八年级直角三角形(答案)

合集下载

上海初中数学八年级上---19.8直角三角形的性质(含答案)

上海初中数学八年级上---19.8直角三角形的性质(含答案)

19.8(1)直角三角形的性质一、填空题1.若直角三角形的两个锐角之差为24度,则较大的锐角的度数是_________ . 2. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D , (1)若∠B =50°,则∠A =__________; (2)若∠B -∠A =50°,则∠A =__________; (3)与∠A 互余的角有________________;(4)与∠A 相等的角有________________. 第2题图3.已知直角三角形面积等于24平方厘米,斜边上的高为4厘米,则斜边上的中线长 为 厘米.4.等腰直角三角形中,若斜边和斜边上的高的和是6cm ,则斜边长是 cm . 5. 若直角三角形的斜边上的高与斜边上的中线长分别为2 cm 和3 cm ,则这个直角三角形的面积为__________cm 2.6. 在Rt △ABC 中,∠C =90°,周长为24 cm ,三边长的比为3∶4∶5,则斜边上的中线长为__________cm ,斜边上的高为__________cm.二、解答题7.如图,已知△ABC 中,∠ ABC=∠ ACB ,D 、E 为△ABC 外两点,AD ⊥BD ,AE ⊥CE ,F 、G 分别为AB 、AC 的中点.求证:DF =GE .8.如图,已知:在ABC ∆中,D BC AC AD C B 于交,,⊥=∠=∠2040. 求证:AB CD 2=.ABCD9. 如图,已知在Rt △ABC 中,∠C =90°,M 是AB 的中点,AM =AN ,MN ∥AC . 求证:MN =AC .10. 如图,已知HE 、AG 相交于点D ,点B 、C 、F 分别是线段DG 、HD 、AE 的中点,若AH =AD ,DE =EG .求证:CF =BF .三、提高题11.如图,已知:在ΔABC 中, ∠ABC=2∠C,AD ⊥BC 于D,E 是AC 中点,ED 的延长线与AB 的延长线交于点F .求证:BF=BD .CBAEDF19.8(2)直角三角形的性质一、填空题1. 在Rt△ABC中,∠C=90°,∠B=60°,若BC=4 cm,则AB=__________cm.2. 在△ABC中,若∠C∶∠B∶∠A=1∶2∶3,BC=16,则AB=__________.3.在Rt△ABC中,若∠ACB=90°,CD⊥AB于D,∠A=30°,若BD=4cm,则BC=__________cm,AD=__________cm.4. 等腰三角形的顶角为30°,腰长为4 cm,则这个等腰三角形的面积为__________cm 5.△ABC中,AB=AC,∠BAC=120°,AB=12cm,则BC边上的高AD= cm..6.等腰三角形一腰上的高等于腰长的一半,则此等腰三角形的顶角度数是__________.7.如图,在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿CM翻折,点A落在点D处,如果CD恰好与AB垂直,那么∠A=__________度.二、解答题8.已知:如图,△ABC中,AB=AC,点D在BC边上,∠DAC=90° , AD= 12 CD.求:∠BAC的度数.9.已知:如图,在△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12 AB.AB CDAB CD10. 如图,已知等边三角形中,E 是AC 上的一点,CE =14AC ,过E 作DE ⊥AC 交BC 于点D . 求证:D 是BC 的中点.11. 如图,已知△ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 为AB 边上的中线,若AC =AE .求证:BC =2CD .三、提高题12.已知:等腰三角形一腰上的高是另一腰长度的12,求这个等腰三角形的底角的度数。

湘教版八年级下册数学第1章 直角三角形含答案

湘教版八年级下册数学第1章 直角三角形含答案

湘教版八年级下册数学第1章直角三角形含答案一、单选题(共15题,共计45分)1、如图,P是菱形ABCD对角线BD上一点,PE⊥AB于E,PE=4cm,则点P到BC 的距离是()A.2cmB.3cmC.4cmD.8cm2、如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A. B. C. +1 D.33、如图,以Rt△ABC的三边为边,分别向外作正方形,它们的面积分别为S1、S 2、S3,若S1+S2+S3=16,则S1的值为( )A.7B.8C.9D.104、如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASAB.SASC.SSSD.AAS5、如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.不相等C.互余或相等D.互补或相等6、直角△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(阴影部分)的面积是()A. B. C. D.7、如图所示,DE⊥AB,DF⊥AC,AE=AF,则下列结论成立的是()A.BD=CDB.DE=DFC.∠B=∠CD.AB=AC8、如图,已知∠POQ=30°,点A,B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()A.5<OB<9B.4<OB<9C.3<OB<7D.2<OB<79、如图,这是一块农家菜地的平面图,其中BD=4m,CD=3m,AB=13m,AC=12m,∠BDC=90°,则这块地的面积为()A.24m 2B.30m 2C.36m 2D.42m 210、如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC 的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC =3,CG=2,则CF的长为( )A.2.5B.3C.2D.3.511、将下列长度的三根木棒首尾顺次连接,能构成直角三角形的是()A.1,2,3B.4,5,6C.5,12,15D.1,,212、如图,在中,,BD是的平分线,若CD=4,AB=14,则=()A.56B.28C.14D.1213、如图,是一高为2m,宽为1.5m的门框,李师傳有3块薄木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是()A.①号B.②号C.③号D.均不能通过14、若点在正比例函数的图象上,则点A到坐标原点的距离为( )A.7B.5C.4D.315、如图,等腰△ABC中,AB=AC=3,BC=4,P是BC上不与B和C重合的一个动点,过点P分别作AB和AC的垂线,垂足为E,F. 则PE+PF=( )A. B. C.6 D.二、填空题(共10题,共计30分)16、在矩形ABCD中,AB=5,BC=12,⊙A的半径为2,若以C为圆心作一个圆,使⊙C与⊙A相切,那么⊙C的半径为________ 。

(B卷)湘教版八年级下册数学第1章 直角三角形含答案

(B卷)湘教版八年级下册数学第1章 直角三角形含答案

湘教版八年级下册数学第1章直角三角形含答案一、单选题(共15题,共计45分)1、如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定2、定义:△ABC中,一个内角的度数为,另一个内角的度数为,若满足,则称这个三角形为“准直角三角形”.如图,在Rt△ABC中,∠C=90°, AC=8,BC=6,D是BC上的一个动点,连接AD,若△ABD是“准直角三角形”,则CD的长是()A. B. C. D.3、如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12 ﹣6D.6 ﹣64、如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为()A.2B.4C.D.5、把一副三角板如图(1)放置,其中,,,斜边,.把三角板绕着点C顺时针旋转得到(如图2),此时AB与交于点O,则线段的长度为()A. B. C. D.46、在中,,,把绕点A顺时针旋转后,得到,如图所示,则点B所走过的路径长为A. B. C. D.7、如图,在△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R,S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中结论正确的序号为()A.①②③B.①②④C.②③④D.①②③④8、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为()A. B. C. D.9、下列各组数中,能构成直角三角形的是( )A.4,5,6B.1,1,C.6,8,11D.5,12,1510、圆的一条弦长为6,其弦心距为4,则圆的半径为()A.5B.6C.8D.1011、如图,在中,将绕点逆时针旋转得到使点落在边上,连接,则的长度是()A. B. C. D.12、如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是线段BC边上的动点,则AP长不可能是( )A.3.5B.4.2C.5.8D.713、在△ABC中,BC=a,AB=c,AC=b,则不能作为判定△ABC是直角三角形的条件是().A.∠A=∠B-∠CB.∠A:∠B:∠C=2:5:3C.a:b:c=7:24:25 D.a:b:c=4:5:614、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为()A.4B.3C.2D.115、在矩形ABCD中,AC,BD相交于O,AE⊥BD于E,OF⊥AD于F,若BE:ED=1:3,OF=3cm,则BD的长是()cm.A.6B.8C.10D.12二、填空题(共10题,共计30分)16、①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上说法中正确的是________.17、如图,已知:在ABCD中,AB=AD=2,∠DAB=60°,F为AC上一点,E 为AB中点,则EF+BF的最小值为________.18、长方形中,边的长为, 边的长为, 是长方形边上的一个动点,当三点构成的三角形为等腰三角形时,的长为________.19、如图,已知中,,,,现将进行折叠,使顶点、重合,则的周长为________ ,的面积为________ .20、如图,在中、,BE平分交AC于点E.、垂足为D、若,,则的周长为________.21、如图,在中,,则的度数是________.22、如图,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD、BC于M、N两点,与DC切于点P,则图中阴影部分的面积是________。

部编数学八年级上册专题09含30°角的直角三角形(解析版)含答案

部编数学八年级上册专题09含30°角的直角三角形(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题09 含30°角的直角三角形考试时间:120分钟试卷满分:100分一、选择题(共10题;共20分)1.(2分)(2021八上·松桃期末)如图,△ABC是等边三角形,点E是AC的中点,过点E作EF⊥AB于点F,延长BC交EF的反向延长线于点D,若EF=1,则DF的长为( )A.2B.2.5C.3D.3.5【答案】C【完整解答】解:连接BE,∵△ABC是等边三角形,点E是AC的中点,∴∠ABC=60°,∠ABE=∠CBE=30°,∵EF⊥AB,∴∠D=90°-∠ABC=30°,即∠D=∠CBE=30°,∴BE=DE,在Rt△BEF中,EF=1,∴BE=2EF=2,∴BE=DE=2,∴DF=EF+DE=3,故答案为:C.【思路引导】连接BE ,根据等边三角形的性质得∠ABC=60°,∠ABE=∠CBE=30°,易求∠D=30°,即得∠D=∠CBE ,由等角对等边可得BE=DE ,根据含30°角的直角三角形的性质可得BE=2EF=2,即得DE=2,从而得出DF=EF+DE=32.(2分)(2021八上·平阴期末)如图,△ABC 中,∠C =90°,AB =8,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是( )A .3.5B .4.2C .5.8D .7.3【答案】A 【完整解答】解:∵∠C=90°,AB=8,∠B=30°,∴AC=12AB=12×8=4,∵点P 是BC 边上的动点,∴4<AP <8,∴AP 的值不可能是3.5.故答案为:A .【思路引导】根据含30°角的直角三角形的性质可得AC=12AB=4,根据垂线段最短得出AP 的最小值,然后得出AP 的范围,即可判断.3.(2分)(2021八上·海丰期末)如图,OE 为AOB ∠的角平分线,30AOB ∠=︒,6OB =,点P ,C 分别为射线OE ,OB 上的动点,则PC PB +的最小值是( )A .3B .4C .5D .6【答案】A 【完整解答】解:过点B 作BD ⊥OA 于D ,交OE 于P ,过P 作PC ⊥OB 于C ,此时PC PB +的值最小,∵OE 为AOB ∠的角平分线,PD ⊥OA ,PC ⊥OB ,∴PD=PC ,∴PC PB +=BD ,∵30AOB ∠=︒,6OB =,∴132BD OB ==,故答案为:A .【思路引导】根据角平分线的性质求出PD=PC ,再求出PC PB +=BD ,最后求出BD 的值即可。

专题2.6含30°的直角三角形的性质【十大题型】-2024-2025学年八年级数学上(1)[含答案]

专题2.6含30°的直角三角形的性质【十大题型】-2024-2025学年八年级数学上(1)[含答案]

专题2.6含30°的直角三角形的性质【十大题型】【苏科版】专题2.6 含30°的直角三角形的性质【十大题型】【题型1 由含30°的直角三角形的性质求线段长度】【题型2 由含30°的直角三角形的性质求角度】【题型3 由含30°的直角三角形的性质求面积】【题型4 由含30°的直角三角形的性质求最值】【题型5 由含30°的直角三角形的性质求坐标】【题型6 由含30°的直角三角形的性质进行证明】【题型7 由含30°的直角三角形的性质解决折叠问题】【题型8 由含30°的直角三角形的性质解决旋转问题】【题型9 由含30°的直角三角形的性质解决动点问题】【题型10 含30°的直角三角形的性质的实际应用】知识点:含30°的直角三角形的性质在直角三角形中,30°角所对的边等于斜边的一半.【题型1 由含30°的直角三角形的性质求线段长度】【例1】(23-24八年级·山东济宁·期末)1.如图,在等边ABC V 中,点D E 、分别在边BC AC 、上,且AE CD =,BE 与AD 相交于点P ,BQ AD ^于点Q .(1)求证:BE AD =;(2)若4PQ =,求BP 的长.【变式1-1】(23-24八年级·黑龙江牡丹江·期中)2.在等边三角形ABC V ,若AB 边上的高CD 与边BC 所夹得角为30°,且3BD =,则ABC V 的周长为( )A .18B .9C .6D .4.5【变式1-2】(23-24八年级·山东泰安·期末)3.如图所示,ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为E .若3AE =,则ABC V 的边长为( )A .12B .10C .8D .6【变式1-3】(2024八年级·江苏·专题练习)4.如图,在ABC V 中,60ABC Ð=°,以AC 为边在ABC V 外作等边ACD V ,过点D 作DE BC ^.若 5.4AB =,3CE =,则BE = .【题型2 由含30°的直角三角形的性质求角度】【例2】(2024·吉林长春·八年级期末)5.如图所示,把两块完全相同的等腰直角三角板如图所示的方式摆放,线段AC 在直线MN 上.若点F 恰好是线段AB 中点,则AFD Ð的大小为 °.【变式2-1】(23-24八年级·湖北武汉·期中)6.如图,在ABC V 中,45ACB Ð=°,点M 为边BC 上的动点,当2AM CM +最小时,则CAM Ð的度数为( )A .60°B .45°C .30°D .15°【变式2-2】(2024八年级·江苏·专题练习)7.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.【变式2-3】(2024·安徽·八年级期末)8.已知在等腰ABC V 中,AD BC ^,垂足为点D ,12AD BC =,则C Ð的度数有( )A .5种B .4种C .3种D .2种【题型3 由含30°的直角三角形的性质求面积】【例3】(2024·山东聊城·八年级期末)9.如图,在ABC V 中,90ABC Ð=°,60BAC Ð=°,以点A 为圆心,以AB 的长为半径画弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12B D 的长为半径画弧,两弧交于点P ,作射线AP 交BD 于点M ,交BC 于点E ,连接DE ,则:CDE ABC S S △△的值是( )A .1:2B 3C .2:5D .1:3【变式3-1】(23-24八年级·重庆·期末)10.如图,在Rt ABC △中,90A Ð=°,点D 是AB 上一点,且6,15BD CD DBC ==Ð=°,则BCD △的面积为( )A .9B .12C .18D .6【变式3-2】(23-24八年级·辽宁辽阳·期末)11.如图,在ABC V 中,90,30C B Ð=°Ð=°,D 是BC 上一点,连接AD ,若AD 平分BAC Ð,设ADB V 和ADC △的面积分别是1S ,2S ,则12:S S =( )A .1:1B .2:1C .3:1D .3:2【变式3-3】(23-24八年级·湖南永州·期中)12.如图,在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,求阴影部分的面积.【题型4 由含30°的直角三角形的性质求最值】【例4】(23-24八年级·湖北荆门·期末)13.如图,CA ^直线l 于点A ,4CA =,点B 是直线l 上一动点,以CB 为边向上作等边MBC △,连接MA ,则MA 的最小值为( )A .1B .2C .3D .4【变式4-1】(23-24八年级·黑龙江齐齐哈尔·期末)14.如图,已知60AOB Ð=°,OC 平分AOB Ð,点P 在OC 上,PD OA ^于点D ,6OP =,点E 是射线OB 上的动点,则PE 的最小值为( )A .4B .2C .5D .3【变式4-2】(23-24八年级·江苏苏州·期中)15.如图,边长为6的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是 .【变式4-3】(23-24八年级·浙江金华·期末)16.如图,在等腰三角形ABC 中,4AB AC ==,30BAC Ð=°,AG 是底边BC 上的高,在AG 的延长线上有一个动点D ,连接CD ,作150CDE Ð=°,交AB 的延长线于点E ,CDE Ð的角平分线交AB 边于点F ,则在点D 运动的过程中,线段EF 的最小值( )A .6B .4C .3D .2【题型5 由含30°的直角三角形的性质求坐标】【例5】(23-24八年级·北京朝阳·期末)17.如图,在平面直角坐标系xOy 中,Rt OAB V 的斜边OB 在x 轴上,30ABO Ð=°,若点A 的横坐标为1,则点B 的坐标为 .【变式5-1】(23-24八年级·湖南长沙·期中)18.如图,等边ABC V 的三个顶点都在坐标轴上,()30A -,,过点B 作BD AB ^,交x 轴于点D ,则点D 的坐标为 .【变式5-2】(2024·山东泰安·八年级期末)19.如图,在平面直角坐标系中,点O 的坐标为()00,,点M 的坐标为()30,,N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60°得到线段MK ,连接NK OK ,.求线段OK 长度的最小值( )A .32B C .2D .【变式5-3】(23-24八年级·广东东莞·期末)20.如图,在平面直角坐标系xOy 中,已知点A 的坐标是(0,1),以OA 为边在右侧作等边三角形1OAA ,过点1A 作x 轴的垂线,垂足为点1O ,以11O A 为边在右侧作等边三角形112O A A ,再过点2A 作x 轴的垂线,垂足为点2O ,以22O A 为边在右侧作等边三角形223O A A L ,按此规律继续作下去,得到等边三角形202120212022O A A ,则点2021A 的纵坐标为 .【题型6 由含30°的直角三角形的性质进行证明】【例6】(23-24八年级·山东烟台·期末)21.在Rt ABC △中,90ACB Ð=°,30BAC Ð=°,AD 平分BAC Ð,交BC 于点D .(1)用尺规作出线段AD 的垂直平分线交AD 于点M ,交AB 于点N .(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:12CD AN =.【变式6-1】(23-24八年级·重庆江津·期中)22.如图,在等腰ABC V 中,AC BC =,4ACB B =∠∠,点D 是AC 边的中点,DE AC ^,交AB 于点E ,连接CE .(1)求BCE Ð的度数;(2)求证:3AB CE =.【变式6-2】(2024八年级·江苏·专题练习)23.如图,在ABC V ,90ACB Ð=°,30A Ð=°,AB 的垂直平分线分别交AB 和AC 于点D E ,.(1)若6cm AC =,求CE 的长度;(2)连接CD ,请判断BCD △的形状,并说明理由.【变式6-3】(23-24八年级·安徽阜阳·开学考试)24.如图,已知在等边三角形ABC 中,D ,E 分别是边BC ,AC 上的点,且AE DC =,连接AD ,BE 相交于点P ,过点B 作BQ AD ^,Q 为垂足,求证:2BP PQ =.【题型7 由含30°的直角三角形的性质解决折叠问题】【例7】(23-24八年级·山东济宁·期末)25.如图,三角形纸片ABC 中,90BAC Ð=°,4AB =,30C Ð=°.沿过点A 的直线将纸片折叠(折痕为AF ),使点B 落在边BC 上的点D 处;再折叠纸片,使点C 与点D 重合,折痕交AC 于点E (折痕为EG ),则FG 的长是( )A .3B .4C .6D .8【变式7-1】(23-24八年级·湖北武汉·期中)26.如图所示,在ABC V 中,9030C A Ð=°Ð=°,,将BCE V 沿BE 折叠,使点C 落在AB边D 点,若6cm EC =,则AC =( )cm .A .12B .16C .18D .14【变式7-2】(2024·山东滨州·八年级期末)27.如图,点O 是矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合.若3BE =,则折痕AE 的长为 .【变式7-3】(23-24八年级·广西南宁·阶段练习)28.如图,在ABCD Y 中,将ADC △沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若602B AB Ð=°=,,则BC 为 .【题型8 由含30°的直角三角形的性质解决旋转问题】【例8】(23-24八年级·陕西西安·阶段练习)29.如图,在ABC V 中,90C Ð=°,30ABC Ð=°,5cm AC =,将ABC V 绕点A 逆时针旋转至AB C ¢¢△的位置,点B 的对应点为点B ¢,点C 的对应点C ¢恰好落在边AB 上.设旋转角为a .(1)a 的度数为 °;(2)求ABB ¢V 的周长.【变式8-1】(2024·新疆乌鲁木齐·三模)30.如图,将ABC V 绕点A 旋转得到ADE V ,若90B Ð=°,30C Ð=°,2AB =,则AE 的长为 .【变式8-2】(2024八年级·浙江·专题练习)31.如图,AB C ¢¢△是ABC V 绕点A 旋转180°后得到的,已知90B Ð=°,1AB =,30C Ð=°,则CC ¢的长为 .【变式8-3】(2024·河北秦皇岛·八年级期末)32.如图,在等边ABC V 中,10AB =,P 为BC 上一点(不与点B ,C 重合),过点P 作PM BC^于点P ,交线段AB 于点M ,将PM 绕点P 顺时针旋转60°,交线段AC 于点N ,连接MN ,有三位同学提出以下结论:嘉嘉:PNC △为直角三角形.淇淇:当2AM =时,7AN =.珍珍:在点P 移动的过程中,MN 不存在平行于BC 的情况.下列说法正确的是( )A .只有嘉嘉正确B .嘉嘉和淇淇正确C .淇淇和珍珍正确D .三人都正确【题型9 由含30°的直角三角形的性质解决动点问题】【例9】(23-24八年级·湖南岳阳·期中)33.如图:ABC V 是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达B 时,P 、Q 两点停止运动,当点P 到达B 时,P 、Q 两点停止运动.设点P 运动的时间为(s)t .当t 为 时,PBQV 是直角三角形.【变式9-1】(23-24八年级·山西晋中·期中)34.如图,在ABC V 中,90,30,8cm B A AC Ð=°Ð=°=,动点P 、Q 同时从A 、C 两点出发,分别在AC 、BC 边上匀速移动,它们的速度分别为2cm /s,1cm /s P Q v v ==,当点P 到达点C 时,P 、Q 两点同时停止运动,设点P 的运动时间为s t .(1)当t 为何值时,PCQ △为等边三角形?(2)当t 为何值时,PCQ △为直角三角形?【变式9-2】(2024八年级·全国·专题练习)35.已知:如图,ABC V 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB BC 、方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为s t .(1)当动点P 、Q 同时运动2s 时,则BP = cm ,BQ = cm .(2)当动点P 、Q 同时运动s t 时,分别用含有t 的式子表示;BP = cm ,BQ = cm .(3)当t 为何值时,PBQ V 是直角三角形?【变式9-3】(23-24八年级·辽宁朝阳·期末)36.如图,在ABC V 中,60A Ð=°,4cm AB =,12cm AC =.动点P 从点A 开始沿AB 边以1cm/s 的速度运动,动点Q 从点C 开始沿CA 边以3cm/s 的速度运动.点P 和点Q 同时出发,当点P 到达点B 时,点Q 也随之停止运动.设动点的运动时间为()s 04t t <<,解答下列问题:(1)用含t 的代数式表述AQ 的长是______.(2)在运动过程中,是否存在某一时刻t ,使APQ △是直角三角形?若存在,求出t 的值;若不存在,请说明理由.【题型10 含30°的直角三角形的性质的实际应用】【例10】(23-24八年级·安徽合肥·期末)37.如图①,设计一张折叠型方桌,其示意图如图②,若50cm AO BO ==,30cm CO DO ==.现将桌子放平,两条桌腿需要叉开的角度AOB Ð应为120°,则AB 距离地面CD 的高为 cm .【变式10-1】(23-24八年级·广西玉林·期中)38.某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ^.测得A 处与E 处的距离为70m ,C 处与E 处的距离为35m ,90C Ð=°,30BAE Ð=°.(1)请求出旋转木马E 处到出口B 处的距离;(2)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.【变式10-2】(23-24八年级·河北廊坊·期末)39.如图,嘉琪想测量一座古塔CD 的高度,在A 处测得15CAD Ð=°,再往前行进60m 到达B 处,测得30CBD Ð=°,点 A ,B ,D 在同一条直线上,根据测得的数据,这座古塔CD 的高度为( )A .40mB .30mC .D .50m【变式10-3】(23-24八年级·山东济宁·期中)40.图①所示的是某超市入口的双翼闸门,如图②,当它的双翼展开时,双翼边缘的端点A 与B 之间的距离为7cm ,双翼的边缘80cm AC BD ==,且与闸机侧立面夹角30ACP BDQ Ð=Ð=°,求当双翼收起时,可以通过闸机的物体的最大宽度.1.(1)见解析(2)8【分析】本题考查了全等三角形的判定和性质、含30°角的直角三角形的性质、等边三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)证明ABE CAD V V ≌即可得证;(2)求出30PBQ Ð=°,再根据含30°角的直角三角形的性质即可得出答案.【详解】(1)证明:∵ABC V 为等边三角形,∴60AB AC BAC C =Ð=Ð=°,,在ABE V 和CAD V 中AB AC BAE ACD AE CD =ìïÐ=Ðíï=î,∴()SAS V V ≌ABE CAD ,∴BE AD =.(2)解:∵ABE CAD V V ≌,∴ABE CAD Ð=Ð,∴60BPQ ABP BAP CAD BAP BAC Ð=Ð+Ð=Ð+Ð=Ð=°,又∵BQ AD ^,∴90BQP Ð=°,∴18030PBQ BPQ BQP Ð=°-Ð-Ð=°,∴2BP PQ =,又∵4PQ =,∴8BP =.2.A【分析】由30度角的性质可求出26BC AB ==,然后利用等边三角形的性质求解即可.【详解】解:如图,∵CD AB ^,∴90CDB Ð=°.∵30BCD Ð=°,3BD =,∴26BC AB ==.∵ABC V 是等边三角形,∴ABC V 的周长为6318´=.故选A .【点睛】本题考查了等边三角形的性质,含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解答本题的关键.3.A【分析】本题主要考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°;在直角三角形中30°角所对应的边是斜边的一半是解题的关键.根据题意可知60A Ð=°,在直角三角形ADE 中求得AD 的长,即可求得AC 的长.【详解】解:∵ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为点E .若3AE =,∴在直角三角形ADE 中,60A Ð=°,90AED Ð=°,30ADE Ð=°,∴26AD AE ==,又∵D 为AC 的中点,∴212AC AD ==,∴等边三角形ABC 的边长为12,故选:A .4.7.8【分析】此题主要考查了等边三角形的性质,熟练掌握等边三角形的性质,正确地作出辅助线,构造全等三角形和含有30°角的直角三角形是解决问题的关键.过点C 作CP AB ^于P ,根据60ABC Ð=°得120BAC BCA Ð+Ð=°,再根据等边三角形性质得AC CD =,60ACD Ð=°,则120DCE BCA Ð+Ð=°,由此得BAC DCE Ð=Ð,据此可依据“AAS ”判定APC △和CED △全等,从而得3AP CE ==,则 2.4BP AB AP =-=,进而在根据直角三角形性质得2 4.8BC BP ==,据此可得BE 的长.【详解】解:过点C 作CP AB ^于P ,如图所示:60ABC Ð=°Q ,180120BAC BCA ABC \Ð+Ð=°-Ð=°,ACD QV 为等边三角形,AC CD \=,60ACD Ð=°,180120DCE BCA ACD Ð+Ð=°-Ð=°Q ,BAC DCE \Ð=Ð,CP AB ^Q ,DE BC ^,90APC CED \Ð=Ð=°,在APC △和CED △中,90APC CED BAC DCEAC CD Ð=Ð=°ìïÐ=Ðíï=î,(AAS)APC CED \V V ≌,3AP CE \==,5.43 2.4BP AB AP \=-=-=,在Rt BCP △中,60ABC Ð=°,30BCP \Ð=°,22 2.4 4.8BC BP \==´=,4.837.8BE BC CE \=+=+=.故答案为:7.85.15【分析】本题考查了三角形中位线,含30°的直角三角形,平行线的性质,熟练掌握以上知识是解题的关键.过点F 作CD 的垂线,垂足为H ,先证明FH 为ABC V 的中位线,和45B HFA Ð=Ð=°,再根据直角三角形中30°所对的直角边为斜边的一半即可得出30FDH Ð=°,继而求出HFD Ð,以及AFD Ð的度数.【详解】过点F 作CD 的垂线,垂足为H ,如图:∵点F 恰好是线段AB 中点,FH AC ^,90BCA Ð=°,∴BC FH ∥,2BC FH =,∴45B HFA Ð=Ð=°,∵两块等腰直角三角板完全相同,∴BC FD =,∴2BC FD FH ==,∵90FHD Ð=°,∴30FDH Ð=°,∴60HFD Ð=°,∵45B HFA Ð=Ð=°,∴604515AFD HFD HFA Ð=Ð-Ð=°-°=°,故答案为:15.6.D【分析】本题主要考查了直角三角形的性质,垂线段最短,三角形内角和定理的应用,解题的关键是作出辅助线,熟练掌握相关的性质.在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,根据含30度角的直角三角形的性质得出12ME CM =,根据()12222AM CM AM CM AM ME æö+=+=+ç÷èø,两点之间线段最短,且垂线段最短,得出当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,求出此时CAM Ð的度数即可.【详解】解:在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,如图所示:则12ME CM =,∴()12222AM CM AM CM AM ME æö+=+=+ç÷èø,∵两点之间线段最短,且垂线段最短,∴当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,∴当点E 在点F 时,2AM CM +最小,∵90AFC Ð=°,453075ACE ACB BCE Ð=Ð+Ð=°+°=°,∴=9075=15CAF а-°°,即此时15CAM Ð=°.故选:D .7.72【分析】过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,证明()Rt Rt HL DNC DMC V V ≌,得12DCM ACD Ð=Ð=°,求出ACB Ð的度数,则根据等腰三角形的内角和,可求出A Ð的度数.【详解】解:如图,过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,∵点D 在AC 的垂直平分线上,∴DN 垂直平分AC ,∴12NC AC =,∵AC BC =,∴12NC BC =,在Rt BMC △中,30DBC Ð=°,∴12CM BC =,∴CM CN =,在Rt DNC △和Rt DMC V 中,∵CD CD CN CM =ìí=î,∴()Rt Rt HL DNC DMC V V ≌,∴12DCM ACD Ð=Ð=°,∵30DBC Ð=°,∴60MCB Ð=°,∴6012236ACB Ð=°-°´=°,又∵AC BC =,∴()118036722A Ð=´°-°=°,故答案为:72.【点睛】本题考查了等腰三角形的性质,含30°角直角三角形的性质,全等三角形的判定与性质,解题时要熟知等腰三角形的两个底角相等,需要作辅助线,构建全等三角形,利用全等三角形的对应角相等.8.A【分析】根据题意分两种情况:AD 落在ABC V 内部和AD 落在ABC V 外部,然后分别根据等腰三角形的概念和三角形内角和定理求解即可.【详解】(1)当AD 落在ABC V 内部时,①如图,当AB AC =时,∵AD BC ^,12AD BC =,∴AD BD DC ==,即45C Ð=°.②如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30B Ð=°,∴()()11180180307522C B Ð=´°-Ð=´°-°=°③如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30C Ð=°.(2)当AD 落在ABC V 外部时,④当AB AC =时,此时不存在.⑤如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30ABD Ð=°,则11301522C ABD Ð=Ð=´°=°.⑥如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30ACD Ð=°,则18030150ACB Ð=°-°=°,即150C Ð=°.综上,C Ð的度数可能为15°,30°,45°,75°,150°,共5种可能,故选:A .【点睛】此题考查了等腰三角形的性质,含30°角直角三角形的性质,三角形内角和定理等知识,解题的关键是根据题意分情况讨论.9.D【分析】先根据30°角的直角三角形的性质得到12AB AC =,证明()SAS ABE ADE △≌△,再根据全等三角形的判定和性质定理即可得到结论.【详解】解:∵90ABC Ð=°,60BAC Ð=°,∴90906030C BAC Ð=°-Ð=°-°=°,∴12AB AC =,由题意得:AB AD =,AP 平分BAC Ð,∴BAE DAE Ð=Ð,在ABE V 与ADE V 中,AB AD BAE DAE AE AE =ìïÐ=Ðíï=î,∴()SAS ABE ADE △≌△,∴ABE ADE S S =△△,∵12AD AB AC ==,∴AD CD =,∴ADE CDE S S =V V ,∴3ABC CDE S S =△△,∴:1:3CDE ABC S S =△△.故选:D .【点睛】本题考查作图—基本作图,直角三角形两锐角互余,30°角的直角三角形,全等三角形的判定和性质,角平分线的定义,等底同高的三角形面积相等.掌握基本作图及全等三角形的判定和性质是解题的关键.10.A【分析】本题考查等边对等角,三角形的外角,含30度角的直角三角形,根据等边对等角结合三角形的外角,求出30ADC Ð=°,进而求出AC 的长,利用三角形的面积公式求出BCD △的面积即可.【详解】解:∵6,15BD CD DBC ==Ð=°,∴15DCB B Ð=Ð=°,∴30ADC B BCD Ð=Ð+Ð=°,∵90A Ð=°,∴132AC CD ==,∴BCD △的面积为1163922BD AC ×=´´=;故选A .11.B【分析】本题考查了直角三角形的性质,等角对等边,三角形的面积等知识,先求出30BAD CAD Ð=Ð=°,得出AD BD =, 从而1122CD AD BD ==,然后根据三角形面积公式可得结论.【详解】解:∵90,30C B Ð=°Ð=°,∴903060BAC Ð=°-°=°.∵AD 平分BAC Ð,∴1302BAD CAD BAC Ð=Ð=Ð=°,∴B BAD Ð=Ð,∴AD BD =, ∴1122CD AD BD ==,∴1211::2:122S S BD AC CD AC =××=.故选B .12.9【分析】根据旋转的性质得到11ABC A BC V V ≌,16A B AB ==,所以1A BA V 是等腰三角形,依据130A BA Ð=°得到等腰三角形的面积,由图形可以知道1111A BA A BC ABC A BA S S S S S =+-=V V V V 阴影,最终得到阴影部分的面积.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用面积的和差关系解决不规则图形的面积是解决此题的关键.【详解】解:在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,∴11ABC A BC V V ≌16A B AB \==,\1A BA V 是等腰三角形,130A BA Ð=°,如图,过1A 作1A D AB ^于D ,则11132A D AB ==,116392A BA S \=´´=△,又1111A BA A BC ABC A BA S S S S S =+-=V V V V Q 阴影,11A BC CBA S S =V V ,19A BA S S \==V 阴影.13.B【分析】本题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,证明(SAS)BCA MCE V V ≌,由全等三角形的性质得出BA ME =,90BAC MEC Ð=Ð=°,由直角三角形的性质可得出答案.【详解】解:如图,以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,MBC QV 和ACE △为等边三角形,BC CM \=,AC CE =,60BCM ACE Ð=Ð=°,BCA MCE \Ð=Ð,在BCA V 和MCE △中,BC MC BAC MCE AC CE =ìïÐ=Ðíï=î,(SAS)BCA MCE \V V ≌,BA ME \=,90BAC MEC Ð=Ð=°,906030AEF \Ð=°-=°,B Q 是直线l 的动点,M \在直线ME 上运动,MA \的最小值为AF ,4AE AC ==Q ,122AF AE \==.故选:B14.D【分析】题考查了垂线段最短以及角平分线的性质,解题的关键是掌握角平分线的性质及垂线段最短的实际应用.过P 作PH OB ^,根据垂线段最短即可求出PE 最小值.【详解】解∶∵60AOB Ð=°,OC 平分AOB Ð,∴30AOC Ð=°,∵PD OA ^,6OP =,∴132PD OP ==,过P 作PH OB ^于点H ,∵PD OA ^,OC 平分AOB Ð,∴3PD PH ==,∵点E 是射线OB 上的动点,∴PE 的最小值为3,故选:C .15.32【分析】取BC 的中点,连接MG ,根据等边三角形的性质和旋转可以证明MBG NBH V V ≌,可得MG NH =,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,进而根据30度角所对直角边等于斜边的一半即可求得线段HN 长度的最小值.本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.【详解】解:如图,取BC 的中点,连接MG ,Q 线段BM 绕点B 逆时针旋转60°得到BN ,60MBH HBN \Ð+Ð=°,又ABC QV 是等边三角形,60ABC \Ð=°,即60MBH MBC Ð+Ð=°,HBN GBM \Ð=Ð,CH Q 是等边三角形的高,12BH AB \=,BH BG \=,又BM Q 旋转到BN ,BM BN \=,(SAS)MBG NBH \△≌△,MG NH \=,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,此时160302BCH Ð=´°=°,116322CG BC ==´=,1322MG CG \==,32HN \=.\线段HN 长度的最小值是32.故答案为:3216.D 【分析】此题考查了全等三角形的判定即性质,等腰三角形的三线合一的性质,角平分线的性质,含30度角的直角三角形的性质.作DM AB ^于M ,作DN AC ^于N ,证明()ASA MDE NDC V V ≌,推出DE DC =,再证明()SAS EDF CDF V V ≌,推出EF CF =,得到当CF AB ^时CF 有最小值,即EF 有最小值,由30BAC Ð=°,4AC =,求出CF .【详解】解:作DM AB ^于M ,作DN AC ^于N ,AB AC =Q , AG BC ^,AG \平分BAC Ð,即AD 平分BAC Ð,DM AB ^Q ,DN AC ^,DM DN \=,30BAC Ð=°Q ,90AMD AND Ð=Ð=°,150MDN Ð\=° ,150CDE Ð=°Q ,150MDE CDM ÐÐ\=°- NDC Ð=,(ASA MDE NDC \V V ≌),DE DC \=,DF Q 平分CDE Ð,EDF CDF \Ð=Ð,连接CF ,DF DF =Q ,()SAS EDF CDF \V V ≌,EF CF \=,\当CF AB ^时CF 有最小值,即EF 有最小值,此时,30BAC Ð=°Q ,4AC =,\122CF AC ==,故选:D .17.()4,0【分析】本题主要考查了含30度角直角三角形的特征,解题的关键是掌握含30度角的直角三角形,30度角所对的边是斜边的一半.过点A 作x 轴的垂线,垂足为点C ,先得出30OAC Ð=°,则22OA OC ==,进而得出24OB OA ==,即可解答.【详解】解:过点A 作x 轴的垂线,垂足为点C ,∵Rt OAB V 中30ABO Ð=°,∴60AOB Ð=°,∵AC OB ^,∴30OAC Ð=°,∵点A 的横坐标为1,∴1OC =,∴22OA OC ==,∵30ABO Ð=°,∴24OB OA ==,∴点B 的坐标为()4,0,故答案为:()4,0.18.()90,【分析】本题考查了坐标与图形,等边三角形的性质,含30度角的直角三角形的性质.利用等边三角形的性质求得AB 的长,再利用含30度角的直角三角形的性质求得AD 的长,继而求得OD 的长,即可求解.【详解】解:∵ABC V 是等边三角形,且BO AC ^,∴60AO OC BAC =Ð=°,,∵()30A -,,∴3AO =,∴26AB AC AO ===,∵BD AB ^,∴90ABD Ð=°,∴30ADB Ð=°,∴212AD AB ==,∴9OD AD OA =-=,∴点D 的坐标为()90,.故答案为:()90,.19.A【分析】如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,证明OMQ V 是等边三角形,得到60QOM OQ OM =°=∠,,推出30NOQ Ð=°;由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,由此即可得到答案.【详解】解:如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,∴OMQ V 是等边三角形,∴60QOM OQ OM =°=∠,,∴30NOQ Ð=°,∵点M 的坐标为()30,,∴3OQ OM ==,由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,∴1322OK NQ OQ ===最小值最小值,故选A .【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,坐标与图形,含30度角的直角三角形的性质,正确作出辅助线是解题的关键.20.202112【分析】此题主要考查了点的坐标,等边三角形的性质,直角三角形的性质,熟练掌握等边三角形的性质,理解在直角三角形中, 30°的角所对的边等于斜边的一半是解决问题的关键.首先根据点A 的坐标及等边三角形的性质得111,60,OA OA AOA ==Ð=°进而得1130,A OO Ð=°再根据直角三角形的性质得 11111,22A O OA ==点1A 的纵坐标为 12,依次类推得到点n A 的纵坐标为 12næöç÷èø即可解题.【详解】∵点A 的坐标是()0,1,1OAA V 是等边三角形,111,60OA OA AOA \==Ð=°,1111906030A OO AOO AOA \Ð=Ð-Ð=°-°=°,11A O x ^Q 轴,∴在11Rt A OO V 中, 1130,A OO Ð=°则 1111122A O OA ==,∴点1A 的纵坐标为 12,同理:2221111,22A O A O æö==ç÷èø 3332211,22A O A O æö==ç÷èø 4443311,22A O A O æö==ç÷èø...,以此类推, 12n n n A O æö=ç÷èø,∴点2A 的纵坐标为 21,2æöç÷èø点 A ₃的纵坐标为31,2æöç÷èø点 A ₄的纵坐标为 41,2æöç÷èø……,以此类推,点n A 的纵坐标为 12n æöç÷èø,∴点 2021A 的纵坐标为 202120211122æö=ç÷èø.故答案为: 202112.21.(1)见解析(2)见解析【分析】(1)根据尺规作一条线段垂直平分线的方法,进行作图即可;(2)过D 点作DE AB ^于E 点,连接DN ,由角平分线的性质和定义得到1152BAD BAC ==°∠,DC DE =,再由线段垂直平分线的性质得到NA ND =,进而得到30DNE NDA NAD Ð=Ð+Ð=°,则12DE DN =,由此即可证明结论.【详解】(1)解:如图,MN 为所求作的线段AD 的垂直平分线;(2)证明:过D 点作DE AB ^于E 点,连接DN ,∵30BAC Ð=°,AD 平分BAC Ð,DC AC ^,DE AB ^,∴1152BAD BAC ==°∠,DC DE =,∵MN 是AD 的垂直平分线,∴DN AN =,∴15NDA NAD Ð=Ð=°,∴30DNE NDA NAD Ð=Ð+Ð=°,在Rt DNE △中,12DE DN =,∵DN AN =,DC DE =,∴12CD AN =.【点睛】本题主要考查了,尺规作一条线段的垂直平分线,角平分线的性质,含30度角的直角三角形的性质,线段垂直平分线的性质,等边对等角,三角形外角的性质,解题的关键是作出辅助线,熟练掌握相关的性质.22.(1)90BCE °Ð=;(2)证明见解析.【分析】(1)证明ECD EAD V V ≌,可得A ECD Ð=Ð,设B x Ð=,可得2BEC x Ð=,得出23180x x x ++=°,解得30x =°,则BCE Ð可求出;(2)由直角三角形的性质可得2BE CE =,AE CE =,则结论可得出.【详解】(1)解: Q 点D 是AC 边的中点,DE AC ^,90EDC EDA \Ð=Ð=°,DC DA =,ED ED =Q ,()SAS ECD EAD \V V ≌,A ECD \Ð=Ð,设B x Ð=,∵AC BC =,B A x \Ð=Ð=,2BEC A ECA x \Ð=Ð+Ð=,4ACB B Ð=ÐQ ,3BCE x \Ð=,180B BEC BCE Ð+Ð+Ð=°Q ,23180x x x \++=°,解得30x =°,90BCE \Ð=°;(2)解:30B Ð=°Q ,90BCE Ð=°,2BE CE \=,CE AE =Q ,3AB BE AE CE \=+=.【点睛】考查了全等三角形的判定与性质,等腰三角形的判定与性质,直角三角形的性质,三角形内角和定理等知识.熟练掌握运用基础知识是解题的关键.23.(1)2cm(2)等边三角形,理由见解析【分析】本题主要考查线段垂直平分线的性质、含30°角的直角三角形,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.(1)连接BE ,由垂直平分线的性质可求得30CBE ABE A Ð=Ð=Ð=°,在Rt BCE V 中,由直角三角形的性质可证得2BE CE =,则可得出结果;(2)由垂直平分线的性质可求得AD BD =,根据含30°角的直角三角形可得12BC AB =,因此BCD △为等腰三角形,进一步由题意可知60ABC Ð=°,即可证明BCD △为等边三角形.【详解】(1)解:如图,连接BE ,DE Q 是AB 的垂直平分线,AE BE \=,30ABE A \Ð=Ð=°,30CBE ABC ABE \Ð=Ð-Ð=°,在Rt BCE V 中,2BE CE =,2AE CE \=,6cm AC =Q ,2cm CE \=.(2)BCD △是等边三角形,理由如下:连接CD ,DE Q 垂直平分AB ,∴D 为AB 中点,AD BD \=,在Rt ABC △中,30A Ð=°,12BC AB =∴,AD BD BC \==,又60ABC Ð=°Q ,∴BCD △是等边三角形.24.见详解【分析】根据全等三角形的判定定理SAS 可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到30PBQ Ð=°,根据直角三角形的性质即可得到.本题考查了全等三角形的判定与性质、等边三角形的性质以及含30度角直角三角形的性质,熟记全等三角形的判定与性质是解题的关键.【详解】解:ABC QV 为等边三角形.AB AC \=,60BAC ACB Ð=Ð=°,在BAE V 和ACD V 中,AE CD BAC ACB AB AC =ìïÐ=Ðíï=î,(SAS)BAE ACD \V V ≌,ABE CAD \Ð=Ð,BPQ ÐQ 为ABP V 外角,60BPQ BAD ABE CAD BAD BAC \Ð=Ð+Ð=Ð+Ð=Ð=°,BQ AD ^Q ,30PBQ \Ð=°,2BP PQ \=.25.B【分析】根据折叠的性质可得,BF FD =,CG GD =,即12FG BC =,再由30°角所对的直角边是斜边的一半,即可求解,本题考查了折叠的性质,含30°角的直角三角形的性质,解题的关键是:熟练掌握折叠的性质.【详解】解:由折叠可知,BF FD =,CG GD =,12FG BC \=,在ABC V 中,90BAC Ð=°,4AB =,30C Ð=°,2248BC AB \==´=,118422FG BC \==´=,故选:B .26.C【分析】本题主要考查了折叠的性质,含30°角的直角三角形的直角.理解直角三角形中30°角所对边是斜边的一半是解题的关键.【详解】解:根据折叠的性质6cm DE EC ==,90EDB C Ð=Ð=°,∴90EDA Ð=°,∵30A Ð=°,∴212cm AE DE ==,∴18cm AC AE EC =+=,故选C .27.6【分析】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.由折叠的性质及矩形的性质得到OE 垂直平分AC ,得到AE EC =,根据AB 为AC 的一半确定出30ACE Ð=°,进而得到OE 等于EC 的一半,求出EC 的长,即为AE 的长.【详解】解:由题意得:AB AO CO ==,即2AC AB =,且OE 垂直平分AC ,AE CE \=,30ACB Ð=°,在Rt OEC △中,30OCE Ð=°,12OE EC BE \==,3BE =Q ,3OE \=,6EC =,则6AE =,故答案为:6.28.4【分析】本题考查了折叠的性质,平行四边形的性质,三角形内角和定理,含30°的直角三角形.解题的关键在于对知识的熟练掌握与灵活运用.由折叠的性质与题意可得,=90ACD а,由ABCD Y ,可知260BC AD CD AB D B ===Ð=Ð=°,,,则18030CAD ACD D Ð=°-Ð-Ð=°,24AD CD ==,进而可求BC 的值.【详解】解:由折叠的性质可得,=90ACD а,∵ABCD Y ,∴260BC AD CD AB D B ===Ð=Ð=°,,,∴18030CAD ACD D Ð=°-Ð-Ð=°,∴24AD CD ==,∴4BC =,故答案为:4.29.(1)60(2)30cm【分析】本题主要考查了旋转的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握旋转的性质.(1)根据90C Ð=°,30ABC Ð=°,求出903060BAC Ð=°-°=°,即可求出结果;(2)根据直角三角形的性质得出210cm AB AC ==,根据旋转得出60BAB ¢Ð=°,AB AB ¢=,证明ABB ¢V 是等边三角形,求出结果即可.【详解】(1)解:∵在ABC V 中,90C Ð=°,30ABC Ð=°,∴903060BAC Ð=°-°=°,根据旋转可知:60BAB BAC a =Ð=Ð=¢°;(2)解:∵90C Ð=°,30ABC Ð=°,5cm AC =,∴()22510cm AB AC ==´=,∵将ABC V 绕点A 逆时针旋转a 角度至AB C ¢¢△的位置,∴60BAB ¢Ð=°,AB AB ¢=,∴ABB ¢V 是等边三角形,∴ABB ¢V 的周长是()331030cm AB =´=.30.4【分析】由直角三角形的性质可得24AC AB ==,由旋转的性质可得4AE AC ==.本题考查了旋转的性质,直角三角形的性质,掌握旋转的性质是解题的关键.【详解】解:90B Ð=°Q ,30C Ð=°,24AC AB \==,Q 将ABC V 绕点A 旋转得到ADE V ,4AE AC \==,故答案为:431.4【分析】本题考查了旋转的性质,含30度角的直角三角形的性质,根据题意得出2AC =,进而根据旋转的性质,即可求解.【详解】在Rt ABC △中,1AB =,30C Ð=°,∴22AC AB ==.。

八年级数学下册《直角三角形》练习题与答案(湘教版)

八年级数学下册《直角三角形》练习题与答案(湘教版)

八年级数学下册《直角三角形》练习题与答案(湘教版)一、选择题1.小明同学把一个含有450角的直角三角板在如图所示的两条平行线m,n上,测得,则的度数是( )A.450B.550C.650D.7502.如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个3.下列三角形中,可以构成直角三角形的有( )A.三边长分别为2,2,3B.三边长分别为3,3,5C.三边长分别为4,5,6D.三边长分别为1.5,2,2.54.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=( )A.34B.4C.4或34D.以上都不对5.如图, OD⊥AB于点D,OE⊥AC于点E,且OD=OE,则△AOD与△AOE全等的理由是( )A.SASB.ASAC.SSSD.HL6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么在下列各条件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°7.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,则AB等于 ( )A.2B.3C.4D.68.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b-1),则a和b的数量关系为( )A.6a-2b=1B.6a+2b=1C.6a-b=1D.6a+b=110.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是( )A.∠C=∠ABCB.BA=BGC.AE=CED.AF=FD11.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )A. 6B. 3C. 2D. 1.512.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD 相交于点P,连接AP.有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBD +S△PCE=S△PBC.其中正确的个数是( )A.2B.3C.4D.5二、填空题13.如图,在Rt△ABC中,∠B的度数是________度.14.等腰三角形一底角是30°,底边上的高为9 cm,则其腰长为________,顶角为________.15.已知等腰直角三角形的面积为2,则它的周长为.(结果保留根号)16.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.17.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S=6,则点D到AB的距△ADC离是________.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为.三、作图题19.如图,在Rt△ABC中,∠ABC=60°,BC=3.①在BC、BA上分别截取BD、BE,使BD=BE;②分别以D、E为圆心、以大于0.5DE的长为半径作圆弧,在∠ABC内两弧交于点O;③作射线BO交AC于点F.若点P是AB上的动点,则FP的最小值为.四、解答题20.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.21.如图,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.求证:△ADE≌△BEC.22.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.23.在△ABC中,∠ACB=90°,∠A,∠B,∠C所对的边分别为a,b,c,已知它的周长为626且c=26.(1)比较大小:6____26.(2)求△ABC的面积.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,C为线段BD上的一个动点,分别过点B,D在BD两侧作AB⊥BD,ED⊥BD,连结AC,EC.已知AB=5,DE=9,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问:点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的结论,请构图求出代数式x2+4+(12-x)2+9的最小值.参考答案1.D.2.C3.D.4.A.5.D.6.B.7.C8.D9.B10.B11.D.12.C13.答案为:25.14.答案为:18 cm 120°15.答案为:4+2 2.16.答案为:8.17.答案为:3.18.答案为:6.19.答案为1.20.证明:(1)∵AB=AC,∠B=30°∴∠B=∠C=30°∴∠BAC=180°﹣30°﹣30°=120°∵∠BAD=45°∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°∴∠ADC=∠CAD∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时∵∠B=30°∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.21.证明:∵∠1=∠2∴DE=EC.又∵∠A=∠B=90°,AE=BC∴Rt△ADE≌Rt△BEC(HL).22.解:(1)∠BAC=180°﹣60°﹣45°=75°;(2)∵AD⊥BC∴△ADC是直角三角形∵∠C=45°∴∠DAC=45°∴AD=DC∵AC=2∴AD= 2.23.解:(1)>;(2)∵∠ACB=90°,∠A,∠B,∠C所对的边分别为a,b,c它的周长为6+26且c=26∴a+b=6,a2+b2=c2=26∴(a+b)2=36∴a2+b2+2ab=36∴2ab=10∴12ab=52,即△ABC的面积为52.24.解:延长AD至点E,使AD=ED,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2 ∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172 ∴BC =2BD =17.25.解:(1)AC +CE =(8-x )2+25+x 2+81.(2)当A ,C ,E 三点共线时,AC +CE 的值最小.(3)如图,作BD =12,过点B 作AB ⊥BD ,过点D 作ED ⊥BD(点A 与点E 在BD 的异侧),使AB =2,ED =3,连结AE 交BD 于点C设BC =x ,则AE 的长即为x 2+4+(12-x )2+9的最小值.过点E 作EF ⊥AB ,交AB 的延长线于点F.在Rt △AEF 中,易得AF =2+3=5,EF =12∴AE =13x 2+4+(12-x )2+9的最小值为13.。

(夺分金卷)湘教版八年级下册数学第1章 直角三角形含答案

(夺分金卷)湘教版八年级下册数学第1章 直角三角形含答案

湘教版八年级下册数学第1章直角三角形含答案一、单选题(共15题,共计45分)1、如图,∠ABD、∠ACD的角平分线交于点P,若∠A = 50°,∠D =10°,则∠P的度数为()A.15°B.20°C.25°D.30°2、如图,在直角三角形ABC中,CD是斜边AB上的中线 ,若∠A=20°,则∠BDC=( )A.30°B.40°C.45°D.60°3、如图,在中,,,,分别以点B和点C为圆心,大于的长为半径作弧,两弧相交于两点,过这两点作直线与相交于点D,则的长是( )A.3B.1.5C.D.4、如图,正方形纸片ABCD的边长为5,E是边BC的中点,连接AE.沿AE 折叠该纸片,使点B落在F点.则CF()A. B.2 C. D.5、如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA =3,则PQ的最小值为()A.2B.3C.4D.无法确定6、小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( ).A.8米B.10米C.12米D.14米7、在△ABC中,∠BAC=90°,点D在边BC上,AD=AB ( )A.若AC=2AB,则∠C=30°B.若AC=2AB,则3BD=2CDC.若∠B=2∠C,则AC=2AB D.若∠B=2∠C,则S△ABD =2△ACD8、锐角△ABC中,AB=a-1,AC=a,BC=a+1(a>4),BD⊥AC于点D.则CD-DA 的值为()A. B.2 C. D.49、下列各组数中,可以组成直角三角形的是()A.1:2:3B.2,3,4C.3,4,5D.3 2, 4 2, 5 210、在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2B.3C.D.511、如图所示,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()A.8 mB.10 mC.12 mD.14 m12、如图,在矩形中,于F,则线段的长是()A. B. C. D.13、如图,在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+FF的值是()A. B.2 C. D.14、如图,在中,,D从A出发沿方向以向终点C匀速运动,过点D作交于点E,过点E作交于点F,当四边形为菱形时,点D运动的时间为()A. B. C. D.15、如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=3,则图中阴影部分的面积为()A.9B.C.D.3二、填空题(共10题,共计30分)16、如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1, S2, S3,则S1,S 2, S3之间的关系是 ________.17、中,边的垂直平分线交于点,交的外角平分线于点,过点作交的延长线于点,连接,.若,,那么的长是________.18、如图,D是Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于点E,若AE=5cm,DC=12 cm,则CE的长为________ cm.19、如图,要为一段高5m,长13m的楼梯铺上红地毯,至少需要红地毯________m.20、如图,直角坐标系原点O为Rt△ABC斜边AB的中点,∠ACB=90°,A (-5, 0),且tanA= ,反比例函数y= (k≠0)经过点C,则k的值是________。

八年级上册北师版直角三角形性质利用直角中点含答案

八年级上册北师版直角三角形性质利用直角中点含答案

A.
C.
答案:C 解题思路:
B.
D.
试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半 2.如图,在 Rt△ABC 中,CD 是斜边 AB 上的中线,EF 过点 C 且平行于 AB.若∠BCF=35°,则∠ACD 的度数是( )
第 1 页共 7 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

初中八年级奥数竞赛-专题18 直角三角形_答案.doc

初中八年级奥数竞赛-专题18 直角三角形_答案.doc

专题18 直角三角形例1 (1)12或30;6或30; 提示:()22125x x ++=,得3x =;由()22251x x +=+,得12x =, (2)103 提示:作DE ⊥AB 于E ,设CD =x ,则BE =13-5=8,DE =x ,BD =12-x ,由()222812x x +=-, 得103x =. 例2 B 提示:过B 作BD ⊥AC 延长线于D 点,设CD =x ,BD =y ,可求得:x =y ,则∠BCD =45°,故∠BCA =135°.例3 ∠ACB =75°提示:过C 作CQ ⊥AP 于Q ,连接BQ ,则AQ =BQ =CQ . 例4 提示:过E 作EG ⊥AB 于G ,先证明Rt △EAG ≌Rt △ABC ,再证明△EFG ≌△DF A . 例5 连接AC∵AD =DC ,∠ADC =60°,∴△ADC 是等边三角形,DC =CA =AD ,以BC 为边向四边形外作等边三角形BCE ,即BC =BE =CE , 则∠BCE =∠EBC =∠CEB =60°,∴∠ABE =∠ABC +∠EBC =90°,连接AE ,则22222AE AB BE AB BC =+=+,易证△BDC ≌△EAC ,得BD =AE ,故222BD AB BC =+. 例6 过A 作AE ⊥BC 于E ,设DE =x ,BD =u ,DC =v ,AD =t ,则()()2222222AE b v x c u x t x =--=-+=-,故2222t b v ux =-+,2222t c u ux =--,消去x 得222b u c v t uv u v +=-+,即222b BD c CDAD BD DC a+=-⋅. A 级1.14 2.3 3.135°4. 提示:延长AD 至E ,使DE =AD ,连接BE ,则△ACD ≌△EBD ,∴BE =AC =13,AE =12,又AB =5,则∠BAD =90°,5.D 6.C 7.C 8.B 9.提示:△ADC ≌△BEA ,∠BPQ =60°. 10.(1)(2)略 (3)提示:AB ,AP ,BP ,CP ,之间的关系是22AP AB BP CP -=⋅11.提示:满足提议的点有4个,作别分别为:8161,,,,,1552⎛⎛⎫⎛⎫⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭; 12.10. B 级1.60132.135° 提示:将△P AC 绕A 点顺时针旋转90°, 3.32或42 提示:分类讨论。

八年级数学上册第十一章三角形必考知识点归纳(带答案)

八年级数学上册第十一章三角形必考知识点归纳(带答案)

八年级数学上册第十一章三角形必考知识点归纳单选题1、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M.若BC//EF,则∠BMD的大小为()A.60°B.67.5°C.75°D.82.5°答案:C分析:根据BC//EF,可得∠FDB=∠F=45°,再根据三角形内角和即可得出答案.由图可得∠B=60°,∠F=45°,∵BC//EF,∴∠FDB=∠F=45°,∴∠BMD=180°−∠FDB−∠B=180°−45°−60°=75°,故选:C.小提示:本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.2、如图,图中直角三角形共有()A.1个B.2个C.3个D.4个答案:C分析:有一个角是直角的三角形是直角三角形.解:如图,直角三角形有:△ABC、△ABD、△ACD.故选C.小提示:本题考查直角三角形的定义.掌握直角三角形的定义是关键,要做到不重不漏.3、如果一个多边形内角和是外角和的4倍,那么这个多边形有()条对角线.A.20B.27C.35D.44答案:C分析:根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解,多边形对角线的条数可以表.示成n(n−3)2解:设这个多边形是n边形,根据题意得,(n-2)•180°=4×360°,解得n=10.10×(10-3)÷2=35(条).故选:C.小提示:本题考查了多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.4、如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为()A.41°B.51°C.42°D.49°答案:A分析:先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解.解:∵正六边形的每个内角等于120°,每个外角等于60°,∴∠FAD=120°-∠1=101°,∠ADB=60°,∴∠ABD=101°-60°=41°∵光线是平行的,∴∠2=∠ABD=41°,故选A小提示:本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键.5、将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED//BC,则∠AEF的度数为( )A.145°B.155°C.165°D.170°答案:C分析:根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=∠DEF -∠2计算出∠CEF,即可求出∠AEF.解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°,∴∠AEF=180°-15°=165°.故选C.小提示:本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.6、如图,在△ABC中,AB=20,AC=18,AD为中线.则△ABD与△ACD的周长之差为()A.1B.2C.3D.4答案:B分析:利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.∵在△ABC中,AD为中线,∴BD=CD.∵C△ABD=AB+BD+AD,C△ACD=AC+CD+AD,∴C△ABD−C△ACD=AB−AC=20−18=2.故选:B.小提示:本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.7、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5答案:A分析:根据平行线的性质和对顶角的性质进行判断.解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不一定平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.小提示:本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键.8、在△ABC中,若一个内角等于另外两个角的差,则()A.必有一个角等于30°B.必有一个角等于45°C.必有一个角等于60°D.必有一个角等于90°答案:D分析:先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:①x=|y−(180°−x−y)|⇒y=90∘或x+y=90∘②y=|x−(180∘−x−y)|⇒x=90∘或x+y=90∘③(180∘−x−y)=|x−y|⇒x=90∘或y=90∘综上所述,必有一个角等于90°故选D.小提示:本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.9、下列多边形具有稳定性的是()A.B.C.D.答案:D分析:利用三角形具有稳定性直接得出答案.解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D.小提示:本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.10、如图,小亮同学用绘画的方法,设计的一个正三角形的平面镶嵌图,其中主要利用的是正三角形和正六边形.如果整个镶嵌图△ABC的面积为75,则图中阴影部分的面积是()A.25B.26C.30D.39答案:B分析:正ΔABC中有多种图形,将不规则图形拆分后,可归结为四种图形,每种图形都可划分为面积最小的正三角形的组合,最后正ΔABC全部由小正三角形组成,根据阴影部分小正三角形的个数所占全部小正三角形个数比例与面积相乘即可得出答案.如图所示,将不规则部分进行拆分,共有四种图形:正六边形、较大正三角形、平行四边形、小正三角形;其中一个正六边形可以分成6个小正三角形,较大正三角形可以分成4个小正三角形,平行四边形可以分成6个小正三角形,由图可得:正六边形有13个,可分成小正三角形个数为:13×6=78(个);较大正三角形有26个,可分成小正三角形个数为:26×4=104(个);平行四边形有5个,可分成小正三角形个数为:5×6=30(个);小正三角形个数为13个;∴一共有小正三角形个数为:78+104+30+13=225(个),∴图中阴影部分面积为:75×78=26,225故选:B.小提示:题目主要考查创新思维,将其进行分类分解是解题难点.填空题11、如图,在三角形ABC中,AB⊥AC,AD⊥BC,垂足为D,AB=3,AC=4,BC=5,则AD=______.答案:2.4分析:根据面积相等可列式12AB·AC=12BC·AD,代入相关数据求解即可.解:∵AB⊥AC,AD⊥BC,∴12AB·AC=12BC·AD∵AB=3,AC=4,BC=5,∴AD=AB·ACBC =125=2.4故答案諀:2.4小提示:此题主要考查了运用等积关系求线段的长,准确识图是解答本题的关键.12、如图,射线AB与射线CD平行,点F为射线AB上的一定点,连接CF,点P是射线CD上的一个动点(不包括端点C),将△PFC沿PF折叠,使点C落在点E处.若∠DCF=62°,当点E到点A的距离最大时,∠CFP=_____.答案:59°##59度分析:利用三角形三边关系可知:当E落在AB上时,AE距离最大,利用AB∥CD且∠DCF=62°,得到∠CFA=62°,再根据折叠性质可知:∠EFP=∠CFP,利用补角可知∠EFP+∠CFP=118°,进一步可求出∠EFP=∠CFP=59°.解:利用两边之和大于第三边可知:当E落在AB上时,AE距离最大,如图:∵AB∥CD且∠DCF=62°,∴∠CFA=62°,∵△PCF折叠得到△PEF,∴∠EFP=∠CFP,∵∠EFP+∠CFP=118°,∴∠EFP=∠CFP=59°.所以答案是:59°小提示:本题考查三角形的三边关系,平行线的性质,折叠的性质,补角,角平分线,解题的关键是找出:当E落在AB上时,AE距离最大,再解答即可.13、三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的_________心.答案:重分析:根据三角形的重心的定义即可求解.三角形的三条中线交于一点,这一点叫此三角形的重心;所以答案是:重.小提示:本题主要考查了三角形的重心,重心是三角形三边中线的交点;三角形的中线将三角形的面积分成了相等的两部分,重心到顶点的距离与重心到对边中点的距离之比为2:1.14、如图,BD是△ABC的中线,AB=5cm,BC=3cm,那么△ABD的周长比△CBD的周长多_____.答案:2cm分析:根据三角形的中线的概念得到AD=DC,根据三角形的周长公式计算,得到答案.解:∵BD是△ABC的中线,∴AD=DC,∴△ABD的周长-△CBD的周长=(AB+AD+BD)-(BC+DC+BD)=AB-BC=5-3=2(cm),∴△ABD的周长比△CBD的周长多2cm,所以答案是:2cm.小提示:本题考查的是三角形的中线的概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.15、如图,孔明在驾校练车,他由点A出发向前行驶200米到B处,向左转45°.继续向前行驶同样的路程到C 处,再向左转45°.按这样的行驶方法,回到点A总共行驶了 __.答案:1600米##1600m分析:根据题意可知汽车所走的路程正好是一个外角为45°的多边形的周长,求出多边形的周长即可.解:根据题意得:360°÷45°=8,则他走回点A时共走的路程是8×200=1600(米).故回到A点共走了1600米.所以答案是:1600米.小提示:本意主要考查了多边形的外角和定理,即任意多边形的外角和都是360°.解答题16、如图,已知在△ABC中,∠B=30°,∠C=50°,AE是BC边上的高,AD是∠BAC的角平分线,求∠DAE的度数.答案:10°分析:先根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE的度数即可得到答案.解:∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AD是∠BAC的角平分线,∴∠BAD=1∠BAC=50°,2∵AE是BC边上的高,∴∠AEB=90°,∴∠BAE=90°-∠B=60°,∴∠DAE=∠BAE-∠BAD=10°.小提示:本题主要考查了三角形内角和定理,角平分线的定义,直角三角形两锐角互余,熟知相关知识是解题的关键.17、如图,AD是△ABE的角平分线,过点B作BC⊥AB交AD的延长线于点C,点F在AB上,连接EF交AD于点G.(1)若2∠1+∠EAB=180°,求证:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度数.答案:(1)见解析;(2)24°分析:(1)先根据AD是△ABE的角平分线得出∠EAB=2∠GAF,,再由2∠1+∠EAB=180°得出∠AGF+∠GAF=90°,进而可得出结论;(2)根据三角形内角和定理及外角的性质求解即可.(1)证明:∵AD是△ABE的角平分线,∴∠EAB=2∠GAF,∵2∠1+∠EAB=180°,∴2∠1+2∠GAF=180°,∵∠1=∠AGF,∴2∠AGF+2∠GAF=180°,∴∠AGF+∠GAF=90°,∴∠AFG=90°,∵BC⊥AB,∴∠AFG=∠ABC==90°,∴EF∥BC;(2)解:∵∠C=72°,∠ABC==90°,∴∠CAB==90°-∠C==90°-72°==18°,∴∠EAB=2∠CAB=36°,∵∠AEB=78°,∴∠ABE==180°-(∠AEB+∠EAB)==90°-(78°+36°)==66°,∴∠CBE=90°-∠ABE==90°-66°==24°.小提示:此题考查了平行线的判定及三角形的内外角性质,熟记平行线的判定定理是解题的关键.18、在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°.(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?答案:(1)9;(2)1080º或1260º或1440º.分析:(1)设多边形的一个外角为x,则与其相邻的内角等于3x+20°,根据内角与其相邻的外角的和;是180°列出方程,求出x的值,再由多边形的外角和为360°,求出此多边形的边数为360°x(2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,根据多边形的内角和定理即可求出答案.解:(1)设每一个外角为x,则与其相邻的内角等于3x+20°,∴180°−x=3x+20°,∴x=40°,即多边形的每个外角为40°,∵多边形的外角和为360°,∴多边形的外角个数为:360°=9,40°∴这个多边形的边数为9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,①若剪去一角后边数减少1条,即变成8边形,∴内角和为(8−2)×180°=1080°,②若剪去一角后边数不变,即变成9边形,∴内角和为(9−2)×180°=1260°,③若剪去一角后边数增加1,即变成10边形,∴内角和为(10−2)×180°=1440°,∴将这个多边形剪去一个角后,剩下多边形的内角和为1080°或1260°或1440°.小提示:本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,熟练掌握相关知识点是解题的关键.。

(突破训练)湘教版八年级下册数学第1章 直角三角形含答案

(突破训练)湘教版八年级下册数学第1章 直角三角形含答案

湘教版八年级下册数学第1章直角三角形含答案一、单选题(共15题,共计45分)1、如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A.①②B.①③④C.①②④D.①②③④2、如图,点O1是△ABC的外心,以AB为直径作⊙O恰好过点O1,若AC=2,BC=4 ,则AO1的长是()A.3B.C.2D.23、下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()A. B.C. D.4、小幸学习了在数轴上画出表示无理数的点的方法后,进行以下练习:首先画出数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3.以点O为圆心,OB为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.3和3.5之间B.3.5和4之间C.4和4.5之间D.4.5和5之间5、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE。

将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF。

下列结论:①△=。

其中正确结论的个数是ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC()个A.1B.2C.3D.46、如图,在△ABC中,∠ABC,∠ACB的平分线相交于点O,连接 AO并延长,交BC于点D,OH⊥BC于点H;若∠BAC=60°,OH=3cm,则OA=()A.6cmB.5cmC.4cmD.3cm7、如图,若和的面积分别为、,则()A. B. C. D.无法确定8、如图所示,DE⊥AB,DF⊥AC,AE=AF,则下列结论成立的是()A.BD=CDB.DE=DFC.∠B=∠CD.AB=AC9、如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cmB.5 cmC.5.8 cmD.6 cm10、如图,一次函数的图像与轴,轴分别交于点,点,过点作直线将分成周长相等的两部分,则直线的函数表达式为()A. B. C. D.11、一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°12、在等腰梯形ABCD中,AB∥CD,DC = 3 cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是( )A.21 cm;B.18 cm;C.15cm;D.12 cm;13、如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若 AC=3,BC=4.则BD的长是()A.2B.3C.4D.514、下列命题中,错误的是()A.矩形的对角线互相平分且相等B.对角线互相垂直的四边形是菱形 C.三角形的三条角平分线相交于一点,并且这点到三条边的距离相等 D.到一条线段两个端点距离相等的点在这条线段的垂直平分线上15、如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形全等,依据为()A.AASB.SASC.HLD.SSS二、填空题(共10题,共计30分)16、如图所示,中,,BD是角平分线,,垂足是E,,,则DE的长为________cm.17、三角形的三边长为a、b、c,且满足等式(a+b)2﹣c2=2ab,则此三角形是________三角形(直角、锐角、钝角).18、如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为________19、勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为________.20、如图,在△ABC中,CD⊥AB交AB于点D,BE⊥AC交AC于点E,F为BC的中点,BC = 10,DE = 8,则△DEF的面积为________.21、如图,正方形B的面积是________.22、如图,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1, B1, C1,三点都在格点上).则这个三角形的面积是________23、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是________ .24、如图,在矩形ABCD,BE平分,交AD于点E,F是BE的中点,G是BC的中点,连按EC,若,,则FG的长为________。

浙教版八年级数学上册2.6直角三角形解答题专练(含答案)

浙教版八年级数学上册2.6直角三角形解答题专练(含答案)

∴∠FMC=90°,
∵∠C=30°,MF=2,
∴FC=2MF=4,
∵DF=FC,
∴DF=4,
∵△ADF是等边三角形,
∴AF=DF=4,
∴AC=AF+CF=4+4=8,
∵AB=AC,
∴AB=8.
7.如图1,在△ABC中,CD,BE分别是AB,AC边上的高线,M,N分别是线段BC,DE的中点. (1)求证:MN⊥DE. (2)连结DM,ME,猜想∠A与∠DME之间的关系,并说明理由. (3)若将锐角三角形ABC变为钝角三角形ABC,其余条件不变,如图2,则(1)(2)中的结论是否仍成立?请说明 理由.
即∠FAD=∠ADF=∠AFD=60°,
∴△ADF是正三角形;
6.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且
BD=BE,CD的垂直平分线MF交AC于F,交BC于M,MF的长为2.
(1)求∠ADE的度数;
(2)△ADF是正三角形吗?
(3)∵CD的垂直平分线MF,
(3)求AB的长.
2.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD 垂直平分线与AB的交点,DE交AC于点F. 求证:点E在AF的垂直平分线上.
【解析】证明:过E点作EG⊥BD,则EG 是线段BD的垂直平分线, ∴BE=DE, ∴∠DEG=∠BEG, ∵∠ACB=90°, ∴AC∥EG, ∴∠AFE=∠DEG,∠A=∠BEG, ∴∠A=∠AFE, ∴AE=AF, 即点E在AF的垂直平分线上.
4.已知:如图,四边形ABCD中,∠ABC=90°,∠ADC=90°,点 E为AC中点,点F为BD中点.求证:EF⊥BD.
【解析】证明:如图,连接BE、DE, ∵∠ABC=90°,点E是AC的中点, ∴BE= AC, 同理:DE= AC ∴BE=DE, 又∵点F是BD的中点, ∴EF⊥BD.

初二数学上册三角形练习题含答案

初二数学上册三角形练习题含答案

初二数学上册三角形练习题含答案题一:已知△ABC中,∠B=90°,AB=5cm,BC=12cm,求AC的长度。

解:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。

假设AC=x,则AC²=AB²+BC²。

代入已知数据,得到x²=5²+12²,即x²=25+144,x²=169,解方程得x=13。

所以AC的长度为13cm。

题二:已知△DEF中,DE=6cm,DF=8cm,EF=10cm,判断△DEF的形状。

解:根据三角形的边长关系,任意两边之和必须大于第三边。

以DE、DF、EF作为三角形的三条边,计算它们的和:DE+DF=6+8=14cmDE+EF=6+10=16cmDF+EF=8+10=18cm由于DE+DF=14cm小于EF=10cm,所以三边不能构成△DEF。

因此,题目中给出的边长不能构成三角形。

题三:已知△GHI中,∠G=60°,IH=6cm,GH=3cm,求HI的长度。

条边的长度相等,每个角都是60°。

因此,HI的长度等于GH=3cm。

题四:已知△JKL中,∠J=90°,JK=8cm,JL=10cm,求KL的长度。

解:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。

假设KL=x,则KL²=JK²+JL²。

代入已知数据,得到x²=8²+10²,即x²=64+100,x²=164,解方程得x=√164。

所以KL的长度为√164 cm。

题五:已知△MNO中,MN=15cm,NO=20cm,MO=25cm,判断△MNO的形状。

解:根据三角形的边长关系,任意两边之和必须大于第三边。

以MN、NO、MO作为三角形的三条边,计算它们的和:MN+NO=15+20=35cmMN+MO=15+25=40cmNO+MO=20+25=45cm由于MN+NO=35cm小于MO=25cm,所以三边不能构成△MNO。

八年级三角形习题及答案

八年级三角形习题及答案

八年级(上)三角形1、雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=1/3AB,AF=1/3 AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.2、如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD、AE,并延长AE交BD于点F(1)求证:△ACE≌△BCD;(2)AE与BD互相垂直吗?请说明你的结论。

3、已知:如图,AB=AE,∠1=∠2,∠B等于∠E求证:BC=ED。

4、如图,A、F、C、D四点在同一直线上,AF=CD,AB‖DE,且AB=DE,求证:1。

△ABC≌△DEF 2.∠CBF=∠FEC5、在△ABC中,AB=CB,∠ABC=90度,F为AB延长线上的一点,点E在BC上,且AE=CF(1)求证R△ABE≌Rt△CBF,(2)若∠CAE=30度,求∠ACF度数。

6、如图点A,E,B,D在同一直线上,AE=DB,AC=DF,AC∥DF,探索BC与EF的位置关系,说明理由7、如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由。

8、如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.9、在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离.请你用学过的数学知识按以下要求设计一测量方案.(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB的距离(写出求解或推理过程,结果用字母表示).10、如图①,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB 于点F。

(1)求证:CE=CF;(2)将图①中的△ADE没AB向右平移到△A’D’E’的位置,使E’落在BC边上,其他条件不变,如图②所示,试猜:BE’与CF有怎样的数量关系?请证明你的结论缺图:53的P18的2题11、如图,在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形一、直角三角形的性质重点:直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半;②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.难点:1.性质定理的证明方法.2.性质定理及其推论在解题中的应用.二、直角三角形全等的判断重点:掌握直角三角形全等的判定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等(HL)难点:创建全等条件与三角形中各定理联系解综合问题。

三、角平分线的性质定理1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵ OE是∠AOB的平分线,F是OE上一点,且CF⊥OA于点C,DF⊥OB于点D,∴ CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对称图形,它的对称轴是角平分线所在的直线. 图42.关于三角形三条角平分线的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC 的内角∠BAC、∠ ABC、∠ACB的平分线,那么:① AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).3.关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.四、勾股定理的证明及应用1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222a b c+=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理cba HG F EDCBAbacbac cabcab a bc c baED CBA如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段勾股定理经典例题透析类型一:勾股定理的直接用法 1、在Rt △ABC 中,∠C=90°(1)已知a=6, c=10,求b , (2)已知a=40,b=9,求c ; (3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC 中,∠C=90°,a=6,c=10,b=(2) 在△ABC 中,∠C=90°,a=40,b=9,c=(3) 在△ABC 中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少? 【答案】∵∠ACD =90°CDAAD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD 的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

解析:延长AD、BC交于E。

∵∠A=∠60°,∠B=90°,∴∠E=30°。

∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==。

∵DE2= CE2-CD2=42-22=12,∴DE==。

∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。

(1)求A、C两点之间的距离。

(2)确定目的地C在营地A的什么方向。

解析:(1)过B点作BE//AD∴∠DAB=∠ABE=60°∵30°+∠CBA+∠ABE=180°∴∠CBA=90°即△ABC为直角三角形由已知可得:BC=500m,AB=由勾股定理可得:所以(2)在Rt△ABC中,∵BC=500m,AC=1000m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°即点C在点A的北偏东30°的方向举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH .如图所示,点D 在离厂门中线0.8米处,且CD ⊥AB, 与地面交于H . 解:OC =1米 (大门宽度一半),OD =0.8米 (卡车宽度一半) 在Rt △OCD 中,由勾股定理得:CD ===0.6米,C H=0.6+2.3=2.9(米)>2.5(米). 因此高度上有0.4米的余量,所以卡车能通过厂门.(二)用勾股定理求最短问题4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A 、B 、C 、D ,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为 AB+BC+CD =3,AB+BC+CD =3 图(3)中,在Rt △ABC 中同理∴图(3)中的路线长为图(4)中,延长EF交BC于H,则FH⊥BC,BH=CH由∠FBH=及勾股定理得:EA=ED=FB=FC=∴EF=1-2FH=1-∴此图中总线路的长为4EA+EF=3>2.828>2.732∴图(4)的连接线路最短,即图(4)的架设方案最省电线.举一反三【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.解:如图,在Rt△ABC中,BC=底面周长的一半=10cm,根据勾股定理得(提问:勾股定理)∴AC===≈10.77(cm)(勾股定理).答:最短路程约为10.77cm.类型四:利用勾股定理作长为的线段5、作长为、、的线段。

相关文档
最新文档