电动力学-静电场答案

合集下载

电动力学知到章节答案智慧树2023年华南师范大学

电动力学知到章节答案智慧树2023年华南师范大学

电动力学知到章节测试答案智慧树2023年最新华南师范大学绪论单元测试1.由于静电场场强是电标势的负梯度,所以静电场一定是( )。

参考答案:无旋有源场;2.由于磁感应强度是磁矢势的旋度,所以磁场一定是( )。

参考答案:无源有旋场;3.由Stokes定理可知:( )。

参考答案:4.标量的梯度用于确定( )。

参考答案:场的方向;;场的大小;5.矢量的散度用于确定( )。

参考答案:场的有源性;;场的有旋性;;场的源或者汇;6.矢量的旋度用于确定( )。

参考答案:场的有旋性;;场线是否封闭;7.参考答案:错8.参考答案:错第一章测试1.库仑定律表明电荷间作用力与其距离( )关系。

参考答案:成反平方;2.真空中的静电场高斯定理表明:穿过封闭曲面的电通量与该曲面内的净余电量( )。

参考答案:成正比;3.法拉第电磁感应定律表明:感应电场是由( )产生的。

参考答案:变化的磁场。

4.在电介质的某点处,与自由电荷体密度成正比的是( )的散度。

参考答案:电位移矢量;5.在磁介质的某点处,与自由电流面密度成正比的是( )的旋度。

参考答案:磁场强度矢量;6.法拉第电磁感应定律表明:感应电场是有源无旋场。

( )参考答案:错7.位移电流是由变化的电场产生的。

( )参考答案:对8.在电动力学中,库仑力不属于洛伦兹力。

( )参考答案:错9.在非线性介质中,电场强度矢量、电位移矢量、极化强度矢量三者不仅方向平行,而且大小成比例。

( )参考答案:错10.在非线性介质中,磁场强度矢量、磁感应强度矢量、磁化强度矢量三者不仅方向平行,而且大小成比例。

( )参考答案:错11.真空中的静电场高斯定理表明:穿过某封闭曲面的电通量只与该曲面内的净余电量有关,与该曲面外的电荷无关。

( )参考答案:对12.在静电场高斯定理的积分式中,封闭曲面是不能任意选取的。

( )参考答案:错13.真空中的静电场高斯定理表明:某点的电场强度的散度只与该点处的电荷有关,与其它地方的电荷无关。

电动力学习题及答案

电动力学习题及答案
第二章 静电场习题解答
根据前面的内容讨论知道:在所考虑区域内 没有自由电荷分布时,可用Laplace's equation求 解场分布;在所考虑的区域内有自由电荷分布时, 且用Poisson‘s equation 求解场分布。
如果在所考虑的区域内只有一个或多个点电 荷,区域边界是导体或介质界面,这类问题又如 何求解场分布? 这就是本节主要研究的一个问 题。解决这类问题的一种特殊方法称为 — 镜象 法。
电场。右半空间的电场是Q及S面上的感应电荷面密
度 感 共同产生的。以假想的点电荷Q'等效地代替感 应电荷,右半空间的电势必须满足以下条件:
1 2 Q ( x a, y 0, z 0) 0 R 0 x 0 0 (1) (2) (3)
由(4)式得
b 2 Q Q a 将(6)式代入(5)式得
2
(6)
b 2 (a R02 ) ( R02 b 2 ) a
1 2 2 2 即b (a R0 )b R0 0 a
2
解此二次方程,得到
2 R0 b a b a
将此代入(6)式,即有
Q Q R0 Q Q a
c、
Q


4
-Q 5 +Q 4
+Q 6 7
-Q
B
Q
A
1 -Q
3 -Q 2 +Q
要保证 A B 0 则必须有7个象电荷,故电势为
1 1 1 1 1 1 1 1 ( ) 4 0 r r1 r2 r3 r4 r5 r6 r7
一般说明:只要 满足2 偶数的情形,都可用 镜象法求解,此时象电荷的个数等于 (2 ) 1 ,

静电场练习题及答案解析

静电场练习题及答案解析

静电场练习题及答案解析练习1一、选择题1. 一带电体可作为点电荷处理的条件是( )A. 电荷必须呈球形分布;B. 带电体的线度与其它有关长度相比可忽略不计;C. 电量很小;D. 带电体的线度很小。

2. 试验点和q0在电场中受力为F⃗,其电场强度的大小为F,以下说法正确的( )q0A. 电场强度的大小E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定;B. 电场强度的大小E正比于F且反比与q0;C. 电场强度的大小E反比与q0;D. 电场强度的大小E正比于F。

3. 如果通过闭合面S的电通量Φe为零,则可以肯定( )A. 面S内没有电荷;B. 面S内没有净电荷;C. 面S上每一点的场强都等于零;D. 面S上每一点的场强都不等于零。

4. 如图所示为一具有球对称性分布的静电场的E~r关系曲线,产生该静电场的带电体是( ) A 半径为R的均匀带电球面;B半径为R的均匀带电球体;C半径为R的、电荷体密度为ρ=Ar(A为常数)的非均匀带电球体;D半径为R的、电荷体密度为ρ=A r⁄(A为常数)的非均匀带电球体。

5. 在匀强电场中,将一负电荷从A移动B,如图所示,则( )A. 电场力做负功,负电荷的电荷能增加;B. 电场力做负功,负电荷的电势能减少;C. 电场力做正功,负电荷的电势能增加;D. 电场力做正功,负电荷的电势能减少。

二、填空题1. 点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量∮E⃗⃗∙dS⃗=,式中E⃗⃗是点电荷在闭合曲面上任一点产生的场强的矢量和。

2. 真空环境中正电荷q均匀地分布在半径为R的细圆环上.在环环心O处电场强度为,环心的电势为。

=0,这表3. 在静电场中,场强沿任意闭合路径的线积分等于零,即∮E⃗⃗∙dl⃗L明静电场中的电场线。

4. 一半径为R的均匀带电球面,其电荷面密度为σ,该球面内、外的场强分布为(r⃗表示从球心引出的矢径):E⃗⃗r=(r<R);E⃗⃗r=(r>R)。

大学物理第八章静电场(答案)

大学物理第八章静电场(答案)

第八章 静电场8.1 真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ C ]8.2 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电通量必不为零.[ D ]8.3有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03εq . (B) 04επq (C) 03επq . (D) 06εq[ D ]q8.4面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)Sq 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ B ]8.5一个带正电荷的质点,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示中正确的是:[ D ]8.6如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ D ]-8.7静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ C ]8.8已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N .(C) 电势能W M <W N . (D) 电场力的功A >0.[ C ]A8.9 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷置于x 处所受合力为零,即该点场强为零.()()0142142020=+π-+-πx qx q εε 2分 得 x 2-6x +1=0, ()223±=x m因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m3分8.10 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.L解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε 2分d EO总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε 3分 方向沿x 轴,即杆的延长线方向.8.11 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π。

大学物理第五章 静电场部分的习题及答案

大学物理第五章 静电场部分的习题及答案

第五章 静电场一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。

答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。

0ε∑⎰=⋅内S Sq S d E3、写出静电场的环路定理,并分别说明其物理意义。

答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E ),静电场是保守场。

4、感生电场与静电场有哪些区别和联系?二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A.20214r Q Q επ+ B.()()2202210144R r Q R r Q -π+-πεε C.()2120214R R Q Q -+επ D.2024r Q επ 2、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:( B )3、图示一均匀带电球体,总电荷为Q +,其外部同心地罩一内、外半径分别为1r 、2r 的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: ( D )A.204r QE επ=,r Q U 04επ= B.0=E ,104r Q U επ= C. 0=E ,r Q U 04επ=D.0=E ,204r Q U επ= 4、图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:( D )A.C B A E E E >>,C B A U U U >>B.C B A E E E <<,C B A U U U <<C.C B A E E E >>,C B A U U U <<D.C B A E E E <<,C B A U U U >>5、面积为S 的空气平行板电容器,极板上分别带电量q ±,若不考虑边缘效应,则两极板间的相互作用力为 ( B )A.S q 02εB.S q 022εC.2022S q εD.202Sq ε 6、一均匀带电球面在球面内各处产生的场强 ( A )A.处处为零B.不一定为零C.一定不为零D.是常数7、已知一高斯面所包围的体积内电量代数和0=∑i q ,则可肯定:( C )A.高斯面上各点场强均为零B.穿过高斯面上每一面元的电通量均为零C.穿过整个高斯面的电通量为零D.以上说法都不对8、下列说法中正确的是 ( D )A.电场强度为0的点,电势也一定为0.B.电场强度不为0的点,电势也一定不为0.C.电势为0的点,则电场强度也一定为0.D.电势在某一区域为常数,则电场强度在该区域也必定为0.9、如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于 ( B ):A.04εqB.06εqC.06πεqD.04πεq 三、计算题1、两无限长同轴圆柱面,半径分别为1R 和2R (21R R < ),带有等量异号电荷,单位长度的电量为λ和λ-,求:(1) 1R r <;(2)21R r R <<;(3)r R <2处各点的场强。

大学物理第9章静电场习题参考答案

大学物理第9章静电场习题参考答案

第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 方向沿CB 方向∴ C 点的合场强E的大小为: 设E 的方向与CB 的夹角为α,则有9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相 互抵消。

0=∴x E ,圆心O 处场强E 的y 分量为方向沿y 轴正向。

9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。

设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是方向沿x 轴方向。

(2)坐标如题9-4图(b)所示,在带电细棒上取电荷元x q d d λ=与Q 点距离为r ,电荷元在Q 点所产生的场强20d 41d r xE λπε=,由于对称性,场d E 的x 方向分量相互抵消,所习题9-1图习题9-4图(a )习题9-3图习题9-2图以E x =0,场强d E 的y 分量为θλπεθsin d 41sin d d 20r xE E y ==因θθθπθθd csc d d ,d 2d ,csc d 22222=-=⎪⎭⎫⎝⎛-==x ctg tg x r ∴ θθπελθλπεd sin d 4sin d 41d 2020==r xE y其中 22222221)2/(d 2/c o s ,)2/(d 2/c o s L L L L +-=+=θθ代入上式得方向沿y 轴正向。

电动力学第三版答案

电动力学第三版答案

电动力学第三版答案第一章:静电学1.1 静电场静电场是由电荷所产生的场,它是一种无时间变化的电磁场。

静电场的性质可以通过电场强度、电势和电荷分布来描述。

电场强度表示单位正电荷所受到的力,并且是一个向量量。

在任意一点的电场强度可以通过库仑定律计算。

电势是单位正电荷所具有的势能,它是一个标量量。

电势可以通过电势差来定义,电势差是两点之间的电势差别。

1.2 电场的高斯定律电场的高斯定律是描述电场在闭合曲面上的通量与该闭合曲面内的电荷有关系的定律。

它可以通过以下公式表示:\[ \oint \mathbf{E} \cdot \mathbf{n} \, ds =\frac{Q_{\text{enc}}}{\varepsilon_0} \]其中,\(\mathbf{E}\) 是电场强度,\(\mathbf{n}\) 是曲面上的单位法向量,\(ds\) 是曲面上的微元面积,\(Q_{\text{enc}}\) 是闭合曲面内的总电荷,\(\varepsilon_0\) 是真空电容率。

1.3 电势电势是单位正电荷所具有的势能,它是一个标量量。

它可以通过电势差来定义,电势差是两点之间的电势差别。

电势可以通过以下公式计算:\[ V = - \int \mathbf{E} \cdot d\mathbf{l} \]其中,\(V\) 是电势,\(\mathbf{E}\) 是电场强度,\(d\mathbf{l}\) 是路径上的微元长度。

1.4 静电场中的导体在静电场中,导体内部的电场强度为零。

当导体受到外部电场作用时,其表面会产生等效于外部电场的电荷分布,这种现象被称为静电感应。

静电感应可以通过以下公式来计算表面电荷密度:\[ \sigma = \mathbf{n} \cdot \mathbf{E} \]其中,\(\sigma\) 是表面电荷密度,\(\mathbf{n}\) 是表面法向量,\(\mathbf{E}\) 是外部电场强度。

静电场习题答案

静电场习题答案

静电场习题答案一 选择题答案1()C 2()D 3()B 4()C 5()A 二 填空题答案 1. 原来的 1/2;2.22044R Q R S ππε∆,S ∆指向;3. 02/εσ 轴正向x ;02/3εσ轴正向x ;02/εσ 轴负向x ;4. a 0212/πελλ;5.120,/q φφφε<=三 简答题答案1答:电场强度的环流说明静电力是保守力,静电场是保守力场。

表示静电场的电场线不能闭合。

如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,积分结果不为零,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。

2答:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交。

3答:在高斯定理中,对高斯面的形状没有特殊要求;在应用高斯定理求场强时,对高斯面的形状有特殊要求, 所选高斯面应平行电场线或垂直电场线,当高斯面法向与电场线平行时,高斯面上的场强大小处处相等。

使得在计算通过此高斯面的电通量时,可以从积分号中提出来,而只需对简单的几何曲面进行积分就可以了。

4答 能定性的判断出各处电场强度的方向及大小。

静电场的场强E方向由高电势指向低电势,并与法线n的方向相反。

看等势面疏密比较电场强度的大小:等势面越密的,电场强度越大;反之,越小。

5解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S qE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力S q S qq f 02022εε==,这是两板间相互作用的电场力.大题详解: 12:解:参见图。

高中物理静电场(精选100题答案)

高中物理静电场(精选100题答案)
Q 强大小皆为 k2L2,方向与水平方向成 45°角,因三个点电荷的空间对称性,水平方向合场强为零,总合场
3 2kQ 强为三个场强的竖直分量之和,即 4L2 ,选项 D 正确。
7. 解析:选 A 设在 O 点的球壳为完整的带电荷量为 2q 的带电球壳,则在 M、N 两点产生的场强大
k·2q kq 小为 E0=2R2=2R2。题图中左半球壳在 M 点产生的场强为 E,则右半球壳在 M 点产生的场强为 E′=
4Q·2Q
Q2
FAC=k 12L2 =32kL2
B、C 之间为引力,大小为 Q·2Q Q2
FBC=k12L2=8k L2
Q2 F 合=FAC+FBC=40kL2 。
(2)根据三个点电荷的平衡规律,D 为正电荷,且 D 应放在 AB 连线的延长线上靠近 B 的一侧,设 D 到 B 的距离为 x,电荷量为 q,
静电场典型题目 70 题参考答案
1. 解析:选 A 库仑力作用符合牛顿第三定律,即两小球所带电荷量不相等时,相互作用的库仑力
大小相等,因此 α>β 不是电荷量不相等造成的。根据受力平衡条件及 α>β,可得 m1<m2,故 A 正确。
2. 解析:选 D 由于小球 c 所受库仑力的合力的方向平行于 a、b 的连线,根据受
库仑力与 b 对 c 的库仑力关于 Oc 对称,即 qa=qb,B 正确;对 a、b 整体受力分析可得:因为 a、b 连线
水平,则 ma=mb,但与 c 的质量关系不能确定,A 错误;因 c 对 a、b 的库仑力关于 Oc 对称,由受力分
析知,细线 Oa、Ob 所受拉力大小相等,C 正确;c 所带电荷量与 a、b 所带电荷量不一定相等,所以 a、
kq
kq

郭硕鸿《电动力学》课后标准答案

郭硕鸿《电动力学》课后标准答案

电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明:(1)z y x zu f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z u u f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d duu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇= 3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。

电动力学-静电场答案

电动力学-静电场答案
4. 试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况 下,导体外的电场线总是垂直于导体表面。 证明:设介质1为导体,介质2为绝缘体。 1 导体 2 绝缘体 静电情况下:, 由边值关系:,
可得:, 即,, 对于各向同性线性介质 所以, 即导体外的电场线垂直于导体表面
5. 如图1,有一厚度为,电荷密度为的均匀带电无限大平板,试用分离 变量法求空间电势的分布。 2a O 图1 解:以O原点建立如图坐标系,为根据问题的对称性, 电势分布仅与x有关,即一维问题。容易写出定解问题: x 时
13. 求面电荷密度按分布,半径为的球的电矩。问该系统是否存在电四 极矩? 解:
, 所以,
14. 设真空中电场的势为 式中是离坐标原点的距离,和是常数,求相应的电荷分布。 解:,,
时,, 时,
15. 在一点电荷的电场中,距离它为的地方有一偶极子,其电矩,求在 下列两种情况下,此电矩所受的力和力矩: (1)偶极子的电矩沿点电荷电场的方向; (2)偶极子的电矩垂直于点电荷的电场。 解:把点电荷q激发的电场视为外场,,
平面上,并与棱边(两面角之交线)相距为。试用电像法求真空中的电
势。
解:考虑到两个无限大导电平面是接地的,且点电荷Q位于双面角的平
分线上,可按下面的方法求得像电荷的位置和大小:
(1)首先考虑半面,为了满足平面的电势为零,应在Q关于对称的位
置B处有一像电荷-Q, A +Q N’ N C D F E B -Q +Q -Q +Q -Q A (2)考虑半面,同样为了满足电势为零的要求,对于A、B处两个点电
1导体球上接有电池使球保持电势为建立球坐标系极轴方向为均匀电场方向可知电势分布具有轴对称性即电势仅与r有关待定类似解为coscos电动力学习题西北工业大学理学院应用物理系介电常数为的无限均匀介质中挖一个半径为a的空球球心处置一电电动力学习题西北工业大学理学院应用物理系109

电动力学答案L1

电动力学答案L1

(3)静电t情an况θ1:导E体1t 内E2nEv1
σ1 =0
稳恒电∴流情E2况t =:E对1t绝=缘0 介,质即,导体σ 外= 的0 ,电场Jv2线=总0 是垂直于导体表面。
1-14
∴ J1n = J 2n = 0
解(1)由边值关系
即导体内只有平行于导体表面的电场。
evn
×
(
v H
2

v H1
)
=
=
Q
S
ε0
∴E
=
Q 4πε0r 2
,即
v E
=
Q 4πε0r 3
rv
∫ ∫ r < a 时,
v E

v dS
=

r
2
E
=
1
ρdV = 1 ⋅ ρ ⋅ 4 π r3
S
ε0 V
ε0 3
r
a
=

v E
1⋅ Q
ε0 =
(4 3)π Qrv
4πε 0 a 3
a3

4π 3
r3
=
1 ε0

Qr 3 a3
求散度、旋度
∴∇ × Bv
=

∂Bθ ∂z
evr
+
1 r
∂ ∂r
(rBθ )evz
=
μ0I 2πR12
1 r
∂r 2 ∂r
evz
=
μ0I πR12
evz
=
μ0 Jv
R1
<
r
<
R2 时, B
=

=
μ0I 2πr
2
r

电动力学习题解答

电动力学习题解答

第二章 静电场1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。

(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。

解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。

当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。

大学物理静电场习题答案

大学物理静电场习题答案

第12章 静电场P35.12.3 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.[解答]根据点电荷的场强大小的公式22014q qE k r r ==πε, 其中1/(4πε0) = k = 9.0×109N·m 2·C -2.点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯, 方向向下.点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯,方向向右.C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.12.4 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强.[解答]在带正电的圆弧上取一弧元 d s = R d θ,电荷元为d q = λd s ,在O 点产生的场强大小为220001d 1d d d 444q s E R R R λλθπεπεπε===, 场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/60000sin d (cos )22R R==-⎰ππλλθθθπεπε0(1)22R=-λπε.12.5 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求:(1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;(2)棒的垂直平分线上与棒的中点相距d 2 = 8cm 处的场强.[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m).在细棒上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产图13.1生的场强的大小为1220d d d 4()q lE k r x l ==-λπε场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得120d 4()L L l E x l λπε-=-⎰014LLx lλπε-=-011()4x L x Lλπε=--+ 220124L x L λπε=-. ①将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯- = 2.41×103(N·C -1),方向沿着x 轴正向.(2)建立坐标系,y = d 2. 在细棒上取一线元d l ,所带的电量为 d q = λd l ,在棒的垂直平分线上的P 2点产生的场强的大小为2220d d d 4q lE kr r λπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.由图可知:r = d 2/sin θ,l = d 2cot θ, 所以 d l = -d 2d θ/sin 2θ, 因此 02d sin d 4y E d λθθπε-=,总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=LL=-==. ②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+= 5.27×103(N·C -1). 方向沿着y 轴正向.[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++,保持d 1不变,当a →∞时,可得1014E d λπε→, ③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.(2)由②式得y E ==,当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.12.6 一均匀带电无限长细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强.在圆弧上取一弧元 d s =R d φ, 所带的电量为d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E R πθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1, 因此 θ/2 = π/4, 所以 θ = π/2.12.7 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如图所示.试求:(1)平板所在平面内,距薄板边缘为a处的场强.(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x , 根据直线带电线的场强公式02E rλπε=, 得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-,其方向沿x 轴正向.由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰ /20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+. ①图13.4图13.5.场强方向沿x 轴正向.(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = σd x ,带电直线在Q 点产生的场强为221/200d d d 22()xE rb x λσπεπε==+,沿z 轴方向的分量为221/20cos d d d cos 2()z xE E b x σθθπε==+,设x = d tan θ,则d x = d d θ/cos 2θ,因此d d cos d 2z E E σθθπε==积分得arctan(/2)0arctan(/2)d 2b d z b d E σθπε-=⎰ 0arctan()2bdσπε=. ② 场强方向沿z 轴正向.[讨论](1)薄板单位长度上电荷为λ = σb ,①式的场强可化为0ln(1/)2/b a E a b aλπε+=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02E aλπε→, ③ 这正是带电直线的场强公式.(2)②也可以化为0arctan(/2)2/2z b d E d b dλπε=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02z E dλπε→,这也是带电直线的场强公式.当b →∞时,可得2z E σε→, ④ 这是无限大带电平面所产生的场强公式.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少?[解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.9 面电荷密度为σ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为q = πR 2σ, 通过球面的电通量为图13.7Φe = q /ε0, 通过半球面的电通量为Φ`e = Φe /2 = πR 2σ/2ε0.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性.(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl , 穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS , 包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法. (1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0, 积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry d E r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.1212.13 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为均强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的叠加.对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为3E r ρε=.当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=, 方向由O 指向O `.O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=, 方向也由O 指向O `.[证明]在小球内任一点P ,大球和小球产生的场强大小分别为 03r E r ρε=, `0`3r E r ρε=,方向如图所示.设两场强之间的夹角为θ,合场强的平方为222``2cos r r r r E E E E E θ=++2220()(`2`cos )3r r rr ρθε=++, 根据余弦定理得222`2`c o s ()a r rr r πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.12.14 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C点,求移动过程中电场力所做的功.[解答]正负电荷在O 点的电势的和为零:U O = 0;图13.10图13.11在C 点产生的电势为0004346C q q q U RRRπεπεπε--=+=,电场力将正电荷q 0从O 移到C 所做的功为W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .12.15 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?[解答]两平面产生的电场强度大小分别为E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0,两平面在它们之间产生的场强方向相反,因此,总场强大小为E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面.两平面间的电势差为U = Ed = σd /2ε0,当点电荷q 从A 面移到B 面时,电场力做的功为W = qU = qσd /2ε0.12.16 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?[解答]带电球面在外部产生的场强为204Q E rπε=,由于d d R RRU U E r ∞∞∞-=⋅=⎰⎰E l200d 44RR QQr r r πεπε∞∞-==⎰04Q Rπε=,当U R = 0时,04Q U Rπε∞=-.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明]球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用13.10题的方法可求球内外的电场强度大小为30034QE r r R ρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Qr r r R r πεπε∞=+⎰⎰230084R rRQQ rRrπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r Rπε-=. 12.18 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其他地方无电荷.(1)求此带电系统的电场分布,画E-y 图;(2)以y = 0作为零电势面,求电势分布,画E-y 图.[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反.(1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E Sd d d 2S S S ES =⋅+⋅+⋅=⎰⎰⎰E S E S E S 12.高斯面内的体积为 V = 2yS ,包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρy/ε0, (-b ≦y ≦b ).穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为地Φe = 2ES ,高斯面在板内的体积为 V = S 2b , 包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρb/ε0, (b ≦y );E = -ρb/ε0, (y ≦-b ).E-y 图如左图所示.(2)对于平面之间的点,电势为d d yU y ρε=-⋅=-⎰⎰E l 202y C ρε=-+,在y = 0处U = 0,所以C = 0,因此电势为22y U ρε=-,(-b ≦y ≦b ). 这是一条开口向下的抛物线.当y ≧b 时,电势为d d nqbnqbU y y C εε=-⋅=-=-+⎰⎰E l ,在y = b 处U = -ρb 2/2ε0,所以C = ρb 2/2ε0,因此电势为2002b b U y ρρεε=-+,(b ≦y ). 当y ≦-b 时,电势为00d d b bU y y C ρρεε=-⋅==+⎰⎰E l ,在y = -b 处U = -ρb 2/2ε0,所以C = ρd 2/2ε0,因此电势为2002b b U y ρρεε=+, 两个公式综合得200||2b b U y ρρεε=-+,(|y |≧d ). 这是两条直线.U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其他关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即d U =-⋅⎰E l这是因为积分的起点位置是积分下限.12.19 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔5.0cm ,板上各带电荷σ=3.3×10-6C·m -2,求: (1)在两板之间离A板1.0cm 处P 点的电势;(2)A 板的电势.[解答]两板之间的电场强度为E=σ/ε0,方向从A 指向B .以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为d d BBPPr r P B r r U U E r -=⋅=⎰⎰E l()B P r r σε=-, 由于U B = 0,所以P 点的电势为6123.3100.048.8410P U --⨯=⨯⨯=1.493×104(V). (2)同理可得A 板的电势为()A B A U r r σε=-=1.866×104(V).12.20 电量q 均匀分布在长为2L 的细直线上,试求:(1)带电直线延长线上离中点为r 处的电势;(2)带电直线中垂线上离中点为r 处的电势;(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L . (1)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为10d 4L L l U r lλπε-=-⎰ 0ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. (2)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,在线的垂直平分线上的P 2点产生的电势为2221/20d d 4()lU r l λπε=+, 积分得2221/201d 4()LLU l r l λπε-=+⎰)4Ll Ll λπε=-=0ln8q Lπε=0ln4q LLrπε=.(3)P 1点的场强大小为11U E r∂=-∂ 011()8qL r L r L πε=--+22014qr L πε=-, ①方向沿着x 轴正向.P 2点的场强为22U E r∂=-∂01[4qL r πε==, ②方向沿着y 轴正向.[讨论]习题13.3的解答已经计算了带电线的延长线上的场强为1220124L E x L λπε=-, 由于2L λ = q ,取x = r ,就得公式①.(2)习题13.3的解答还计算了中垂线上的场强为y E =取d 2 = r ,可得公式②. 由此可见,电场强度可用场强叠加原理计算,也可以用电势的关系计算.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强.[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为d V = 4πr 2d r ,包含的电量为 d q = ρd V = 4πρr 2d r ,在球心处产生的电势为00d d d 4O q U r r rρπεε==, 球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-, 包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--. (2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂.图13.18[讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为E = 0, (r ≦R 1).过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为3314()3V r R π=-,包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0, 可得B 点的场强为3120()3R E r rρε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为33214()3V R R π=-,包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为33212200()43R R qE r rρπεε-==,(R 2≦r ). A 点的电势为d d AAA r r U E r ∞∞=⋅=⎰⎰E l12131200d ()d 3AR R r RR r r r r ρε=+-⎰⎰2332120()d 3RR R r r ρε∞-+⎰ 22210()2R R ρε=-. B 点的电势为d d BBB r r U E r ∞∞=⋅=⎰⎰E l23120()d 3BR rR r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰ 322120(32)6B BR R r r ρε=--.A 和B 点的电势与前面计算的结果相同.12.21 (1)设地球表面附近的场强约为200V·m -1,方向指向地球中心,试求地球所带有的总电量.(2)在离地面1400m 高处,场强降为20V·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.[解答]地球的平均半径为R =6.371×106m .(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量.根据公式 E = -σ/ε0, 电荷面密度为 σ = -ε0E ; 地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = σS = -4πε0R 2E = -R 2E /k ,k 是静电力常量,因此电量为629(6.37110)200910Q ⨯⨯=-⨯=-9.02×105(C). (2)在离地面高为h = 1400m 的球面内的电量为2()``R h E Q k+=-=-0.9×105(C),大气层中的电荷为q = Q - Q` = 8.12×105(C).由于大气层的厚度远小于地球的半径,其体积约为V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为ρ = q /V = 1.137×10-12(C·m -3).。

静电场习题答案[1]解析共26页文档

静电场习题答案[1]解析共26页文档

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
静电场习题答案[的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号: 班级: 学号:姓名: 成绩:第1章 静电场1. 证明均匀介质内部的极化电荷体密度p ρ,总等于自由电荷体密度f ρ的 -(1-εε0)倍。

f ρ=⋅∇DE])[(E)(P 00εεεχρ-⋅-∇=⋅-∇=⋅-∇=e PfP ρεεεεερ)(D])[(001--=-⋅-∇=2. 有一内外半径分别为21和r r 的空心介质球,介质的介电常数为ε,使介质内均匀带静止自由电荷f ρ,求 (1)空间各点的电场;(2)极化体电荷和极化面电荷分布。

解 1)由电荷分布的对称性可知:电场分布也是对称的。

电场方向沿径向 故:1r r<时0402==⎰dV r r fV ερπ)E( 或 0=)E(r21r r r <<时 球壳体内:dr r r D r ds rr f ⎰⎰⎰==⋅12244πρπ)(n D ])([)(3113r r rr D f -=ρ ])([)()(310013rr rr D r E f -==ερε 在2r r>的球形外:)()(212202023441421r r dr r r E r r rf -==⎰ρεππρεπ )()(2122203r r rr E -=ερ式中 r εεε0= 写在一起⎪⎪⎪⎩⎪⎪⎪⎨⎧>-<<-<=)(r )()(r])([)(E 22122302131013130r r r r r r r r r r r r f ερερ2) r ])([)(E D P 310013rrf --=-=ερεεε f p ρεεερ0--=⋅-∇=P (与第一题相符) 内表面:013031101011=-=--⋅-=-⋅-===])([]E )[(n )p (p n 12r r r f rr r r p ερεεσ 外表面:2222100013022r r r rr r r p )()(E])([n )p (p n 12--=--⋅-=-⋅-===ερεεεεσ3. 证明:当两种绝缘介质的分界面上不带面自由电荷时,电场线的偏折 满足:1212tan tan εεθθ= 式中1ε和2ε分别为两介质的介电常数,1θ和2θ分别为界面两侧电场线与法线的夹角。

证明:绝缘介质分界面上自由电荷密度0=f σ,故边值关系为:t t E E 12=,n n D D 12= (012=-⨯)E (E n ,f σ=-⋅)D (D n 12)若两种介质都是线性均匀的,即111E D ε=,222E D ε= ; 上边两式为:1122θθsin sin E E =,111222θεθεcos cos E E = 于是得: 1212tan tan εεθθ=4. 试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面。

证明:设介质1为导体,介质2为绝缘体。

静电情况下:0=1E ,0=1D由边值关系:012=-⨯)E (E n ,f σ=-⋅)D (D n 12 可得:t t E E 12=,f n n D D σ=-12 即,02=t E ,f n D σ=2 对于各向同性线性介质E D ε=所以,n E εσf= 即导体外的电场线垂直于导体表面1 导体2 绝缘体5. 如图1,有一厚度为a 2,电荷密度为0ρ的均匀带电无限大平板,试用分离变量法求空间电势的分布。

解:以O 原点建立如图坐标系,为根据问题的对称性, 电势分布仅与x 有关,即一维问题。

容易写出定解问题:⎪⎪⎩⎪⎪⎨⎧>=<-=)()(a x dx d a x dx d i i 01220022ϕρεϕa x =时 e i ϕϕ= xx ei ∂∂=∂∂ϕϕ 0=x 时 0=)(x i ϕ直接求解得202x i ερϕ-= )(a x a e --=220ερϕ图16. 内半径a ,外半径为b 的两个同心导体球壳,令内球接地,外球带电量Q ,试用分离变量法求空间电势分布。

解.根据球对称性,空间电势分布ϕ仅与r 有关,定结问题为:⎩⎨⎧>=∇<<=∇)()(b r b r a 002212ϕϕ01==a r ϕr=b 时 21ϕϕ=Q ds rr =∂∂-∂∂⎰)(2010ϕεϕε 02=∞→r ϕ求解得)(r ab Q -=1401πεϕ )(ba rQ -=1401πεϕ7. 均匀外电场中0E ,置入半径为0R 的导体球。

求以下两种情况的电势分布。

(1)导体球上接有电池,使球保持电势为0Φ;(2)导体球上带有总电荷Q 。

解 建立球坐标系 极轴方向为均匀电场方向,可知电势分布具有轴对称性,即电势仅与r 有关 1)ϕ的定解问题为⎪⎩⎪⎨⎧+-=Φ=>=∇∞→=0000200ϕθϕϕϕcos )(r E R r r R r此时0ϕ是导体球放入前,通过坐标原点的等势面的电势,用分离变量法解为230000000r R E r R r E θϕθϕϕcos )(cos +-Φ+-=2)ϕ的定解问题为⎪⎪⎪⎩⎪⎪⎪⎨⎧-=∂∂Φ==∇⎰==00r 0020R R r Qds nεϕϕϕ)('待定类似解为23000004rR E r Qr E θπεθϕϕcos cos ++-=8. 介电常数为ε的无限均匀介质中,挖一个半径为a 的空球,球心处置一电矩为f p 的自由偶极子,试求空间电势分布。

解 如图建立球坐标系,f p 的方向为极轴x e 方向,ϕ的定解问题为⎪⎪⎩⎪⎪⎨⎧=>=∇<-=∇∞→001202r e e i a r a r ϕϕρεϕ)()(r=a 时,e i ϕϕ=;rr e i ∂∂=∂∂ϕεϕε0注意到泊松方程解的性质及电势分布具有轴对称性,i ϕ可写为:)(cos ][cos )(θπεθϕn n n n n n f i P r B r A r p 10204+-∞=∑++=第二项为极化电荷激发的势,该项在球心应为有限值,故B n =0 解的电势分布⎪⎪⎩⎪⎪⎨⎧>+⋅=<<+⋅--⋅=)()(r p )()(r p )(r p a r r a r a r f e f f i 303000302430224εεπϕεεπεεεπεϕ9.半径为R 的均匀介质球中心置一自由偶极子f p ,球外充满另一种介质,求空间各点的电势和极化电荷分布(介质球介电常数为1ε,球外为2ε)。

解:求解与上题类似,只需,,210εεεε→→ 得()()()03211213112424R r R r <+⋅-+⋅=εεπεεεπεϕrp r p f f ,()()03212243R r r≥+⋅=εεπϕrp f ,极化电荷分布,在介质球内f p ρεερ⎪⎭⎫ ⎝⎛--=01 因此在球心处有一极化电偶极矩f p p ⎪⎭⎫⎝⎛--=εε01, 在0R r =的界面上,由()12p p p n σ-⋅-=,()ϕεε∇-=0p 可得,()()()()302112102101012022230R p r rr r f R r R r p εεπεθεεεϕϕεϕεεϕεεσ+-=⎪⎭⎫⎝⎛∂∂-∂∂=⎥⎦⎤⎢⎣⎡∂∂--∂∂-===cos10. 两个接地的无限大导电平面,其夹角为︒60,点电荷Q 位于这个两面角的平面上,并与棱边(两面角之交线)相距为α。

试用电像法求真空中的电势。

解:考虑到两个无限大导电平面是接地的,且点电荷Q 位于双面角的平分线上,可按下面的方法求得像电荷的位置和大小:(1)首先考虑半面'ON ,为了满足'ON 平面的电势为零,应在Q 关于'ON 对称的位置B 处有一像电荷-Q ,(2)考虑半面ON ,同样为了满足电势为零的要求,对于A 、B 处两个点电荷+Q 和-Q ,应在A 、B 关于ON 对称的位置C 、D 处有两个-Q 、+Q ,(3)再考虑'ON 半平面,对于C 、D 处的-Q 和+Q ,应在E 、F 处有两个像电荷+Q 和-Q 才能使导体'ON 的电势为零。

可以证明E 、F 处的两个点电荷+Q 和-Q 关于ON 平面对称,因而可满足ON 平面的电势为零,这样找出了5个像电荷,加上原来给定的点电荷,能够使角域内的场方程和边界条件得到满足,所以角域内任一点P 处的电势可表为()⎪⎪⎭⎫ ⎝⎛-+-+-=654321041r Q r Q r Q r Q r Q r Q x πεϕ, 其中621r r r ,,,Λ分别为给定电荷Q 及其像电荷到P 点的距离。

在其余空间的电势为0=ϕ。

-Q11. 接地空心导体球,内外半径为1R 和2R ,球内离球心a 处(1R a <)置一点电荷Q ,试用电像法求空间电势分布。

导体上感应电荷分布在内表面还是外表面?其量为多少?若导体球壳不接地而是带电量0Q ,则电势分布又如何?若导体球壳具有确定的电势0ϕ,电势分布如何? 解:根据题意设球内区域电势为1ϕ,球外区域电势为2ϕ,()⎪⎪⎩⎪⎪⎨⎧===∇--=∇∴==00212122012R R R R z y a x Q ϕϕϕδεϕ,,, 设像电荷位置如图所示,⎪⎪⎭⎫⎝⎛+=''rQ r Q 0141πεϕ 其中()()122212222θθcos ,cos 'Rb b R r Ra a R r -+=-+=由边界条件011==R R ϕ()()θθcos cos 'a R a R Q b R b R Q 122121221222-+=-+()()()θcos ''a Q b Q R b R Q b R Q 221221222122-=+-+要使上式对任意θ成立,必有()()()⎩⎨⎧=-=+-+02022122122212a Q b Q R b R Q b R Q ''(*) ()0212122=++-∴R R a ab b 解得a b aR b ==2211,,(舍去) 代入(*),得Q aR Q Q a R Q 1211=-='', Q aRQ a R b 121-==∴,,由上可知,2041R Q Q +=πεϕ',()()()[]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+--+=20021212212121220412241R Q Q a R R a RR aQR Ra a R Q πεθθπεϕcos ///cos 若使有确定0ϕ,且两种情况有相同解20041R Q Q +=πεϕ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-+--+=θθπεϕcos /cos a R R a R R a QR Ra a R Q 21241212202241, 由边界条件σϕεϕε-=∂∂-∂∂nn 1122所以,外表面感应电荷面密度021=∂∂==R R Rϕεσ,内表面感应电荷面密度()⎥⎥⎦⎤⎢⎢⎣⎡-+-=∂∂==231221122102241θπϕεσcos a R a R R a R Q R R R ,总感应电荷Q ds Q s-==⎰2σ感应,(可见全部在内表面上)12. 四个点电荷,两个+q ,两个-q ,分别处于边长为a 的正方形的四个顶点,相邻的符号相反,求此电荷体系远处的电势。

相关文档
最新文档