大学文科数学复习资料
高考数学(文科)总复习考点解析及试题第二章函数导数及其应用
高考数学(文科)总复习考点解析及试题(解析版)第二章 函数、导数及其应用本章是高考复习中十分重要的一章,共有13个考点如下:考点1 函数及其表示 考点2 函数的定义域和值域考点3 函数的单调性考点4 函数的奇偶性与周期性考点5 二次函数与幂函数 考点6 指数与指数函数 考点7 对数与对数函数 考点8 函数的图象 考点9 函数与方程 考点10 函数模型及其应用考点11 变化率与导数、导数的计算考点12 导数的应用(一) 考点13 导数的应用(二)考点测试1 函数及其表示高考概览高考在本考点的常考题型为选择题和填空题,分值5分,中高等难度 考纲研读1.了解构成函数的要素,了解映射的概念2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数3.了解简单的分段函数,并能简单应用一、基础小题1.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f [g (π)]的值为( )A .1B .0C .-1D .π 答案 B解析 因为g (π)=0,所以f [g (π)]=f (0)=0,故选B . 2.下列图象中,不可能成为函数y =f (x )图象的是( )答案 A解析 函数图象上一个x 值只能对应一个y 值.选项A 中的图象上存在一个x 值对应两个y 值,所以其不可能为函数图象,故选A .3.下列各组函数中是同一个函数的是( ) ①f (x )=x 与g (x )=(x )2; ②f (x )=x 与g (x )=x 2; ③f (x )=x 2与g (x )=x 4;④f (x )=x 2-2x -1与g (t )=t 2-2t -1. A .①② B .①③ C .③④ D .①④ 答案 C解析 ①中f (x )的定义域为R ,g (x )的定义域为[0,+∞),故f (x ),g (x )不是同一个函数;②中g (x )=x 2=|x |,故f (x ),g (x )不是同一个函数.故选C .4.若点A (0,1),B (2,3)在一次函数y =ax +b 的图象上,则一次函数的解析式为( ) A .y =-x +1 B .y =2x +1 C .y =x +1 D .y =2x -1 答案 C解析 将点A ,B 代入一次函数y =ax +b 得b =1,2a +b =3,则a =1.故一次函数的解析式为y =x +1.故选C .5.已知反比例函数y =f (x ).若f (1)=2,则f (3)=( ) A .1 B .23 C .13 D .-1答案 B解析 设f (x )=k x (k ≠0),由题意有2=k ,所以f (x )=2x ,故f (3)=23.故选B .6.已知f (x +1)=x 2+2x +3,则f (x )=( ) A .x 2+4x +6 B .x 2-2x +2 C .x 2+2 D .x 2+1 答案 C解析 解法一:由f (x +1)=(x +1)2+2得f (x )=x 2+2.故选C .解法二:令x +1=t ,则x =t -1,所以f (t )=(t -1)2+2(t -1)+3=t 2+2,故f (x )=x 2+2.故选C .7.函数y =f (x )的图象与直线x =1的公共点个数可能是( ) A .1 B .0 C .0或1 D .1或2 答案 C解析 函数的图象与直线有可能没有交点.如果有交点,那么对于x =1,f (x )仅有一个函数值与之对应.故选C .8.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s 1,s 2分别表示乌龟和兔子所行的路程(t 为时间),则下图与故事情节相吻合的是( )答案 B解析 兔子的速率大于乌龟,且到达终点的时间比乌龟长,观察图象可知,选B . 9.下列从集合A 到集合B 的对应中是映射的是( ) A .A =B =N *,对应关系f :x →y =|x -3|B .A =R ,B ={0,1},对应关系f :x →y =⎩⎪⎨⎪⎧1(x ≥0),0(x <0)C .A =Z ,B =Q ,对应关系f :x →y =1xD .A ={0,1,2,9},B ={0,1,4,9,16},对应关系f :a →b =(a -1)2答案 B解析 A 项中,对于集合A 中的元素3,在f 的作用下得0,但0∉B ,即集合A 中的元素3在集合B 中没有元素与之对应,所以这个对应不是映射;B 项中,对于集合A 中任意一个非负数在集合B 中都有唯一元素1与之对应,对于集合A 中任意一个负数在集合B 中都有唯一元素0与之对应,所以这个对应是映射;C 项中,集合A 中的元素0在集合B 中没有元素与之对应,故这个对应不是映射;D 项中,在f 的作用下,集合A 中的元素9应该对应64,而64∉B ,故这个对应不是映射.故选B .10.若函数f (x )如下表所示:则f [f (1)]=________. 答案 1解析 由表格可知,f (1)=2,所以f [f (1)]=f (2)=1.11.已知函数g (x )=1-2x ,f [g (x )]=2x 2-x 2,则f ⎝ ⎛⎭⎪⎫12=________.答案831解析 令1-2x =12,得x =14,所以f ⎝ ⎛⎭⎪⎫12=2×142-116=123116=831.12.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0解析 当-1≤x ≤0时,设解析式为y =kx +b (k ≠0),由图象得⎩⎪⎨⎪⎧-k +b =0,b =1,解得⎩⎪⎨⎪⎧k =1,b =1.∴y =x +1.当x >0时,设解析式为y =a (x -2)2-1(a ≠0), ∵图象过点(4,0),∴0=a (4-2)2-1,解得a =14.综上,函数f (x )在[-1,+∞)上的解析式为f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0.13.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12 答案 C解析 ∵-2<1,∴f (-2)=1+log 2[2-(-2)]=3; ∵log 212>1,∴f (log 212)=2log 212-1=2log 26=6. ∴f (-2)+f (log 212)=9.14.存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin2x )=sin x B .f (sin2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1| 答案 D解析 对于A ,令x =0,得f (0)=0;令x =π2,得f (0)=1,这与函数的定义不符,故A 错误.在B 中,令x =0,得f (0)=0;令x =π2,得f (0)=π24+π2,与函数的定义不符,故B 错误.在C 中,令x =1,得f (2)=2;令x =-1,得f (2)=0,与函数的定义不符,故C 错误.在D 中,变形为f (|x +1|2-1)=|x +1|,令|x +1|2-1=t ,得t ≥-1,|x +1|=t +1,从而有f (t )=t +1,显然这个函数关系在定义域[-1,+∞)上是成立的,故选D .15.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤23,1B .[0,1]C .⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞) 答案 C解析 解法一:①当a <23时,f (a )=3a -1<1,f [f (a )]=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f [f (a )]≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f [f (a )]=23a -1,2f (a )=23a -1,故f [f (a )]=2f (a ).③当a ≥1时,f (a )=2a>1,f [f (a )]=22a,2f (a )=22a ,故f [f (a )]=2f (a ).综合①②③知a ≥23.故选C .解法二:∵f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,而f [f (a )]=2f (a ),∴f (a )≥1,∴有⎩⎪⎨⎪⎧a <1,3a -1≥1或⎩⎪⎨⎪⎧a ≥1,2a≥1,解得23≤a <1或a ≥1,∴a ≥23,即a ∈⎣⎢⎡⎭⎪⎫23,+∞,故选C . 16.函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,x +12,-2<x ≤0,则f [f (15)]的值为________. 答案22解析 ∵f (x +4)=f (x ),∴函数f (x )的周期为4, ∴f (15)=f (-1)=12,f 12=cos π4=22,∴f [f (15)]=f 12=22.17.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x >-14.18.设f ,g 都是由A 到A 的映射,其对应关系如下:映射f 的对应关系映射g 的对应关系则f [g (1)]的值为( ) A .1 B .2 C .3 D .4 答案 A解析 根据映射g 的对应关系,可得g (1)=4,再根据映射f 的对应关系,可得f (4)=1,故选A .19.下列函数为同一函数的是( ) A .y =x 2-2x 和y =t 2-2t B .y =x 0和y =1C .y =(x +1)2和y =x +1 D .y =lg x 2和y =2lg x 答案 A解析 对于A :y =x 2-2x 和y =t 2-2t 的定义域都是R ,对应关系也相同,∴是同一函数;对于B :y =x 0的定义域是{x |x ≠0},而y =1的定义域是R ,两函数的定义域不同,∴不是同一函数;对于C :y = (x +1)2=|x +1|和y =x +1的定义域都是R ,但对应关系不相同,∴不是同一函数;对于D :y =lg x 2的定义域是{x |x ≠0},而y =2lg x 的定义域是{x |x >0},两函数的定义域不同,∴不是同一函数.故选A .20.设函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则实数m 的值为( )A .-2B .8C .1D .2 答案 D解析 当m ≥2时,由m 2-1=3,得m 2=4,解得m =2;当0<m <2时,由log 2m =3,解得m =23=8(舍去).综上所述,m =2,故选D .21. 某工厂八年来某种产品总产量y 与时间t (年)的函数关系如图,下列四种说法:①前三年中,产量的增长速度越来越快; ②前三年中,产量的增长速度越来越慢; ③第三年后,这种产品停止生产;④第三年后,年产量保持不变.其中说法正确的是( ) A .②③ B .②④ C .①③ D .①④ 答案 A解析 由函数图象可知,在区间[0,3]上,图象凸起上升,表明年产量增长速度越来越慢;在区间(3,8]上,图象是水平直线,表明总产量保持不变,即年产量为0,所以②③正确.故选A .22.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1(λ∈R ),2x,x ≥1,若对任意的a ∈R 都有f [f (a )]=2f (a )成立,则λ的取值范围是( )A .(0,2]B .[0,2]C .[2,+∞) D.(-∞,2) 答案 C解析 当a ≥1时,2a ≥2,∴f [f (a )]=f (2a )=22a =2f (a ),∴λ∈R ;当a <1时,f [f (a )]=f (λ-a )=2λ-a,∴λ-a ≥1,即λ≥a +1,由题意知λ≥(a +1)max ,∴λ≥2.综上,λ的取值范围是[2,+∞).故选C .23.已知函数f (x )=ax -b (a >0),f [f (x )]=4x -3,则f (2)=________. 答案 3解析 由题意,得f [f (x )]=a (ax -b )-b =a 2x -ab -b =4x -3,即⎩⎪⎨⎪⎧a 2=4,-ab -b =-3,因为a >0,所以解得⎩⎪⎨⎪⎧a =2,b =1,所以f (x )=2x -1,则f (2)=3.24.已知函数f (x )=22x +1+sin x ,则f (-2)+f (-1)+f (0)+f (1)+f (2)=________.答案 5解析 ∵f (x )+f (-x )=22x +1+sin x +22-x +1-sin x =22x +1+2x +11+2x =2,且f (0)=1,∴f (-2)+f (-1)+f (0)+f (1)+f (2)=5.25.已知f (1-cos x )=sin 2x ,则f (x 2)的解析式为________. 答案 f (x 2)=-x 4+2x 2,x ∈[-2,2]解析 f (1-cos x )=sin 2x =1-cos 2x ,令1-cos x =t ,t ∈[0,2],则cos x =1-t ,所以f (t )=1-(1-t )2=2t -t 2,t ∈[0,2],则f (x 2)=-x 4+2x 2,x ∈[-2,2].二、高考大题1.已知f (x )=⎩⎪⎨⎪⎧cx +1,0<x <c ,2-xc 2+1,c ≤x <1,且f (c 2)=98.(1)求常数c ; (2)解方程f (x )=98.解 (1)∵0<c <1,∴c 2<c , ∴f (c 2)=c 3+1=98,即c =12.(2)由(1)得f (x )=⎩⎪⎨⎪⎧12x +1,0<x <12,2-4x +1,12≤x <1.由f (x )=98得⎩⎪⎨⎪⎧0<x <12,12x +1=98或⎩⎪⎨⎪⎧12≤x <1,2-4x+1=98,解得x =14或x =34.2.已知二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,所以f (x )=ax 2+bx +1. 因为f (x +1)-f (x )=2x ,所以a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,所以f (x )=x 2-x +1.(2)由题意得x 2-x +1>2x +m 在[-1,1]上恒成立, 即x 2-3x +1-m >0在[-1,1]上恒成立.设g (x )=x 2-3x +1-m , 其图象的对称轴为直线x =32,所以g (x )在[-1,1]上单调递减.故只需g (1)>0,即12-3×1+1-m >0,解得m <-1. 故实数m 的取值范围是(-∞,-1).3.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1)上有表达式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的表达式.解 (1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0,f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1)时,f (x )=x 2; 当x ∈[1,2)时,x -1∈[0,1),f (x )=-12f (x -1)=-12(x -1)2, f (2)=-12f (1)=14f (0)=0;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧0,x =2,-12(x -1)2,x ∈[1,2),x 2,x ∈[0,1),-2(x +1)2,x ∈[-1,0),4(x +2)2,x ∈[-2,-1).4.某公司研发出一款产品,批量生产前先在某城市销售30天进行市场调查.调查结果发现:日销量f (t )与天数t 的对应关系服从图①所示的函数关系:每件产品的销售利润h (t )与天数t 的对应关系服从图②所示的函数关系.图①由抛物线的一部分(A 为抛物线顶点)和线段AB 组成.(1)设该产品的日销售利润Q (t )(0≤t ≤30,t ∈N ),分别求出f (t ),h (t ),Q (t )的解析式;(2)若在30天的销售中,日销售利润至少有一天超过8500元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.解 (1)f (t )=⎩⎪⎨⎪⎧-110t 2+4t ,0≤t ≤20,-t +60,20<t ≤30,h (t )=⎩⎪⎨⎪⎧20t ,0≤t ≤10,200,10<t ≤30.由题可知,Q (t )=f (t )h (t ), ∴当0≤t ≤10时,Q (t )=-110t 2+4t 20t =-2t 3+80t 2;当10<t ≤20时,Q (t )=-110t 2+4t ×200=-20t 2+800t ;当20<t ≤30时,Q (t )=(-t +60)×200=-200t +12000.∴Q (t )=⎩⎪⎨⎪⎧-2t 3+80t 2,0≤t ≤10,-20t 2+800t ,10<t ≤20,-200t +12000,20<t ≤30(t ∈N ).(2)该产品不可以投入批量生产,理由如下: 当0≤t ≤10时,Q (t )max =Q (10)=6000, 当10<t ≤20时,Q (t )max =Q (20)=8000, 当20<t ≤30时,Q (t )<Q (20)=8000, ∴Q (t )的最大值为Q (20)=8000<8500.∴在一个月的销售中,没有一天的日销售利润超过8500元,不可以投入批量生产.考点测试2 函数的定义域和值域高考概览高考在本考点的常考题型为选择题、填空题,分值5分,中等难度 考纲研读会求一些简单函数的定义域和值域一、基础小题1.函数y =1log 2x -2的定义域为( )A .(0,4)B .(4,+∞)C .(0,4)∪(4,+∞) D.(0,+∞) 答案 C解析 由条件可得log 2x -2≠0且x >0,解得x ∈(0,4)∪(4,+∞).故选C . 2.函数y =x (3-x )+x -1的定义域为( ) A .[0,3] B .[1,3] C .[1,+∞) D.[3,+∞) 答案 B解析 由题意得⎩⎪⎨⎪⎧x (3-x )≥0,x -1≥0,解得1≤x ≤3.故选B .3.函数f (x )=-2x 2+3x (0<x ≤2)的值域是( ) A .-2,98 B .-∞,98C .0,98D .98,+∞答案 A解析 f (x )=-2x -342+98(x ∈(0,2]),所以f (x )的最小值是f (2)=-2,f (x )的最大值是f 34=98.故选A .4.已知函数f (x )=2+log 3x ,x ∈181,9,则f (x )的最小值为( )A .-2B .-3C .-4D .0 答案 A解析 由函数f (x )在其定义域内是增函数可知,当x =181时,函数f (x )取得最小值f 181=2+log 3 181=2-4=-2,故选A .5.已知函数f (x )的定义域为(-1,1),则函数g (x )=f x2+f (x -1)的定义域为( ) A .(-2,0) B .(-2,2) C .(0,2) D .-12,0答案 C解析 由题意得⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,∴⎩⎪⎨⎪⎧-2<x <2,0<x <2,∴0<x <2,∴函数g (x )=f x2+f (x-1)的定义域为(0,2),故选C .6.函数y =x +2-x 的值域为( ) A .94,+∞ B.94,+∞ C .-∞,94 D .-∞,94答案 D解析 令t =2-x ≥0,则t 2=2-x ,x =2-t 2,∴y =2-t 2+t =-t -122+94(t ≥0),∴y ≤94,故选D .7.已知函数f (x )=1x +1,则函数f [f (x )]的定义域是( ) A .{x |x ≠-1} B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2} 答案 C 解析 f [f (x )]=1f (x )+1=11x +1+1,所以有⎩⎪⎨⎪⎧x ≠-1,11+x+1≠0,解得x ≠-1且x ≠-2.故选C .8.若函数y =f (x )的值域是[1,3],则函数F (x )=1-f (x +3)的值域是( ) A .[-8,-3] B .[-5,-1] C .[-2,0] D .[1,3]答案 C解析 ∵1≤f (x )≤3,∴-3≤-f (x +3)≤-1,∴-2≤1-f (x +3)≤0,即F (x )的值域为[-2,0].故选C .9.函数y =16-4x的值域是( )A .[0,+∞) B.[0,4] C .[0,4) D .(0,4) 答案 C解析 由已知得0≤16-4x<16,0≤ 16-4x<16=4,即函数y =16-4x的值域是[0,4).故选C .10.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 B .(-∞,2] C .⎝ ⎛⎦⎥⎤-∞,12∪(2,+∞) D.(0,+∞) 答案 A解析 当x <1时,x -1<0,此时y =2x -1<0;当2≤x <5时,1≤x -1<4,此时14<1x -1≤1,12<2x -1≤2,即12<y ≤2,综上,函数的值域为(-∞,0)∪⎝ ⎛⎦⎥⎤12,2.故选A .11.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,-2≤x ≤0,1x,0<x ≤3,则函数f (x )的值域是________.答案 -14,+∞解析 当-2≤x ≤0时,x 2+x =x +122-14,其值域为-14,2;当0<x ≤3时,1x 的值域为13,+∞,故函数f (x )的值域是-14,+∞. 12.函数f (x )=x -1x +1的值域为________. 答案 [-1,1) 解析 由题意得f (x )=x -1x +1=1-2x +1,∵x ≥0,∴0<2x +1≤2,∴-2≤-2x +1<0,∴-1≤1-2x +1<1,故所求函数的值域为[-1,1).13.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x答案 D 解析 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B .故选D .14.函数f (x )=log 2x -1的定义域为________. 答案 [2,+∞)解析 由题意可得log 2x -1≥0,即log 2x ≥1,∴x ≥2.∴函数的定义域为[2,+∞). 15.函数y =3-2x -x 2的定义域是________. 答案 [-3,1]解析 若函数有意义,则需3-2x -x 2≥0,即x 2+2x -3≤0,解得-3≤x ≤1. 16.已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,lg (x 2+1),x <1,则f [f (-3)]=________,f (x )的最小值是________. 答案 0 22-3解析 由题知,f (-3)=1,f (1)=0,即f [f (-3)]=0.又f (x )在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f (x )min =min{f (0),f (2)}=22-3.17.已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 答案 -32解析 ①当a >1时,f (x )在[-1,0]上单调递增,则⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,f (x )在[-1,0]上单调递减,则⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.18.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a的取值范围是________.答案 (1,2]解析 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4,+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显然不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.19.函数f (x )=12-x+ln (x +1)的定义域为( )A .(2,+∞) B.(-1,2)∪(2,+∞) C .(-1,2) D .(-1,2] 答案 C解析 函数的定义域应满足⎩⎪⎨⎪⎧2-x >0,1+x >0,∴-1<x <2.故选C .20.已知函数f (x )=x +2x-a (a >0)的最小值为2,则实数 a =( ) A .2 B .4 C .8 D .16 答案 B解析 由2x-a ≥0得x ≥log 2a ,故函数的定义域为[log 2a ,+∞),易知函数f (x )在[log 2a ,+∞)上单调递增,所以f (x )min =f (log 2a )=log 2a =2,解得a =4.故选B .21.已知函数f (x )=⎩⎪⎨⎪⎧x -2(x ≤1),ln x (x >1),那么函数f (x )的值域为( )A .(-∞,-1)∪[0,+∞) B.(-∞,-1]∪(0,+∞) C .[-1,0) D .R 答案 B解析 函数y =x -2(x ≤1)的值域为(-∞,-1],函数y =ln x (x >1)的值域为(0,+∞),故函数f (x )的值域为(-∞,-1]∪(0,+∞).故选B .22.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],那么满足条件的整数数对(a ,b )共有( )A .2个B .3个C .5个D .无数个 答案 C解析 ∵函数f (x )=4|x |+2-1的值域是[0,1],∴1≤4|x |+2≤2,∴0≤|x |≤2,∴-2≤x ≤2,∴[a ,b ]⊆[-2,2].又由于仅当x =0时,f (x )=1,当x =±2时,f (x )=0,故在定义域中一定有0,且2,-2中必有其一,故满足条件的整数数对(a ,b )有(-2,0),(-2,1),(-2,2),(-1,2),(0,2)共5个.故选C .23.函数y =3|x |-1的定义域为[-1,2],则函数的值域为________.答案 [0,8]解析 当x =0时,y min =30-1=0,当x =2时,y max =32-1=8,故值域为[0,8]. 24.若函数f (x +1)的定义域是[-1,1],则函数f (log 12x )的定义域为________.答案 14,1解析 ∵f (x +1)的定义域是[-1,1],∴f (x )的定义域是[0,2],则f (log 12x )的定义域为0≤log 12x ≤2,∴14≤x ≤1.二、高考大题1.已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q .(1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)①求F (x )的最小值m (a );②求F (x )在区间[0,6]上的最大值M (a ). 解 (1)由于a ≥3,故当x ≤1时,(x 2-2ax +4a -2)-2|x -1|=x 2+2(a -1)(2-x )>0, 当x >1时,(x 2-2ax +4a -2)-2|x -1|=(x -2)(x -2a ).所以,使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围为[2,2a ]. (2)设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2. ①f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2, 所以,由F (x )的定义知m (a )=min{f (1),g (a )},即m (a )=⎩⎨⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.②当0≤x ≤2时,F (x )≤f (x )≤max{f (0),f (2)}=2=F (2),当2≤x ≤6时,F (x )≤g (x )≤max{g (2),g (6)}=max{2,34-8a }=max{F (2),F (6)}.所以,M (a )=⎩⎪⎨⎪⎧34-8a ,3≤a <4,2,a ≥4.2.已知f (x )=2+log 3x ,x ∈[1,9],试求函数y =[f (x )]2+f (x 2)的值域. 解 ∵f (x )=2+log 3x 的定义域为[1,9],要使[f (x )]2+f (x 2)有意义,必有1≤x ≤9且1≤x 2≤9,∴1≤x ≤3,∴y =[f (x )]2+f (x 2)的定义域为[1,3]. 又y =(2+log 3x )2+2+log 3x 2=(log 3x +3)2-3. ∵x ∈[1,3],∴log 3x ∈[0,1],∴y max =(1+3)2-3=13,y min =(0+3)2-3=6. ∴函数y =[f (x )]2+f (x 2)的值域为[6,13].3.已知函数f (x )=ax +1a(1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解 f (x )=⎝⎛⎭⎪⎫a -1a x +1a,当a >1时,a -1a>0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a;当0<a <1时,a -1a<0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数, 又a =1时,有a =1a=1,∴当a =1时,g (a )取得最大值1. 4.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[1,3]上的最大值为1,求实数a 的值. 解 (1)当a =2时,f (x )=x 2+3x -3=x +322-214,又x ∈[-2,3],所以f (x )min =f -32=-214,f (x )max =f (3)=15,所以所求函数的值域为-214,15.(2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13,满足题意;②当-2a -12≥3,即a ≤-52时,f (x )max =f (1)=2a -3,所以2a -3=1,即a =2,不满足题意; ③当1<-2a -12<3,即-52<a <-12时,此时,f (x )max 在端点处取得,令f (1)=1+2a -1-3=1,得a =2(舍去), 令f (3)=9+3(2a -1)-3=1,得a =-13(舍去).综上,可知a =-13.考点测试3 函数的单调性高考预览:本考点是高考的常考知识点,常与函数的奇偶性、周期性相结合综合考查。
高考数学复习重点资料(文科).doc
高考数学复习重点资料(文科)借助外力攻克数学这根硬骨头许织云表示,数学在高考中的位置、分值极为重要,可以说“高考,得数学者得天下”,数学能够学好,对升入理想大学会起到很大的作用。
对文科学生来说更是如此,因为,许多文科学生,在语文、英语等方面差别不大,而来开档次的就在数学上,在平时考试与高考中,有的数学分数甚至相差30-60分。
从以往情况来看,针对文科学生在数学学习上的特点,目前要想提高数学成绩,借助“外力”来学好数学也是很有必要的。
一是参加补习班。
这是对学校教学的有益补充,可以是一对一的家教,也可以是4-8人的小班化的补差补缺。
如果人数过多,效果就会大打折扣。
二是同学间的相互学习。
包括日常学习中所学知识的及时探讨、交流,比如学到投影画图这一新知识的时候,针对没有学会或是一知半解的内容,就可以利用课间或是其他时间即时问同学,这样可以随时随地地排疑解难,以便当天问题当天解决。
三是求助科任教师。
在每节课的学习与做作业的时候,一旦有不懂的地方,就通过当面求助与电话、短信、邮件、qq等不同方式,将学习困难与问题加以及时化解,做到不耻下问,这也是文科学生学好数学的宝贵经验。
定位要合理,注重基础知识陈秋波表示,通过近几年来的对高考试题的研究分析发现,文科数学考查的多是中等题型,占据总分的百分之八十之多,对于大多数的文科生来说,作好这部分题是至关重要的。
学生要加大独立解题和考场心理的模拟训练,这是可以进一步改善的地方,可大大提高整体的数学成绩。
学生要正确估计自己的数学水平和数学学习能力,确立自己切实可行的数学复习起点和数学成绩的学习目标,对高三文科中加试艺术的绝大部分同学而言,数学基础相对较差,因此,数学复习必须要狠抓基础复习。
通过复习,能运用所掌握的知识去分析问题,解决最基本的填空题和中档题,对于难题,要学会主动放弃,没有必要去浪费时间。
如果真正把基本的东西弄懂了,确保填空题(前10道)、选择题(前3题)不失分或少失分,牢牢抓住40%(试卷结构易、中、难比例为4:4:2)不放松,再根据可能,完成中档题中的容易部分,高考完全可以超过100分。
大学文科数学期末考试复习要点及练习题
2008级“大学文科数学”课《基本要求与补充练习题》一.微积分部分掌握函数的概念,掌握分段函数的概念,会求函数的定义域掌握函数的单调性、奇偶性掌握复合函数、基本初等函数、初等函数的概念掌握数列极限、函数极限(x →a 和x →∞)、函数在一点的左右极限的概念掌握极限的性质,会计算有理式的极限,会使用两个重要极限公式掌握函数在一点连续的定义、知道间断点的概念,会判断函数的连续性,知道连续与可导的关系7.掌握导数的定义,掌握导数的几何意义和物理意义,知道导函数的概念,掌握二阶导数的概念8.掌握下列导数的基本公式:(1)y =c ,y '=0;(2)y =x α,y '=αx α-1;(3)y =sin x ,y '=cos x ;(4)y =cos x ,y '=-sin x ;11(5)y =tan x ,y '=;(6)y =cot x ,y '=-;22cos x sin x 11(7)y =log a x ,y '=log a e ;(8)y =ln x ,y '=;xx(9)y =a x ,y '=a x ln a ;(10)y =e x ,y '=e x9.掌握导数的四则运算法则、复合函数求导法则,掌握二阶导数的计算10.掌握微分的概念与计算公式11.会用导数判断函数的单调性、求函数的极值和最值,知道驻点的概念,会用导数判断曲线的凹向性,知道用导数画函数图形的方法,会利用极限求曲线的水平渐近线和垂直渐近线12.掌握原函数和不定积分的概念、掌握不定积分的性质13.掌握下列不定积分的基本公式:1α+11(1)α≠-1,x αdx =x +c (2)dx =ln |x |+cα+1x1x (3)a x dx =a +c (4)e x dx =e x +cln a (5)cos xdx =sin x +c(6)sin xdx =-cos x +c11(7)dx =tan x +c(8)dx =-cot x +c22cos xsin x14.掌握“凑微分”和分部积分的方法15.掌握定积分的概念和几何意义,掌握定积分的性质16.知道牛顿-莱布尼兹公式,会用牛顿-莱布尼兹公式计算定积分,知道定积分的换元法和分部积分法17.会利用定积分计算简单的平面图形面积18.掌握无穷限广义积分的概念和计算1.2.3.4.5.6.⎰⎰⎰⎰⎰⎰⎰⎰二.线性代数部分19.掌握矩阵的概念与表示,知道零矩阵、n 阶矩阵、单位矩阵20.掌握矩阵的加法、数乘、乘法运算,掌握矩阵的初等变换21.掌握逆矩阵的定义、性质,掌握用初等变换求逆矩阵的方法22.掌握矩阵秩的概念和用初等变换求矩阵秩的方法23.会用线性方程组的消元法(初等行变换)求解非齐次和齐次线性方程组24.掌握非齐次线性方程组和齐次线性方程组解的判定定理三.概率统计部分25.掌握随机事件的概念(包括:基本事件、不可能事件、必然事件)及表示26.掌握随机事件的运算(包括:包含、并、交、互斥、对立),掌握两个随机事件相互独立的概念27.掌握概率的定义和性质(教材188页)28.掌握概率的计算公式,包括:古典概型、加法定理及其两个推论、乘法定理(教材195页)、条件概率公式、全概率公式和贝叶斯公式、贝努里概型29.掌握随机变量的概念,知道离散型随机变量和连续型随机变量30.掌握离散型随机变量概率分布的概念,掌握两点分布、二项分布、泊松分布31.掌握连续性随机变量概率密度的概念,知道概率密度的性质,知道分布函数的概念,掌握均匀分布、指数分布、正态分布,特别是正态分布要会查表计算概率32.掌握离散型和连续型随机变量期望和方差的定义和计算,知道期望和方差的实际意义,掌握两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的期望和方差33.掌握总体、样本的概念,了解直方图的做法和直方图与概率密度函数的关系34.掌握样本均值和样本方差的概念,知道样本均值和样本方差可以用来估计总体期望和总体方差35.了解一元线性回归的统计方法四.补充练习题60道6x 2+3x +51.limx →∞2x 2-1x 3-14.limx →13x +527.limx -3x +22x →16x 2+3x +52.limx →∞2x 3-13x +55.lim3x →1x -11+x -1-x x →0x tan 2x 11.limx →0x 1+x 114.lim()xx →01-x8.lim6x 2+3x +53.limx →∞2x -1x 2-46.limx →2x -29.lim(x 2+2x -1-x 2-3x +4)x →∞x -1sin(x 2-4)10.limx →2x -2313.lim(1+)xx →∞x 12.lim x ⋅sinx →∞3xx 2-115.lim(x →∞x +1x)x -1⎧1+x -1-x ⎪16.f (x )=⎨x⎪k ⎩x ≠0x =0问k 为何值时f(x)在x=0点连续17.求函数的间断点f (x )=x -1(x -1)(x -2)⎧x -1x <018.求函数的间断点f (x )=⎨x +1x ≥0⎩⎧sin xx ≠0⎪19.求函数的间断点f (x )=⎨x⎪x =0⎩220.已知f(x)在x=a 点可导,求极限limx →0f (a +2x )-f (a )x21.求曲线y =x 3+x -1在x=1处的切线方程sin x +x ln x +1y '=?xd 2y 24.y =23x 2+5x -1=?dx 226.y =tan x 3y '=?22.y =23.y =x 4+2x -125.f (x )=dy =?ax +bf '(0)=?c +d27.y =tan 3x y '=?x 28.求函数的单调区间y =x 4-2x +229.求函数的单调区间y =x -e 30.求函数的极值y=x 2e -x31.求曲线的凹向和拐点y =xe x-1x32.求曲线的渐近线y =e33.⎰(3x+2x -1)dx136.⎰dx cos 2(3x +5)22x 234.⎰dxx +437.⎰xe π-2x 35.⎰πxdx x 2+46dx 38.⎰sin 3x cos xdxe +∞1x39.⎰x 4-x 2dx40.⎰x sin 2xdx41.⎰ln xdx142.⎰1e dxx 243.求曲线y =x 3与y 轴和直线y=1所围成的封闭图形的面积3-57⎫⎪123⎪012⎪⎪001⎭⎛1 0B = 0 ⎝131⎫⎪162⎪求:A-2B,AB⎪031⎪-100⎭0⎛1 044.矩阵A = 0 ⎝045.求矩阵A 的逆矩阵A -1⎛130⎫ ⎪A = 01-1⎪216⎪⎝⎭⎛10⎫⎪B = 01⎪12⎪⎝⎭⎛101⎫B = ⎪⎝012⎭⎛130⎫46.解矩阵方程AX=B ,A = 01-1⎪⎪ 216⎪⎝⎭⎛130⎫47.解矩阵方程XA=B ,A = 01-1⎪⎪ 216⎪⎝⎭⎛100148.A =00⎝1-149.⎨31⎫⎪62⎪,求r(A)31⎪⎪00⎭⎧x 1+2x 2+kx 3=1问k 为何值时方程组无解?k 为何值时方程组有解?并求解⎩2x 1+kx 2+8x 3=350.讨论λ为何值时,4元线性方程组⎧x 1⎪2x⎪1⎨⎪-3x 1⎪⎩x 1+2x 2+5x 2-6x 2+2x 2-x3+(λ-1)x3++-x43x 43x4=-1===030+(λ+1)x4①无解;②有唯一解,并求解;③有无穷多解,并求其全部解51.设随机事件A 、B 、C ,试表示:(1)事件A 、B 、C 恰有一个发生(2)事件A 、B 、C 恰有两个发生(3)事件A 、B 、C 至少有一个发生(4)事件A 、B 、C 至少有两个发生(5)事件A 、B 、C 都不发生52.口袋里有3个白球、4个红球,现在从袋中随机地取出3个球,设X 表示取出的3个球中白球的个数,求X 的概率分布、E(X)、D(X)53.口袋里有3个白球、4个红球,现在从袋中随机地取出1个球,看后将其放回口袋,然后再取一个球,如此这般共取了三次。
大学文科数学复习题(带答案)
大学文科数学复习题一、填空题 1、 设函数1(x)ln f x x =- 则函数的定义域是( (0,)+∞ ),f(e)=( e1-1 )2、 函数y =(21)y u x ==- 复合而成3、 20lim(23)x x x →-+=(3) 239lim()3x x x →--=(6) 22523lim()31x x x x →∞-++ 4、32x y x -=+,当( x →-2 )时是无穷大量,当( x →3 )为无穷小量 5、若函数1(x)(1)2xf x=+,由lim (x)x f →∞=(e ) 若1(x)sin g x x=,则0lim (x)x g →=( 0 )6、设2(x),(1)=1lim (x)=1x f x ax b f f →=++且,则 a= (-1 ) b= ( 1 )7、设(x)cos ,(x)=( )(0)=( )f x f f ''=则,8、曲线2y x =单调增加区间为( (0,)+∞ ),其在点(1,1)处的切线方程为(210x y --=)9、若()321f x x x =-+-,则=')0(f ( 2 ),''(0)f =( 0 ).10、若s i n 5,y x y '=+=则(xx 21cos +),dy=(dx xx )(21cos + )11、当x=( )时,函数3(x)3x,f x=-取得极大值,其值为( ) 12.设函数()1arctan 2f x x=+,则函数()f x 的定义域为( ()\{2}x R ∈- ); 13. 若函数ln 55xx xy x e ==,则()5(1ln )xy x x '=+;14. 若函数()1x f x e +=,则()()()1n x f x e +=;15. 极限=→20cos -1limxxx ( 1/2 )16. 极限=++∞→xxx sin x lim( 1 )17. 不定积分21ln 1(1ln )2x dx x C x+⎛⎫=++ ⎪⎝⎭⎰ 18. 设函数cos , 0() ,0x x f x x a x <⎧=⎨-≥⎩在0x =点连续,则=a ___-1____.19. 设2)(x x f =, 则[()]f f x '= 22x .20. sin limx xx→+∞= 021. 曲线1y x=在点(1,1)处的法线方程为 y=x22. (1cos )x dx -⎰= sin x x c -+ .二、选择题 1、设函数()ln(1)f x x =-,则函数()f x 的定义域为( C );A) (1,2) , B) [1,2] , C) (1,2] , D) [1,2). 2、设()()2,cos f x x x x ϕ==,则()()2lim x f x πϕ→=⎡⎤⎣⎦;BA) 2cos4π , B) 0 , C)12, D) 1. 3、设()()2,sin f x x x x ϕ==,(){}();f x ϕ'=⎡⎤⎣⎦ CA) sin 2x , B) 2sin x , C) 22cos x x , D) 2cos x .4、极限2311lim ()34x x x x →-=+-;BA)12, B) 13 , C) 0 , D) 1.5.极限3331lim ()21x x x x x →∞-+=+-.BA) 1, B) 32, C) 0, D) 23.6.下列命题中正确的是( A );A) 1lim sin1x x x →∞=, B) 01lim sin 1x x x→= ,C) 1lim sin 0x x x →∞=, D) 0sin lim0x xx→=. 7、若函数()11xf x x ⎛⎫=+ ⎪⎝⎭,则()()lim x f x →+∞=;A) 1, B) e , C)1e, D) 0. 8、若函数()11xf x x ⎛⎫=+ ⎪⎝⎭,则()()0lim x f x +→=;BA) 1 , B) e , C)1e, D) 0. 9、设()3f x x ax b =++,且()13f =,()0lim 2x f x →=,则(D );A) 2,0a b ==, B) 2,1a b =-=, C) 2,1a b ==-, D) 0,2a b ==. 10、设1()1xf x x-=+,则(0)()f '=;AA) 2-, B) 1-, C) 0, D) 2. 11、曲线21y x =-+单调上升区间为( );AA) (,0]-∞, B) (,1]-∞, C) [0,)+∞, D) [1,)+∞. 12、曲线2y x =在点(1,1)的切线方程为 ( );CA) 1(1)y x -=--, B) 11(1)2y x -=- , C) 12(1)y x -=-, D) 11y x -=- . 13、若()551f x x x =+-,则(5)()fx =( );DA) 0, B) 12, C) 24, D) 120.14、当()x =时,函数3()32f x x x =-+取得极大值,该极大值等于4;BA) 1, B) 1-, C) 0, D) 3.15. 当1x =时,函数3()31f x x x =-+取得极小值,该极小值等于( B ).A) 0, B) 1-, C) 2-, D) 3-. 16. 下列函数为初等函数的是( B )(B). y =(C).⎪⎩⎪⎨⎧=≠--=11112x x x x y (D).⎩⎨⎧≥<+=001x x x x y17. 当x →0时,与sin x 等价的无穷小是( A )(A) 2x x + (B) x x sinx 2 18. 设)0(f '存在,则0(0)()limx f f x x→--=( D )(A) )0(f '- (B) )0(2f '- (C) )0(2f ' (D) )0(f ' 19. 物体在某时刻的瞬时速度,等于物体运动在该时刻的( D ) (A)函数值 (B)极限 (C) 积分 (D)导数 20. 若)(x f 的导函数是x sin ,则)(x f 有一个原函数为( C ) (A) x cos 1+(B) sin x x + (C) sin x x - (D)x cos 1-三、求下面极限1、222111lim(...)1n n n n n →∞+++++, 因为:01111111022222→=≤+++++≤+=+←nn n n n n n n n n n 所以原式=02、101020(x 1)(2x 5)lim()(3x 7)x →∞---=201032 3、3211lim();28x x x →---4、81lim(1)x x x -→∞-e 1=5、25sin 3x 6lim 2x x →--=∞6、3tan limx x xx →- 解: 30tan lim x x x x →-=220sec 1lim 3x x x →-=22222001cos sin 1lim lim 3cos 33x x x x x x x →→-==7、20(1)lim sin x x x e x→-解:20(1)lim sin x x x e x →-=001lim lim sin x x x x e x x →→-=01lim11xx e →⋅= 四、求下面函数的导数、微分或不定积分 1、x)y =; 略2、1arcsin arctan 2t y t=+,求dy 略3、2cos x y e x =解:y '=222cos sin xxe x e x -=2(2cos sin )x e x x -4、053=-+x y exy,求dy()xyxyxy xe y ye y y y y x y e +-='⇒=-'+'+22350535、已知2ln(1)ln y x x =+-,求dy解:因为y '=2211x x x -+所以dy =221d (1)x x x x -+ 6、求不定积分21xdx x -⎰解:21x dx x -⎰=211dx x x ⎡⎤-=⎢⎥⎣⎦⎰211d d x x x x -⎰⎰=1ln x C x--+ 五、解答1.求函数()ln(21)f x x =-+的定义域解:290x ->且210x ->,所以函数()ln(21)f x x =-的定义域:132x << 2. 欲做一个体积为72立方厘米的带盖箱子,其底面长方形的两边成一比二的关系,怎样做法所用的材料最省?解:设底面长方形的两边的边长为x 厘米,x 2厘米,则高为2362.72xx x =厘米表面积x x x x x x x x S 21642).36.2(2).36.(2).2.(222+=++=求导 021682,=-=xx S 所以在区间),0(+∞上只有唯一的驻点3=x又因为在实际问题中存在最值,所以驻点3=x 就是所求的最值点。
高考文科数学知识点复习.doc
2018年高考文科数学知识点复习高考文科数学知识点一不等式一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4)(乘法单调性)3.绝对值不等式的性质(2)如果a 0,那么(3)|a?b|=|a|?|b|.(5)|a|-|b| |a b| |a|+|b|.(6)|a1+a2+ +an| |a1|+|a2|+ +|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a| a2 (a-b)2 0(a、b R)②a2+b2 2ab(a、b R,当且仅当a=b时取= 号)2.不等式的证明方法(1)比较法:要证明a b(a0(a-b 0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差变形判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|0)(6)|f(x)| g(x)①与f(x) g(x)或f(x) -g(x)(其中g(x) 0)同解;②与g(x) 0同解.(9)当a 1时,af(x) ag(x)与f(x) g(x)同解,当0ag(x)与f(x)四、不等式解不等式的途径,利用函数的性质。
文科数学高考复习(推荐5篇)
文科数学高考复习(推荐5篇)1.文科数学高考复习第1篇1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。
画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.3、表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=⑷球体:①表面积:S=;②体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。
核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)⑴异面直线所成角的求法:平移法:平移直线,构造三角形;⑵直线与平面所成的角:直线与射影所成的角2.文科数学高考复习第2篇解题经验主要包括:对某种类型的问题我们应该如何思考,怎样解最简捷?比如:如何证明函数的单调性?怎样求函数的最大(小)值?如何证明直线与平面垂直?怎样求直线与平面的角?这些都是构成高考题的一些基本要素;又比如:复合函数的单调性有什么特点?圆锥曲线的通径、渐进线有什么特征?这都是有效解题的一些基本结论。
当然不是要陷入题型分类与结论记忆之中,但记忆与把握一些基本思路和常用结论(数据),还是十分必要的,这对提高学生解题的起点和速度,增强看问题的深度十分有益。
考生注重良好习惯的培养,包括:(1)速度。
考试的时间紧,是争分夺秒,复习一定要有速度意识,加强速度训练,用时多即使对了也是潜在丢分,要避免小题大做。
高考文科数学总复习
组合是从n个不同元素中取出m个元素(m≤n),不考虑顺序,叫做从n个元素中取出m个元素的一个 组合。从n个不同元素中取出m个元素的所有组合的个数记为C(n,m)。
集合在概率论中的应用
概率
概率是描述随机事件发生可能性大小的数值,常用P表示。概率的取值范围在0到1之间, 即0≤P≤1。概率为0表示事件不可能发生,概率为1表示事件必然发生。
独立事件
独立事件是指两个或多个随机事件之间没有相互影响,即一个事件的发生不影响另一个事 件的发生。独立事件的概率计算公式为:P(A∩B)=P(A)×P(B)。
互斥事件
互斥事件是指两个或多个随机事件不能同时发生,即一个事件的发生会阻止另一个事件的 发生。互斥事件的概率计算公式为:P(A∪B)=P(A)+P(B)。
THANKS
感谢观看
04
集合的题型解析
集合的交并补运算
总结词
理解交、并、补运算的概念,掌握运算 方法。
VS
详细描述
交运算是指取两个集合中共有的元素,并 运算是指将两个集合中的所有元素合并, 补运算是指取一个集合中不包含在另一个 集合中的元素。在解题时,需要仔细分析 题目要求,选择合适的运算方法。
集合的子集个数问题
答案
给出正确的答案,并对答案进行详细 的解释和说明。
高考真题的解题思路与技巧
要点一
解题思路
要点二
解题技巧
针对不同的题型,给出相应解题思路和方法,如数形结 合、分类讨论等。
总结常见的解题技巧,如排除法、特殊值法等,并给出相 应的实例说明。
06
复习建议与展望
复习建议
01
02
03
04
制定复习计划
制定详细的复习计划,合理安 排时间,确保每个知识点都能
高考文科数学知识点复习总结.doc
高考文科数学知识点总结集合与简易逻辑知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 3⑴①一个命题的否命题为真,它的逆命题一定为真.否命题O逆命题.②一个命题为真,则它的逆否命题一定为真.原命题O逆否命题.(二)含绝对值不等式、一元二次不等式的解法及延伸1.含绝对值不等式的解法(1)公式法:ax-\-b < c,与GX+甲 >c(c>0)型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)儿何法:根据绝对值的儿何意义用数形结合思想方法解题.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax J+box>0 (a>0)解的讨论.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式:P或q(记作“pVq” 作F q” ));非P(记o3、“或”、“且”、“非”的真值判断(1)“非P”形式复合命题的真假与F的真假相反;(2)“p且q”形式复合命题当P与q同为真时为真, 其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P则q;逆命题:若q则P;否命题:若「P则「q;逆否命题:若「q则「P。
6、如果已知p=>q那么我们说,p是q的充分条件,q是P的必要条件。
若p=>q且q二*P,则称P是q的充要条件,记为pOq.函数知识回顾:(一)映射与函数1.映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.(二)函数的性质1・函数的单调性定义:对于函数f(X)的定义域I内某个区间上的任意两个自变量的值X|,X2,⑴若当X02时,都有f(XjVf(X2),则说f(X)在这个区间上是增函数;⑵若当Xj<X2时,都有f(XJ>f(X2),则说f(X)在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区I'可叫做函数y=f(x)的单调区I'可.此吋也说函数是这一区间上的单调函数.2.函数的奇偶性偶函数的定义:如果对于函数f()t)的定义域内任意一个X,都有f(-x)=f(x),#么函数血)就叫做偶函数.张)是假函数 o 心)=/(x) O =00倶=5" * Q)/W奇函数的定义:如果对于函数f(x)的定义域内任意一个人都有么函数f(町就叫做奇函数.他是奇函数。
数学高考文科复习知识点
数学高考文科复习知识点数学在文科高考中占据重要地位,对于文科生来说,虽然不需要掌握如同理科生一样的深入数学知识,但仍然需要对一些基础的数学知识点进行复习和掌握。
下面将介绍一些文科高考数学复习的重要知识点。
一、函数与方程在文科高考中,函数与方程是最基础的数学概念之一。
函数是指两个集合之间的一种对应关系,通常用公式表示。
在函数的研究中,常会遇到一元函数和二元函数。
其中,一元函数主要研究自变量只有一个的函数,而二元函数则是研究自变量有两个的函数。
方程则是函数的特殊形式,即含有未知数的等式。
可以通过解方程来求解未知数的值。
高考中常见的方程类型包括一元一次方程、一元二次方程、二元一次方程等。
二、概率概率是研究事件发生可能性的数学分支。
在文科高考中,概率的应用十分广泛。
熟悉概率的知识可以帮助我们分析和解决实际问题,例如人口统计、经济预测等。
在概率的学习中,我们需要掌握事件的概念、事件的运算、概率的性质等。
同时也要了解概率在实际生活中的应用,比如条件概率、全概率公式等。
三、统计统计学是一门研究数据收集、整理、分析和解释的学科。
在文科高考中,统计学是十分重要的工具。
通过统计学的方法,我们可以从大量的数据中提取出有价值的信息,并进行科学的讨论和结论。
统计学涉及到的知识点有:数据的收集与整理、数据的图表与图像、数据的分析与解释等。
例如,我们可以通过绘制直方图、折线图等来展示数据的分布情况,通过计算平均数、中位数等来描述数据的集中趋势。
四、数列与级数数列和级数是数学中重要的概念。
数列是指按一定规律排列的一串数字,级数则是数列的和。
在文科高考中,我们经常会遇到等差数列、等比数列等。
在数列的学习中,我们需要掌握数列的通项公式、求和公式、前n项和等概念。
通过运用这些公式,我们可以快速计算出数列的任意项以及数列的和。
五、利率与利息利率与利息涉及到金融数学的知识点。
在文科高考中,我们需要了解利率的计算方法以及利息的计算方法。
利率是指单位时间内借贷所产生的利息与本金之比。
高考数学复习重点资料(文科)-word文档
高考数学复习重点资料(文科):进入高三总复习的第一阶段,同学们应从基础知识抓起,扎扎实实,一步一个脚印地过“数学知识点”关。
复习时,将高考数学复习重点资料熟练掌握运用,小编相信您一定可以提高数学成绩![学法魔方]借助外力攻克数学这根硬骨头许织云表示,数学在高考中的位置、分值极为重要,可以说“高考,得数学者得天下”,数学能够学好,对升入理想大学会起到很大的作用。
对文科学生来说更是如此,因为,许多文科学生,在语文、英语等方面差别不大,而来开档次的就在数学上,在平时考试与高考中,有的数学分数甚至相差30-60分。
从以往情况来看,针对文科学生在数学学习上的特点,目前要想提高数学成绩,借助“外力”来学好数学也是很有必要的。
一是参加补习班。
这是对学校教学的有益补充,可以是一对一的家教,也可以是4-8人的小班化的补差补缺。
如果人数过多,效果就会大打折扣。
二是同学间的相互学习。
包括日常学习中所学知识的及时探讨、交流,比如学到投影画图这一新知识的时候,针对没有学会或是一知半解的内容,就可以利用课间或是其他时间即时问同学,这样可以随时随地地排疑解难,以便当天问题当天解决。
三是求助科任教师。
在每节课的学习与做作业的时候,一旦有不懂的地方,就通过当面求助与电话、短信、邮件、qq等不同方式,将学习困难与问题加以及时化解,做到不耻下问,这也是文科学生学好数学的宝贵经验。
[学习指南]定位要合理,注重基础知识陈秋波表示,通过近几年来的对高考试题的研究分析发现,文科数学考查的多是中等题型,占据总分的百分之八十之多,对于大多数的文科生来说,作好这部分题是至关重要的。
学生要加大独立解题和考场心理的模拟训练,这是可以进一步改善的地方,可大大提高整体的数学成绩。
学生要正确估计自己的数学水平和数学学习能力,确立自己切实可行的数学复习起点和数学成绩的学习目标,对高三文科中加试艺术的绝大部分同学而言,数学基础相对较差,因此,数学复习必须要狠抓基础复习。
高等数学2(文科)期末考试题型及复习要点
高等数学2(文科)期末考试题型及复习要点第一篇:高等数学2(文科)期末考试题型及复习要点2011年—2012年第二学年高等数学(文科)期末考试题型及复习要点一、选择题(5*3’)知识要点:定积分的定义及性质;简单二元函数的一阶偏导数的函数值;二元函数的极值的定义及其必要条件;常数项级数的性质;一阶线性常微分方程的通解;二、填空题(5*3’)知识要点:变限函数的导数;简单二元函数的一阶偏导数;幂级数的收敛半径;二元函数极值存在的必要条件的求法;二重积分的性质;三、计算题(10*6’)知识要点:定积分的换元法和分部积分法;广义积分的求法(无穷积分);未定式的极限(变限函数的导数,罗必塔法则);二元隐函数的导数;全微分求近似值(可参考书上例题及习题);二元函数的全微分;幂级数的收敛域;利用定积分求平面图形的面积(利用二重积分求面积也可);二重积分的计算(直角坐标系);二重积分的计算(交换积分次序);四、应用题10’经济应用(最优化问题)。
第二篇:期末考试复习要点及题型分布期末考试复习要点及题型分布复习要点:1.参数传递方式(值传递和引用传递)2.类的静态成员和实例成员3.构造函数和析构函数4.简单对话框的用法5.画图工具的使用6.方法的重载7.类的继承与多态8.异常处理9.简单数据库应用程序题型分布:一、程序改错:(共1题,二、程序填空:(共3题,每题三、程序设计:(共3题,每题10分)10分,共20分,共30分)60分)第三篇:《会计学》期末考试题型、分值和复习要点(定稿)期末《会计学》试卷题型、分值和复习要点(请尽早通知到所任教班级班级学习委员和学生)一、判断题(每小题1分,共20分)二、单项选择题(每小题1分,共20分)三、多项选择题(每小题1分,共20分)四、实务题(共40分)(一)报表题(此题20分)1.利润表编制(10分)2.资产负债表项目指标计算(10分)(二)分录题(共20分,每小题2分)【说明】1.判断、单选和多选题:重点复习第5、8、9、10、11、12、13章内容。
中文系大学文科数学复习
不定积分与定积分
总结词
理解不定积分的概念,掌握不定积分的计算方法,理 解定积分的概念,掌握定积分的计算方法。
详细描述
不定积分和定积分是积分学的两个基本概念,对于理 解函数的积分性质和解决实际问题非常重要。在复习 中,需要理解不定积分的概念、几何意义和物理意义 ,掌握求不定积分的方法,包括不定积分的线性性质 、分部积分法等。同时,需要理解定积分的概念、几 何意义和物理意义,掌握求定积分的方法,包括定积 分的线性性质、换元积分法、分部积分法等。
中文系大学文科数学复习
目 录
• 引言 • 复习内容 • 复习方法 • 复习计划 • 复习效果评估
01 引言
课程背景
大学文科数学是中文系学生必修的一 门基础课程,旨在培养学生基本的数 学素养和逻辑思维。
随着社会的发展和科技的进步,数学 在各个领域的应用越来越广泛,掌握 一定的数学知识和技能对于学生未来 的发展具有重要意义。
课程目标
掌握大学文科数学的基本概念、定理和公式,理 解数学的基本思想和方法。
培养学生的逻辑思维、分析问题和解决问题的能 力,提高学生的综合素质。
了解数学在各个领域的应用,为后续的专业学习 和工作打下基础。
02 复习内容
函数与极限
总结词
理解函数的概念,掌握函数的表示方法,理解函数的性质,理解极限的概念,掌握极限的运算方法。
分析错题
对模拟考试中的错题进行分析和总结,找出自己的薄 弱环节,进行有针对性的复习。
反馈与调整
根据模拟考试的结果和自己的实际情况,及时调整复 习计划和方法,提高复习效果。
04 复习计划
时间安排
制定详细复习计划
根据考试时间,合理安排每天的学习时间,确 保每个知识点都能得到充分复习。
大学文科数学复习资料
一、选择题(每小题3分,共15分)1.下列函数为初等函数的是( B )(B). y = (C).⎪⎩⎪⎨⎧=≠--=101112x x x x y (D).⎩⎨⎧≥<+=001x x x x y 2.当x →0时,与sin x 等价的无穷小是( A )(A) 2x x + (B) x x sinx 23.设)0(f '存在,则0(0)()lim x f f x x→--=( D ) (A) )0(f '- (B) )0(2f '- (C) )0(2f ' (D) )0(f '4. 物体在某时刻的瞬时速度,等于物体运动在该时刻的( D )(A)函数值 (B)极限 (C) 积分 (D)导数5.若)(x f 的导函数是x sin ,则)(x f 有一个原函数为( C )(A) x cos 1+ (B) sin x x + (C) sin x x - (D)x cos 1-二、填空题(每小题3分,共15分)1. 设函数cos , 0() ,0x x f x x a x <⎧=⎨-≥⎩在0x =点连续,则=a ____1-_____. 2. 设2)(x x f =, 则[()]f f x '= ____22x _ ____ .3.sin limx x x→+∞= 0 4. 曲线1y x =在点(1,1)处的法线方程为 y x = 5. (1cos )x dx -⎰= sin x x c -+ .三、计算题(每小题5分,共40分)1.求函数()ln(21)f x x =-+的定义域.解:290x ->且210x ->,所以函数()ln(21)f x x =-+的定义域:132x << 2. 设ln(2)y x =-,求其反函数解:由2y e x =-得 2y x e =+所以函数ln(2)y x =-的反函数是:xe y +=2,(,)x ∈-∞+∞3.求极限20(1)lim sin x x x e x→- 解:20(1)lim sin x x x e x →-=001lim lim sin x x x x e x x→→-=01lim 11xx e →⋅= 4.求极限30tan lim x x x x→- 解: 30tan lim x x x x→-=220sec 1lim 3x x x →-=22222001cos sin 1lim lim 3cos 33x x x x x x x →→-== 5. 已知2ln(1)ln y x x =+-,求dy 解:因为y '=2211x x x-+所以dy =221d (1)x x x x -+ 6.求2cos x y e x =的微分y '解:y '=222cos sin x x e x e x -=2(2cos sin )x e x x - 7. 求不定积分21x dx x -⎰ 解:21x dx x -⎰=211dx xx ⎡⎤-=⎢⎥⎣⎦⎰211d d x x x x -⎰⎰=1ln x C x --+ 8. 求定积分21ln ex xdx ⎰解:21ln ex xdx ⎰=3311ln 39ex x x ⎡⎤-⎢⎥⎣⎦ =31(21)9e + 四、综合应用题(每小题10分,共30分) 1. 证明方程012=-⋅x x 至少有一个小于1的正实数根.解:令()21xf x x =⋅-, ()010f =-< ,()110f =>, ()f x 闭区间[]0,1上连续, 由根的存在性定理,有()0,1ξ∈,使得()0fξ= ,即012=-⋅x x 至少有一个小于1的正实数根 2. 欲做一个体积为72立方厘米的带盖箱子,其底面长方形的两边成一比二的关系,怎样做法所用的材料最省?解:设底面长方形的两边的边长为x 厘米,x 2厘米,则高为2362.72x x x =厘米 表面积x x x x x x x x S 21642).36.2(2).36.(2).2.(222+=++= 求导 021682,=-=xx S 所以在区间),0(+∞上只有唯一的驻点3=x又因为在实际问题中存在最值,所以驻点3=x 就是所求的最值点。
关于大学高等数学文科复习重点
第一章 预备知识一、定义域1. 已知()f x 的定义域为(,0)-∞ ,求(ln )f x 的定义域。
答案:(0,1)2. 求32233()6x x x f x x x +--=+- 的连续区间。
提示:任何初等函数在定义域范围内都是连续的。
答案:()()(),33,22,-∞--+∞U U二、判断两个函数是否相同?1. 2()lg f x x = ,()2lg g x x = 是否表示同一函数?答案:否2. 下列各题中,()f x 和()g x 是否相同?答案:都不相同()2ln 1(1) (),()11(2) (),()sin arcsin (3) (),()xx f x g x x x f x x g x x f x x g x e -==-+====三、奇偶性1. 判断()2x xe ef x --= 的奇偶性。
答案:奇函数 四、有界性, 0∀∈∃>x D K ,使()≤f x K ,则()f x 在D 上有界。
有界函数既有上界,又有下界。
1. ()ln(1)f x x =- 在(1,2) 内是否有界?答案:无界2. 221x y x =+ 是否有界?答案:有界,因为2211<+x x五、周期性1. 下列哪个不是周期函数(C )。
A .sin , 0y x λλ=>B .2y =C .tan y x x =D .sin cos y x x =+ 注意:=y C 是周期函数,但它没有最小正周期。
六、复合函数1. 已知[]()f x ϕ ,求()f x例:已知10)f x x x ⎛⎫=+> ⎪⎝⎭,求()f x 解1:(111111()1f x x xf x x ⎛⎛⎛⎫=+= ⎪ ⎝⎭⎝⎝=+ 解2: 令1y x = ,1x y =,1()f y y =+,(11()1f x x x =+=+ 2. 设2211f x x x x ⎛⎫+=+ ⎪⎝⎭ ,求()f x 提示:222112x x x x ⎛⎫+=+- ⎪⎝⎭3. 设(sin )cos 21f x x =+ ,求(cos )f x 提示:先求出()f x4. 设22(sin )cos 2tan f x x x =+ ,求()f x 提示:2222sin (sin )12sin 1sin x f x x x =-+- 七、函数图形熟记arcsin ,arccos ,arctan ,cot ====y x y x y x y arc x 的函数图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题3分,共15分)
1.下列函数为初等函数的是( B )
(B). y = (C).⎪⎩⎪⎨⎧=≠--=1
01112x x x x y (D).⎩⎨⎧≥<+=001x x x x y 2.当x →0时,与sin x 等价的无穷小是( A )
(A) 2x x + (B) x x sin
x 2
3.设)0(f '存在,则0(0)()lim x f f x x
→--=( D ) (A) )0(f '- (B) )0(2f '- (C) )0(2f ' (D) )0(f '
4. 物体在某时刻的瞬时速度,等于物体运动在该时刻的( D )
(A)函数值 (B)极限 (C) 积分 (D)导数
5.若)(x f 的导函数是x sin ,则)(x f 有一个原函数为( C )
(A) x cos 1+ (B) sin x x + (C) sin x x - (D)x cos 1-
二、填空题(每小题3分,共15分)
1. 设函数cos , 0() ,0
x x f x x a x <⎧=⎨-≥⎩在0x =点连续,则=a ____1-_____. 2. 设2)(x x f =, 则[()]f f x '= ____22x _ ____ .
3.sin lim
x x x
→+∞= 0 4. 曲线1y x =在点(1,1)处的法线方程为 y x = 5. (1cos )x dx -⎰= sin x x c -+ .
三、计算题(每小题5分,共40分)
1.
求函数()ln(21)f x x =-+的定义域.
解:290x ->且210x ->,
所以函数()ln(21)f x x =-的定义域:132
x << 2. 设ln(2)y x =-,求其反函数
解:由2y e x =-得 2y x e =+所以函数ln(2)y x =-的反函数是:x
e y +=2,(,)x ∈-∞+∞
3.求极限20(1)lim sin x x x e x
→- 解:20(1)lim sin x x x e x →-=001lim lim sin x x x x e x x
→→-=01lim 11x
x e →⋅= 4.求极限30tan lim x x x x
→- 解: 30tan lim x x x x
→-=220sec 1lim 3x x x →-=22222001cos sin 1lim lim 3cos 33x x x x x x x →→-== 5. 已知2
ln(1)ln y x x =+-,求dy 解:因为y '=2211x x x
-+所以dy =221d (1)x x x x -+ 6.求2cos x y e x =的微分y '
解:y '
=222cos sin x x e x e x -=2(2cos sin )x e x x - 7. 求不定积分21x dx x -⎰ 解:21x dx x -⎰=211dx x
x ⎡⎤-=⎢⎥⎣⎦⎰211d d x x x x -⎰⎰=1ln x C x --+ 8. 求定积分21ln e
x xdx ⎰
解:21ln e
x xdx ⎰=3311ln 3
9e
x x x ⎡⎤-⎢⎥⎣⎦ =31(21)9e + 四、综合应用题(每小题10分,共30分) 1. 证明方程012=-⋅x x 至少有一个小于1的正实数根.
解:令()21x
f x x =⋅-, ()010f =-< ,()110f =>, ()f x 闭区间[]0,1上连续, 由根的存在性定理,有()0,1ξ∈,使得()0f
ξ= ,即012=-⋅x x 至少有一个小于1的正
实数根 2. 欲做一个体积为72立方厘米的带盖箱子,其底面长方形的两边成一比二的关系,怎样做法所用的材料最省?
解:设底面长方形的两边的边长为x 厘米,x 2厘米,则高为
2362.72x x x =厘米 表面积x x x x x x x x S 21642).36.2(2).36.
(2).2.(222+=++= 求导 021682,=-=x
x S 所以在区间),0(+∞上只有唯一的驻点3=x
又因为在实际问题中存在最值,所以驻点3=x 就是所求的最值点。
即当底面边长为3厘米,6厘米,高为4厘米时所用的材料最省。
3. 求由曲线x
y 1=
与直线24==x x y 及所围成的平面图形的面积. 解:由曲线x y 1=与直线x y 4=得到交点)2,2
1( 所以所围成的平面图形的面积.S=dx x x )14(22
1⎰- 即.S=dx x x )14(221⎰-=2221)ln 2(x x -=4ln 215-。