线性系统理论总结ppt
合集下载
线性系统理论全PPT课件
复频率域描述即传递函数描述
bn1 s n1 b1 s b0 y( s) g ( s) n u( s) s an1 s n1 a1 s a0
(2)系统的内部描述 状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征,—— 状态方 程和输出方程 (3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不 能控或不能观测的部分. 内部描述则是系统的一种完全的描述,能够完全反映系统的所有动力学特性.
离散时间线性系统的方块图
D(k )
H (k )
x(k 1)
x(k )
单位延迟
C (k )
u (k )
y (k )
G (k )
7/7,11/50
2.3.连续变量动态系统按状态空间描述的分类
线性系统和非线性系统
f ( x, u, t ) 设系统的状态空间描述为 x y g ( x, u, t )
5
• 建立数学模型 • 数学模型的基本要素是变量、参量、常数 和它们之间的关系 • 变量:状态变量、输入变量、输出变量、
扰动变量
• 参量:系统的参数或表征系统性能的参数
• 常数:不随时间改变的参数
6
• 时间域模型:微分方程组或差分方程组 可用于常系数系统 和变系数系统 • 频率域模型:用传递函数、频率响应
向量函数
g1 ( x, u, t ) f1 ( x, u, t ) g ( x, u , t ) f ( x, u , t ) ,g ( x, u, t ) 2 f ( x, u , t ) 2 g ( x , u , t ) f ( x , u , t ) n q
bn1 s n1 b1 s b0 y( s) g ( s) n u( s) s an1 s n1 a1 s a0
(2)系统的内部描述 状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征,—— 状态方 程和输出方程 (3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不 能控或不能观测的部分. 内部描述则是系统的一种完全的描述,能够完全反映系统的所有动力学特性.
离散时间线性系统的方块图
D(k )
H (k )
x(k 1)
x(k )
单位延迟
C (k )
u (k )
y (k )
G (k )
7/7,11/50
2.3.连续变量动态系统按状态空间描述的分类
线性系统和非线性系统
f ( x, u, t ) 设系统的状态空间描述为 x y g ( x, u, t )
5
• 建立数学模型 • 数学模型的基本要素是变量、参量、常数 和它们之间的关系 • 变量:状态变量、输入变量、输出变量、
扰动变量
• 参量:系统的参数或表征系统性能的参数
• 常数:不随时间改变的参数
6
• 时间域模型:微分方程组或差分方程组 可用于常系数系统 和变系数系统 • 频率域模型:用传递函数、频率响应
向量函数
g1 ( x, u, t ) f1 ( x, u, t ) g ( x, u , t ) f ( x, u , t ) ,g ( x, u, t ) 2 f ( x, u , t ) 2 g ( x , u , t ) f ( x , u , t ) n q
《线性系统》课件
NG
线性系统的控制目标
01
02
03
04
稳定性
确保系统在受到扰动后能够恢 复稳定状态。
跟踪性能
使系统输出能够跟踪给定的参 考信号。
抗干扰性
减小外部干扰对系统输出的影 响。
优化性能指标
最小化系统性能指标,如误差 、超调量等。
线性系统的控制设计方法
状态反馈控制
基于系统状态变量进行 反馈控制,实现最优控
稳定性分析
利用劳斯-赫尔维茨稳定判据等 工具,分析系统的稳定性。
最优性能分析
通过求解最优控制问题,了解 系统在最优控制下的性能表现
。
2023
PART 06
线性系统的应用实例
REPORTING
线性系统在机械工程中的应用
总结词
广泛应用、控制精度高
详细描述
线性系统在机械工程中有着广泛的应用,如数控机床、机器人、自动化生产线等。这些系统通过线性 控制理论进行设计,可以实现高精度的位置控制、速度控制和加速度控制,提高生产效率和产品质量 。
时域分析法
通过求解线性常微分方程或差分 方程,可以得到系统的动态响应
,包括瞬态响应和稳态响应。
频域分析法
通过分析系统的频率响应函数,可 以得到系统在不同频率下的动态响 应特性。
状态空间分析法
通过建立系统的状态方程和输出方 程,利用计算机仿真技术对系统的 动态响应进行模拟和分析。
2023
PART 05
2023
PART 02
线性系统的数学模型
REPORTING
线性系统的微分方程
总结词
描述线性系统动态行为的数学方程
详细描述
线性系统的微分方程是描述系统状态随时间变化的数学模型,通常采用常微分 方程或差分方程的形式。这些方程反映了系统内部变量之间的关系及其对时间 的变化规律。
线性系统的控制目标
01
02
03
04
稳定性
确保系统在受到扰动后能够恢 复稳定状态。
跟踪性能
使系统输出能够跟踪给定的参 考信号。
抗干扰性
减小外部干扰对系统输出的影 响。
优化性能指标
最小化系统性能指标,如误差 、超调量等。
线性系统的控制设计方法
状态反馈控制
基于系统状态变量进行 反馈控制,实现最优控
稳定性分析
利用劳斯-赫尔维茨稳定判据等 工具,分析系统的稳定性。
最优性能分析
通过求解最优控制问题,了解 系统在最优控制下的性能表现
。
2023
PART 06
线性系统的应用实例
REPORTING
线性系统在机械工程中的应用
总结词
广泛应用、控制精度高
详细描述
线性系统在机械工程中有着广泛的应用,如数控机床、机器人、自动化生产线等。这些系统通过线性 控制理论进行设计,可以实现高精度的位置控制、速度控制和加速度控制,提高生产效率和产品质量 。
时域分析法
通过求解线性常微分方程或差分 方程,可以得到系统的动态响应
,包括瞬态响应和稳态响应。
频域分析法
通过分析系统的频率响应函数,可 以得到系统在不同频率下的动态响 应特性。
状态空间分析法
通过建立系统的状态方程和输出方 程,利用计算机仿真技术对系统的 动态响应进行模拟和分析。
2023
PART 05
2023
PART 02
线性系统的数学模型
REPORTING
线性系统的微分方程
总结词
描述线性系统动态行为的数学方程
详细描述
线性系统的微分方程是描述系统状态随时间变化的数学模型,通常采用常微分 方程或差分方程的形式。这些方程反映了系统内部变量之间的关系及其对时间 的变化规律。
线性系统理论讲义
对于线性系统
X A(t)X B(t)u Y C(t)X D(t)u
1/2,12/50
时变系统和时不变系统
若向量f,g不显含时间变量t,即
f
g
f (x, u) g(x, u)
该系统称为时不变系统
若向量f,g显含时间变量t,即
f
g
f (x, u, t) g(x, u, t)
该系统称为时变系统
x t ,K , x t 为坐
1
n
标轴构成的 n 维空间。
(5)状态方程:描述系统状态与输入之间关系
的、一阶微分方程(组):x&(t) Ax(t) Bu(t)
(6) 输出方程:描述系统输出与状态、输入之间关
系的数学表达式: y(t) Cx(t) Du(t)
(7)状态空间表达式: (5)+ (6). 状态变量的特点: (1)独立性:状态变量之间线性独立. (2)多样性:状态变量的选取并不唯一,实
4/18,17/50
写成矩阵形式: x1
x2
0
0
xn1 xn
0
a0
1 0 0 1
0 0 a1 a2
0 0
x1 x2
0 0
1 an
1
xn1
xn
u 0 1
y b0 a0bn
b1 a1bn
bn2 an2bn
x1
x2
bn1 an1bn bnu
5/18,18/50
结论2 给定单输入,单输出线性时不变系统的输入输出描述,其对应的状态空
uc
R2C
duc dt
R1iL
R1C
duc dt
L diL dt
L diL dt
《线性控制系统理论》课件
20世纪末至今
延时符
线性控制系统的基本组成
总结词
系统模型的建立是线性控制系统理论的基础。
详细描述
系统模型是对实际物理系统的数学描述,它反映了系统的动态行为和输入输出关系。线性控制系统模型通常由线性微分方程、传递函数和状态空间表达式来表示。
性能指标是评估系统性能的重要依据。
系统性能指标包括稳定性、快速性、准确性和鲁棒性等。这些指标用于衡量系统在不同条件下的性能表现,是系统设计和优化过程中的关键参考。
控制器
作为控制系统的核心,控制器负责接收输入信号并产生输出信号,以控制被控对象的运行状态。常用的控制器有PID控制器、模糊控制器等。
传感器
传感器用于检测被控对象的运行状态,并将检测到的信号转换为电信号或数字信号,传输给控制器。常见的传感器有温度传感器、压力传感器等。
控制算法
控制算法是控制系统的核心,用于计算控制器的输出信号。常用的控制算法有PID控制算法、模糊控制算法等。
延时符
线性控制系统的分析方法
通过建立状态方程和输出方程描述系统动态行为的方法。
状态空间法是一种基于状态变量描述线性控制系统动态行为的方法。通过建立状态方程和输出方程,可以全面地描述系统的运动过程,并方便地进行系统分析和设计。
通过分析系统极点和零点分布影响系统性能的方法。
频率域分析法是一种在频域内分析线性控制系统性能的方法。通过分析系统极点和零点的分布,可以确定系统性能的优劣,如稳定性、快速性和准确性等。
02
状态反馈控制具有较好的鲁棒性和适应性,能够有效地抑制外部干扰和参数变化对系统的影响。
1
2
3
极点配置法是一种通过调整系统极点位置来改善系统性能的方法。
通过合理配置极点位置,可以有效地改善系统的动态特性和稳态精度,提高系统的控制性能。
延时符
线性控制系统的基本组成
总结词
系统模型的建立是线性控制系统理论的基础。
详细描述
系统模型是对实际物理系统的数学描述,它反映了系统的动态行为和输入输出关系。线性控制系统模型通常由线性微分方程、传递函数和状态空间表达式来表示。
性能指标是评估系统性能的重要依据。
系统性能指标包括稳定性、快速性、准确性和鲁棒性等。这些指标用于衡量系统在不同条件下的性能表现,是系统设计和优化过程中的关键参考。
控制器
作为控制系统的核心,控制器负责接收输入信号并产生输出信号,以控制被控对象的运行状态。常用的控制器有PID控制器、模糊控制器等。
传感器
传感器用于检测被控对象的运行状态,并将检测到的信号转换为电信号或数字信号,传输给控制器。常见的传感器有温度传感器、压力传感器等。
控制算法
控制算法是控制系统的核心,用于计算控制器的输出信号。常用的控制算法有PID控制算法、模糊控制算法等。
延时符
线性控制系统的分析方法
通过建立状态方程和输出方程描述系统动态行为的方法。
状态空间法是一种基于状态变量描述线性控制系统动态行为的方法。通过建立状态方程和输出方程,可以全面地描述系统的运动过程,并方便地进行系统分析和设计。
通过分析系统极点和零点分布影响系统性能的方法。
频率域分析法是一种在频域内分析线性控制系统性能的方法。通过分析系统极点和零点的分布,可以确定系统性能的优劣,如稳定性、快速性和准确性等。
02
状态反馈控制具有较好的鲁棒性和适应性,能够有效地抑制外部干扰和参数变化对系统的影响。
1
2
3
极点配置法是一种通过调整系统极点位置来改善系统性能的方法。
通过合理配置极点位置,可以有效地改善系统的动态特性和稳态精度,提高系统的控制性能。
线性系统理论PPT-郑大钟(第二版)
系统具有如下3个基本特征:
(1)整体性
1.结构上的整体性 2.系统行为和功能由整体 所决定
(2)抽象性
作为系统控制理论的研 究对象,系统常常抽去 了具体系统的物理,自 然和社会含义,而把它 抽象为一个一般意义下 的系统而加以研究。
(3)相对性
在系统的定义 中, 所谓“系统” 和“部分”这 种称谓具有相 对属性。
u1 u2
up
x1 x2
动力学部件
xn
输出部件
y1 y2
yq
连续时间线性系统的状态空间描述
线性时不变系统
x Ax Bu
y
Cx
Du
线性时变系统
x A(t)x B(t)u
y
C (t ) x
D(t
)u
连续时间线性系统的方块图
x A(t)x B(t)u
对于单输入,单输出线性时不变系统,其微分方程描述
y (n) an1 y (n1) a1 y (1) a0 y bmu (m) bm1u (m1) b1u (1) b0u
H (k )
单位延迟
C(k)
y(k)
u(k)
G(k)
2.3.连续变量动态系统按状态空间描述的分类
线性系统和非线性系统
设系统的状态空间描述为 x f ( x,u, t) y g( x,u, t)
向量函数
f1(x,u,t)
g1(x,u,t)
f
(
x,u,
t
)
f
2
(
x,u,
e
线性系统理论全PPT课件
详细描述
稳定性是线性系统的一个重要性质,它决定了系统在受到外部干扰后能否恢复到原始状态。如果一个系统是稳定 的,那么当外部干扰消失后,系统将逐渐恢复到原始状态。而不稳定的系统则会持续偏离原始状态。
03
线性系统的数学描述
状态空间模型
01
定义
状态空间模型是一种描述线性动态系统的方法,它通过状态变量和输入
航空航天控制系统的线性化分析
线性化分析
在航空航天控制系统中,由于非线性特性较强,通常需要进行线性化分析以简化系统模 型。通过线性化分析,可以近似描述系统的动态行为,为控制系统设计提供基础。
线性化方法
常用的线性化方法包括泰勒级数展开、状态空间平均法和庞德里亚金方法等。这些方法 可以将非线性系统转化为线性系统,以便于应用线性系统理论进行控制设计。
线性系统理论全ppt课件
• 线性系统理论概述 • 线性系统的基本性质 • 线性系统的数学描述 • 线性系统的分析方法 • 线性系统的设计方法 • 线性系统的应用实例
01
线性系统理论概述
定义与特点
定义
线性系统理论是研究线性系统的 数学分支,主要研究线性系统的 动态行为和性能。
特点
线性系统具有叠加性、时不变性 和因果性等特性,这些特性使得 线性系统理论在控制工程、信号 处理等领域具有广泛的应用。
线性系统的动态性能分析
动态性能指标
描述线性系统动态特性的性能指 标,如超调量、调节时间、振荡
频率等。
状态空间分析法
通过建立和解决线性系统的状态方 程来分析系统的动态性能,可以得 到系统的状态轨迹和响应曲线。
频率域分析法
通过分析线性系统的频率特性来描 述系统的动态性能,可以得到系统 的频率响应曲线和稳定性边界。
稳定性是线性系统的一个重要性质,它决定了系统在受到外部干扰后能否恢复到原始状态。如果一个系统是稳定 的,那么当外部干扰消失后,系统将逐渐恢复到原始状态。而不稳定的系统则会持续偏离原始状态。
03
线性系统的数学描述
状态空间模型
01
定义
状态空间模型是一种描述线性动态系统的方法,它通过状态变量和输入
航空航天控制系统的线性化分析
线性化分析
在航空航天控制系统中,由于非线性特性较强,通常需要进行线性化分析以简化系统模 型。通过线性化分析,可以近似描述系统的动态行为,为控制系统设计提供基础。
线性化方法
常用的线性化方法包括泰勒级数展开、状态空间平均法和庞德里亚金方法等。这些方法 可以将非线性系统转化为线性系统,以便于应用线性系统理论进行控制设计。
线性系统理论全ppt课件
• 线性系统理论概述 • 线性系统的基本性质 • 线性系统的数学描述 • 线性系统的分析方法 • 线性系统的设计方法 • 线性系统的应用实例
01
线性系统理论概述
定义与特点
定义
线性系统理论是研究线性系统的 数学分支,主要研究线性系统的 动态行为和性能。
特点
线性系统具有叠加性、时不变性 和因果性等特性,这些特性使得 线性系统理论在控制工程、信号 处理等领域具有广泛的应用。
线性系统的动态性能分析
动态性能指标
描述线性系统动态特性的性能指 标,如超调量、调节时间、振荡
频率等。
状态空间分析法
通过建立和解决线性系统的状态方 程来分析系统的动态性能,可以得 到系统的状态轨迹和响应曲线。
频率域分析法
通过分析线性系统的频率特性来描 述系统的动态性能,可以得到系统 的频率响应曲线和稳定性边界。
线性系统理论ppt课件
第五章 线性系统理论
第一节 线性关系
数学模型是由描述系统的变量和常量 构成的数学表达式,建立数学模型后,首 先要区分系统是线性还是非线性的。
以前的科学研究主要对象是线性系统, 而今正转向非线性系统,并且未来科学的 本质上是非线性科学
线性与非线性原本就是一对数学关系,用以区 分不同变量之间的两种基本的相互关系。
a11x1+a12x2+a13x3≤b1 a21x1+a22x2+a23x3≤b2
…… 它表示变量x1,x2,x3只能在给定的若干个代数 关系内变化,并且每个变量的变化都影响另 外两个变量的变化。
以上所讲的变量之间的关系都是静态相互 关系,都是用函数和代数方程进行描述。
实际上的动态过程中的诸变量的相互依存关 系要丰富的多。其数学表达式中将出现微分、 差分、积分等描述动态特性的项,反映这些 动态量对各个变量的依存关系。
xn
对于变系统系统,系统的系数为t的函数aij(t),系数矩阵为 A(t)
因此,对于最简单的一维系统就有:
x=ax
对于二维系统,有:
x=a11 x+a12 y y=a21 x+a22 y
以此类推至多维线性系统。
矩阵式描述对象整体特性的数学工具之一,方程给定后,借助代数 方法,通过分析系数矩阵,可以全面的了解系统的动态行为。
∇= a11a22 − a12a21
"鞍点"在三维空间中定义(图中的坐标原点),经过"鞍 点"平行于z轴的平面束代表无穷多个发展方向,每个平 面与曲面相交得到对应的曲线,代表该方向的发展轨迹。 不同的方向有的上升,有的下降。影射汽车市场,诸如 二手车置换的兴旺、汽车金融的产生、弱者被淘汰出局、 汽车出口呈上升态势、自主品牌的崛起、技术创新成企 业竞争王牌……不同的方面将有不同的发展。
第一节 线性关系
数学模型是由描述系统的变量和常量 构成的数学表达式,建立数学模型后,首 先要区分系统是线性还是非线性的。
以前的科学研究主要对象是线性系统, 而今正转向非线性系统,并且未来科学的 本质上是非线性科学
线性与非线性原本就是一对数学关系,用以区 分不同变量之间的两种基本的相互关系。
a11x1+a12x2+a13x3≤b1 a21x1+a22x2+a23x3≤b2
…… 它表示变量x1,x2,x3只能在给定的若干个代数 关系内变化,并且每个变量的变化都影响另 外两个变量的变化。
以上所讲的变量之间的关系都是静态相互 关系,都是用函数和代数方程进行描述。
实际上的动态过程中的诸变量的相互依存关 系要丰富的多。其数学表达式中将出现微分、 差分、积分等描述动态特性的项,反映这些 动态量对各个变量的依存关系。
xn
对于变系统系统,系统的系数为t的函数aij(t),系数矩阵为 A(t)
因此,对于最简单的一维系统就有:
x=ax
对于二维系统,有:
x=a11 x+a12 y y=a21 x+a22 y
以此类推至多维线性系统。
矩阵式描述对象整体特性的数学工具之一,方程给定后,借助代数 方法,通过分析系数矩阵,可以全面的了解系统的动态行为。
∇= a11a22 − a12a21
"鞍点"在三维空间中定义(图中的坐标原点),经过"鞍 点"平行于z轴的平面束代表无穷多个发展方向,每个平 面与曲面相交得到对应的曲线,代表该方向的发展轨迹。 不同的方向有的上升,有的下降。影射汽车市场,诸如 二手车置换的兴旺、汽车金融的产生、弱者被淘汰出局、 汽车出口呈上升态势、自主品牌的崛起、技术创新成企 业竞争王牌……不同的方面将有不同的发展。
线性系统理论课件
x0 xe
* * 所确定的球域 S ( ) 内,至少存在一个初态 x0 ,由 x0出发的,t t 0时的状态x
不满足下列不等式
* x xe (t; x0 , t0 ) xe
t t0
则称状态 x e 是不稳定的。
2)几何意义
S ( )
* 0x
x2
H ( )界面
函数,李氏认为在判断一个系统的稳定时,不一定非要找到系统的真正能量函数,
可以根据不同的系统虚构一个广义的能量函数,称为李亚普诺夫函数(李氏函数)。 李氏函数能满足一定的条件,也就可根据它来判断系统的稳定性了。
李氏函数一般是状态分量 x1 , x2 ,, xn 和时间 t 的标量函数,用V ( x, t )表示。若
Re{i ( A)} 0, 其中n为系统的维数.
i 1,2,, n
当矩阵A给定后则一旦导出其特征多项式 ( ( s) det(sI A) s n n 1s n 1 1s 0 那么就可利用劳斯 霍尔维茨( Routh Hurwitz 判据而直接由系统 )
有限常数 k , G (t ) 的每一个元 g ij (t ) (i 1,2,, q; j 1,2,, p) 均满足关系 式:
二 内部稳定性
0
g ij (t ) dt k
ˆ ˆ 或者等价地当G( s)为真的有理分式函数矩 阵时G( s)的每一个元传递函数 ˆ g ij ( s)的所有极点均具有负实 部
对t具有连续的一阶导数存在,对 xi (i 1,2,, n)具有连续的一阶偏导数存在, 且满足如下条件
(1) (2) (3) (4)
V ( x, t ) 0, V ( x, t ) 0, V ( x, t ) 0,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性系统理论总结ppt
一、线性系统简介
1.线性系统定义:
线性系统是指用线性微分方程、线性积分方程和线性算子(算子运算)来表示、描述和分析的一个系统。
这种系统的输入输出之间的关系可以表
示为线性函数的形式。
2.线性系统的实例:
线性系统的例子包括信号处理、控制系统、数字图像处理、模式识别
等等。
线性系统的应用也很广泛,可以应用在机器人、汽车、航空、通信、医疗和金融等行业中。
二、线性系统的演示
1.系统模型:
线性系统通常用状态空间模型来描述,该模型由一组线性微分方程以
及输入、输出和内部状态变量组成。
该模型的工作原理是:系统的输入到
达模型的输入,系统的内部状态变量发生改变,然后将内部状态变量产生
的输出发送到系统的输出端。
2.系统特性:
线性系统具有许多特性,包括平衡点、平稳性、稳定性、反馈和动力
学建模等等。
这些特性是线性系统能够更好地实现高效操作和有效控制的
基础。
三、线性系统的分析
1.状态变量分析:
状态变量是描述系统当前状态的量,它们通过系统的状态转移方程的变化反映系统的行为。
状态变量的分析包括:求出状态变量的收敛状态,判断系统的稳。