F 的 运动速度相同. BE 与 AF 相交于点G , H 为 BF 中点、则有下列结论:①BGF 是定值;② FB 平分AFC ;5 ③当 E 运动到 AD 中点时,GH ; 212④当 AG BG 6 时,四边形GEDF 的面积是 其中正确的是( A .①②④ )B .①②③ D .②③④C .①③④ 【标准答案】C 【思路点拨】根据题意很容易证得△BAE ≌△ADF ,即可得到AF=BE ,利用正方形内角为90°,得出AF ⊥BE , 即可判断①;②假设 BF 平分∠AFC ,则角平分线的性质得到 BG=BC ,则 BG=AB ,又由 ∠BGA =90°,得到 AB >BG ,由此即可判断②;③先利用勾股定理求出 BF 的长,然后根据 直角三角形斜边的中线等于斜边的一半即可求解;④根据△BAE ≌△ADF ,即可得到 S 四边形2S VABG ,然后根据 时,得到AG GBAG22 AG GB GB 6,再2 AGGB 6GEDF1 2 1 AG GB . 2由 AG2BG 2 AB24 即可得到2AG GB 2 ,则 S VABG 【详解详析】证明:∵E 在 AD 边上(不与 A ,D 重合),点 F 在 DC 边上(不与 D ,C 重合), 又∵点 E ,F 分别同时从 A ,D 出发以相同的速度运动, ∴AE=DF ,∵四边形 ABCD 是正方形, ∴ AB DA ,BAE D 90o 在△BAE 和△ADF 中,AE DFBAE ADF 90 , AB DA∴△BAE ≌△ADF(SAS),∴∠1=∠2, ∵23 90 ∴13 90∴BGF 90,即AGB 90 ,o即∠BGF 是定值,故①正确;假设 BF 平分∠AFC , ∵四边形 ABCD 是正方形, ∴BC ⊥FC ,BC=AB ∵BG ⊥AF , ∴BG=BC , ∴BG=AB , 又∵∠BGA =90°, ∴AB >BG , ∴假设不成立, ∴②不正确;③当 E 运动到 AD 中点时,则 F 运动到 CD 中点, 1∴CFCD 1,2∴ 2 2 , BF BC CF5∵∠BGF =90°,H 为 BF 的中点1 5∴GHBF ,故③正确; 2 2④∵△BAE ≌△ADF , ∴ S △BAE =S △ADF ∴S SABG,GEDF 四边形 2∴当 AG GB 6 时,AG GB AG22 AGGB GB6,2 ∵ AG 2 BG 2 AB 24 , 2AG GB2 ,11 ∵ S VABG AGGB ,221∴S = 故④正确; GEDF 四边形 2 故选 C . 【名师指导】考查正方形的性质,全等三角形的判定与性质,勾股定理等,角平分线的性质,直角三角形斜边上的中线,掌握全等三角形的判定定理是解题的关键.6.如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在DC边上,且CE=2DE,连接AE交BD于点G,过点D作DF⊥AE,连接OF并延长,交DC于点P,过点O作OQ⊥OP分别交AE、AD于点N、H,交BA的延长线于点Q,现给出下列结论:①∠AFO5=45°;②OG=DG;③DP2=NH•OH;④sin∠AQO=;其中正确的结论有()5A.①②③B.②③④C.①②④D.①②③④【标准答案】D【思路点拨】①由“ASA”可证△ANO≌△DFO,可得ON=OF,由等腰三角形的性质可求∠AFO=45°;②由“AAS”可证△OKG≌△DFG,可得GO=DG;AH HN③通过证明△AHN∽△OHA,可得,进而可得结论DP2=NH•OH;HO AHOG AG 5④由外角的性质可求∠NAO=∠AQO,由勾股定理可求AG,即可求sin∠AQO==.5 【详解详析】∵四边形ABCD是正方形,∴AO=DO=CO=BO,AC⊥BD,∵∠AOD=∠NOF=90°,∴∠AON=∠DOF,∵∠OAD+∠ADO=90°=∠OAF+∠DAF+∠ADO,∵DF⊥AE,∴∠DAF+∠ADF=90°=∠DAF+∠ADO+∠ODF,∴∠OAF=∠ODF,∴△ANO≌△DFO(ASA),∴ON=OF,∴∠AFO=45°,故①正确;如图,过点O作OK⊥AE于K,∵CE=2DE,∴AD=3DE,DE DF 1 ∵tan∠DAE=∴AF=3DF,,AD AF 3∵△ANO≌△DFO,∴AN=DF,∴NF=2DF,∵ON=OF,∠NOF=90°,1∴OK=KN=KF=FN,2∴DF=OK,又∵∠OGK=∠DGF,∠OKG=∠DFG=90°,∴△OKG≌△DFG(AAS),∴GO=DG,故②正确;∵∠DAO=∠ODC=45°,OA=OD,∠AOH=∠DOP,∴△AOH≌△DOP(ASA),∴AH=DP,∵∠ANH=∠FNO=45°=∠HAO,∠AHN=∠AHO,∴△AHN∽△OHA,AH HN∴,HO AH∴AH2=HO•HN,∴DP2=NH•OH,故③正确;∵∠NAO+∠AON=∠ANQ=45°,∠AQO+∠AON=∠BAO=45°,∴∠NAO=∠AQO,∵OG=GD,∴AO=2OG,∴AG= 2 2 =5OG,AO OGOG 5∴sin∠NAO=sin∠AQO=,故④正确,AG 5故选:D.【名师指导】本题考查了正方形的性质,全等三角形的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,灵活运用这些性质是解题关键.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM 上,2BE=DB,作EF⊥DE并截取EF=DE,连接AF并延长交射线BM于点C.设BE =x,BC=y,则y关于x的函数解析式是()12x 2x 3x 8xA.y=﹣B.y=﹣C.y=﹣D.y=﹣x 4 x 1 x 1 x 4【标准答案】A【思路点拨】作点F作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB =2x,然后证得△FGC∽△ABC,再根据相似三角形的性质即可求解.【详解详析】作点F作FG⊥BC于G,∵∠DEB+∠FEG=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中,BFGEBDE FEG,DE EF∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG =DB =2BE =2x , ∴GC =y ﹣3x , ∵FG ⊥BC ,AB ⊥BC , ∴FG ∥AB , ∴△FGC ∽△ABC , ∴CG :BC =FG :AB ,x y 3x 即 = ,. 4 y 12x ∴y =﹣x 4故选 A . 【名师指导】本题考查了三角形全等的判定和性质及相似三角形的判定与性质,正确作出辅助线是解决问 题的关键.8.如图,△ACD 和△AEB 都是等腰直角三角形,CAD EAB 90 .四边形 ABCD 是平行四边形,下列结论中错误的有()①ACE 以点 A 为旋转中心,逆时针方向旋转90后与△ADB 重合, ②ACE 以点 A 为旋转中心,顺时针方向旋转 270后与△DAC 重合,③沿 AB 所在直线折叠后,ACE 与ADE 重合, ④沿 AD 所在直线折叠后,△ADB 与ADE 重合,⑤ACE 的面积等于△ABE 的面积.A .1 个B .2 个C .3 个D .4 个【标准答案】B 【思路点拨】由△ACD 和△AEB 都是等腰直角三角形,∠CAD =∠EAB =90°,易证得△ACE ≌△ADB , 即可得①正确;又由四边形 ABCD 是平行四边形,易证得△EAC ≌△EAD ,即可得 △ACE ≌△ADB ≌△ADE ,即可判定③④正确;由平行四边形的中心对称性,可得②错误,1 1 1 1 1又由S△ACE=S△ADB=AD×BH=AD•AC=AC2,S△ABE=AE•AB=AB2,AB>AC,即22 2 2 2可判定②错误.继而求得答案.【详解详析】解:①∵△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,∴AE=AB,AC=AD,∠EAC=∠BAD,在△ACE和△ADB中,AE AB∵EACBAD,AC AD∴△ACE≌△ADB(SAS),∴△ACE以点A为旋转中心,逆时针方向旋转90°(旋转角为∠EAB=90°)后与△ADB重合;故①正确;②∵平行四边形是中心对称图形,∴要想使△ACB和△DAC重合,△ACB应该以对角线的交点为旋转中心,顺时针旋转180°,即可与△DAC重合,故②错误;③∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAC=∠ACD=45°,∴∠EAC=∠BAC+∠CAD=135°,∴∠EAD=360°﹣∠EAC﹣∠CAD=135°,∴∠EAC=∠EAD,在△EAC和△EAD中,AE AB∵EACEAD,AC AD∴△EAC≌△EAD(SAS),∴沿AE所在直线折叠后,△ACE与△ADE重合;故③正确;④∵由①③,可得△ADB≌△ADE,∴沿AD所在直线折叠后,△ADB与△ADE重合,故④正确;⑤过B作BH⊥AD,交DA的延长线于H,∵四边形ABCD是平行四边形,∴BH=AC,∵△ACE≌△ADB,1 1 1∵S△ACE=S△ADB=AD×BH=AD•AC=AC2,2 2 21 1∴S△ABE=AE•AB=AB2,AB>AC,2 2∴S△ABE>S△ACE;故⑤错误.故选:B.【名师指导】本题考查了等腰直角三角形的性质、全等三角形的判定与性质、平行四边形的性质、折叠的性质以及旋转的性质.注意数形结合思想的应用,证得△ACE≌△ADB≌△ADE是解此题的关键.9.如图,在平行四边形ABCD中,AD=2,AB=6,∠B是锐角,AE⊥BC于点E,F是AB的中点,连接DF,EF.若∠EFD=90°,则线段AE的长为()A.2 B.1 C. 3 D. 5【标准答案】D【思路点拨】延长EF交DA的延长线于Q,连接DE,设BE x,首先证明DQ DE x2,利用勾股定理构建方程即可求解.【详解详析】解:如图,延长EF交DA的延长线于Q,连接DE,设BE x,四边形 ABCD 是平行四边形,DQ / /BC ,Q BEF ,AFEB,AFQBFE ,QFA ≌EFB(AAS) , AQBEx,QF EF , EFD 90, DF QE ,DQ DEx 2 ,AEBC, BC / / AD ,AE AD,AEB EAD 90,AE 2 DE 2 AD 2 AB 2 BE 2 , (x 2) 24 6x ,2 解得: x 1, x 3(舍去)1 2 BE1,AE AB 2 BE 2 615故选:D . , 【名师指导】本题考查了平行四边形的性质、线段的垂直平分线的性质、勾股定理、全等三角形的判定与 性质,解题的关键是:掌握相关知识点,添加辅助线、构造全等三角形来解决问题. 10.如图,在△ABC 和△ADE 中,∠BAC=∠DAE =90°,AB=AC ,AD=AE ,点 C ,D ,E 在同一条直线上,连接 B ,D 和 B ,E .下列四个结论:①BD=CE , ②BD ⊥CE ,③∠ACE+∠DBC=30°,2 AB 2 .2 2AD④BE其中,正确的个数是()A.1 B.2 C.3 D.4【标准答案】B【思路点拨】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【详解详析】解:如图,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,AB=ACBAD=CAEA D=AE∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE 2=BD2+DE2=BD2+2AD2,在Rt△BDC中,BD BC,而BC2=2AB2,∴BD2<2AB2,2 AB2∴BE 2 2AD故④错误,综上,正确的个数为2个.故选:B.【名师指导】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.二、填空题111.如图,在平面直角坐标系中,点Q是一次函数y x4的图象上一动点,将Q绕点2C2,0顺时针旋转90到点P,连接PO,则PO PC的最小值_________.【标准答案】213.【思路点拨】1取D(2,-2),连接CD、DQ,作C′点与点C关于直线y x4对称,连接QC′,则由题2意可得△OCP≌△DCQ,CP=CQ=C′Q,所以当且仅当C′、Q、D共线时PO+PC=DQ+CQ=DQ+C′Q=DC′为最小.【详解详析】解:如图,取D(2,-2),则CD⊥x轴,即CD⊥OC且CD=OC=2,连结DQ,依题CQ顺时针旋转90得到CP,∴∠QCP=90°且CQ=CP,OC DC 2在△OCP 和△DCQ 中, OCP 90 DCP DCQCP CQ∴△OCP ≌△DCQ(SAS),∴OP=DQ ,1 作 C ′点与点 C 关于直线 y x 4对称,则有 CQ=C ′Q , 2∴CP=CQ=C′Q , 故 PO+PC=DQ+CQ=DQ+C ′Q ≥DC ′,当且仅当 C ′、Q 、D 共线时取等,由题意可以得到 A 、B 坐标分别为(0,4)、(8,0)设 C ′坐标为(x ,y ),则由 AC ′=AC ,BC ′=BC 可得: 2 y 4 20 2 x 2 x 8 y 2 36 22 24 解之可得 C ′为(2,0)( 与 C 同,舍去)或( , ), 5 52 2 22 24 2 ∴DC ′=2 5 5 2 2 12 34 2325 = = 2 13 5 5 5 ∴ PO PC 的最小值为 2 13 .故答案为 2 13 .【名师指导】本题考查一次函数的综合应用,方程组思想,一元二次方程的解法,构造全等三角形与轴对 称把 PO+PC 转化成 DQ+C ′Q 是解题关键.12.如图,平行四边形OABC 的顶点 A 在 x 轴的正半轴上,点 D(3, 2) 在对角线OB 上,反比k 15 例函数 y (k 0,x 0) 的图像经过 C 、D 两点,已知平行四边形OABC 的面积是 ,则点 B x 2的坐标为___.9【标准答案】2,3【思路点拨】过点B作BE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,过点C作CG⊥x轴,垂足15为G,则BE∥DF∥CG,根据平行四边形的性质,证明△COG≌△BAE,S△OAB= ,根据427反比例函数的性质,证明S△OCG=S△BAE=S△DOF=3,确定S△OEB= ,证明△ODF∽△OBE,根4据相似三角形面积之比等于相似比的平方计算即可.【详解详析】过点B作BE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,过点C作CG⊥x轴,垂足为G,则BE∥DF∥CG,∵四边形OABC是平行四边形,∴OC=AB,BC∥OA,∴CG=BE,∴△COG≌△BAE,∴S△OCG=S△BAE15∵平行四边形OABC的面积是,215∴S△OAB=,4k∵点D(3,2)在对角线OB上,反比例函数y(k0,x0)的图像经过C、D两点,x∴S△OCG=S△BAE=S△DOF=3,DF=2,OF=3,27∴S△OEB=,4∵BE∥DF,∴△ODF∽△OBE,DF BE 2742∴=3,32 2 3∴ , BE 即 BE=3,OF OE 2 3∴ ∴ , , 3 2 3OE 9 即 OE= , 29 ∴点 B 的坐标为( ,3). 29 故答案为:( ,3). 2【名师指导】本题考查了反比例函数的性质,平行四边形的性质,三角形相似的判定与性质,坐标与线段 的关系,三角形的全等,灵活构造辅助线,活用性质,证明三角形的相似是解题的关键.13.如图,在 Rt △ABC 中,∠BAC =90°,分别以 A ,B 为旋转中心,把边 AC ,BA 逆时针 旋转 60°,得到线段 AE ,BD ,连 接 BE ,CD 相交于点 P ,已 知 AB=3,AC=2 3 ,∠APB =120°, 则 PA+PB+PC 的大小为________.【标准答案】 39【思路点拨】连接 AD=CE ,利用旋转的性质得到△ABD 和△ACE 是等边三角形,可推出∠DAC=∠EAB , 利用 SAS 证明△ADC ≌△ABE ,利用全等三角形的性质可证得∠AEB=∠ACD ,可得到 ∠APF =60°,在 PE 上截取 PF=PA ,可推出△APF 是等边三角形,利用等边三角形的性质可 得到∠PAF =60°;再证明∠EAF=∠PAC ,可推出△AFE ≌△APC ,由此可证得 AP+BP+CP=BE ; 过点 E 作 EG ⊥BA ,交 BA 的延长线于点 G ,利用勾股定理求出 GE ,AG 的长,从而可求出 BG 的长,然后利用勾股定理求出 BE 的长,进而即可求解.【详解详析】连接 AD ,CE ,∵分别以A,B为旋转中心,把边AC,BA逆时针旋转60°,得到线段AE,BD,∴AB=BD,AE=AC,∠ABD=∠EAC=60°,∴△ABD和△ACE是等边三角形,∴∠DAC=∠EAB=90°+60°=150°,在△ADC和△ABE中AB BD∵DACEAB,AE AC∴△ADC≌△ABE(SAS)∴∠AEB=∠ACD,∵∠APB=120°,∴∠APF=60°,在PE上截取PF=PA,∴△APF是等边三角形,∴∠PAF=60°,∴∠EAF+∠BAP=150°-60°=90°,∠PAC+∠BAP=∠BAC=90°,∴∠EAF=∠PAC,∵AE=AC,∠AEB=∠ACD,∴△AFE≌△APC,∴PC=FE∴AP+BP+CP=PF+BP+FE=BE过点E作EG⊥BA,交BA的延长线于点G,∵∠GAE=180°-150°=30°,∵AE=AC=23,2 2∴GE=3,AG2333,∴BG=AB+AG=3+3=6,2∴BE 6 2 339,∴AP+BP+CP= 39 .故答案为: 39 .【名师指导】本题主要考查等边三角形的判定与性质,勾股定理,旋转的性质,三角形全等的判定和性质, 添加辅助线,构造全等三角形和等边三角形是解题的关键.14.黄金分割是指把一条线段分割为两部分,使较短线段与较长线段的比等于较长线段与 5 1 原线段的比,其比值等于 .如图,在正方形 ABCD 中,点 G 为边 BC 延长线上一动 2点,连接 AG 交对角线 BD 于点 H ,△ADH 的面积记为 S ,四边形 DHCG 的面积记为 S .如 1 2S 1 S 2果点 C 是线段 BG 的黄金分割点,则 的值为___. 3- 5 7 3 5 【标准答案】 【思路点拨】或 . 22 由 AD ∥BC ,得△DHG 的面积=△AHB 的面积,再由△AHB ≌△CHB (SAS ),得出 S = 2S 1 S 2 AD GB△GBH 的面积,然后证△ADH ∽△GBH ,得 =( ) 2 ,分两种情况:①点 C 是线段 BG 5 1 的黄金分割点,BC >CG ,则 BC = 3 5 BG ;②点 C 是线段 BG 的黄金分割点,BC <CG , 2则 BC = BG ;分别求解即可. 2【详解详析】解:∵四边形 ABCD 是正方形,∴AB =CB ,AD ∥BC ,∠ABH =∠CBH =45°,∴△ABD 的面积=△AGD 的面积,又∵BH =BH ,∴△AHB ≌△CHB (SAS ),∴△AHB 的面积=△DHG 的面积,∴S =△GBH 的面积,2 ∵AD ∥BC ,∴△ADH ∽△GBH ,S1 S2AD GB∴=()2,分两种情况:①点C是线段BG的黄金分割点,BC>CG,5 1则AD=BC=BG,2S1 ADGB 5 1 3-5∴=()2=()2=;S2 2 2②点C是线段BG的黄金分割点,BC<CG,3- 5则AD=BC=BG,2S1 ADGB 3- 5 73 5∴=()2=()2=;S2 2 2综上所述,如果点C是线段BG的黄金分割点,S1 3- 5 73 5则的值为或;S2 2 23- 5 73 5故答案为:或.2 2【名师指导】本题考查了黄金分割的定义、正方形的性质、相似三角形的判定与性质以及三角形面积等知识;熟练掌握黄金分割的定义和相似三角形的判定与性质是解题的关键.15.如图,在Rt ABC中,ABC90,AB5,BC8,点P是射线BC上一动点,连接AP,将ABP沿AP折叠,当点B的对应点B落在线段BC的垂直平分线上时,BP的长等于__________.5【标准答案】或10.2【思路点拨】①如图1,当点P在线段BC上时,②如图2,当点P在BC的延长线上时,过A,C分别作AD∥BC,CD∥AB两线交于D,得到四边形ABCD是矩形,求得AD=BC=8,过B′作B′F⊥BC于F,反向延长FB′交AD于E,根据勾股定理即可得到结论.【详解详析】解:①如图 1,当点 P 在线段 BC 上时,过 A ,C 分别作 AD ∥BC ,CD ∥AB 两线交于 D , 则四边形 ABCD 是矩形,∴AD=BC=8, 过 B′作 B′F ⊥BC 于 F ,反向延长 FB′交 AD 于 E , 则 AD ⊥EF ,∵点 B'落在线段 BC 的垂直平分线上,1∴AE=BF= BC=4,2 ∵将△ABP 沿 AP 折叠得到△AB′P ,∴AB′=AB=5,PB=PB′,∴EB′=3, ∴B′F=2,∴PF=4-PB ,∵ PB '2PF 2 B ' F 2 , ∴ BP 2 (4 BP) 2 2 , 2 5 解得: BP . 2②如图 2,当点 P 在 BC 的延长线上时, 过 A ,C 分别作 AD ∥BC ,CD ∥AB 两线交于 D , 则四边形 ABCD 是矩形,∴AD=BC=8, 过 B′作 B′F ⊥BC 于 F ,反向延长 FB′交 AD 于 E , 则 AD ⊥EF ,∵点 B'落在线段 BC 的垂直平分线上,1 ∴AE=BF= BC=4,2 ∵将△ABP 沿 AP 折叠得到△AB′P ,∴AB′=AB=5,PB=PB′,∴EB′=3, ∴B′F=8,∴PF=PB-4,∵ PB '2PF 2 B ' F 2 , ∴ BP (BP 4) 2 2 8 2 .解得:BP=10;5 综上所述,BP 的长等于 或 10, 25故答案为:或10.2【名师指导】本题考查了翻折变换(折叠问题),矩形的性质、勾股定理,线段的垂直平分线的性质,作出恰当的辅助线是解题的关键.16.如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交8于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF DE;②DG;③HD//BG;5④ABG DHF.其中正确的结论有________.(请填上所有正确结论的序号)【标准答案】①④【思路点拨】证明△ADF≌△DCE,再利用全等三角形的性质结合余角的性质得到∠DGF=90°,可判断①,再利用三角形等积法AD×DF÷AF可算出DG,可判断②;再证明∠HDF=∠HFD=∠BAG,求出AG,DH,HF,可判定ABG DHF,可判断④;通过AB≠AG,得到∠ABG和∠AGB 不相等,则∠AGB≠∠DHF,可判断③.【详解详析】解:∵四边形ABCD为正方形,∴∠ADC=∠BCD=90°,AD=CD,∵E和F分别为BC和CD中点,∴DF=EC=2,∴△ADF≌△DCE(SAS),∴∠AFD=∠DEC,∠FAD=∠EDC,∵∠EDC+∠DEC=90°,∴∠EDC+∠AFD=90°,∴∠DGF=90°,即DE⊥AF,故①正确;1∵AD=4,DF=CD=2,2∴AF= 2 2 ,422 54 5∴DG=AD×DF÷AF=,故②错误;5∵H为AF中点,1∴HD=HF=AF=5,2∴∠HDF=∠HFD,∵AB∥DC,∴∠HDF=∠HFD=∠BAG,8 5∵AG= 2 2 ,AB=4,AD DG5AB AB45AG∴,DH HF 5 DF∴ABG DHF,故④正确;∴∠ABG=∠DHF,而AB≠AG,则∠ABG和∠AGB不相等,故∠AGB≠∠DHF,故HD与BG不平行,故③错误;故答案为:①④.【名师指导】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,三角形的高,直角三角形斜边中线定理,知识点较多,有一定难度,解题时注意利用线段关系计算相应线段的长.17.如图,把矩形ABCD沿EF对折,使B与D重合,折痕EF交BD于G,连AG,若7tan AGE,BF8,P为DG上一个动点,则PF PC的最小值为________ 3【标准答案】10【思路点拨】先根据折叠的性质、三角形全等的判定定理与性质可得EF BD,BG DG,DE BF,EG FG,从而可得点E与点F关于BD对称,再根据两点之间线段最短得出PF PC的最小值为CE的长,过点A作AH BD于点H,根据平行线的性质、正切三角函数可得GH AH 7tan GAH,从而设GH7a,AH3a,再根据平行线分线段成比例定理分别3可求出AE的长,然后利用正切三角函数值可求出AB的长,从而可得CD的长,由此即可得出答案.【详解详析】如图,连接PE、CE,过点A作AH BD于点H由折叠的性质可知,BG DG,BGE DGE90四边形ABCD是矩形AD BC,AB CD,AD//BC,BAD ADC90EDG FBGEDGFBG在△DEG和BFG中,DG BGDGE BGFDEGBFG(ASA)DE BF8,EGFG点E与点F关于BD对称,即BD垂直平分EFPE PFPF PC PEPC由两点之间线段最短可知,当C,P,E三点共线时,PE PC取得最小值,最小值为CEAH BD,即AHG90AH//EGGAH AGE7tan AGE3GH AH 7在Rt AHG中,tan GAH3设 AH 3a(a 0) ,则GH7aAG AH BGDG2 GH4a2点 G 是矩形 ABCD 对角线的交点BG DG AG 4a , DHDG HG (47)aAH//EGDG DE4a 8 ,即HG AE7a AE 解得 AE2 7AD DE AE 82 7tan ADH AH 3a 3在 RtADH 中,DH (4 7)a 4 7AB AB AD 8 2 7在 Rt △ABD 中, tanADBAB 382 7 4 7解得 AB6CDAB6在 Rt △CDE 中, 2 2 22 CE DECD8 610则 PF PC 的最小值为 10故答案为:10.【名师指导】本题是一道较难的综合题,考查了矩形的性质、正切三角函数、平行线分线段成比例定理、 折叠的性质等知识点,利用折叠的性质、两点之间线段最短得出 PF PC 取得最小值时,点P 的位置是解题关键.18.如图,正方形 ABCD 的边长为 1,点 E ,F 分别为 BC ,CD 边的中点,连接 AE ,BF 1交于点 P ,连接 PD ,则下述结论:①AE ⊥BF ;②tan ∠DAP = ;③DA =DP ;④FD =FP 2 中,一定成立的有_____.【标准答案】①③【思路点拨】连接AF,根据正方形的性质和已知条件证明Rt ABE Rt BCF,进而可以判断①;结合①证明A、P、F、D四点共圆,根据圆周角定理可以判断③,根据锐角三角函数可以判断②,根据DA DP,只有当DA AP时,FD FP,进而可以判断④.【详解详析】解:连接AF,E,F分别是正方形ABCD边BC,CD的中点,ADCF BE,2,DF在ABE和BCF中,AB BCABE C,BE CFRt ABE Rt BCF(SAS),BAE CBF,又BAE BEA90,CBF BEA90,BPE APF90,AE BF,故①正确;APF90,ADF APF180,A、P、F、D四点共圆,AFD DPA,DAF DPF,DAB APF90,BAEDAF,DAP DPA ,DA DP,故③正确;DAP DPA AFD,ADtan DAP tan AFD2,故②错误;DFDA DP,只有当DA AP时,FD FP,故④不一定正确.故①③.故答案为:①③.【名师指导】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,圆周角定理,解决本题的关键是综合运用以上知识.19.如图,在四边形ABCD中,B C45,P是BC上一点,PA PD,APD90,AB CD______.BC2【标准答案】2【思路点拨】通过等腰直角三角形构建一线三等角模型求解即可.【详解详析】解:如图所示,分别过A、D作AE BC于E,DF BC于F∴AEP DFP90∴APE PAE 90,DPF PDF 90∵APD 90∴∠APE ∠DPF90∴APE DPF ,PAEDPF在△AEP与△DFP中APEDPFPA PDPAE DPF∴△AEP △DPFASA∴AE PF,PE DFC 45,FDC C45,DF FC PE,在Rt△ABE 中,B45∴ 2 2AB BE AE 2BE2AE同理可得:CD 2CF 2DFAB CD 2BE 2CF 2BECF2BECF 2∴BC BE PE PFCF22故答案为:.2【名师指导】本题考察特殊的直角三角形,灵活运用一线三等角模型及特殊直角三角形三边关系是解题的关键.20.如图,点P在以MN为直径的半圆上运动,(点P与M,N不重合)PQ MN,NE平分MNP,交PM于点E,交PQ于点F.PF PE___________________.(1)PQ PMMQ(2)若PN 2 PM MN,则___________________.NQ5 1【标准答案】12【思路点拨】(1)过E作GE MN于G,可得NGE90,根据圆周角的性质可得MPN90,又NE平分MNP,根据角平分线的性质可得PE GE;由PNE MNE,PNE PEN90,MNE QFN90,且QFN PFE,根据“等角的余角相等”可得PEN PFE,再根据等腰三角形的性质“等角对等边”可得PE PF,即有GE PF;由PQ MN,GE MN,EM GE可得GE//PQ,从而可得在PMQ中有,将EM PM PE、PE GE、GE PFPM PQPM PF PF PF PE代入可得,,既而可求得的值.PM PQ PQ PM【详解详析】(1)如图所示,过E作GE MN于G,则NGE90,∵MN为半圆的直径,∴MPN90,又∵NE平分MNP,NGE90,∴PE GE.∵NE平分MNP,∴PNE MNE,∵EPN FQN90,∴PNE PEN90,MNE QFN90,又QFN PFE,∴PNE PEN90,MNE PFE90,又∵PNE MNE,∴PEN PFE,∴PE PF,又∵PE GE,∴GE PF.∵PQ MN,GE MN,∴GE//PQ,EMGE ∴在 PMQ中, , PMPQ又∵ EMPMPE ,PM PE GE∴, PM PQPM PE GE PM PF PF∴将GEPF , PEPF ,代入PF PEPM PF PF ∴得, , PM PQ PM PQ1, PQ PM PM PMPF PE即1.PQ PM(2)∵PNQ MNP , NQPNPM ,∴NPQ ∽NMP ,PNQN ∴ , MNPN∴ PN ∵ PN2QN MN ,PM MN ,2∴ PM QN ,MQ MQ∴, NQ PMMQ PM ∵cosM, PMMNMQ PM ∴ ∴ , NQ MN MQ NQ NQMQ NQMQNQ 2 MQNQ∴ NQ2MQ 2MQ NQ ,即1 , 2MQ NQ设 x ,则 x 5 12 x 10,5 1 解得: x,或 x 0(舍去), 22MQ 5 1∴, NQ故答案为:【名师指导】25 1. 2本题综合考查了圆周角的性质、角平分线的性质、等腰三角形的性质、平行线分线段成比例的性质等知识.(1)中解题的关键是利用角平分线的性质和等腰三角形的性质求得GE PF,EM GEPE PF,再通过平行线分线段成比例的性质得到,进行等量代换和化简后即可PM PQ得解.三、解答题21.如图,在ABC中,AC BC12,ACB120,点D是AB边上一点,连接CD,以CD 为边作等边△CDE.(1)如图1,若CDB45,求等边△CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG AC于点G.①求证:CF^DF.②如图3,将CFD沿CF翻折得CFD,连接BD,求出BD的最小值.【标准答案】(1)62;(2)①见详解;②BD的最小值为6【思路点拨】(1)过点C作CH⊥AB于点H,由等腰三角形的性质和直角三角形的性质可得∠A=∠B=30°,AH=BH=63,CH=6,由∠CDB=45°,可得CD=2CH,进而即可求解;(2)①延长BC到N,使CN=BC,由“SAS”可证△CEN≌△CDA,可得EN=AD,∠N=∠A1=30°,由三角形中位线定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可证DG=CF,2DG∥CF,即可证四边形CFDG是矩形,可得结论;②由“SAS”可证△EFD≌∠BFD',可得BD'=DE=CD,则当CD取最小值时,BD有最小值,即可求解.【详解详析】解:(1)如图1,过点C作CH⊥AB于点H,。
专题4.7 解三角形的综合应用(重难点突破)(解析版)
专题4.7 解三角形的综合应用一、考情分析1. 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题。
二、经验分享考点一测量中的有关几个术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0°≤θ<360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡比坡面与水平面所成二面角的度数叫坡度,θ为坡角;坡面的垂直高度与水平长度之比叫坡比,即i=hl=tan θ考点二实际测量中的常见问题求AB图形需要测量的元素解法求竖直高度底部可达∠ACB=α,BC=a解直角三角形AB=a tan α底部不可达∠ACB=α,∠ADB=β,CD=a解两个直角三角形AB=a tan αtan βtan β-tan α求水平距离山两侧∠ACB=α,AC=b,BC=a用余弦定理AB=a2+b2-2ab cos α河两岸∠ACB=α,∠ABC=β,CB=a用正弦定理AB=a sin αsin(α+β)河对岸∠ADC=α,∠BDC=β,∠BCD=δ,∠ACD=γ,CD=a在△ADC中,AC=a sin αsin(α+γ);在△BDC中,BC=a sin βsin(β+δ);在△ABC中,应用余弦定理求AB三、题型分析重难点题型突破1解三角形中的实际问题例1、如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 3 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠P AB=90°,∠P AQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为________ m.【答案】900【解析】由已知,得∠QAB=∠P AB-∠P AQ=30°.又∠PBA=∠PBQ=60°,所以∠AQB=30°,所以AB=BQ.又PB为公共边,所以△P AB≌△PQB,所以PQ=P A.在Rt△P AB中,AP=AB·tan 60°=900,故PQ=900,所以P,Q两点间的距离为900 m.【变式训练1-1】、(2017南京、盐城二模)如图,测量河对岸的塔高AB时,选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=30°,∠BDC=120°,CD=10 m,并在点C测得塔顶A的仰角为60°,则塔高AB=________m.【答案】 30【解析】在△BCD 中,由正弦定理得BC =sin120°sin30°·10=103(m).在Rt △ABC 中,AB =BC tan60°=30(m).重难点题型突破2 平面几何中的解三角形问题例2、如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1.(1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CA D.【答案】(1)12;(2)255【解析】(1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CD sin ∠CAD ,即AC sin π6=4sin θ,①在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-(π2-θ)=θ-π4,由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin (θ-π4),② ①②两式相除,得sin 3π4sin π6=4sin (θ-π4)sin θ,即4(22sin θ-22cos θ)=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+cos 2θ=1,所以sin θ=255,即sin ∠CAD =255.【变式训练2-1】、在四边形ABCD 中,AD ∥BC ,AB =3,∠A =120°,BD =3.(1)求AD 的长;(2)若∠BCD =105°,求四边形ABCD 的面积. 【答案】(1)3;(2)123-94.【解析】(1)∵在△ABD 中,AB =3,∠A =120°,BD =3,∴由余弦定理得cos 120°=3+AD 2-92×3AD ,解得AD =3(AD =-23舍去),∴AD 的长为 3.(2)∵AD ∥BC ,∠A =120°,BD =3,AB =AD =3,∠BCD =105°,∴∠DBC =30°,∠BDC =45°,∴由正弦定理得BC sin 45°=DC sin 30°=3sin 105°,解得BC =33-3,DC =36-322. 如图过点A 作AE ⊥BD ,交BD 于点E ,过点C 作CF ⊥BD ,交BD 于点F , 则AE =12AB =32,CF =12BC =33-32,∴四边形ABCD 的面积S =S △ABD +S △BDC =12BD ·(AE +CF )=12×3×(32+33-32)=123-94.【变式训练2-2】、(2020·绵阳模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且2c sin B =3a tan A. (1)求b 2+c 2a2的值;(2)若a =2,求△ABC 面积的最大值. 【答案】(1)4;(2)7 【解析】(1)∵2c sin B =3a tan A , ∴2c sin B cos A =3a sin A , 由正弦定理得2cb cos A =3a 2,由余弦定理得2cb ·b 2+c 2-a 22bc =3a 2,化简得b 2+c 2=4a 2,∴b 2+c 2a2=4.(2)∵a =2,由(1)知b 2+c 2=4a 2=16, ∴由余弦定理得cos A =b 2+c 2-a 22bc =6bc,根据基本不等式得b 2+c 2≥2bc ,即bc ≤8,当且仅当b =c 时,等号成立,∴cos A ≥68=34.由cos A =6bc ,得bc =6cos A ,且A ∈(0,π2),∴△ABC 的面积S =12bc sin A =12×6cos A ×sin A =3tan A.∵1+tan 2A =1+sin 2A cos 2A =cos 2A +sin 2A cos 2A =1cos 2A, ∴tan A =1cos 2A-1≤169-1=73.∴S =3tan A ≤7. ∴△ABC 面积的最大值为7.重难点题型突破3 与三角形有关的最值(范围)问题例3.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( ) A.32B.22C.12D .-12【答案】C【解析】因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. 【变式训练3-1】、.(2020·安徽省江南十校联考)在钝角△ABC 中 ,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( ) A.2 B.98 C .1 D.78【答案】B【解析】∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2(sin A -14)2+98,∴sinA +sin C 的最大值为98.【变式训练3-2】、在△ABC 中,b =3,B =60° (1)求△ABC 周长l 的范围;(2)求△ABC 面积最大值. 【答案】(1)23<l ≤33;(2)334【解析】(1)l =3+a +c ,b 2=3=a 2+c 2-2ac cos 60°=a 2+c 2-ac , ∴(a +c )2-3ac =3,∵(a +c )2-3=3ac ≤3×(a +c 2)2,∴a +c ≤23,当仅仅当a =c 时,取“=”, 又∵a +c >3, ∴23<l ≤3 3.(2)∵b 2=3=a 2+c 2-ac ≥2ac -ac , ∴ac ≤3,当且仅当a =c 时,取“=”, S △ABC =12ac sin B ≤12×3×sin 60°=334,∴△ABC 面积最大值为334.四、迁移应用1.在△ABC 中,sin B =13,BC 边上的高为AD ,D 为垂足,且BD =2CD ,则cos ∠BAC =( )A .-33 B.33 C .-1010D.1010【答案】A【解析】依题意设CD =x ,AD =y ,则BD =2x ,BC =3x .因为sin B =13,所以AB =ADsin B =3y .因为BC 边上的高为AD ,如图所示所以AB 2=AD 2+BD 2=y 2+4x 2=9y 2,即x =2y .所以AC =AD 2+CD 2=x 2+y 2=3y .根据余弦定理得cos ∠BAC =AB 2+AC 2-BC 22·AB ·AC =9y 2+3y 2-9x 22·3y ·3y =-6y 263y 2=-33.故选A.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2c ·cos B =2a +b ,若△ABC 的面积为S =32c ,则ab 的最小值为( ) A .8 B .10 C .12 D .14【答案】C【解析】在△ABC 中,由已知及正弦定理可得2sin C cos B =2sin A +sin B =2sin(B +C )+sin B ,即2sin C cos B =2sin B cos C +2sin C cos B +sin B ,所以2sin B cos C +sin B =0.因为sin B ≠0,所以cos C =-12,C =2π3.由于△ABC 的面积为S =12ab ·sin C =34ab =32c ,所以c =12ab .由余弦定理可得c 2=a 2+b 2-2ab ·cos C ,整理可得14a 2b 2=a 2+b 2+ab ≥3ab ,当且仅当a =b 时,取等号,所以ab ≥12. 3.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(a +b -c )(a +b +c )=3ab ,且c =4,则△ABC 面积的最大值为( ) A .8 3 B .4 3 C .2 3 D.3 【答案】B【解析】由已知等式得a 2+b 2-c 2=ab ,则cos C =a 2+b 2-c 22ab =ab 2ab =12.由C ∈(0,π),所以sin C =32.又16=c 2=a 2+b 2-ab ≥2ab -ab =ab ,则ab ≤16,所以S △ABC =12ab sin C ≤12×16×32=4 3.故S max =4 3.故选B.4.(2020·吉林长春质量监测(四))《海岛算经》是中国学者刘徽编撰的一部测量数学著作,现有取自其中的一个问题:今有望海岛,立两表,齐高三丈,前后相去千步,令后表与前表参相直,从前表却行一百二十三步,人目着地,取望岛峰,与表末参合,从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合,问岛高几何?其大意为:如图所示,立两个三丈高的标杆BC 和DE ,两标杆之间的距离BD =1 000步,两标杆的底端与海岛的底端H 在同一直线上,从前面的标杆B 处后退123步,人眼贴地面,从地上F 处仰望岛峰,A ,C ,F 三点共线,从后面的标杆D 处后退127步,人眼贴地面,从地上G 处仰望岛峰,A ,E ,G 三点也共线,则海岛的高为(注:1步=6尺,1里=180丈=1 800尺=300步)( )A .1 255步B .1 250步C .1 230步D .1 200步【答案】A【解析】因为AH ∥BC ,所以△BCF ∽△HAF ,所以BF HF =BCAH .因为AH ∥DE ,所以△DEG ∽△HAG ,所以DG HG =DEAH.又BC =DE ,所以BF HF =DG HG ,即123123+HB =127127+1 000+HB ,所以HB =30 750步,又BF HF =BCAH ,所以AH =5×(30 750+123)123=1 255(步).故选A. 5.如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知c =4,b =2,2c cos C =b ,D ,E 分别为线段BC 上的点,且BD =CD ,∠BAE =∠CAE .(1)求线段AD 的长; (2)求△ADE 的面积. 【答案】(1)6;(2)156【解析】(1)因为c =4,b =2,2c cos C =b , 所以cos C =b 2c =14.由余弦定理得cos C =a 2+b 2-c 22ab =a 2+4-164a =14,所以a =4,即BC =4.在△ACD 中,CD =2,AC =2,所以AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD =6,所以AD = 6. (2)因为AE 是∠BAC 的平分线,所以S △ABES△ACE=12AB ·AE ·sin ∠BAE 12AC ·AE ·sin ∠CAE =AB AC =2, 又S △ABE S△ACE=BE EC,所以BE EC=2,所以CE =13BC =43,DE =2-43=23.又因为cos C =14,所以sin C =1-cos 2C =154.又S △ADE =S △ACD -S △ACE , 所以S △ADE =12×DE ×AC ×sin C =156.。
2024 河北数学中考备考重难专题:三角形、四边形综合题旋转问题(课件)
点击跳转 几何画板
1
例题图②
(2)如解图①,连接OC, ∵四边形ABCD是正方形, ∴BC=CD=4,∠BCD=90°,∠BOC=90°,OC= 1 BD,
2
∴BD=4 2,∴OC=2 2 . ∵OP=1,∠BOC=90°, ∴CP= OP2 OC 2 12 (2 2)2 3 ;
解图①
例 (2022河北逆袭卷)如图①,在正方形ABCD中,AB=4,O是对角线BD
2024中考备考重难专题课件
三角形、四边形综合题
旋转问题
河北 数学
课件说明
一、课件设计初衷 基于老师在总复习过程中对重难题型有较大的需求,以及纸质图书和板书展示二次函数图象与几何图形
等重难点效果不佳而设计重难专题课件. 在制作过程中结合课件能使题图动态化且分步骤展示的特性,有助于 学生题图结合梳理题意,理解平面图形的变化过程. 二、课件亮点 1.依据区域考情,针对性选题
三角 面积
正切比求线段比,勾股定理
形
(3)分类讨论思想:点Q分别落在
AD、CD、BC延长线上时
典例精讲
例 (2022河北逆袭卷)如图①,在正方形ABCD中,AB=4,O是对角线BD
的中点,P是平面内一点,且OP=1. 说明P在以点O为圆心,1 (1)点P到AB的最小距离是____1____; 为半径的圆上(线圆最值)
CF=CF′ CE=CE′
∠FCE=∠FCE′
CF CF CE CE
∠FCF′=∠CEE′
△CEE′∽△CFF′
练习题图①
(1)证明:由旋转的性质可得: CE=CE′,CF=CF′,∠ECE′=∠FCF′=α, ∴ CE CE ,
CF CF
∴△CEE′∽△CFF′;
数学全等三角形旋转模型(讲义及答案)附解析
数学全等三角形旋转模型(讲义及答案)附解析一、全等三角形旋转模型1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º, ∴∠MCN=30º+30º=60º, ∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN , ∴∠MCF=∠NCG , 在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ), ∴CF=CG (全等三角形对应边相等); 【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.我们定义:有一组对角为直角的四边形叫做“对直角四边形”.(1)如图①,四边形ABCD 为对直角四边形,∠B=90°,若AB 2-AD 2=4,求CD 2-BC 2的值; (2)如图②,四边形ABCD 中,∠ABC=90°,AB=BC ,若BD 平分∠ADC ,求证:四边形ABCD 为对直角四边形;(3)在(2)的条件下,如图③,连结AC ,若35ACD ABCS S=,求tan ∠ACD 的值.答案:A解析:⑴ 4;⑵见解析 ;⑶tan ∠ACD 的值为3或13. 【分析】(1)利用勾股定理即可解决问题;(2)如图②中,作BE ⊥CD 于E ,BF ⊥DA 交DA 的延长线于F .只要证明∠EBF=90°即可解决问题;(3)如图③中,设AD=x ,BD=y .根据35ACD ABCSS=,构建方程即可解决问题. 【详解】解:如图①中,∵四边形ABCD为对直角四边形,∠B=90°,∴∠D=∠B=90°,∴AC2=AB2+BC2=AD2+DC2,∴CD2-BC2=AB2-AD2=4.(2)证明:如图②中,作BE⊥CD于E,BF⊥DA交DA的延长线于F.∵BD平分∠ADC,BE⊥CD,BF⊥AD,∴BE=BF,∵∠BFA=∠BEC=90°,BA=BC,BF=BE,∴Rt△BFA≌Rt△BEC(HL),∴∠ABF=∠CBE,∴∠EBF=∠ABC=90°,∴ADC=360°-90°-90°-90°=90°,∵∠ABC=∠ADC=90°,∴四边形ABCD为对直角四边形.(3)解:如图③中,设AD=x,BD=y.∵∠ADC=90°,∴tan ∠ACD=xy,AC=22x y +, ∵AB=AC ,∠ABC=90°, ∴AB=BC=22•22x y +, ∵35ACD ABCS S=, ∴()22132154xy x y =+, 整理得:3x 2-10xy+3y 2,∴3(x y )2-10•xy +3=0,∴x y =3或13. ∴tan ∠ACD 的值为3或13. 【点睛】本题属于四边形综合题,考查了勾股定理,三角形的面积,全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.3.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论. 【详解】 解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =, BD CE ∴=, PM PN ∴=, //PN BD ,DPN ADC ∴∠=∠, //PM CE ,DPM DCA ∴∠=∠, 90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒, PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥; (2)PMN ∆是等腰直角三角形. 由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =,利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE , DPM DCE ∴∠=∠,同(1)的方法得,//PN BD , PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠, MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=︒,90ACB ABC ∴∠+∠=︒, 90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大, //DE BC ∴且DE 在顶点A 上面, MN ∴最大AM AN =+, 连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒, 22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN = 22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大, ∴点D 在BA 的延长线上, 14BD AB AD ∴=+=, 7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大.【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大. 4.问题提出:(1)如图1,在ABC 中,AB AC BC =≠,点D 和点A 在直线BC 的同侧,BD BC =,90BAC ∠=︒,30DBC ∠=︒,连接AD ,将ABD △绕点A 逆时针旋转90︒得到ACD ',连接BD '(如图2),可求出ADB ∠的度数为______. 问题探究:(2)如图3,在(1)的条件下,若BAC α∠=,DBC β∠=,且120αβ+=︒,DBC ABC ∠<∠ , ①求ADB ∠的度数.②过点A 作直线AE BD ⊥,交直线BD 于点E ,7,2BC AD ==.请求出线段BE 的长.答案:A解析:(1)30°;(2)①30︒;②73-【分析】(1)由旋转的性质,得△ABD ≌ACD '∆,则ADB AD C '∠=∠,然后证明BCD '∆是等边三角形,即可得到30ADB AD C '∠=∠=︒;(2)①将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .与(1)同理证明D BC '∆为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出3DE =【详解】解:(1)根据题意,∵AB AC BC =≠,90BAC ∠=︒, ∴ABC ∆是等腰直角三角形, ∴45ABC ACB ∠=∠=︒, ∵30DBC ∠=︒, ∴15ABD ∠=︒,由旋转的性质,则△ABD ≌ACD '∆,∴ADB AD C '∠=∠,15ABD ACD '∠=∠=︒,BC CD '=, ∴60BCD '∠=︒, ∴BCD '∆是等边三角形, ∴60BD C '∠=︒,BD CD ''= ∵AB AC =,AD AD ''=, ∴ABD '∆≌ACD '∆, ∴30AD B AD C ''∠=∠=︒, ∴30ADB AD C '∠=∠=︒; (2)①DBC ABC ∠<∠,60120α︒︒∴<<.如图1,将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .AB AC =,ABC ACB ∴∠=∠, BAC α∠=,()111809022ABC αα︒︒∴∠=-=-,1902ABD ABC DBC αβ︒∴∠=∠-∠=--,119090180()22D CB ACD ACB αβααβ''︒︒︒∴∠=∠+∠=--+-=-+.120,αβ︒+=60D CB '︒∴∠=.,BD BC BD CD '==,,BC CD '∴=D BC '∴为等边三角形, D B D C ''∴=, AD B AD C ''∴≌, AD B AD C ''∴∠=∠,1302AD B BD C ''︒∴∠=∠=,30ADB ︒∴∠=.②如图2,由①知,30ADB ︒∠=,在Rt ADE △中,30,2ADB AD ︒∠==,3DE ∴=.BCD '是等边三角形, 7BD BC '∴==, 7BD BD '∴==,73BE BD DE ∴=-=-.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.5.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起. (1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ; (2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.答案:C解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为2或2 【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论;(2)证明ACE ABD ∽,得出AEC ADB ∠=∠,BD =,即可得出结论;(3)先判断出BD =,再求出AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论. 【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形, 同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAEAD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEB CEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;. (2)45CEB BD ∠︒=,,理由如下: 在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==,∴AE ACAD AB=,DAE CAB ∠∠=, EAC DAB ∴∠∠=, ACE ABD ∴∽ ,∴BD ADCE AE==∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==;(3)由(2)知,ACE ABD ∽, 2BD CE ∴=, 在Rt ABC 中,25AC =,2210AB AC ∴== ,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P ,DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,226BP AB AP -==,4BD BP AP ∴-==,1222CE BD ∴==; ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,122CE BD ∴==4, 综上CE 的长为22或42.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.6.如图.四边形ABCD 、BEFG 均为正方形.(1)如图1,连接AG 、CE ,请直接写出.....AG 和CE 的数量和位置关系(不必证明).(2)将正方形BEFG 绕点B 顺时针旋转β角(0180β︒︒<<),如图2,直线AG 、CE 相交于点M .①AG 和CE 是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:②连结MB ,求证:MB 平分AME ∠.(3)在(2)的条件下,过点A 作AN MB ⊥交MB 的延长线于点N ,请直接写出.....线段CM 与BN 的数量关系.答案:A解析:(1)AG=EC ,AG ⊥EC ;(2)①满足,理由见解析;②见解析;(3)2.【分析】(1)由正方形BEFG 与正方形ABCD ,利用正方形的性质得到两对边相等,一对直角相等,利用SAS 得出三角形ABG 与三角形CBE 全等,利用全等三角形的对应边相等,对应角相等得到CE=AG ,∠BCE=∠BAG ,再利用同角的余角相等即可得证;(2)①利用SAS 得出△ABG ≌△CEB 即可解决问题;②过B 作BP ⊥EC ,BH ⊥AM ,由全等三角形的面积相等得到两三角形面积相等,而AG=EC ,可得出BP=BH ,利用到角两边距离相等的点在角的平分线上得到BM 为角平分线;(3)在AN 上截取NQ=NB ,可得出三角形BNQ 为等腰直角三角形,利用等腰直角三角形的性质得到2BN ,接下来证明BQ=CM ,即要证明三角形ABQ 与三角形BCM 全等,利用同角的余角相等得到一对角相等,再由三角形ANM 为等腰直角三角形得到NA=NM ,利用等式的性质得到AQ=BM ,利用SAS 可得出全等,根据全等三角形的对应边相等即可得证.【详解】解:(1)AG=EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB=BE ,∠ABG=90°,AB=BC ,∠ABC=90°,在△ABG 和△BEC 中,BG BE ABC EBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△BEC (SAS ),∴CE=AG ,∠BCE=∠BAG ,延长CE 交AG 于点M ,∴∠BEC=∠AEM ,∴∠ABC=∠AME=90°,∴AG=EC ,AG ⊥EC ;(2)①满足,理由是:如图2中,设AM 交BC 于O .∵∠EBG=∠ABC=90°,∴∠ABG=∠EBC ,在△ABG 和△CEB 中,AB BC ABG CBE BG EB =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△CEB (SAS ),∴AG=EC ,∠BAG=∠BCE ,∵∠BAG+∠AOB=90°,∠AOB=∠COM ,∴∠BCE+∠COM=90°,∴∠OMC=90°,∴AG ⊥EC .②过B 作BP ⊥EC ,BH ⊥AM ,∵△ABG ≌△CEB ,∴S △ABG =S △EBC ,AG=EC , ∴12EC•BP=12AG•BH , ∴BP=BH ,∴MB 平分∠AME ;(3)CM=2BN ,理由为:在NA 上截取NQ=NB ,连接BQ ,∴△BNQ 为等腰直角三角形,即BQ=2BN ,∵∠AMN=45°,∠N=90°,∴△AMN 为等腰直角三角形,即AN=MN ,∴MN-BN=AN-NQ ,即AQ=BM ,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN ,在△ABQ 和△BCM 中,AQ BM BAN MBC AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABQ ≌△BCM (SAS ),∴CM=BQ ,则CM=2BN .【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键.7.如图,ABD △和ACE △都是等边三角形.(1)连接CD 、BE 交于点P ,求∠BPD ;(2)连接PA ,判断线段PA 、PB 、PD 之间的数量关系并证明;(3)如图,等腰ABC 中AB =AC ,∠BAC =α(0<α<90),在ABC 内有一点M ,连接MA 、MB 、MC .当MA +MB +MC 最小时,∠ABM = (用含α的式子表示)答案:D解析:(1)60BPD ∠=︒(2)PD PB PA =+,证明见详解(3)1602α︒-【分析】(1)证明()DAC BAE SAS ≅,得ADC ABE ∠=∠,就可以证明60BPD DAB ∠=∠=︒;(2)在DP 上截取PF=PB ,连接BF ,证明()DBF ABP SAS ≅,得DF PA =,即可证明PD PB PA =+;(3)分别以AB 和AC 为边,向两边作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,然后利用等腰三角形ADC ,求出ADC ∠的度数,即可得到ABM ∠的度数.【详解】解:(1)∵ABD △和ACE △是等边三角形,∴AD AB =,AC AE =,60DAB CAE ∠=∠=︒,∵DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,在DAC △和BAE △中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()DAC BAE SAS ≅,∴ADC ABE ∠=∠,∵ADC DAB ABE BPD ∠+∠=∠+∠,∴60BPD DAB ∠=∠=︒;(2)如图,在DP 上截取PF=PB ,连接BF ,∵60BPD ∠=︒,PF PB =,∴PFB △是等边三角形,∴BF BP =,60FBP ∠=︒,∴DBA FBP ∠=∠,∵DBA FBA FBP FBA ∠-∠=∠-∠,∴DBF ABP ∠=∠,在DBF 和ABP △中,DB AB DBF ABP BF BP =⎧⎪∠=∠⎨⎪=⎩,∴()DBF ABP SAS ≅,∴DF PA =,∵PD PF FD =+,∴PD PB PA =+;(3)如图,分别以AB 和AC 为边,作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,由(2)中的结论可得MD MA MB =+,则当D 、M 、C 三点共线时MA MB MC ++最小,即CD 的长,由(1)得ADC ABM ∠=∠,∵AD AB AC ==,60DAC α∠=︒+,∴()1806016022ADC αα︒-︒+∠==︒-, ∴1602ABM α∠=︒-,故答案是:1602α︒-.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质,解题的关键是做辅助线构造全等三角形来进行证明求解.8.在等腰Rt ABC △中,AB AC =、90BAC ∠=︒.(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且45DAE ∠=︒,将ABE △绕点A 逆时针旋转90后,得到AFC △,连接DF .①求证:AED AFD ≌.②当3BE =,9CE =时,求DE 的长.(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE △(E 点在直线BC 的上方),当3BD =,9BC =时,求DE 的长.答案:D解析:(1)①证明见解析;②5;(2)35或317【分析】(1)①证明∠DAE=∠DAF=45°即可利用SAS 证明全等;②由①中全等可得DE=DF ,再在Rt △FDC 中利用勾股定理计算即可;(2)连接BE ,根据共顶点等腰直角三角形证明全等,再利用勾股定理计算即可。
2023年九年级数学中考复习:旋转(面积问题)综合压轴题(Word版,含答案)
2023年九年级数学中考复习:旋转(面积问题)综合压轴题1.一节数学课上,老师提出一个这样的问题:如图,点P是正方形ABCD内一点,P A=1,PB=2,PC=3,你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将∠PBC绕点B逆时针旋转90°,得到∠P'BA,连接P P',求出∠APB的度数.思路二:将∠APB绕点B顺时针旋转90°,得到∠C P'B,连接P P',求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.2.如图,已知在∠ABC中,AB=AC,D、E是BC边上的点,将∠ABD绕点A旋转,得到∠AC D,连接D E.(1)当∠BAC=120°,∠DAE=60°时,求证:DE=D E;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,∠D EC是等腰直角三角形?(直接写出结论,不必证明)AC BD相交于点O,3.如图,平行四边形ABCD中,,1,5AB AC AB BC⊥==,BC AD于点E,F.将直线AC绕点O顺时针旋转,分别交,(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;(2)证明:在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,当AC 绕点O 顺时针旋转多少度时,四边形BEDF 是菱形,请给出证明.4.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至''CE FD ,旋转角为α.(1)当点D 恰好落在边EF 上时,点D 到边DC 的距离为____________,旋转角α=____________︒;(2)如图2,G 为BC 的中点,且090α︒<<︒,求证:GD E D ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△能否全等?若能,直接写出旋转角α的值;若不能,说明理由.5.将两块完全相同的且含60°角的直角三角板ABC 和AFE 按如图1所示位置放置,现将Rt AEF 绕A 点按逆时针方向旋转()090αα︒<<︒.如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)若AMC 是等腰三角形,则旋转角α的度数为______.(2)在旋转过程中,连接AP ,CE ,求证:AP 所在的直线是线段CE 的垂直平分线.(3)在旋转过程中,CPN是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.6.旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.如图∠,在四边形ABCD中,AD CDADC∠=︒,2∠=︒,60=,120ABCAB=,1BC=.【问题提出】(1)如图∠,在图∠的基础上连接BD,由于AD CD=,所以可将DCB绕点D顺时针方向旋转60°,得到DAB',则BDB'的形状是_______;【尝试解决】(2)在(1)的条件下,求四边形ABCD的面积;【类比应用】(3)如图∠,等边ABC的边长为2,BDC是顶角120∠=︒的等腰三角形,以D为顶BDC点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求AMN的周长.7.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.。
等边三角形典型问题综合专项训练(含解析)完美打印版
等边三角形典型问题综合专项训练(含解析)一.选择题(共8小题)1.下列关于等边三角形的说法正确的有()①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形.A.①②③B.①②④C.②③④D.①②③④2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°3.如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个4.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°5.如图所示,△ABC中,AB=BC=AC,∠B=∠C=60°,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°6.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.47.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角形的中心O旋转,则重叠部分的面积为正三角形面积的()A.B.C.D.不断变化8.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数()A.1个B.2个C.3个D.4个二.填空题(共7小题)9.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的平分线互相重合.10.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为.11.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=度.12.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为.13.如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC与点E,则EP的长是.14.如图,等边△ABC的边长为1,在边AB上有一点P,Q为BC延长线上的一点,且CQ=PA,过点P作PE⊥AC于点E,连接PQ交AC于点D,则DE的长为.15.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①BE=FD;②∠BFE=∠CFD;③△EBF≌△DFC.其中正确的结论是(请写出正确结论的序号).三.解答题(共8小题)16.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.17.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.18.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE DB(填“>”“<”或“=”),并说明理由.(提示:过E 作EF∥BC,交AC于点F)19.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.20.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.21.如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.22.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.23.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=.若不存在,请说明理由.等边三角形典型问题综合训练参考答案与试题解析一.选择题(共8小题)1.下列关于等边三角形的说法正确的有()①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形.A.①②③B.①②④C.②③④D.①②③④【分析】根据等边三角形的判定和性质对各个选项逐一分析即可.【解答】解:根据等边三角形的每个角都是60°;故①正确.根据等边三角形的概念:三边相等的三角形是等边三角形.故②正确;根据等边对等角;故③正确;根据等边三角形的判定;故④正确.故选D.2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故选C3.如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个【分析】因为△ABC是等边三角形,又BD是AC上的中线,所以有,AD=CD,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC,即DB=DE(③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.【解答】解:∵△ABC是等边三角形,BD是AC上的中线,∴∠ADB=∠CDB=90°,BD平分∠ABC;∴BD⊥AC;∵∠ACB=∠CDE+∠DEC=60°,CD=CE,∴∠CDE=∠DEC=30°,∴∠CBD=∠DEC,∴DB=DE.∠BDE=∠CDB+∠CDE=120°,所以这四项都是正确的.故选:D.4.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【分析】由等边三角形的性质和平角的定义以及三角形内角和定理即可得出结果.【解答】解:∵△ABC、△DEF和△GMN都是等边三角形,∴∠GMN=∠MGN=∠DEF=60°,∵∠1+∠GMN+∠GME=180°,∠2+∠MGN+∠EGM=180°,∠3+∠DEF+∠MEG=180°,∴∠1+∠GMN+∠GME+∠2+∠MGN+∠EGM+∠3+∠DEF+∠MEG=3×180°,∵∠GME+∠EGM+∠MEG=180°,∴∠1+∠2+∠3=3×180°﹣180°﹣3×60°=180°;故选:D.5.如图所示,△ABC中,AB=BC=AC,∠B=∠C=60°,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°【分析】易证△ABD≌△BCE,可得∠BAD=∠CBE,根据∠APE=∠ABE+∠BAD,∠ABE+∠CBE=60°即可求得∠APE=∠ABC,即可解题.【解答】解:在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABE+∠BAD,∠ABE+∠CBE=60°,∴∠APE=∠ABC=60°.故选D.6.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.4【分析】利用等边三角形的特殊角求出OE与OF的和,可得出其与三角形的高相等,进而可得出结论.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,故选C.7.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角形的中心O旋转,则重叠部分的面积为正三角形面积的()A.B.C.D.不断变化【分析】本题考查了等边三角形的性质.这类选择题可以取特殊情况进行分析解答,即使五边形继续转动到B点位于OD上、C点位于OG上时,得出答案.【解答】解:设OD交AB于P,OG交BC于Q.过O点作AB、BC的垂线,垂足分别为M、N,则三角形OMP全等于三角形ONQ.所以无论如何旋转,阴影部分面积始终等于四边形OMBN的面积.则使五边形继续转动,使B点位于OD上、C点位于OG上,则∠BOC=120°根据等边三角形的性质,即:阴影部分面积是等边三角形的.故选C.8.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数()A.1个B.2个C.3个D.4个【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD ≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③④正确.【解答】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴CF=CG∴∠CFG=∠FCB=60°,∴FG∥BE,(③④正确)所以结论①②③④正确,故选:D.二.填空题(共7小题)9.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高线和该边所对内角的平分线互相重合.【分析】(1)根据等边三角形性质中内角度数进而填空得出;(2)利用轴对称图形的性质得出即可;(3)根据等腰三角形性质三线合一的性质可得出.【解答】解:(1)等边三角形的三个内角都相等,并且每一个角都等于60°;(2)等边三角形是轴对称图形,它有三条对称轴;(3)等边三角形每边上的中线、高线和该边所对内角的平分线互相重合.故答案为:(1)相等,60°;(2)三;(3)中线,高线.10.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为120°.【分析】利用等边三角形的性质以及等腰三角形的性质得出∠B=∠BAD=∠C=∠EAC=30°,进而利用三角形内角和定理求出即可.【解答】解:∵E是BC的三等分点,且△ADE是等边三角形,∴BD=DE=EC=AD=AE,∠ADE=∠AED=60°,∴∠B=∠BAD=∠C=∠EAC=30°,∴∠BAC=180°﹣∠B﹣∠C=120°.故答案为:120°.11.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=120度.【分析】根据等边三角形的性质及全等三角形的判定SAS判定△DAC≌△BAE,得出对应角相等,再根据角与角之间的关系得出∠BOC=120°.【解答】解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.故填120.12.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为BN=DE+DF.【分析】连接AD,利用三角形的面积相等结合等边三角形的性质可得到BN=DE+DF.【解答】解:BN=DE+DF,证明如下:连接AD,∵S△ABC=S△ABD+S△ACD,∴AC•BN=AB•DE+AC•DF,∵△ABC为等边三角形,∴AB=AC,∴AC•BN=AC•DE+AC•DF,∴BN=DE+DF.故答案为:BN=DE+DF.13.如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC与点E,则EP的长是3.【分析】过点D作DH∥AC交BC于H,判断出△BDH是等边三角形,从而求出HD=CF,再根据两直线平行,内错角相等可得∠PCF=∠PHD,然后利用“角角边”证明△PCF和△PHD全等,根据全等三角形对应边相等可得PC=PH,再根据等边三角形的性质可得BE=EH,然后求出EP=BC,从而得解.【解答】解:如图,过点D作DH∥AC交BC于H,∵△ABC是等边三角形,∴△BDH也是等边三角形,∴BD=HD,∵BD=CF,∴HD=CF,∵DH∥AC,∴∠PCF=∠PHD,在△PCF和△PHD中,,∴△PCF≌△PHD(AAS),∴PC=PH,∵△BDH是等边三角形,DE⊥BC,∴BE=EH,∴EP=EH+HP=BC,∵等边△ABC,AB=6,∴EP=×6=3.故答案为:3.14.如图,等边△ABC的边长为1,在边AB上有一点P,Q为BC延长线上的一点,且CQ=PA,过点P作PE⊥AC于点E,连接PQ交AC于点D,则DE的长为.【分析】过P作BC的平行线至AC于F,通过求证△PFD和△QCD全等,推出FD=CD,再通过证明△APF 是等边三角形和PE⊥AC,推出AE=EF,即可推出AE+DC=EF+FD,可得ED=AC,即可推出ED的长度.【解答】解:过P做BC的平行线至AC于F,∴∠Q=∠FPD,∵等边△ABC,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴△APF是等边三角形,∴AP=PF,AP=CQ,∵AP=CQ,∴PF=CQ,∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵PE⊥AC于E,△APF是等边三角形,∴AE=EF,∴AE+DC=EF+FD,∴ED=AC,∵AC=1,∴DE=.故答案为.15.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①BE=FD;②∠BFE=∠CFD;③△EBF≌△DFC.其中正确的结论是①③(请写出正确结论的序号).【分析】由三角形ABE与三角形BCF都为等边三角形,利用等边三角形的性质得到两对边相等,∠ABE=∠CBF=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EBF与三角形DFC全等解答即可.【解答】解:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,,∴△ABC≌△EBF(SAS),∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD=DC,同理可得△ABC≌△DFC,∴DF=AB=AE=DF;∴∠FEA=∠ADF,∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,在△FEB和△CDF中,.∴△FEB≌△CDF(SAS),∴BE=FD;∠BFE=∠FCD;故答案为:①③三.解答题(共8小题)16.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.【分析】先根据等边△ABC中,AB=CA,∠BAC=∠ACB=60°,得出∠EAB=∠DCA=120°,再根据SAS即可判定△EAB≌△DCA,进而得出结论.【解答】证明:在等边△ABC中,AB=CA,∠BAC=∠ACB=60°,∴∠EAB=∠DCA=120°.在△EAB和△DCA中,,∴△EAB≌△DCA(SAS),∴AD=BE.17.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.【分析】(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.(2)由DF的长可求出CD,进而可求出AC的长,则△ABC的周长即可求出.【解答】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)解:∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.18.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE=DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE=DB(填“>”“<”或“=”),并说明理由.(提示:过E 作EF∥BC,交AC于点F)【分析】(1)先证AE=BE,再证∠D=∠DEB,得出DB=BE,即可得出DB=AE;(2)过点E作EF∥BC,交AC于F,先证明△AEF是等边三角形,得出AE=EF,再证明△DBE≌△EFC,得出DB=EF,即可证出AE=DB.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠ABC=60°,AE=BE,∠ECB=30°,∵ED=EC,∴∠D=∠ECB=30°,∵∠ABC=∠D+∠DEB,∴∠DEB=30°,∴∠D=∠DEB,∴DB=BE,∴DB=AE;故答案为:=;(2)DB=AE成立;理由如下:过点E作EF∥BC,交AC于F,如图2所示:则∠AEF=∠ABC,∠AFE=∠ACB,∠CEF=∠ECD,∵∠A=∠ABC=∠ACB=60°,∴∠A=∠AEF=∠AFE=60°,∠DBE=120°,∴△AEF是等边三角形,∴AE=EF,∠EFC=120°,∴BE=CF,∠DBE=∠EFC,∵ED=EC,∴∠D=∠ECD,∴∠D=∠CEF,在△DBE和△EFC中,,∴△DBE≌△EFC(AAS),∴DB=EF,∴AE=DB;故答案为:=.19.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【分析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.20.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.【分析】(1)EC=BD,理由为:由△ABE和△ACD都为等边三角形,利用等边三角形的性质得到∠EAB=∠DAC=60°,AE=AB,AD=AC,利用等式的性质得到∠EAC=∠BAD,利用SAS可得出△AEC≌△ABD,利用全等三角形的对应边相等即可得证;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:由三角形ADC 为等边三角形,得到∠ADC=∠ACD=60°,再由(1)得到△AEC≌△ABD,利用全等三角形的对应角相等得到∠ACE=∠ADB,由∠EOD为三角形OCD的外角,利用三角形的外角性质及等量代换可得出∠EOD=∠ADC+∠ACD,可求出∠EOD的度数,利用邻补角定义求出∠DOC的度数,即为BD与CE的夹角.【解答】解:(1)EC=BD,理由为:∵△ABE和△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,,∴△AEC≌△ABD(SAS),∴EC=BD;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:∵△ADC为等边三角形,∴∠ADC=∠ACD=60°,∵△AEC≌△ABD,∴∠ACE=∠ADB,∵∠EOD为△COD的外角,∴∠EOD=∠ODC+∠OCD=∠ODC+∠ACD+∠ACE=∠ODC+∠ADB+∠ACD=∠ADC+∠ACD=120°,即∠DOC=60°,则BD和CE的夹角大小为60°.21.如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.【分析】(1)根据SAS证明△BCE≌△ACF,得到∠ECB=∠FCA,从而证明结论;(2)结合(1)中证明的全等三角形,即可发现以点A、E、C、F为顶点的四边形的面积即为△ABC的面积;(3)根据等边三角形的判定可以证明△ECF是等边三角形,再进一步根据平角定义,得到∠AFE+∠DFC=120°,则∠AFE=∠FCD,从而求解.【解答】解:(1)∠ECF不变为60°.(1分)理由如下:∵△ABC和△ADC都是边长相等的等边三角形,∴BC=AC=CD,∠B=∠DAC=60°,又∵E、F两点运动时间、速度相等,∴BE=AF,∴△BCE≌△ACF(SAS),∴∠ECB=∠FCA.(4分)所以∠ECF=∠FCA+∠ACE=∠ECB+∠ACE=∠BCA=60°;(6分)(2)不变化.理由如下:∵四边形AECF的面积=△AFC的面积+△AEC的面积,△BCE≌△ACF,∴△AEC的面积+△BEC的面积=△ABC的面积;(8分)(3)证明:由(1)知CE=CF,∠ECF=60°,∴△CEF为等边三角形,∵∠FCD+∠DFC=120°,∠AFE+∠DFC=120°,∴∠ECF﹣∠ACF=∠ACD﹣∠ACF,即∠AFE=∠FCD,所以∠ACE=∠FCD=∠AFE.(10分)22.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.【分析】(1)根据对角和是180°可推断出BEFD四点共圆,然后在由同(等)圆中,相等的圆周角所对弧相等来证明DE=DF;(2)先证明△BDE和△BDF是直角三角形,然后利用(1)的结果证明Rt△BED≌Rt△BFD(HL);最后根据全等三角形的性质来证明、计算CF=BC;(3)过点D作DH∥BC,交AB于点H.根据平行线的性质及全等三角形的判定定理(SAS)证明△DHE ≌△DCF(SAS);然后再由全等三角形的性质及等边三角形的性质找出CF与BC的数量关系.【解答】证明:(1)连接BD.∵∠EDF=120°,∠B=60°,∴BEFD四点共圆;又∵D为AC中点,∴在等边三角形ABC中,BD为∠ABC的角平分线,∴DE和DF在BEFD四点所构成的圆内,其圆周角相等,∴DE=DF;(2)连接BD.由(1)知,四边形BEFD是圆内接四边形,又∵在等边三角形ABC中,BD为∠ABC的角平分线,∴BD也是∠EDF的角平分线,∴∠DEB=180°﹣=90°,∴△BED是直角三角形;同理,得△BFD是直角三角形;在Rt△BED和Rt△BFD中,BD=DB(公共边),DE=DF(由上题知),∴Rt△BED≌Rt△BFD(HL),∴BE=BF(对应边相等);又∵AB=BC,BE=3AE∴CF=BC;(3)过点D作DH∥BC,交AB于点H.∴∠CDH+∠BCA=180°,∴∠CDH=120°;又∵D为AC中点,∴DH=BC=DC;∵∠HDE+∠EDC=120°,∠FDC+∠EDC=120°,∴∠HDE=∠FDC;又由ED=FD,∴△DHE≌△DCF(SAS);∴HE=FC;①∵BE=AE,AB=BC,∴BE=BC,∵AH=BC,∴HE=BC﹣AH﹣BE=BC,∴BC;②∵BE=4AE,∴AE=BC,如图(1),连接BD.在Rt△BED和Rt△BFD中,,则Rt△BED≌Rt△BFD,∴BE=BF,∴FC=BC﹣BF=AB﹣BE=AE=BC;故答案分别是:,.23.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?存在(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=2.若不存在,请说明理由.【分析】(1)连接AP,BP,CP.根据三角形ABC的面积的两种计算方法进行证明;(2)根据角平分线上的点到角两边的距离相等进行求作.【解答】证明:(1)连接AP,BP,CP.则S△ABP+S△BCP+S△ACP=S△ABC,即,∵△ABC是等边三角形,∴AB=BC=AC,∴r1+r2+r3=h(定值);(2)存在.r=2.。
2023年中考数学真题汇编几何综合压轴问题专项练习(共40题)(解析版)
几何综合压轴问题专项练习答案(40题)(1)将CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将CDE 绕顶点C 逆时针旋转120︒(如图2),求MN 【答案】(1)最大值为3,最小值为1(2)7【分析】(1)根据直角三角形斜边上的中线,得出,CM CN 解;(2)过点N 作NP MC ⊥,交MC 的延长线于点P ,根据旋转的性质求得进而可得1CP =,勾股定理解Rt ,Rt NCP MCP ,即可求解.【详解】(1)解:依题意,112CM DE ==,12CN AB =当M 在NC 的延长线上时,,M N 的距离最大,最大值为(2)解:如图所示,过点N 作NP MC ⊥,交MC 的延长线于点∵CDE 绕顶点C 逆时针旋转∴120BCE ∠=︒,∵45BCN ECM ∠=∠=︒,∴MCN BCM ECM ∠=∠-∠=∴60NCP ∠=︒,∴30CNP ∠=︒,∴112CP CN ==,在Rt CNP 中,2NP NC =-在Rt MNP △中,MP MC CP =+∴2234MN NP MP =+=+【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点【答案】(1)见解析(2)22BE =+△∵点G 是DE 的中点,∴GH 是FCD 的中位线,∴11122GH CD AD ===,设BE a =,则CH EH ==(1)如图1,求AB边上的高CH的长.''.(2)P是边AB上的一动点,点,C D同时绕点P按逆时针方向旋转90︒得点,C D①如图2,当点C'落在射线CA上时,求BP的长.△是直角三角形时,求BP的长.②当AC D''∴90C PQ PC Q '∠+∠='︒∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,设C D ''与射线BA 的交点为作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,【答案】(1)①见解析;②AD DF BD =+,理由见解析;【分析】(1)①证明:ABE CBD ∠=∠,再证明ABE ≅△可得DF DC =.证明AE DF =,从而可得结论;(2)如图,过点B 作BE AD ⊥于点E ,得90BED ∠=︒,证明2DE BD =,证明2AB BC =,ABE CBD ∠=∠,可得②AD DF BD=+.理由如下:∵DF和DC关于AD对称,=.∴DF DC=,∵AE CD∴AE DF=.∴AD AE DE DF BD=+=+∵DF 和DC 关于AD 对称,∴DF DC =,ADF ADC ∠=∠.∵CD BD ⊥,∴45ADF ADC ∠=∠=︒,∴45EBD ∠=︒.∴2DE BD =.∵AB AC AF ==,∴()11222HF BF BD DF ==-=,222262210BC BD CD =+=+=∴2221022AF AC BC ===⨯=25HF (2)知识应用:如图2Y是菱形;①求证:ABCD②延长BC至点E,连接OE交【答案】(1)见解析5∴1BG BO GC OD==,∴115222CG BC AD ===,∴552OF GC .处从由60PC P C PCP ''=∠=︒,,可知PCP '△为①三角形,故PP PC '=,又P A PA ''=,故PA PB PC PA PB PP A B '''++=++≥,由②可知,当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,如图2,最小值为(3)如图5,设村庄A ,B ,C 的连线构成一个三角形,且已知4km 23km AC BC ==,,建一中转站P 沿直线向A ,B ,C 三个村庄铺设电缆,已知由中转站P 到村庄A ,B ,C 元/km ,a 元/km ,2a 元/km ,选取合适的P 的位置,可以使总的铺设成本最低为___________用含的式子表示)∵ACP A CP ''∠=∠,∴ACP BCP A CP BCP ∠+∠=∠+∠''又∵60PCP '∠=︒过点A '作A H BC '⊥,垂足为H ,∵60ACB ∠=︒,90ACA '∠=︒,∴30A CH '∠=︒,1猜想证明:(1)如图2,试判断四边形AEDG的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN折叠,使得顶点B与点∵1122 CHGS CH HG=⋅=∴154302CG HE⋅=⨯=,①求证:PD PB =;②将线段DP 绕点P 逆时针旋转,化时,DPQ ∠的大小是否发生变化?请说明理由;③探究AQ 与OP 的数量关系,并说明理由.【答案】(1)①见解析;②不变化,(2)AQ CP =,理由见解析【分析】(1)①根据正方形的性质证明②作,PM AB PN AD ⊥⊥,垂足分别为点∵四边形ABCD 是正方形,∴45DAC BAC ∠=∠=︒,∴四边形AMPN 是矩形,∴90MPN ∠=︒,∵四边形ABCD 是正方形,∴45BAC ∠=︒,90AOB ∠=∴45AEP ∠=︒,四边形OPEF=作PM AB⊥于点M,则QM MB=,∴QA BE=.∴AQ CP(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF 满足0360α︒<<︒,点,,C E F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.【答案】初步尝试:(1)1MN AC =;MN AC ∥;(2)特例研讨:(1)30BCF ∠=︒;(2)CD∵MN 是BAC 的中位线,∴MN AC ∥,∴90BMN BAC ∠=∠=︒∵将BMN 绕点B 顺时针旋转α∴,BE BM BF BN ==;BEF ∠=∵点,,A E F 在同一直线上时,2∵,ADN BDE ANB BED ∠=∠∠=∠∴ADN BDE ∽,∴2222DN AN DE BE ===,设DE x =,则2DN x =,在Rt ABE △中,2,2BE AE ==在Rt ADN △中,22AD DN AN =+∵AB AC =,∴A ABC CB =∠∠,设ABC ACB θ∠=∠=,则1802BAC θ∠=︒-,∵MN 是ABC 的中位线,∴MN AC∥∴MNB MBN θ∠=∠=,∵将BMN 绕点B 顺时针旋转α,得到BEF △,∴EBF MBN ≌,MBE NBF α∠=∠=,∴EBF EFB θ∠=∠=∴1802BEF θ∠=︒-,∵点,,C E F 在同一直线上,∴2BEC θ∠=∴180BEC BAC ∠+∠=︒,∴,,,A B E C 在同一个圆上,∴EAC EBC αθ∠=∠=-∴()()1802BAE BAC EAC θαθ∠=∠-∠=︒---180αθ=︒--∵ABF αθ∠=+,∴180BAE ABF ∠∠=+︒;如图所示,当F 在EC 上时,∵,BEF BAC BC BC∠=∠=∴,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,∴ABF θβ∠=-,∵BFE EBF θ∠=∠=,EFB FBC FCB∠=∠+∠∴ECB FCB EFB FBC θβ∠=∠=∠-∠=-,∵ EBEB =∴EAB ECB θβ∠=∠=-∴BAE ∠ABF=∠综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+︒【点睛】本题考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.10.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形,90,,ACB DCE CB mCA CE mCD ∠=∠=︒==,连接AD ,BE ,探究AD ,BE 的位置关系.(1)如图1,当1m =时,直接写出AD ,BE 的位置关系:____________;(2)如图2,当1m ≠时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当3,47,4m AB DE ===时,将CDE 绕点C 旋转,使,,A D E 三点恰好在同一直线上,求(2)解:成立;理由如下:∵90DCE ACB ∠=∠=︒,∴DCA ACE ACE ∠+∠=∠+(3)解:当点E 在线段AD设AD y =,则AE AD DE =+根据解析(2)可知,DCA △∴3BE BC m AD AC===,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;∵PM 平分A MA '∠∴90PMA ∠=︒∴PM AB∥∴DNM DBA V V ∽∴DN DM MN DB DA BA ==∵8,6,90AB DA A ==∠=︒,∴2226BD AB AD =+=+∴2103sin 3BQ BP DBA ===∠,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B '处,若24,6BC CE AB ⋅==,求BE 的值;(3)如图③,在ABC 中,45,BAC AD BC ∠=︒⊥,垂足为点,10,D AD AE ==于点F ,连接DF ,且满足2DFE DAC ∠=∠,直接写出53BD EF +的值.∵EF BC ∥,∴2CDF DFE ∠=∠=∴CDH FDH ∠=∠,又∵DH DH =,CHD ∠∴(ASA CHD FHD ≌【点睛】本题考查矩形的性质、翻折性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质、全等三角形的判定与性质、锐角三角函数等知识,综合性强,较难,属于中考压轴题,熟练掌握相关知识的联系与运用,添加辅助线求解是解答的关键.13.(2023·湖南郴州·=,连接点E,使CE AD(1)如图1,当点D在线段AB上时,猜测线段CF与BD的数量关系并说明理由;(2)如图2,当点D在线段AB的延长线上时,①线段CF与BD的数量关系是否仍然成立?请说明理由;②如图3,连接AE.设4AB=,若AEB DEB∠=∠,求四边形BDFC的面积.【答案】(1)1CF BD=,理由见解析∴60,ADG ABC AGD ∠=∠=︒∠=∠∴ADG △为等边三角形,∴AD AG DG ==,∵AD CE =,AD AB AG AC -=-∴DG CE =,BD CG =,于点由①知:ADG △为等边三角形,∵ABC 为等边三角形,∴4,AB AC BC BH CH =====∴2223AH AB BH =-=,(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当90FEC ∠=︒时,求证:AEF DCE ∽△△;②如图2,当2tan 3FCE ∠=时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当1,sin 3GE DE FCE =∠=时,求证:,可得结论;正方形ABCD 中,①ADC BAD ∠=∠ ∴AEF CED ∠+∠=AEF ECD ∴∠=∠,延长DA ,CF 交于点G ,作GH CE ⊥,垂足为H ,90EDC EHG ∠=∠=︒ 且∠问题探究:(1)先将问题特殊化,如图(2),当90α=︒时,直接写出GCF ∠的大小;(2)再探究一般情形,如图(1),求GCF ∠与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当120α=︒时,若12DG CG =,求BE CE 的值.故答案为:45︒.(2)解:在AB上截取ANABC BAE AEB∠+∠+∠=∠=∠,ABC AEF22⎝⎭(3)解:过点A作CD的垂线交CD的延长线于点【点睛】此题考查菱形性质、三角形全等、三角形相似,解题的关键是熟悉菱形性质、三角形全等、三角形相似.16.(2023·山西·统考中考真题)问题情境:“综合与实践沿对角线剪开,得到两个全等的三角形纸片,表示为∠=∠=︒∠=∠.将ABCACB DEF A D90,和DFE△(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE绕点B逆时针方向旋转,使点问题.∠①“善思小组”提出问题:如图3,当ABE②“智慧小组”提出问题:如图AH的长.请你思考此问题,直接写出结果.【答案】(1)正方形,见解析(2)①AM BE=,见解析;【分析】(1)先证明四边形形;∠(2)①由已知ABE【点睛】本题考查了旋转的性质、全等三角形的判定与性质、正方形的判定与性质、相似三角形的判定与性质、三角函数、勾股定理等知识点,适当添加的辅助线、构造相似三角形是解题的关键.17.(2023·湖北十堰·统考中考真题)过正方形E ,连接AE ,直线AE 交直线(1)如图1,若25CDP ∠=︒,则DAF ∠=___________(2)如图1,请探究线段CD ,EF ,AF 之间的数量关系,并证明你的结论;(3)在DP 绕点D 转动的过程中,设AF a =,EF 【答案】(1)20︒。
2023年九年级数学中考专题:旋转综合压轴题(倍长中线法)
2023年九年级数学中考专题:旋转综合压轴题(倍长中线法)1.(1)阅读理解:如图1,在ABC 中,若3AB =,5AC =.求BC 边上的中线AD 的取值范围,小聪同学是这样思考的:延长AD 至E ,使DE AD =,连接BE .利用全等将边AC 转化到BE ,在BAE 中利用三角形三边关系即可求出中线AD 的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是___________,中线AD 的取值范围是___________;(2)问题解决:如图2,在ABC 中,点D 是BC 的中点,DM DN ⊥.DM 交AB 于点M ,DN 交AC 于点N .求证:BM CN MN +>;(3)问题拓展:如图3,在ABC 中,点D 是BC 的中点,分别以AB AC ,为直角边向ABC 外作Rt ABM 和Rt ACN △,其中90BAM NAC ∠=∠=︒,AB AM =,AC AN =,连接MN ,请你探索AD 与MN 的数量与位置关系,并直接写出AD 与MN 的关系.2.(1)如图1,在ABC 中,AB =4,AC =6,AD 是BC 边上的中线,延长AD 到点E 使DE =AD ,连接CE ,把AB ,AC ,2AD 集中在ACE 中,利用三角形三边关系可得AD 的取值范围是 ;(2)如图2,在ABC 中,AD 是BC 边上的中线,点E ,F 分别在AB ,AC 上,且DE ⊥DF ,求证:BE +CF >EF ;(3)如图3,在四边形ABCD 中,∠A 为钝角,∠C 为锐角,∠B +∠ADC =180°,DA =DC ,点E ,F 分别在BC ,AB 上,且∠EDF =12∠ADC ,连接EF ,试探索线段AF ,EF ,CE 之间的数量关系,并加以证明.3.(1)阅读理解:如图①,在ABC 中,若85AB AC =,=,求BC 边上的中线AD 的取值范围.可以用如下方法:将ACD △绕着点D 逆时针旋转180得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠︒=,CB CD =,100BCD ∠︒=,以C 为顶点作一个50︒的角,角的两边分别交AB AD 、于E 、F 两点,连接EF ,探索线段BE DF EF ,,之间的数量关系,并说明理由.4.如图,在锐角ABC ∆中,60A ∠=︒,点D ,E 分别是边,AB AC 上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB AC >,且,BD CE BCD CBE =∠=∠,求CFE ∠的度数;(2)如图2,若=AB AC ,且=BD AE ,在平面内将线段AC 绕点C 顺时针方向旋转60°得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段,,BF CF CN 之间存在的数量关系,并证明你的猜想.5.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC 的边BC 到D ,使DC =BC ,过D 作DE ∥AB 交AC 延长线于点E ,求证:△ABC ≌△EDC .【理解与应用】如图2,已知在△ABC 中,点E 在边BC 上且∠CAE =∠B ,点E 是CD 的中点,若AD 平分∠BAE .(1)求证:AC =BD ;(2)若BD =3,AD =5,AE =x ,求x 的取值范围.6.如图1,在△ABC 中,若AB =10,BC =8,求AC 边上的中线BD 的取值范围.(1)小聪同学是这样思考的:延长BD 至E ,使DE =BD ,连接CE ,可证得△CED ≌△ABD .①请证明△CED ≌△ABD ;②中线BD 的取值范围是 .(2)问题拓展:如图2,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中,AB =BM ,BC =BN ,∠ABM =∠NBC =∠90°,连接MN .请写出BD 与MN 的数量关系,并说明理由.7.已知ABC 中,(1)如图1,点E 为BC 的中点,连AE 并延长到点F ,使=FE EA ,则BF 与AC 的数量关系是________.(2)如图2,若AB AC =,点E 为边AC 一点,过点C 作BC 的垂线交BE 的延长线于点D ,连接AD ,若DAC ABD ∠=∠,求证:AE EC =.(3)如图3,点D 在ABC 内部,且满足AD BC =,BAD DCB ∠=∠,点M 在DC 的延长线上,连AM 交BD 的延长线于点N ,若点N 为AM 的中点,求证:DM AB =.8.在△ABM 中,AM ⊥BM ,垂足为M ,AM =BM ,点D 是线段AM 上一动点.(1)如图1,点C 是BM 延长线上一点,MD =MC ,连接AC ,若BD =17,求AC 的长;(2)如图2,在(1)的条件下,点E 是△ABM 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF .(3)如图3,当E 在BD 的延长上,且AE ⊥BE ,AE =EG 时,请你直接写出∠1、∠2、∠3之间的数量关系.(不用证明)9.已知:等腰Rt ABC 和等腰Rt ADE △中,AB AC =,AE AD =,90BAC EAD ∠=∠=︒.(1)如图1,延长DE 交BC 于点F ,若68BAE ∠=︒,则DFC ∠的度数为;(2)如图2,连接EC 、BD ,延长EA 交BD 于点M ,若90AEC ∠=︒,求证:点M 为BD 中点; (3)如图3,连接EC 、BD ,点G 是CE 的中点,连接AG ,交BD 于点H ,9AG =,5HG =,直接写出AEC △的面积.10.(1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围,小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE.利用全等将边AB转化到CE,在△BCE中利用三角形三边关系即可求出中线BD的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是;中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=∠NBC=90°,连接MN,探索BD与MN的关系,并说明理由.11.(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),①延长AD到M,使得DM=AD;②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.12.如图,点P是∠MON内部一点,过点P分别作P A∥ON交OM于点A,PB∥OM交ON于点B(P A≥PB),在线段OB上取一点C,连接AC,将△AOC沿直线AC翻折,得到△ADC,延长AD交PB于点E,延长CD 交PB于点F.(1)如图1,当四边形AOBP是正方形时,求证:DF=PF;(2)如图2,当C为OB中点时,试探究线段AE,AO,BE之间满足的数量关系,并说明理由;(3)如图3,在(2)的条件下,连接CE,∠ACE的平分线CH交AE于点H,设OA=a,BE=b,若∠CAO =∠CEB,求△CDH的面积(用含a,b的代数式表示).13.(1)基础应用:如图1,在△ABC中,AB=5,AC=7,AD是BC边上的中线,延长AD到点E使DE =AD,连接CE,把AB,AC,2AD利用旋转全等的方式集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)推广应用:应用旋转全等的方式解决问题如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;∠BAD,试问线段(3)综合应用:如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°且∠EAF=12EF、BE、FD具有怎样的数量关系,并证明.14.(1)阅读理解:如图1,在△ABC中,若AB=5,AC=8,求BC边上的中线AD的取值范围.小聪同学是这样思考的:延长AD至E,使DE=AD,连接BE.利用全等将边AC转化到BE,在△BAE中利用三角形三边关系即可求出中线AD的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是_________,中线AD的取值范围是_________;(2)问题解决:如图2,在△ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM⊥DN.求证:BM+CN>MN;(3)问题拓展:如图3,在△ABC中,点D是BC的中点,分别以AB,AC为直角边向△ABC外作Rt△ABM 和Rt△ACN,其中∠BAM=∠NAC=90°,AB=AM,AC=AN,连接MN,探索AD与MN的关系,并说明理由.15.如图,在等边△ABC 中,点D ,E 分别是AC ,AB 上的动点,且AE =CD ,BD 交CE 于点P .(1)如图1,求证:∠BPC =120°;(2)点M 是边BC 的中点,连接P A ,PM ,延长BP 到点F ,使PF =PC ,连接CF ,①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 .②如图3,若点A ,P ,M 三点不共线,问①中的结论还成立吗?若成立,请给出证明,若不成立,说明理由.16.(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围. 解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE 中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.17.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E 是BC 的中点,点A 在DE 上,且∠BAE =∠CDE .求证:AB =CD .分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF =DE ,连接BF ;②如图2,分别过点B 、C 作BF ⊥DE ,CG ⊥DE ,垂足分别为点F ,G .(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.18.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC △≌EDB △的理由是______.(2)求得AD 的取值范围是______.【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】⊥,求证:(3)如图2,在ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM DNBM CN MN+>.。
2024年中考数学高频考点专题复习——旋转综合题(含解析)
2024年中考数学高频考点专题复习——旋转综合题1.如图,△ABC 和△DEF 关于某点对称(1)在图中画出对称中心O ;(2)连结AF 、CD ,判断四边形ACDF 的形状,并说明理由.2.在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位.(1)画出关于原点O 的中心对称图形;(2)在(1)的条件下,请分别写出点A 、B 、C 的对应点、、的坐标.ABC ABC 111A B C 1A 1B 1C3.如图1,图2,△ABC 是等边三角形,D 、E 分别是AB 、BC 边上的两个动点(与点A 、B 、C 不重合),始终保持BD=CE.(1)当点D 、E 运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE 绕着A 点顺时针旋转60°到△ABF 的位置(如图2),分别连结DF 、EF.①找出图中所有的等边三角形(△ABC 除外),并对其中一个给予证明;②试判断四边形CDFE 的形状,并说明理由.4.如图,矩形 中, ,将矩形 绕点C 顺时针旋转得到矩形 .设旋转角为 ,此时点 恰好落在边 上,连接 .(1)当 恰好是 中点时,此时 ;(2)若 ,求旋转角 及 的长.5.将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转α(0°<α<120°)得到线段AD ,连接CD 、BD .(1)如图,若α=80°,则∠BDC 的度数为 ;(2)请探究∠BDC 的大小是否与角α的大小有关,并说明理由.ABCD 4BC =ABCD A B C D ''''αB 'AD B B 'B 'AD α=75AB B ︒∠='αAB6.在平面直角坐标系中,小方格都是边长为1的正方形,△ABC ≌△DEF ,其中点A 、B 、C 、都在格点上,请你解答下列问题:(1)如图(a )在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号为 .(2)画出△ABC 关于y 轴对称的△A 1B 1C 1;画出△ABC 绕点P (1,﹣1)顺时针旋转90°后的△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2成中心对称吗?若成中心对称请你求出对称中心的坐标;若不成,则说明理由.7.图1是某小型汽车的侧面示意图,其中矩形 表示该车的后备箱,在打开后备箱的过程中,箱盖 可以绕点A 逆时针方向旋转,当旋转角为 时,箱盖 落在 的位置(将后备箱放大后如图2所示).已知 厘米, 厘米, 厘米.在图2中求: (1)点 到 的距离(结果保留根号);(2)E 、 两点的距离(结果保留根号).ABCD ADE 60︒ADE AD E ''90AD =30DE =40EC =D 'BC E '8.如图, 是等腰直角三角形, 是直角三角形, ,点 为边 中点将 绕点 顺时针旋转,旋转角记为 ,点 为边 的中点.(1)如图,求初始状态时 的大小;(2)如图,在旋转过程中,若点 构成平行四边形,请直接写出此时 的值;(3)在旋转过程中,若点 和点 重合,请在图中画出 并连接 ,判断此时是否有 ?如果成立,请证明;如果不成立,请说明理由.ABC 90,ABC BDE ∠=︒ 30E ∠=︒D BC BDE D (0360)αα<<︒F BE AEC ∠,,,B D F B 'a F B ,B DE ' AE AE ED ⊥9.如图,在菱形 中, ,将边 绕点 逆时针旋转至 ,记旋转角为 .过点 作 于点 ,过点 作 直线 于点 ,连接 .(1)(探索发现)填空:当 时, = .的值是 (2)(验证猜想)当 时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(拓展应用)在(2)的条件下,若 ,当 是等腰直角三角形时,请直接写出线段 的长.ABCD 120BAD ∠= AB A 'AB αD DF BC ⊥F B BE ⊥'B D E EF 60α= 'EBB ∠ 'EF DB 0360α<< AB =BDE ∆EF10.如图(1),在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作APCD,AC与PD 相交于点E,已知∠ABC=∠AEP= (0°< <90°).(1)求证: ∠EAP=∠EPA;(2)APCD是否为矩形?请说明理由;(3)如图(2),F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.αα11.定义:有一组邻边相等,且它们的夹角为60°的四边形叫做半等边四边形.(1)已知在半等边四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°.①如图1,若∠B=∠D ,求证:BC=CD ;②如图2,连结AC ,探索线段AC 、BC 、CD 之间的数量关系,并说明理由;(2)如图3,已知∠MAC=30°,AC=10+10,点D 是射线AM 上的一个动点,记∠DCA=a ,点B 在直线AC 的下方,若四边形ABCD 是半等边四边形,且CB=CD .问:当点D 在15°≤a≤45°的变化过程中运动时,点B 也随之运动,请直接写出点B 所经过的路径长.12.已知,把45°的直三角板的直角顶点E 放在边长为6的正方形ABCD 的一边BC 上,直三角板的一条直角边经过点D ,以DE 为一边作矩形DEFG ,且GF 过点A ,得到图1.(1)求矩形DEFG 的面积;(2)若把正方形ABCD 沿着对角线AC 剪掉一半得到等腰直角三角形ABC ,把45°的直三角板的一个45°角的顶点与等腰直角三角形ABC 的直角顶点B 重合,直三角板夹这个45°角的两边分别交CA 和CA 的延长线于点H 、P ,得到图2.猜想:CH 、PA 、HP 之间的数量关系,并说明理由;(3)若把边长为6的正方形ABCD 沿着对角线AC 剪掉一半得到等腰直角三角形ABC ,点M 是Rt △ABC 内一个动点,连接MA 、MB 、MC ,设MA+MB+MC =y ,直接写出 的最小值.2y13.(1)观察猜想:如图①,在Rt △ABC 和Rt △BDE 中,∠ABC =∠EBD =90°,AB =BC ,BE =BD ,连接AE ,点F 是AE 的中点,连接CD 、BF ,当点D 、B 、C 三点共线时,线段CD 与线段BF 的数量关系是 ,位置关系是 .(2)探究证明:在(1)的条件下,将Rt △BDE 绕点B 顺时针旋转至图②位置时,(1)中的结论是否仍然成立?如果成立,请你就图②的情形进行证明;如果不成立,请说明理由;(3)拓展延伸:如图③,在Rt △ABC 和Rt △BDE 中,∠ABC =∠EBD =90°,BC =2AB =8,BD =2BE =4,连接AE ,点F 是AE 的中点,连结CD 、BF ,将△BDE 绕点B 在平面内自由旋转,请直接写出BF 的取值范围,14.请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1,如图1,在等腰直角三角形ABC 中, , ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作BC 边上的高DE ,则DE 与BC 的数量关系是 , 的面积为 ;(2)探究2,如图2,在一般的 中, ,( , ),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,请用含m ,n 的式子表示 的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC 中, , ( ,, ),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,试探究用含a ,b ,c 的式子表示 的面积,要有探究过程.90ACB ∠=︒5BC =BCD Rt ABC 90ACB ∠=︒22()()BC m n m n =+--0m >0n >BCD AB AC =BC a b c =++0a >0b >0c >BCD15.如图1,在△ABC中,∠A=120°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接BE,点M,N,P分别为DE,BE,BC的中点,连接NM,NP.(1)图1中,线段NM,NP的数量关系是 ,∠MNP的度数为 ;(2)把△ADE绕点A顺时针旋转到如图2所示的位置,连接MP.求证:△MNP是等边三角形;(3)把△ADE绕点A在平面内旋转,若AD=2,AB=5,请直接写出△MNP面积的最大值.16.(1)问题发现:如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为 .(2)问题探究:如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD =CD,连接DQ,求DQ的最小值;(3)问题解决:“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.17.如图14-1,在平面直角坐标系xOy 中,直线l 2:y=与x 轴交于点B ,与直线l 1交于点c ,c点到x 轴的距离CD 为2 ,直线1交x 轴于点A(-3,0) .(1)求直线l 1的函数表达式;(2)如图14-2,y 轴上的两个动点E 、F(E 点在F 点上方)满足线段EF 的长为 ,连接CE 、AF ,当线段CE+EF+AF 有最小值时,求出此时点F 的坐标,以及CE+EF+AF 的最小值;(3)如图14-3,将△ACB 绕点B 逆时针方向旋转60°,得到△BGH ,使点A 与点H 重合,点C 与点G 重合(C 、G 两点恰好关于x 轴对称),将ABGH 沿直线BC 平移,记平移中的△BGH 为△B'G'H',在平移过程中,设直线B'H'与x 轴交于点M ,是否存在这样的点M ,使得△B'MG'为等腰三角形?若存在,请直接写出此时点M 的坐标;若不存在,说明理由.18.如图(1)问题发现:如图1,已知点C 为线段 上一点,分别以线段 为直角边作两个等腰直角三角形, ,连接 ,线段 之间的数量关系为 ;位置关系为 .(2)拓展研究:如图2,把 绕点C 逆时针旋转,线段 交于点F ,则 之间的关系是否仍然成立,说明理由;x AB ,AC BC 90,,ACD CA CD CB CE ︒∠===,AE BD ,AE BD Rt ACD ∆,AF BD ,AE BD(3)解决问题:如图3,已知 ,连接 ,把线段AB 绕点A 旋转,若 ,请直接写出线段 的取值范围.19.如图1,在 中, , ,点 分别是 的中点,连接 .(1)探索发现:图1中,的值为 ; 的值为 ;(2)拓展探究若将 绕点 逆时针方向旋转一周,在旋转过程中的大小有无变化,请仅就图2的情形给出证明;(3)问题解决当 旋转至 三点在同一直线时,直接写出线段 的长.,,90AC CD BC CE ACD BCE ︒==∠=∠=,,AB AE AD 7,5AB AC ==AE ABC 2AB AC ==120BAC ∠=︒,D E ,AC BC DE AB BC AD BE CDE C AD BECDE ,,A D E BE20.有两个形状、大小完全相同的直角三角板ABC 和CDE ,其中∠ACB =∠DCE =90°.将两个直角三角板ABC 和CDE 如图①放置,点A ,C ,E 在直线MN 上.(1)三角板CDE 位置不动,将三角板ABC 绕点C 顺时针旋转一周,①在旋转过程中,若∠BCD =35°,则∠ACE = ▲ °;②在旋转过程中,∠BCD 与∠ACE 有怎样的数量关系?请依据图②说明理由.(2)在图①基础上,三角板ABC 和CDE 同时绕点C 顺时针旋转,若三角板ABC 的边AC 从CM 处开始绕点C 顺时针旋转,转速为12°/秒,同时三角板CDE 的边CE 从CN 处开始绕点C 顺时针旋转,转速为2°/秒,当AC 旋转一周再落到CM 上时,两三角板都停止转动.如果设旋转时间为t 秒,则在旋转过程中,当∠ACE =2∠BCD 时,t 为多少秒?21.我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.把两块边长为4的等边三角形板 和 叠放在一起,使三角形板 的顶点 与三角形板 的AC 边中点 重合,把三角形板 固定不动,让三角形板 绕点 旋转,设射线 与射线 相交于点M ,射线 与线段 相交于点N.ABC DEF DEF D ABC O ABC DEF O DE AB DF BC(1)如图1,当射线 经过点 ,即点N 与点 重合时,易证△ADM ∽△CND.此时,AM·CN= .(2)将三角形板 由图1所示的位置绕点 沿逆时针方向旋转,设旋转角为 .其中 ,问AM·CN 的值是否改变?说明你的理由.(3)在(2)的条件下,设AM= x ,两块三角形板重叠面积为 ,求 与 的函数关系式.(图2,图3供解题用)22.已知抛物线(,,是常数,)的顶点为,与轴相交于,两点(点在点的左侧),与轴相交于点.(1)若点,求点和点的坐标;(2)将点绕点逆时针方向旋转,点的对应点为,若,两点关于点中心对称,求点的坐标和抛物线解析式:(3)在(1)的条件下,点为直线下方抛物线上的一个动点,过点作轴,与相交于点,过点作轴,与轴相交于点,求的最大值及此时点的坐标.DF B B DEF O α090α<< y y x 2y ax bx c =++a b c 0a ≠()14M -,x A B A B y C ()03C -,A B A B 90︒A 1A A 1A M 1A P BC P PD x BC D P PE y x E PD PE +P答案解析部分1.【答案】(1)解:对称中心O 如图所示;(2)解:∵A 与F ,C 与D 是对应点,∴AO=DO ,CO =FO ,∴四边形ACDF 是平行四边形.2.【答案】(1)解:如图所示:(2)解:由图可知:,,.3.【答案】(1)证明:∵△ABC 是正三角形,∴BC=CA ,∠B=∠ECA=60°.又∵BD=CE ,∴△BCD ≌△CAE.∴CD=AE.(2)解:① 图中有2个正三角形,分别是△BDF ,△AFE.由题设,有△ACE ≌△ABF ,∴CE=BF ,∠ECA=∠ABF=60°又∵BD=CE ,∴BD=CE=BF ,∴△BDF 是正三角形,∵AF=AE ,∠FAE=60°,∴△AFE 是正三角形.1(12)A -,1(33)B -,1(40)C ,② 四边形CDFE 是平行四边形.∵∠FDB=∠ABC =60°∴FD ∥EC.又∵FD=FB=EC ,∴四边形CDFE 是平行四边形.4.【答案】(1)60°(2)解:∵四边形 是矩形,∴ ,∴ .由旋转的性质得 ,∴ ,∴ ,即旋转角 为30°.作 于点E.则 .5.【答案】(1)30°(2)解:无关.理由如下:由旋转变换可知:∠BAC=60°,∠CAD=α, = , AB=AC=AD ,∴ ,,ABCD //AD BC 75CBB AB B ︒'∠=∠='CB CB ='75CB B CBB ︒∠'=∠='180757530BCB ︒︒︒︒∠--='=αB E BC '⊥122AB B E CB '='==()1180602ADB α∠=︒-+︒⎡⎤⎣⎦1202α︒-()11802ADC α∠=︒-()11202ADB α︒∠=-∴∠BDC=∠ADC-∠ADB= - =30° ,∴∠BDC 的大小与ɑ的度数无关.6.【答案】(1)②(2)解:如图(3)解:如图所示:△A 1B 1C 1与△A 2B 2C 2成中心对称图形,对称中心的坐标为:(1,0).7.【答案】(1)解:过点 作 ,垂足为点H ,交 于点F .由题意得 (厘米), .∵四边形 是矩形,∴ , .在 中, 又∵ , ,∴ .∴ (厘米)答:点 到 的距离是 (厘米).(2)解:连结 、 、 .()11802α︒-()11202α︒-D 'D H BC '⊥AD 90AD AD =='60DAD ∠='︒ABCD AD BC 90AFD BHD ∠'=∠='︒Rt AD F ∆'sin 90sin 60D F AD DAD ︒=⋅∠=⋅='''40CE =30DE =70FH=70)D H D F FH ='++'=D 'BC ()70+AE AE 'EE '由题意得 , .∴ 是等边三角形.∴ .∵四边形 是矩形,∴ .在 中, , ,∴(厘米)答:E 、 两点的距离是厘米.8.【答案】(1)解:∵∠BED =30°,△BDE 是直角三角形,∴∠EBD =90°-∠BED =60°.又∵D 是BC 的中点,∴DE 是BC 的垂直平分线.∵BE =CE ,∠BEC =60°,∴△BCE 是等边三角形.∴BC =BE .∵△ABC 是等腰三角形,∠ABC =90°,∴AB =BC .∴BE =AB .∵AB ⊥BC ,DE ⊥BC ,∴AB ∥DE ,∴∠ABE =∠BED =30°.∴∠BAE =∠BEA = (180°-∠ABE)=75°.∴∠AEC =∠BAE +∠BEC =135°.(2)解:∵四边形BDFB '是平行四边形,∠FB 'D =60°∴B 'F ∥BD ,∴∠B D B '=∠FB 'D =60°AE AE ='60EAE ∠='︒AEE ∆'EE AE '=ABCD 90ADE ∠=︒Rt ADE ∆90AD =30DE =AE ===E '12即 =60°.(3)解:△B 'DE 如图所示,AE ⊥DE 不成立,理由如下:DE 与AB 相交于点G ,假设AE ⊥DE ,则△AEG ∽△DBG ,设BG =a ,∠BDG =30°,∴DG =2a ,BD = a ,AB =2 BD = a .∴AG =AB -BG =(-1)a ,B 'D =BD =a .∴DE = =3a.∴GE =DE -DG=3a -2a =a .∴ , .∴ 与假设矛盾.∴AE ⊥DE 不成立.9.【答案】(1)30(2)解:当 时, (1)中的结论仍然成立.证明:如图1,连接 .a tan 30B D'AG DG ==1GE a GB a ==AG GE DG GB≠0360α<< BD,, . , . . .,即 . ,, . .,(3)解:线段 的长为 或 .连接 , 交于点 .,, ,,∵DE=BE ,∠DEB=90°,∴∠EDB=∠EBD=45°,. ,∠B′EB=90°,, . , . .'AB AD AB == 1'(180)9022AB B αα∴∠=︒-=︒-1'[180(120)]3022AB D αα∠=︒-︒-=︒+'180''180(90)(306022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒'30EBB ∴∠=︒11(180)3022CBD ABC BAD∠=∠=︒-∠=︒ 'EBB CBD ∴∠=∠'''EBB FBB CBD FBB ∴∠+∠=∠+∠'DBB EBF ∠=∠cos BF DBF BD ∠== cos ''BE EBB BB ∠=='BF BE BD BB ∴='DBB FBE ∆∆∽''EF BE DB BB ∴==EF 3+3-AC BD O AC DB ⊥ 1602BAO BAD ∠=∠=︒sin OB AB BAO ∴=⋅∠=2BD OB ∴==sin DE BE BD DBE ∴==⋅∠=='AB AD AB == 1'(180)9022AB B αα∴∠=︒-=︒-1'[180(120)]3022AB D αα∠=︒-︒-=︒+'180''180(90)(306022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒'30EBB ∴∠=︒'tan '2EB BE EBB ∴=⋅∠==分两种情况: 如图,,∵∠B′BE=∠DBF=30°,∴cos ∠B′BE=cos ∠DBF=,又∵∠B′BE+∠EBD=∠EBD+∠DBF ,∴∠B′BD=∠EBF ,∴△B′BD ∽△EBF ,∴ , . 如图,.①''2B D DE BE =+=+EB FB B B DB ='=EB FB EF B B DB B D '='2)3EF D '∴==+=②''2B D DE B E =-=∵∠B′BE=∠DBF=30°,∴cos ∠B′BE=cos ∠DBF=,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF ,∴△B′BD ∽△EBF ,∴ ,.综上所述,线段 的长为或 .10.【答案】(1)证明:(1)在△ABC 和△AEP 中,∠ABC=∠AEP,∠BAC=∠EAP, ∠ACB=∠APE,在△ABC 中,AB=BC. ∠ACB=∠BAC,∠EPA=∠EAP,(2)解: APCD 是矩形.四边形APCD 是平行四边形,AC=2EA,PD=2EP.由(1)知, ∠EPA=∠EAP.EA=EP ,进而AC=PDAPCD 是矩形.(3)解:EM=ENEA=EP, ∠EPA=90° - ∠EAM=180°-∠EAP =180°-∠EPA= 180°-(90°-)=90°+ 由(2)知, ∠CPB=90°,F 是BC 的中点, FP=FB,∠FPB=∠ABC= ,∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90° -+ =90°+ ∠EAM=∠EPN∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN ,EB FB B B DB ='=EB FB EF B B DB B D '='2)3EF B D ∴===-'EF 33 ∴∴∴ ∴∴∴ ∴12α∴12α12α∴∴α∴12αα12α∴∠AEP-∠AEN =∠MEN-∠AEN,即∠MEA=∠NEP.△EAM ≌△EPN,EM=EN.11.【答案】(1)解:①证明:连结AC ,∵∠A+∠B+∠C+∠D=360°,且∠A=60°,∠C=120°,∴∠B+∠D=180°,且∠B=∠D ,∴∠B=∠D=90°,∵AB=AD ,AC=AC ,∴△ABC ≌△ADC (HL ),∴BC=DC ;②解:延长CB ,使得CD=BE ,∵∠BAD=60°,∠BCD=120°,∴∠ABC+∠D=180°,且∠ABC+∠ABE=180°,∴∠D=∠ABE ,又∵AB=AD∴△ABE ≌△ADC ,∴AE=AC,∴∴∴∠BAE=∠DAC ,∴∠EAC=∠BAE+∠BAC=∠DAC+∠BAC=∠BAD=60°,∴△ACE 是等边三角形,∴AC=CE=CB+BE=CB+CD(2)解:如图,设∠ACD=15°,∠DCD‘=30°,作CM ⊥AD ,D‘H ⊥AC ,由旋转图形的特点可知,CB=CD ,CB‘=CD’,∠BCB'=DCD‘=30°,∴△∠BCB'≌△DCD‘,BB'=DD’,设D'H=x ,由勾股定理得:, HC=x,则,解得x=10, 即D'H=10,得,AD’=20,在Rt △AMC 中,∵,∠DAC=30°,∴,AM=(,-5,,∴DD’为D 点的运动路程,则BB‘的运动路程也为10 .12.【答案】(1)解:∵四边形ABCD 是正方形,∴∠ADC =∠DCE =90°,∵四边形DEFG 是矩形,∴∠AGD =∠GDE =90°,∴∠DCE =∠AGD =90°,∠ADC =∠GDE =90°,∴∠ADC ﹣∠ADE =∠GDE ﹣∠ADE ,∴∠EDC =∠ADG ,∵∠EDC =∠ADG ,∠DCE =∠AGD =90°,∴△ECD ∽△AGD ,∴ ,∴DG•DE =DC•DA =6×6=36,∴矩形DEFG 的面积=DG•DE =36;(2)解: ,证明:把△BAP 绕着点B 顺时针旋转90°得到△BCK ,连接KH ,由旋转得△BAP ≌△BCK ,∴BK =BP ,∠PBA =∠KBC ,∠BCK =∠BAP = ,∴∠HCK = = ,∴由勾股定理得, ,∵∠PBE =45°,∴∠PBA+∠ABE =45°,∵∠PBA =∠KBC ,∴∠KBC+∠ABE =45°,∵∠ABC =90°,∴∠HBK =45°,∵∠PBE =45°,∴∠HBK =∠PBE =45°,∵BK =BP ,∠HBK =∠PBE ,BH =BH ,∴△BHP ≌△BHK (SAS ),CD DE DG DA=222CH PA HP +=18045135︒-︒=︒BCK BCA ∠-∠1354590︒-︒=︒222CH PA KH +=∴HK =HP ,∵ ,∴ ;(3)解:把△BMC 绕着点B 顺时针旋转60°得到△BKN ,连接MK ,BN ,NC ,由旋转得,△BMC ≌△BKN ,∴MC =KN ,BM =BK ,∵BM =BK ,∠MBK =60°,∴△BKM 是等边三角形,∴MK =BM ,∴MA+MB+MC =AM+MK+KN ,当A ,M ,K ,N 四点共线时,AN 就是所求的MA+MB+MC 的最小值,过N 作NQ ⊥AB 交AB 的延长线于Q ,∵ ,∠BQN =90°,∴QN =BN•sin30°=6× =3,BQ =BN•cos30°= ,∴AQ =AB+BQ =,在Rt △AQN 中,由勾股定理得,,∴ 的最小值为 .13.【答案】(1)CD=2BF ;BF ⊥CD(2)解:BF ⊥CD ,CD=2BF 成立,证明:∵△ABC 与△DBE 都是等腰直角三角形,∴AB=BC ,DB=EB ,∠ABC=∠DBE=90°,222CH PA KH +=222CH PA HP +=180906030NBQ ∠︒-︒-︒=︒=126=6+(222226372AN AQ QN +=++=+=2y 72+如图②,将△ABE 绕点B 顺时针旋转90°得到△CBG ,点E 、F 的对应点分别是G 、H ,连BH , 则△ABE ≌△CBG ,BE=BG ,AE=CG ,BF=BH ,∠FBH=∠EBG=90°,AF=CH ,EF=GH , ∴BF ⊥BH ,∵AF=EF ,∴CH=GH ,∵∠DBE=90°,∴∠DBE+∠EBG=180°,∴D 、B 、G 三点共线,∴BH ∥CD ,,∴BF ⊥CD ,,即CD=2BF ,∴BF ⊥CD ,CD=2BF 成立;(3)14.【答案】(1)DE=BC ;12.5(2)解:过点D 作BC 边上的高DE ,如图,∵∠ABC+∠A=90°,∠ABC+∠DBE=90°,∴∠A=∠DBE ,又∵∠ACB=∠E=90°,AB=BD ,∴ ,∴,12BH CD =12BF CD =13BF ≤≤ACB BED ≌BC DE =又 .∴ 的面积为:.(3)解:作 于G ,过点D 作BC 边上的高DE ,如图,由(2)同理,可证 ,∴ ,又 ,∵AB=AC , ,∴ .∴ 的面积为: .15.【答案】(1)NM=NP ;60°(2)证明:由旋转得:∠BAD=∠CAE ,又∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠ABD=∠ACE ,∵点M ,N ,P 分别为DE ,BE ,BC 的中点,∴MN= BD ,PN= CE ,MN ∥BD ,PN ∥CE ,∴MN=PN ,∠ENM=∠EBD ,∠BPN=∠BCE ,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB ,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE ,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°-∠BAC=60°,∴△MNP 是等边三角形;(322()()4mn BC m n m n =+--=BCD 221448m n 2mn mn ⨯⨯=AGB BED ≌BG DE =BC a b c =++BC a b c =++11()22BG BC a b c ==++BCD 2111()()()224a b c a b c a b c ⨯++⨯++=++121216.【答案】(1)4(2)解:如图②中,连接BD ,取AC 的中点O ,连接OB ,OD.∵∠ABD =∠ADC =90°,AO =OC ,∴OA =OC =OB =OD ,∴A ,B ,C ,D 四点共圆,∴∠DBC =∠DAC ,∵DA =DC ,∠ADC =90°,∴∠DAC =∠DCA =45°,∴∠DBQ =45°,根据垂线段最短可知,当QD ⊥BD 时,QD 的值最短,DQ 的最小值=BQ =5 .(3)解:如图③中,将△BDC 绕点D 顺时针旋转90°得到△EDA , ∵∠ABC+∠ADC =180°,∴∠BCD+∠BAD =∠EAD+BAD =180°,∴B ,A ,E 三点共线,∵DE =DB ,∠EDB =90°,∴BE = BD ,∴AB+BC =AB+AE =BE =BD,∴BC+BC+BD =( +1)BD ,∴当BD 最大时,AB+BC+BD 的值最大,∵A ,B ,C ,D 四点共圆,∴当BD 为直径时,BD 的值最大,∵∠ADC =90°,∴AC 是直径,∴BD =AC 时,AB+BC+BD 的值最大,最大值=600( +1).17.【答案】(1)解:∵点C 的纵坐标为2 ,点c 在直线l 2:y= ∴点C(-1,2 )设l 1的表达式为y= kx+ b将A(-3,0)、C(-1,2)代入, 解得故直线l 1的表达式为:y=x+3 (2)解:作点a关于y 轴的对称点A(3,0),将点a4向上平移个单位长度得E (3,)连接E'C 交y 轴于点E ,在E下方取EF= ,则点F是所求点,将点C 、E' 的坐标代入一次函数表达式,同理可得: CE' 的函数表达式为:y= 故点E(0,),点F(0,)CE+EF+4F 的最小值=FE+CE'= +.(3)M(5+8,0)或(5-8,0)或(-3,0)或(-19,0) x +03k bk b=-+⎧⎪⎨=-+⎪⎩k b ⎧=⎪⎨=⎪⎩x +18.【答案】(1)AE=BD ;AE ⊥BD(2)解: 仍然成立.由题意得,∵△ACD 和△BCE 是等腰直角三角形即 ,∴∴ .∴∴ .(3)解: 连接BD.由(2)可知,AE=BD ,在△ABD 中,且 ,所以 即 在AB 绕点A 旋转过程中,当A ,B ,D 三点在一条直线上时, 或者,AE BD AE BD =⊥90ACD DCE ECB DCE DCE ︒∴∠+∠=∠+∠=+∠,,ACE DCB AC CD EC CB ∠=∠==ACE DCB∆≅∆,12AE DB =∠=∠180(4512)90EFB ︒︒︒∠=--∠+∠=AE BD⊥77AE -≤≤7AD AB ===77BD <<+77AE -<<+7AE =7AE =∴ ≤AE≤ 19.【答案】(1(2)解:无变化,理由: 由(1)知,CD=1, ,∴,∴ ,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD ∽△BCE,∴,(3)解:线段BE 的长为或 ,理由如下: 当点D 在线段AE 上时,如图2,过点C 作CF ⊥AE 于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴ ,∴,7-7+CE BE ==CD CE =AC BC =CD AC CE BC ==AD AC BE BC ==1122DF CD ==CF ==在Rt △AFC 中,AC=2,根据勾股定理得, ,∴AD=AF+DF=,由(2)知, ,∴当点D在线段AE 的延长线上时,如图3,过点C 作CG ⊥AD 交AD 的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴ ,∴ ,在Rt △ACG 中,根据勾股定理得,,∴ ,由(2)知,,∴即:线段BE 的长为或.AF ==AD BE =BE ==1122DG CD ==CG ==AG =AD AG DG =-=AD BE =BE ==20.【答案】(1)①145;②∠BCD+∠ACE =180°,理由如下:∵∠ACE =∠ACB+∠BCE ,∴∠BCD+∠ACE =∠BCD+∠ACB+∠BCE =∠ACB+∠DCE =90°+90°=180°;(2)解:三角板ABC 和CDE 重合之前,∠ACE =180°-10°t ,∠BCD =10°t ,依题意有180°-10°t =2×10°t ,解得t =6;三角板ABC 和CDE 重合之后,∠ACE =10°t-180°,∠BCD =360°-10°t ,依题意有10°t-180°=2×(360°-10°t ),解得t =30.故当t =6或30秒时,有∠ACE =2∠BCD .故答案为:6或30.21.【答案】(1)4(2)解:AM•CN 的值不会改变.连接BD ,在△ADM 与△CND 中,∵∠A=∠C=60°,∠DNC=∠DBN+∠BDN=30°+α,∠ADM=30°+α,∴∠ADM=∠CND ,∴△ADM ∽△CND∴ ,∴AM•CN=AD•CD=2×2=4,∴AM•CN 的值不会改变;(3)解:情形1,当0°<α<60°时,1<AM <4,即1<x <4,此时两三角形板重叠部分为四边形AD AM CN CD如图2,过D 作DQ ⊥AB 于Q ,DG ⊥BC 于G ,∴DQ=DG= ,由(2)知,AM•CN=4,得CN=,于是y=(1<x <4); 情形2,当60°≤α<90°时,AM≥4时,即x≥4,此时两三角形板重叠部分为△DPN ,如图3,过点D 作DH ∥BC 交AM 于H ,易证△MBP ∽△MHD ,∴ ,又∵MB=x-4,MH=x-2,DH=2,∴BP=,∴PN=4- ,于是y= ,综上所述,1<x <4时,y=;x≥4时,y= 22.【答案】(1)解:设抛物线解析式为,将点代入得,4x 21122AB AM DQ CN DG x -⋅-⋅=BP MB DH MH=282x x --4282x x x ---114284222x PN DG x x -⎛⎫⋅=--= ⎪-⎝⎭x ()214y a x =--()03C -,解得:∴抛物线解析式为当时,解得:,∵点在点的左侧,∴,;(2)解:∵,抛物线,与轴相交于,两点∴,对称轴为直线,设,则,∴∵点绕点逆时针方向旋转得到,则点一定在第四象限,如图所示,则,,∵,两点关于点中心对称,∴解得:,则∴,1a =()214y x =--0y =()2140x --=1213x x =-=,A B ()10A -,()30B ,()14M -,2y ax bx c =++x A B 0a >1x =()0A m ,()20B m -,222AB m m m=--=-A B 90︒A 'A '22BA BA m ='=-()222A m m '--,A 1A M 228m -=-3m =-()58A '-,()30A -,()50B ,将点代入得,解得:∴抛物线解析式为;(3)解:如图所示,设交于点,由(1)可得,,设直线的解析式为,将点代入得,解得所以直线的解析式为,∵抛物线解析式为,设,则,∴,∵轴,轴,由∵则是等腰直角三角形,∴()30A -,()214y a x =--1640a -=14a =()21144y x =--PE BC F ()30B ,()03C -,BC 3y kx =-()30B ,330k -=1k =BC 3y x =-()221423y x x x =--=--()223P t t t --,()0E t ,()3F t t -,223233FP t t t t t =--++=-+223PE t t =-++PD x PE y OC OB=OCB 45FDP OBC ∠=∠=︒∴也是等腰直角三角形,∴∴∴当时,取得最大值此时,即.PDF PD PF=PD PE+22323t t t t =-+-++2253t t =-++252525232168t t ⎛⎫=--+++ ⎪⎝⎭2549248t ⎛⎫=--+ ⎪⎝⎭54t =PD PE +498225632314416t t ⎛⎫--=--=- ⎪⎝⎭563416P ⎛⎫- ⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题47 三角形中的旋转综合问题1、如图,点P是∠MON内的一点,过点P作PA⊥OM于点A,PB⊥ON于点B,且OA=OB.(1)求证:PA=PB;(2)如图②,点C是射线AM上一点,点D是线段OB上一点,且∠CPD+∠MON=180°,若OC=8,OD=5.求线段OA的长.(3)如图③,若∠MON=60°,将PB绕点P以每秒2°的速度顺时针旋转,12秒后,PA开始绕点P以每秒10°的速度顺时针旋转,PA旋转270°后停止,此时PB也随之停止旋转.旋转过程中,PA所在直线与OM所在直线的交点记为G,PB所在直线与ON所在直线的交点记为H.问PB旋转几秒时,PG=PH?(1)证明:如图①中,连接OP.∵PA⊥OM,PB⊥ON,∴∠OAP=∠OBP=90°,∵OA=OB,OP=OP,∴Rt△OPA≌Rt△OPB(HL),∴PA=PB.(2)如图②中,∵∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠CPD+∠AOB=180°,∴∠CPD=∠APB,∴∠APC=∠BPD,∵PA=PB,∠PAC=∠PBD=90°,∴△PAC≌△PBD(ASA),∴AC=BD,∴OC+OD=OA+AC+OB﹣BD=2OA=13,∴OA=6.5.(3)设点P的旋转时间为t秒.①当0<t<12时,不存在.②当12≤t<21时,如图3﹣1中,∠APG=(10t﹣120)°,∠BPH=2t°,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣120=2t,t=15.③当21≤t<30时,如图3﹣2中,∠APG=180°﹣∠APA′=180°﹣(10t﹣120)°=(300﹣10t)°,∠BPH =2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时300﹣10t=2t,t=25.④当30≤t<39时,如图3﹣3中,∠APG=(10t﹣300)°,∠BPH=2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣300=2t,t=37.5,综上所述,满足条件的t的值为15s或25s或37.5s.2、(1)问题发现:如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究:如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,CD=2OD,AB=2OB,连接AC交BD的延长线于点M.请求出的值及∠AMB的度数,并说明理由;(3)拓展延伸:在(2)的条件下,将△OCD绕点O在平面内旋转,AC、BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=50°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=50°,∴∠OAB+∠ABO=130°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣130°=50°,故答案为:①1;②50°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DOC=90°,CD=2DO,∴∠DCO=30°,∴=tan30°=,同理得:=tan30°=,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图1,同(2)得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴,整理得:x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,∴x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图2,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴+(x+2)2=,整理得x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.3、已知在平面直角坐标系中,A(a,0),B(b,0)、C(0,c),其中a、b、c满足=0.(1)求△ABC的面积;(2)将线段BC向右平移至AD(点B对应点A,点C对应点D).①当点M为x轴上任意点(不与原点重合),ME、CF分别平分∠CMO与∠DCM,若∠AME=α,∠DCF=β,试用含α的代数式表示β;②点P为线段CD上一点(不与点C、D重合),P的横坐标为t,连接BP、AC,BP交y轴于点E,交AC于点Q,若△CQE与△PQA的面积分别为S1,S2,试用含t的代数式表示S2﹣S1.解:(1)如图1中,∵=0,又∵≥0,|b+2|≥0,(c﹣4)2≥0,∴a=5,b=﹣2,c=4,∴A(5,0),B(﹣2,0),C(0,4),∴OA=5,OB=2,OC=4,∴AB=OB+OA=2+5=7,∴S△ABC=•AB•OC=×7×4=14.(2)①如图2﹣1中,当点E在射线OB上时,α+β=90°理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∵∠DCF=∠DCM=β,∠AME=∠AMC=α,∴α+β=90°.当点M在线段AB上时,如图2﹣2中,α+β=180°.理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∠DCM=∠CMB,∵∠DCM=2∠DCF=2β,∠FCM=∠DCM,∠EMC=∠CMB,∴∠FCM=∠EMC=β,∴∠AMC=180°﹣2β,∵∠AME=∠AMC+∠EMC,∴α=β+180°﹣2β,∴α+β=180°.当点M在线段OA的延长线上时,如图2﹣3中,α=β.理由::∵CD∥AM,∴∠DCM=∠CMB,∵∠DCF=∠DCM,∠AME=∠CMB,∴∠DCF=∠AME,∴α=β.②如图3中,设E(0,m).由题意:P(t,4),A(5,0),B(﹣2,0),C(0,4),∴S△BCP=S△BCE+S△ECP,∴×t×4=×(4﹣m)×2+×(4﹣m)×t,∴m=,∴S2﹣S1=S△PCA﹣S△PCE′=×t×4﹣×t×(4﹣)=.4、如图,在平面直角坐标系中,O为原点,点A(0,4),B(﹣4,0),C(4,0).(Ⅰ)如图①,若∠BAD=15°,AD=3,求点D的坐标;(Ⅱ)如图②,AD=2,将△ABD绕点A逆时针方向旋转得到△ACE,点B,D的对应点分别为C,E.连接DE,BD的延长线与CE相交于点F.①求DE的长;②证明:BF⊥CE.(Ⅲ)如图③,将(Ⅱ)中的△ADE绕点A在平面内旋转一周,在旋转过程中点D,E的对应点分别为D1,E1,点N,P分别为D1E1,D1C的中点,请直接写出△OPN面积S的变化范围.解:(Ⅰ)∵OA=OB=4,∠AOB=90°,∴∠OAB=∠ABO=45°.∴∠DAO=∠OAB﹣∠DAB=30°.如图①中,过点D作DG⊥OA,垂足为G.在Rt△ADG中,∠DAG=30°,∴,,∴,∴点D的坐标为.(Ⅱ)①如图②中,∵∠DAE=∠BAC=90°,AD=AE=2,∴在Rt△DAE中,,②∵OA=OB=OC=4,∠AOB=∠AOC=90°,∴∠OAB=∠ABO=∠ACO=∠OAC=45°,∴∠BAC=90°,∵△ABD旋转得到△ACE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△BFC中,则有∠FBC+∠FCB=∠FBC+∠BCA+∠ACE=∠FBC+∠BCA+∠ABD=∠ABC+∠BCA=90°,∴BF⊥CE.(Ⅲ)如图③中,∵OB=OC,PC=PD1,NE1=ND1,∴OP=BD1,PN=E1C,OP∥BD1,PN∥CE1∵BD1⊥E1C,BD1=E1C,∴OP⊥PN,OP=PN,∴△OPN是等腰直角三角形,∵AB=4,AD1=2,∴4﹣2≤BD1≤4+2,∴2﹣1≤OP≤2+1,∴△OPN面积的最小值=(2﹣1)2=﹣2,△OPN的面积的最大值=+2,∴.5、问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴BH=CD=2,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∴==,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.6、已知△ABC是等边三角形,D是BC上一点,△ABD绕点A逆时针旋转到△ACE的位置.(1)如图,旋转中心是,∠DAE=°;(2)如图,如果M是AB的中点,那么经过上述旋转后,点M转动了度;(3)如果点D为BC边上的三等分点,且△ABD的面积为3,那么四边形ADCE的面积为.解:(1)∵△ABC为等边三角形,∴∠BAC=60°∵△ABD绕点A逆时针旋转到△ACE的位置,∴旋转中心是点A,∠DAE=∠BAC=60°;(2)∵AB和AC为对应边,∴经过上述旋转后,点M转到了AC的中点位置,如图,∴∠MAM′=60°,∴点M转动了60°;(3)∵△ABD绕点A逆时针旋转到△ACE的位置,∴△ABD≌△ACE,∵BD=BC,或BD=BC,∴CD=2BD,或CD=BD,∴S△ABC=3S△ABD=3×3=9,或S△ABC=S△ABD=3×=,∴S=S△ABC=9或.四边形ADCE故答案为点A,60;60;9或.7、如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN=2+5=7,最大∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.8、如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)结论:AE=BD,AE⊥BD.理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,∴EH=DH,CH=DE=5,在Rt△ACH中,∵AC=13,CH=5,∴AH==12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH﹣DH=12﹣5=7,综上所述,满足条件的AD的值为17或7.9、如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.(1)问题发现当α=0°时,=;β=°.(2)拓展探究试判断:当0°≤α<360°时,和β的大小有无变化?请仅就图2的情形给出证明.(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.解:(1)如图1中,∵∠B=90°,BA=BC,∴∠A=45°,AC=AB,∵点D、E分别是边AB、AC的中点,∴BD=AB,EC=AC,∴=,β=45°,故答案为,45°.(2)结论:和β的大小无变化.理由:如图2中,延长CE交AB于点O,交BD于K.∵AE=AD,AC=AB,∴==,∴=,∵∠DAE=∠BAC,∴∠DAB=∠EAC,∴△DAB∽△EAC,∴==,∠OBK=∠OCA,∵∠BOK=∠COA,∠BKO=∠CAO=45°,∴和β的大小无变化.(3)当点E在线段AB上时,S△BCE=×4×(4﹣2)=8﹣4,当点E在线段BA的延长线上时,S△BCE=×4×(4+2)=8+4.综上所述,△BCE的面积为8﹣4或8+4.10、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.11、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.解:(1)如图1中,连接EC,BD.结论:BD=CE.理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS).∴BD=CE.(2)如图2中,由题意:∠CAE=45°,∵AC=AB,∠CAB=90°,∴∠ACB=∠ABC=45°,∴AE∥BC.∴△CBE的面积与△ABC的面积相等.∵△ABC的面积为4.5,∴△CBE的面积4.5.(3)如图3中,延长AM到N,使得MN=AM,连接CN,DM.∵AM=MN,CM=MD,∴四边形ADNC是平行四边形,∴AD=CN=1,∵AC=3,∴3﹣1≤AN≤3+1,∴2≤2AM≤4,∴1≤AM≤2,∴AM的最小值为1.故答案为1.12、综合与实践问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题(1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;(4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)解:(1)如图①中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.(3)如图③中,作CH⊥AD于H.∵∴AC=CD=AB=2,∵B,A,E共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A,E,D,C四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD,CH⊥AD,∴AH=DH=AC•cos30°=,∴AD=2,∴BD===2.(4)如图①中,设DE交BC于T.因为含有30°的直角三角形的三边之比为1::2,由(1)可知△BDT,△DCT,△ECT都是含有30°的直角三角形,∴△BDT,△DCT,△ECT符合条件.41。