斯塔克尔伯格模型
不完全信息 动态 斯塔克尔伯格博弈模型
不完全信息动态斯塔克尔伯格博弈模型下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!不完全信息动态斯塔克尔伯格博弈模型1. 引言斯塔克尔伯格博弈模型是一种常见的非合作博弈模型,它描述了市场上的领导者和追随者之间的相互作用。
斯坦克尔伯格(Stackelberg)产量竞争模型
寡头垄断企业的动态竞争及其博弈模型一、寡头垄断企业动态竞争及其博弈原理上一节我们讨论了寡头垄断企业的静态竞争及其几个经典模型。
在这种竞争中,市场上的寡头垄断企业同时作出决策或者虽非同时,但彼此并不知道对方的选择。
这种静态竞争的情况在现实经济中往往是很少存在的,现实中存在较多的是参与竞争的企业在行动顺序上有先后之分,且后行动者一般能够在自己行动之前或多或少地观察到竞争对手在此之前行动的有关信息,并以此为依据来制定自己的竞争决策。
这种竞争是一种动态竞争,需要用动态博弈理论进行分析。
动态博弈分为完全信息动态博弈和不完全信息动态博弈。
完全信息动态博弈是指博弈方的行动有先后顺序,且后行动者在自己行动之前能够观测到先行动者的具体行动是什么,并且各博弈方对博弈中各种策略组合情况下,所有参与人相应的得益都完全了解。
在静态博弈中,博弈方的一次性同时选择的行为就是博弈方的策略,这些策略的组合以及所对应的各方得益,就是博弈的结果。
在这里,策略与行动是等价的。
而在动态博弈中,参与人的一个完整策略应包括其在各个行动点上针对前面阶段的各种情况所作的相应选择和行为的完整计划。
这些策略本身并没有强制力,只要符合自己的利益,博弈方完全可以在博弈过程中改变计划,这就是动态博弈中的“相机选择”(contingent play)问题。
由于相机选择问题的存在,使得博弈方的策略中所设定的各个阶段、各种情况下会采取的行为产生“可信性”(credibility)问题,从而使纳什均衡在动态博弈分析中的有效性也就产生疑问。
因为纳什均衡不能排除博弈方策略中所包含的不可置信的行为设定,不能解决动态博弈的相机选择引起的可信性问题,这就使纳什均衡在动态博弈中可能缺乏稳定性,不能作出可靠的判断和预测,其作用和价值受到很大限制。
为此,需要发展出新的均衡概念,将纳什均衡中存在不可置信威胁或承诺的均衡剔除掉。
1965年,泽尔腾提出的“子博弈精炼纳什均衡”概念,即是为解决动态博弈中存在的以上问题所提出的新的均衡概念。
7-13斯塔克伯格模型
斯塔克伯格模型◆本节的内容◆1、斯塔克伯格模型的简介◆2、斯塔克伯格模型的假设条件◆3、斯塔克伯格模型中均衡的形成◆4、斯塔克伯格模型的均衡解的示例◆1、斯塔克伯格模型的简介◆斯塔克伯格模型由德国学者斯塔克伯格于1934年提出。
斯塔克伯格提出了将寡头厂商的角色定位为“领导者”或“追随者”的分析范式。
◆斯塔克伯格模型中的两个寡头厂商,通常一个厂商为实力相对雄厚而处于支配地位的领导者,而另一个则为追随者,由此便构成了斯塔克伯格关于寡头市场的“领导者-追随者”模型。
◆2、斯塔克伯格模型的假设条件◆寡头行业中有两个厂商生产相同的产品,其中,一个寡头厂商是处于支配地位的领导者,另一个寡头厂商是追随者;◆每个厂商的决策变量都是产量,即每个厂商都是通过选择自己的最优产量来实现各自的最大利润。
◆3、斯塔克伯格模型中均衡的形成◆首先考虑领导型厂商。
领导型厂商有先动优势,即能首先决定自己的产量。
领导型厂商是在了解并考虑到追随型厂商对自己所选择的产量的反应方式的基础上,来决定自己的利润最大化行为决策的。
◆再考虑追随型厂商。
追随型厂商是在给定领导型厂商产量选择的前提下,来作出自己的利润最大化的产量决策。
◆追随型厂商具有反应函数,领导型厂商没有反应函数。
◆4、斯塔克伯格模型的均衡解的示例◆假定:某寡头市场上有两个商,他们生产相同的产品,其中,厂商1为领导者,其成本函数为:TC1=1.2Q 12+2;厂商2为追随者,其成本函数为:TC2=1.5Q 22+8;该市场的反需求函数为:P =100−Q ,其中,Q =Q 1+Q 2。
◆先考虑追随型厂商2的行为方式。
厂商2的利润等式为:π2=TR 2−TC 2。
由追随型厂商2利润最大化的一阶条件,得追随型厂商2的反应函数为:Q 2=20−0.2Q 1。
◆再考虑领导型厂商1的行为方式。
厂商1的利润等式为:π1=TR1−TC1,将厂商2的反应函数代入厂商1的利润等式,求领导型厂商1利润最大化的一阶条件,得厂商1的利润最大化的产量为Q1=20。
产业组织理论基本寡头模型
在图4-1中,企业1的最优的产量就由 MC=c曲线和剩余MR曲线的交点决定。这样在 给定企业1对企业2产量的一个推测,我们得 到了企业1的最优产量。
我们将企业1利润最大化的产量 y1 和企业2产量 y 2 之间的关系表示为一个方程: * 反应函数 (4.1) y1 y1 ( y 2)
企业1最优反应函数曲线的特征 : 1)线性
从上述数学结论可以清楚地看出,企 业的均衡产量和市场份额与其边际成本成 反比,与其竞争对手边际成本成正比。也 就是说,企业边际成本越高,其均衡产量 就越小,市场份额也就越小。
2、多企业古诺模型
假定:在一个市场中有N(N>2)家企业生产完全相 TCi = cyi ,i = 1, 同的产品,且成本结构相同, c 0 ,其中 TCi 表示企业i总成本,c表 2,…,N, 示N个企业相同的边际成本(也即平均成本), yi 表示企业i的产量。
第四章
基本寡头模型
本章介绍产业组织理论中的三种基本模型: 古诺模型(Cournot)、勃特兰模型 (Bertrand)、斯塔克尔伯格模型 (Stackelberg)。古诺模型和勃特兰模型 研究的是只有一个时期,所有企业同时行动。 斯塔克尔伯格模型中一家企业具有先行优势, 另外的企业观察到这家企业行动后再选择自 己的行动。
3、古诺均衡
定义:古诺均衡是指这样一对产量的组 N N ( y , y 合 1 2 ) ,在这个产量水平上没有企业 认为可通过增加或减少产量而提高自己的 利润,产出的组合除了古诺均衡外,不可 能再达到均衡。古诺均衡是纳什均衡在企 业设定产量决策情况下的一个特例,常被 称为古诺——纳什均衡。
古诺均衡产量使两个企业都达到利润最 大化,故古诺均衡点既在企业1的反应函数曲 线上又在企业2的反应函数曲线上,两条企业 反应函数曲线的交点就是古诺均衡点。
斯塔克伯格博弈求解顺序
斯塔克伯格博弈求解顺序介绍斯塔克伯格博弈是一种博弈论中常用的博弈模型,用于解决博弈中的特定问题。
本文将探讨斯塔克伯格博弈的求解顺序,并深入分析该求解顺序的应用和影响。
斯塔克伯格博弈的概述斯塔克伯格博弈是由经济学家托马斯·斯塔克伯格(Thomas Schelling)提出的一种博弈模型。
该模型用于分析博弈参与者在一个决策环境中的行为,其中每个参与者的决策会影响其他参与者的选择。
斯塔克伯格博弈通常涉及两个参与者之间的冲突,并试图预测他们的决策和行为。
参与者会根据其他参与者的可能行动以及自身的利益进行决策,以达到对自己最有利的结果。
斯塔克伯格博弈的求解顺序斯塔克伯格博弈的求解通常遵循以下步骤:1. 确定博弈参与者首先,需要明确参与斯塔克伯格博弈的参与者是谁。
通常,参与者可以是个人、团队、组织或国家等。
2. 确定参与者的利益与目标每个参与者在博弈中通常会有自己的利益和目标。
这些利益和目标可能会相互矛盾,因此需要详细了解每个参与者的利益和目标。
3. 分析参与者的策略空间参与者在斯塔克伯格博弈中会有一定的策略空间,即可以选择的不同行动或策略。
通过分析参与者的策略空间,可以更好地理解他们的决策过程。
4. 构建博弈模型在确定参与者、利益与目标以及策略空间之后,需要根据这些信息构建一个博弈模型。
该模型可以用于预测参与者在不同情况下的行为和决策。
5. 分析均衡点和解分析博弈模型并找到均衡点和解是斯塔克伯格博弈求解的重要步骤。
均衡点是指达到稳定状态的点,参与者在该点选择的策略不会受到其他参与者的行动影响。
解是指找到博弈模型中达到最优结果的策略组合。
6. 考虑动态博弈斯塔克伯格博弈也可以考虑动态博弈的情况,其中参与者的决策可以是连续的而不是离散的。
动态博弈需要考虑时间因素和参与者之间的相互作用,因此求解顺序可能需要进行调整。
斯塔克伯格博弈求解顺序的应用斯塔克伯格博弈的求解顺序可以应用于各种情景,例如商业竞争、国际关系和个人决策等。
=stackelberg 主从递博弈模型
Stackelberg主从递博弈模型,也被称为斯塔克尔伯格竞争模型,是一个描述领导者和追随者之间互动关系的博弈模型。
这个模型是以德国经济学家赫尔曼·冯·斯塔克尔贝格(Heinrich Freiherr von Stackelberg)的名字命名的。
在Stackelberg博弈中,参与者被划分为两个角色:领导者和追随者。
这个博弈中,领导者首先做出决策,而追随者在观察到领导者的决策后作出反应。
领导者可以看作是博弈的先行者,他可以考虑追随者的反应并相应地制定策略。
而追随者则根据领导者的策略来选择自己的最佳决策。
Stackelberg博弈通常应用于市场竞争和企业战略研究中。
在这种博弈模型中,领导者通常是市场上的主导者或垄断者,而追随者是市场上的竞争对手。
这个模型的关键在于领导者和追随者之间的决策次序和信息结构。
领导者在作出决策时,必须考虑到追随者可能的反应,并据此优化自己的策略。
因此,领导者的决策不再需要自己的反应函数,而是需要了解并预测追随者的反应函数。
斯塔克尔伯格均衡是两个参与人的战略组合,其中领导者的战略是给定追随者战略的情况下最优的,而追随者的战略是给定领导者战略的情况下最优的。
因此,斯塔克尔伯格均衡是一种纳什均衡,但并非所有的纳什均衡都是斯塔克尔伯格均衡。
这种模型在市场定价、产量决策、广告策略等多个领域都有广泛的应用。
例如,在寡头市场中,一家大型企业可能会作为领导者首先设定价格或产量,而其他较小的企业则会作为追随者根据领导者的决策来调整自己的策略。
产业组织理论-6寡头垄断下
一、古诺双头模型 1.基本假设
产品同质: 产品同质: y= y1+y2;p=a-b(y1+y2) ;p=aa,b﹥0;a ﹥c. 两家企业,MC1=MC2=C 两家企业, 完全信息 p=a-b(y1+y2) p=a各自同时决定产量, 各自同时决定产量,q1,q2以利润最大化为目的 每家选择产量时,假定对方产出不变。 每家选择产量时,假定对方产出不变。
例子: 例子:光盘电话薄
光盘电话薄最早出现在1986 光盘电话薄最早出现在1986年,纽约电话公司对 1986年 每张光盘要价1万美元。 每张光盘要价1万美元。 该公司的产品经理辞职创建了Pro CD, 该公司的产品经理辞职创建了Pro CD,雇佣中国 工人在北京工厂录入电话黄页上的信息,制造出 工人在北京工厂录入电话黄页上的信息, 光盘销售,每张拷贝成本不到1美元, 光盘销售,每张拷贝成本不到1美元,以几百美 元的价格销售。 元的价格销售。 美国商业信息公司原封不动地照搬了这种模式, 美国商业信息公司原封不动地照搬了这种模式, 竞争激烈,价格大幅度降到20美元,甚至免费。 20美元 竞争激烈,价格大幅度降到20美元,甚至免费。
*
企业2 企业2的反应函数
求解博弈第一阶段
a − c q1 q2 = − 2b 2
*
π 1 = Pq1 − C (q1 ) = [a − b ⋅ (q1 + q2 )]q1 − cq1
a − c q1 = a − b ⋅ ( q1 + − ) − cq1 2b 2b 2
∂π1 =0 ∂q1
例子: 例子:大英百科全书
大英百科全书的标价一度为1600 大英百科全书的标价一度为1600美元 1600美元 微软进入百科全书业,购买了一本二流百科全书 微软进入百科全书业, 的版权,制作成光盘Encarta, 49.45美元向用 Encarta,以 的版权,制作成光盘Encarta,以49.45美元向用 户销售。 户销售。 大英百科全书也退出了光盘版,价格不断降低。 大英百科全书也退出了光盘版,价格不断降低。
斯坦克尔伯格寡头竞争模型
吴丹 刘亚茹
一、斯坦克尔伯格模型介绍
二、斯坦克尔伯格模型的一般求解
假定:
逆需:
三、古诺模型与斯坦克尔伯格模型的比较
古诺模型回顾:
结论:
1、斯坦克尔伯格均衡的总产量大于古诺均衡的 总产量,即:
总产量的上升意味着总利润的下降,因此在斯坦
扩展问题: 2、企业1先行动的承诺价值:
企业1之所以获得斯坦克尔伯格利润,是 因为产品一旦生产出来,就变成一种沉淀成 本。从而企业2不得不认为它的威胁是可置信 的。 假如企业1只是简单地宣布将生产1/2(a-c), 企业2如果相信威胁,将生产1/4(a-c),此时给定 企业2的选择,企业1的最优选择是3/8(a-c)。所 以企业2不会相信企业1的威胁。
(FIRST-MOVER ADVANTAGE)
扩展问题: 1、在博弈中,拥有信息优势可能是参与人处于劣势: 企业2在斯坦克尔伯格博弈中的利润之所以低于 古 诺均衡利润,是因为它在决策之前就知道了企业 1的产量。 即使企业1先行动,但如果企业2在决策前不能 观察到企业1的产量,就会达成古诺均衡,企业1的 先动优势就不存在了。
克尔伯格博弈中总利润将小于在古诺博弈中的总 利润:
2、企业1的斯坦克尔伯格均衡产量大于古诺均衡产
量,而企业2的斯坦克尔伯格均衡产量小于古诺均 衡产量,即:
原因:企业1本来可以选择古诺均衡产量但它没有选 择,说明企业1在斯坦克尔伯格博弈中的利润 大于古诺博弈中的利润:
这就是所谓的“先动优势”
图:斯坦克尔伯格模型
斯塔克伯格模型
博弈论教学/双寡头垄断的斯塔克伯格模型出自MyKnowledgeBase< 博弈论教学Bread crumbs:教学工作 > 博弈论教学 > 博弈论教学/双寡头垄断的斯塔克伯格模型目录■1 一般模型■1.1 背景■1.2 博弈模型■1.3 后退归纳法分析■2 不变单位成本和线性逆需求函数的双寡头垄断斯塔克伯格模型■2.1 参数分析■2.2 后退归纳法求解最优反应函数■3 子博弈完美均衡的性质■4 模型推广■5 延伸阅读1 一般模型1.1 背景Stackelberg(1934)提出了一个双寡头垄断的动态博弈模型,其中领导者先行动,然后追随者行动。
1.个厂商生产同样的商品;厂商i的生产成本为;当总产量为时,产品出售价格为2.每个厂商的策略为产量;3.两个厂商相继行动:一个厂商选择它的产量,然后另一厂商在知道了第一个厂商已选择的产量后选择自己的产量。
1.2 博弈模型1.局中人:两个厂商2.终端历史:厂商所有产量序列的集合(非负数)3.局中人函数:,并且对所有的,有4.偏好:厂商关于终端历史的盈利是它的利润1.3 后退归纳法分析1.厂商1(博弈起点)的策略是一个产量;厂商2的策略是将厂商2的产量与厂商1的每个可能产量相关联的一个函数。
的任何产量,求厂商的产量为,厂商利润最大化的产量为的子博弈:在给定厂商2的策略下,求厂商1极大化自己利润的产量。
当厂商择产量,厂商2选择产量,则总产量为,价格为,厂的利润为。
利润达到最大值时的厂商1的产量记为给定了厂商1的均衡选择,厂商2的选择的产量为,那么子博弈完美均衡点为成本函数:线性逆需求函数:;, (,)的每一个产量,厂商有唯一的最优反应,为:,如果;,如果厂商2的策略(产量)是,厂商1的利润是:,厂商最大化时的产量,求导数得的最优产量为的利润为,厂商2的利润为注意区别古诺模型的同时行动:产量都为,利润都为二次成本函数的斯塔克伯格双寡头垄断博弈:,成立,以及对于所有的有,且对于有,求斯塔克伯格双寡头垄断博弈的子博弈完美均衡。
斯塔克伯格博弈求解顺序
斯塔克伯格博弈求解顺序斯塔克伯格博弈是一种非常有名的博弈理论,被广泛应用于各种决策问题中。
在实际应用中,我们经常需要求解斯塔克伯格博弈的解答顺序。
本文将围绕这一问题进行阐述,分步骤进行介绍。
一、简介斯塔克伯格博弈斯塔克伯格博弈是一种博弈理论模型,通常用于研究两个参与者的决策问题。
在这个模型中,每个参与者都会面临一个选择的问题,需要在不知道对方决策情况的前提下做出决策。
最终,通过计算矩阵汇总所有可能的策略,可以得到一个最优解。
二、确定参与者在求解斯塔克伯格博弈的解答顺序时,首先需要确定参与者。
这通常包括两个人,但也可能涉及更多的参与者,包括团体或组织等。
三、建立博弈模型建立博弈模型是非常关键的一步,它需要考虑多种因素,包括博弈参与者、可选策略、决策的结果以及决策的优先级等。
在建立博弈模型时,应该考虑到实际情况,并选择最能反映决策问题的博弈模型。
四、确定决策优先级在斯塔克伯格博弈中,决策的优先级非常重要。
这通常涉及到参与者的利益和目标,以及可选策略所包含的风险和机会。
当确定决策优先级时,需要考虑到这些因素,并且有一个明确的计算模型。
五、识别设置解答顺序一旦决策优先级确定下来,就可以开始识别和设置解答顺序。
这需要考虑到每个参与者所面临的选择,以及这些选择之间的可能影响。
解答顺序需要在博弈模型中进行计算,并且严格按照优先级顺序执行。
六、计算最优解最终,通过计算所有可能策略,并将它们纳入到解答顺序中,可以得到斯塔克伯格博弈的最优解。
最优解通常反映了最高利益和最小风险,并可以帮助决策者做出更明智的决策。
以上是求解斯塔克伯格博弈解答顺序的一些关键步骤。
这些步骤需要按照严格的顺序执行,以确保最终得到的最优解能够在实际决策问题中发挥最大的作用。
因此,在进行求解斯塔克伯格博弈之前,必须全面考虑所有相关因素,选择最合适的博弈模型,并严格按照计算模型进行操作。
第四章基本寡头模型
a 2c c y 3b 2a c c N Y 3b a c c N P : :: 3
N 1
a 2c c y 3b
N 2
y1N a 2c c 企业1的市场分额: s1 Y N 2a c c
N y2 a 2c c 企业2的市场分额: s2 N Y 2 a c c
第一节
一、双头模型
古诺模型
古诺双头模型研究的是在一个只有 两家成本结构相同的企业生产完全相同 产品的市场中,企业如何确定自己的产 量,市场最后达到一个稳定的状态或者 均衡。
1、模型基本假设:
产品是同质的
只有两家企业,且有着相同的成本结构
每家企业对市场需求曲线上每一点有着完全信息
只有一个时期
* 1
3、伯特兰பைடு நூலகம்衡
企业2与企业1具有相同的成本,所以它的 反应函数曲线具有与企业1相同的形状,并且对 称于45°线。 与古诺模型相似,把企业1和企业2的反应 函数放在一起,找到纳什均衡的价格组合:
(p , p )
N 1
N 2
两条反应函数曲线有且仅有一个交点,所以伯特 兰模型只有唯一的均衡。在均衡点处,
从上述数学结论可以清楚地看出,企 业的均衡产量和市场份额与其边际成本成 反比,与其竞争对手边际成本成正比。也 就是说,企业边际成本越高,其均衡产量 就越小,市场份额也就越小。
2、多企业古诺模型
假定:在一个市场中有N(N>2)家企业生产完全相 TC 同的产品,且成本结构相同, i = cyi ,i = 1, 2,„,N, 0 ,其中 TCi 表示企业i总成本,c表 c 示N个企业相同的边际成本(也即平均成本), yi 表示企业i的产量。
斯塔克尔伯格模型结论课件
5
一、基本思路
. 最终企业1的产量:
. 企业2的产量:
6
二、 模型的建立与求解--
“反应函数”法
1 ·“反应函数”法:
• 根据纳什均衡的概念,如果两参与人有一个策略组合 (q1*, q2* ),q1*和 都是相对于对方策略的最佳策 略q2。* 即厂商1根据厂商2的每一个可能产量q2 ,都可以 找到自己的最佳反应策略q1* ( q2 ),在数学上相当于 假定q2不变,对q1的选择使厂商1的利润最大化,即利 润函数的一阶偏导数等于零。这样,可以求得两个最 佳反应函数,联立求解就是古诺均衡产量。
30
二、斯塔克尔伯格模型
3. 模型的建立与求解
考虑用逆向归纳法的思路来求解该博弈的子博弈精炼纳 什均衡。
⑴计算企业2的反应函数:
• 需求函数: P=a-Q=a- b(q1+q2) • 成本函数: C2 (q2)=c×q2 • 企业2利润:
π2=Pq2-C2 (q2)= [a- b(q1+q2)] q2-cq2 • 对q2求导并令其为零:
•
dπ2/dq2=a-2bq2-bq1-c=0
•
q2* = (a-c-bq1 ) /2b
31
二、斯塔克尔伯格模型
⑵企业1的最优产量决策
π (q1, q2* ) 1=Pq1-C1 (q1) = [a- b(q1+ q2* )] q1-cq1
=q1× (a-c-bq1 ) /2 • 对q1求导并令其为零,从而得出企业1的
23
二、伯特兰德悖论及其解 释
1.伯特兰德悖论 • 伯特兰德均衡说明只要市场中企业数目
寡占的斯塔克博格模型
一、模型背景
斯塔克博格模型由德国经济学家斯塔克博格(H.Von Stackelberg)在上世纪30年代提出。 在有些市场,竞争厂商之间的地位并不是对称的,市场地位的不对称引起了决策次序的不对称, 通常,小企业先观察到大企业的行为,再决定自己的对策。德国经济学家斯塔克尔博格建立的模 型就反映了这种不对称的竞争。
五、模型总结
• 是动态的寡头市场产量博弈模型
• 是一个完全且完美信息的动态博弈。
•与古诺模型的唯一区别:选择有先后之分
•此博弈存在“先动优势”。拥有信息优势可能使局中人处于劣势。
THANKS
@ Yo u r N a m e
四、例题讲解
设模型中的两个寡头为厂商1和厂商2,厂商1是领头者,厂商2是追随者,设价 格函数为P=P(Q)=8-Q,两厂商的边际成本为C1=C2=2,根据上述假设,的收益函 数为:
u
q p(Q) c1 q 6 q q
1 1 1
1
1
q q
2 2
2
1
u2 q p(Q) c2 q 6 q q
三、模型分析
斯塔克尔伯格模型是一个产量领导模型,厂商之间存在着行动次序的区别 。产量的决定依据以下次序:领导性厂商决定一个产量,然后跟随着厂商 可以观察到这个产量,然后根据领导性厂商的产量来决定他自己的产量。 需要注意的是,领导性厂商在决定自己的产量的时候,充分了解跟随厂商 会如何行动——这意味着领导性厂商可以知道跟随厂商的反应函数。因此 ,领导性厂商自然会预期到自己决定的产量对跟随厂商的影响。正是在考 虑到这种影响的情况下,领导性厂商所决定的产量将是一个以跟随厂商的 反应函数为约束的利润最大化产量。在斯塔克尔伯格模型中,领导性厂商 的决策不再需要自己的反应函数。
斯塔克伯格模型
成为先行者意味着2点: 1.企业可以赚取比古诺状态下更多的利润,否则没 有动机成为先行者; 2.追随企业没有办法威胁先行企业; 如果另一企业成为先行者,该企业可以成功威胁另 一企业。
7
课堂总结
斯塔克博格模型——动态的寡头市场产量博弈模型
这是一个完全且完美信息的动态博弈。
假设:寡头市场上有两个厂商,决策内容为产量,厂商 A主导,厂商B追随。由A首先确定产量,B观察到A的 选择后再确定自己的产量。
斯塔克博格模型--动态的寡头市场产量博弈模型
背景介绍:
斯塔克博格模型由德国经济学家斯塔克博格(H.Von Stackelberg) 在上世纪30年代提出。
什么是斯塔克博格竞争模型?
事实上,在有些市场,竞争厂商之间的地位并不是对称的,市场地 位的不对称引起了决策次序的不对称,通常,小企业先观察到大企 业的行为,再决定自己的对策。德国经济学家斯塔克尔博格建立的 模型就反映了这种不对称的竞争。 在斯塔克尔博格的寡头理论中,提出了将寡头厂商的角色定位为 “领导者”与“追随者”的分析范式。一般来说,古诺模型中互为 追随者的两个厂商势均力敌。而斯塔克尔伯格的寡头厂商模型中, 一个是实力雄厚的领导者,一个是实力相对较弱的追随者。
该模型的假定是:
主导企业知道跟随企业一定会对它的产量作出反应,因 而当它在确定产量时,把跟随企业的反应也考虑进去了。 因此这个模型也被称为“主导企业模型”。 假设条件:
假设厂商1先决定它的产量,然后厂商2知道厂商1的产量后 再作出它的产量决策。 因此,在确定自己产量时,厂商1必须考虑厂商2将如何作出 反应。 其他假设与古诺模型相同。
书本例题 市场有1,2两家厂商生产同质产品, 厂商1的产量为q1,
厂商2的产量为q2,
斯塔克伯格模型名词解释
斯塔克伯格模型名词解释《斯塔克伯格模型》名词解释《斯塔克伯格模型》是一个经济学中的概念,是由英国经济学家理查德·斯塔克伯格(Richard Stone)于1954年首次提出的。
该模型主要用于描述一个国家或地区的经济结构和经济增长的过程。
斯塔克伯格模型将一个国家的总产出划分为不同的产业部门,每个部门的产出和就业水平都可以通过该模型进行分析和预测。
这些不同的产业部门可以是农业、工业、建筑、运输、金融等,每个部门都有相应的产出、就业、投资和外部需求等因素。
在斯塔克伯格模型中,不同的产业部门之间存在着相互依存的关系,即一个部门的发展和增长会对其他部门产生影响。
通过分析这种相互依存的关系,可以揭示一个国家经济增长的动力和结构变化的趋势。
斯塔克伯格模型的核心概念是内部投资和外部需求的相互作用。
内部投资指的是一个国家在各个产业部门的投资比例,即资源在不同产业间的分配情况。
外部需求则是指来自其他国家对该国家产业部门产品的需求水平。
通过分析内部投资和外部需求的变化,可以解释一个国家经济增长的速度和结构变化的原因。
斯塔克伯格模型对于制定经济政策和预测经济发展趋势具有重要意义。
通过分析模型中各个产业部门的变化,政府可以制定相应的产业政策,引导资源的分配和投资,促进经济的健康发展。
同时,利用该模型可以预测不同产业部门的增长潜力,为投资决策提供依据。
总之,《斯塔克伯格模型》为经济学家和政策制定者提供了一个有力的工具,帮助他们理解和解释一个国家或地区的经济结构和经济增长的过程。
通过分析产业部门之间的相互作用和变化,可以揭示经济发展的规律和趋势,从而为经济政策的制定和实施提供科学依据。
斯塔克伯格模型
相互作用相 互影响
正是在考虑到这种影响的情况下, 领导性厂商所决定的产量将是一个 以跟随厂商的反应函数为约束的利 润最大化产量。在斯塔克尔伯格模 型中,领导性厂商的决策不再需要 自己的反应函数。
斯塔克伯格模型的均衡解 某寡头市场上有两个厂商,他 们生产相同的产品,其中,厂 商1为领导者,其中成本函数为 TC1=1.2(Q1)2+2;厂商2为追 随者,其成本函数为TC2=1.5 (Q2)2+8,该市场的反需求函 数为P=100-Q,其中,Q=Q1+Q2
斯塔克伯格模型
尽管与古诺模型一样,斯塔克尔伯格 模型也是讨论生产同质产品的寡头厂 商之间如何决定产量的,但后者与前 者并不一样。斯塔克尔伯格模型是一 个价格领导模型,厂商之间存在着行 动次序的区别。
产量的决定依据以下次序:领导性厂 商 决定一个产量,然后跟随着厂商 可以观察到这个产量,然后根据领导 性厂商的产量来决定他自己的产量。 需要注意的是,领导性厂商在决定自 己的产量的时候,充分了解跟随厂商 会如何行动——这意味着领导性厂商 可以知道跟随随厂商的影响。
15-斯塔克伯格模型
15-斯塔克伯格模型博弈论教学/双寡头垄断的斯塔克伯格模型出自MyKnowledgeBase< 博弈论教学Bread crumbs:教学工作 > 博弈论教学 > 博弈论教学/双寡头垄断的斯塔克伯格模型目录■1 一般模型■1.1 背景■1.2 博弈模型■1.3 后退归纳法分析■2 不变单位成本和线性逆需求函数的双寡头垄断斯塔克伯格模型■2.1 参数分析■2.2 后退归纳法求解最优反应函数■3 子博弈完美均衡的性质■4 模型推广■5 延伸阅读1 一般模型1.1 背景Stackelberg(1934)提出了一个双寡头垄断的动态博弈模型,其中领导者先行动,然后追随者行动。
1.个厂商生产同样的商品;厂商i的生产成本为;当总产量为时,产品出售价格为2.每个厂商的策略为产量;3.两个厂商相继行动:一个厂商选择它的产量,然后另一厂商在知道了第一个厂商已选择的产量后选择自己的产量。
1.2 博弈模型1.局中人:两个厂商2.终端历史:厂商所有产量序列的集合(非负数)3.局中人函数:,并且对所有的,有4.偏好:厂商关于终端历史的盈利是它的利润1.3 后退归纳法分析1.厂商1(博弈起点)的策略是一个产量;厂商2的策略是将厂商2的产量与厂商1的每个可能产量相关联的一个函数。
的任何产量,求厂商的产量为,厂商利润最大化的产量为的子博弈:在给定厂商2的策略下,求厂商1极大化自己利润的产量。
当厂商择产量,厂商2选择产量,则总产量为,价格为,厂的利润为。
利润达到最大值时的厂商1的产量记为给定了厂商1的均衡选择,厂商2的选择的产量为,那么子博弈完美均衡点为成本函数:线性逆需求函数:;, (,)的每一个产量,厂商有唯一的最优反应,为:,如果;,如果厂商2的策略(产量)是,厂商1的利润是:,厂商最大化时的产量,求导数得的最优产量为的利润为,厂商2的利润为注意区别古诺模型的同时行动:产量都为,利润都为二次成本函数的斯塔克伯格双寡头垄断博弈:,成立,以及对于所有的有,且对于有,求斯塔克伯格双寡头垄断博弈的子博弈完美均衡。
斯坦克尔伯格模型
1 1 2 2 2 (a c) (a c) c 16 9
2 s
总产量的上升意味着总利润下降了,因此在斯坦克 尔伯格博弈中总利润将小于在库诺特博弈中的总利 润。
3 2 2 2 s (a c) (a c) c 16 9
那么,斯坦克尔伯格博弈中企业2的利润也必将下降。
从斯坦克尔伯格模型我们可以看到,跟随者将根据观察到的领导者 行为来做决策,因此,领导者传递的信息将起决定性作用。领导者知 道自己的行为将影响跟随者的行为,因此,他将传递对自己有利的信 息,以实现自己利润最大化。这种先动优势和后发优势将在任何动态 模型中都存在。
谢谢
因此,我们得出如下结论:在斯坦克尔伯格模型中, 领导企业1的情况要比库诺特模型中的情况好,而跟 随企业2的状况却变差了,不过,斯坦尔克伯格模型 中,市场总产量增加了,而总利润下降了。 这就是所谓的“先动优势”,在博弈中,拥有信息 优势可能使参与人处于劣势,而这在单人决策中是不 可能的。企业2在斯坦克尔伯格博弈中的利润之所以 低于库诺特博弈中的利润,是因为它在决策之前就知 道了企业1的产量。即使企业1先行动,但如果企业2 在决策之前不能观测到企业1的产量,我们就回到了 库诺特均衡,因为此时,企业1的先动优势就不存在 了。
因为企业2是根据观察到的 1来最优其选择,那么,企业2实现 利润最优化一阶条件,并令其为0,则意味着企业2的边际收益等 于边际成本,利润最大化,得出其反应曲线 :
q
1 q2 ( a q1 c ) s2 ( q1 ) 2
• 因为企业1先动,并且知道企业2会观察到自己的行动,并作出上式的反 应,即企业1可预测到企业2将根据s2(q1)选择q2,同理可求得企业1的利 润函数,代入q2 ,即s2(q1),得:
12.2++斯塔克伯格和伯特兰特模型
❖ 一家厂商在另一家厂商之前作出产量选择。 即有一位产量领导者和产量追随者。产量追 随者根据领导者确定的产量选择满足最大利 润的产量。而产量领导者能够预期追随者的 最大利润产量,并根据这个产量来选择自己 的最优产量。这种模型一般用于描述一家厂 商处于行业支配地位或充当自然领导者情况。
ቤተ መጻሕፍቲ ባይዱ
如果是差别产品的价格竞争,即使一个厂商 的价格比其对手更低,也不可能争取到所有 顾客,因此,厂商的需求曲线仍会向下倾斜 ,但比较平缓,即比古诺模型中需求曲线更 有弹性,但绝不像同质产品价格竞争模型中 那样每个厂商面临一条水平的需求曲线。
80Q1 2Q12 2
❖ 领导者厂商1利润最大化条件
1
Q1
80 4Q1
0
Q1 20
❖ 该寡头市场的斯塔克伯格均衡解为
Q1 20 Q2 16
三、伯特兰特模型
又称同质产品价格竞争模型。伯特兰特,法国 经济学家(J.Bertrand)1883年提出该模型。在上述的 古诺模型(产量竞争模型)中,伯特兰特认为如果 竞争对手不变动其价格,则任意厂商都可通过选择 降价来争取顾客,而对手则会失去大量顾客,价格 竞争的结果一定是两个厂商都按边际成本来定价, 每个厂商面临一条水平的需求曲线,即达到完全竞 争的结果。
❖ 领导者的利润最大化问题为: MAX P(Y1+Y2)*Y1-C1(Y1) 使得: Y2=f (Y1)
❖ 即: MAX P[Y1+f2(Y1)]Y1-C1(Y1)
❖ 因为Y2=f(Y1)=(a-bY1)/2b,
P(Y1+Y2)=a-b*(Y1+Y2), 假设TC2=TC1=0,我们 得到:
❖ л1=[a-b* (Y1+Y2)]*Y1= [a-bY1-b*(abY1)/2b ]*Y1 =a/2Y1-b/2Y12
斯塔克伯格模型
解:(1)成为先行者意味着3点:1.企业可以赚取比古诺状态下更多的利润,否则没有动机成为先行者;2.追随企业没有办法威胁先行企业,即选取产量使己方产量为正,它方产量为负3.如果另一企业成为先行者,该企业可以成功威胁另一企业先求古诺均衡:()()()(),30,805.05.05.0100,5.09555.05.0100,2122221212211121211max max 21==---=-=⇒---=q q qq q qq q q q q q q qq q q q ππ因此为满足条件1,对于任何先行动者来说,必须有30,8021≥≥q q (否则追随者可以选取产量,使价格等于古诺价格,此时先行者利润低于古诺均衡时情况)a .如果企业2成为领导者,观察企业1能否采取威胁战略使己方利益为正,对方利益为负:即:()()()()212222212121121211190220005.05.05.0100,055.05.0100,q q q q q q q q q q q q q q q -<<-⇒⎩⎨⎧<---=>---=ππ对于企业2的任何产量先行决策 102>q ,只要企业1威胁其产量1q 将满足上式,则企业2将不敢先行动若210q ≤ ,与先行动者的302≥q 矛盾。
因此企业2不会是先行者b.考虑企业1能否成为先行者,由a 已经知道企业1可以成功在企业1先行时成功威胁企业2。
故只需考虑如果企业1先行,企业2能否威胁企业1 当企业1先行动时,企业2决策()()122222121225.0505.05.05.0100,max 2q q q q q qq q q -=⇒---=π企业1决策:()()112121155.05.0100,max 1q q q qq q q ---=π()33.933380375.070111max 1==⇒-=q q q q因此企业1的产量决策范围为 33.93801≤≤q 而企业2要惩罚企业1为领导者必须满足()()()()1805.0100190055.05.0100,05.05.05.0100,1121112121122221212>⇒-<<-⇒⎪⎩⎪⎨⎧<---=>---=q q q q q q q q q q q q q q q q ππ 这与 33.93801≤≤q 矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斯塔克尔伯格模型
什么是斯塔克尔伯格模型?
斯塔克尔伯格模型由德国经济学家斯塔克尔伯格(H. Von Stackelberg)在上世纪30年代提出。
在古诺模型和伯特兰德模型里,竞争厂商在市场上的地位是平等的,因而它们的行为是相似的。
而且,它们的决策是同时的。
当企业甲在作决策时,它并不知道企业乙的决策。
但事实上,在有些市场,竞争厂商之间的地位并不是对称的,市场地位的不对称引起了决策次序的不对称,通常,小企业先观察到大企业的行为,再决定自己的对策。
德国经济学家斯塔克尔伯格建立的模型就反映了这种不对称的竞争。
该模型的假定是:主导企业知道跟随企业一定会对它的产量作出反应,因而当它在确定产量时,把跟随企业力反应也考虑进去了。
因此这个模型也被称为“主导企业模型”。
斯塔克尔伯格模型假设条件
假设厂商1先决定它的产量,然后厂商2知道厂商1的产量后再作出它的产量决策。
因此,在确定自己产量时,厂商1必须考虑厂商2将如何作出反应。
其他假设与古诺模型相同,
斯塔克尔伯格模型分析
斯塔克尔伯格模型是一个价格领导模型,厂商之间存在着行动次序的区别。
产量的决定依据以下次序:领导性厂商决定一个产量,然后跟随着厂商可以观察到这个产量,然后根据领导性厂商的产量来决定他自己的产量。
需要注意的是,领导性厂商在决定自己的产量的时候,充分了解跟随厂商会如何行动——这意味着领导性厂商可以知道跟随厂商的反应函数。
因此,领导性厂商自然会预期到自己决定的产量对跟随厂商的影响。
正是在考虑到这种影响的情况下,领导性厂商所决定的产量将是一个以跟随厂商的反应函数为约束的利润最大化产量。
在斯塔克尔伯格模型中,领导性厂商的决策不再需要自己的反应函数。