湘教版数学八年级下册直角三角形.docx
湘教版八年级下册数学
一、直角三角形1、直角三角形的性质定理①“直角三角形的两个锐角互余”②“直角三角形斜边上的中线等于斜边的一半”③“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”④“直角三角形两直角边a ,b的平方和,等于斜边c的平方。
”【勾股定理】互余:直角三角形中,两个锐角互余。
(两角之和等于90°)互补:两直线平行,同旁内角互补。
(两角之和等于180°)2、直角三角形的判定定理①“有两个角互余的三角形是直角三角形”②“如果三角形的三条边长a ,b ,c满足关系:a²+b²=c²,那么这个三角形是直角三角形”【勾股定理的逆定理】3、直角三角形全等的判定“斜边、直角边定理斜边和一条直角边对应相等的两个直角三角形全等”【简称:斜边、直角边或“HL”】4、两个三角形全等的判定方法:【六种】①平移、旋转②AAS③ASA(两角及其夹边)④SSS (三边)⑤SAS(两边及其夹角)⑥HL(斜边、直角边)5、角平分线的性质①角平分线的性质定理:“角的平分线上的点到角的两边的距离相等”②角平分线的性质定理的逆定理:“角的内部到角的两边距离相等的点在角的平分线上”6、线段垂直平分线:垂直且平分一条直线的线段。
①线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。
②线段垂直平分线的性质定理的逆定理:到线段两端点距离相等的点在线段的垂直平分线上7、等腰三角形的性质:①等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。
②等腰三角形底边上的高、中线及顶角平分线重合。
(简称:三线合一)③等腰三角形的两底角相等(简称:等边对等角)8、完全平方式:(a+b)²=a²﹢2ab+b²【(a+b)²=(a+b)╳(a+b)=a╳a+2╳a╳b+b╳b = a²﹢2ab+b²】(a-b)²=a²-2ab+b²平方差公式:a²-b²=(a+b)╳(a-b)二、四边形多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形。
2016八年级数学下1.2直角三角形的性质与判定Ⅱ(湘教版3份打包)(2)最新版
第1章
1.2直角三角形的性质和判定(Ⅱ)(2)
知识回顾
勾股定理:直角三角形两直角边的平方和等于 斜边的平方.
如果在Rt△ ABC中,∠C=90°, B
那么 a2 b2 c2.
ac
C bA
下面,我们用面积计算来证明这个定理。
情境引入
c 请同学们画四个与右图全等的 a
直角三角形,并把它剪下来。
b
用这四个三角形拼一拼、摆一摆,看看是否得到 一个含有以斜边c为边长的正方形,你能利用它说明勾 股定理吗?并与同伴交流。
自主预习
一个2.5m长的梯子AB斜靠在一竖直的墙AC上,这 时AC的距离为2.4m.如果梯子顶端A沿墙下滑0.4m,那
么梯子底端B也外移0.4m吗? A
5.在长方形ABCD中AB、BC、AC大小关系?
D
C
AB<BC<AC
A
B
A C 2A B 2B C 2
6.如图,一个3米长的梯子AB,斜着靠在竖直的墙AO上, 这时AO的距离为2.5米.
①求梯子的底端B距墙角O多少米? ②如果梯子的顶端A沿墙角下滑0.5米至C, 请同学们:
猜一猜,底端也将滑动0.5米吗?
∴BE=1.5-0.7=0.8m≠0.4m
答;梯子底端B不是外移0.4m
ቤተ መጻሕፍቲ ባይዱ
B
E
自主探究
例2 “今有方池一丈,葭生其中央,出水一尺, 引葭赴岸,适与岸齐。问水深,葭长各几何?”意思是: 有一个边长为10尺的正方形池塘,一根芦苇生长在池的 中央,其出水部分为1尺。如果将芦苇沿与水池边垂直 的方向拉向岸边,它的顶端恰好碰到池边的水面。问水 深与芦苇长各为多少?
算一算,底端滑动的距离近似值 是多少? (结果保留两位小数)
湘教版数学八年级下册1.2 直角三角形的性质和判定(Ⅱ).docx
初中数学试卷马鸣风萧萧1.2 直角三角形的性质和判定(Ⅱ)第1课时 勾股定理要点感知 直角三角形的性质定理(勾股定理):直角三角形两直角边a 、b 的平方和等于__________的平方.即a 2+b 2=c 2.预习练习 △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边. (1)若a =5,b =12,则c =__________; (2)若c =41,a =40,则b =__________.知识点 勾股定理1.在△ABC 中,∠C=90°,如果AB=10,BC ∶AC=3∶4,那么BC=( )A.6B.8C.10D.以上都不对 2.一个直角三角形的三边长为三个连续偶数,则它的斜边长为( ) A.6 B.8 C.10 D.12 3.已知一个三角形三个内角的比是1∶2∶1,则它的三条边的比是( )A.1∶2∶1B.1∶2∶1C.1∶2∶3D.1∶4∶14.如图,长方形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.22C.3D.55.如图,点D 在△ABC 的边AC 上,将△ABC 沿BD 翻折后,点A 恰好与点C 重合.若BC =5,CD =3,则BD 的长为( )A.1B.2C.3D.46.在△ABC 中,∠C=90°,AB=7,BC=5,则边AC 的长为__________.8.一个直角三角形的斜边长比直角长边大2,另一直角边长为6,则斜边长为__________.9.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.10.如图,在△ABC中,∠ACB=90°,AB=10 cm,BC=6 cm,CD⊥AB交AB于点D.求:(1)AC的长;(2)△ABC的面积;(3)CD的长.11.如图,在由边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为( )A.5B.6C.7D.2512.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为( )A.3B.23C.33D.4313.将一个有45度角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图,则三角板的最大边的长为( )A.3 cmB.6 cmC.32 cmD.62 cm14.如图,在直线l上依次摆放着三个正方形,已知中间斜放置的正方形的面积是6,则正放置的两个正方形的面积之和为( )A.6B.5C.6D.3615.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.53B.52C.4D.516.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=6,DE=5,则CD的长等于__________.17.已知直角三角形两边的长分别是3和4,则第三边的长为__________.18.如图,在△ABC中,AB=15,BC=14,CA=13,求BC边上的高AD的长.19.如图所示,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5 cm,求AB 的长.20.如图,在等腰直角三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于点E ,交BC 于点F ,若AE=4,FC=3,求EF 长.参考答案要点感知 斜边c 预习练习 13 91.A2.C3.A4.D5.D6.267.88.109.∵AD ⊥AC ,AC=20,AD=15, ∴CD=222015 =25.∴BD=BC-CD=32-25=7.10.(1)∵∠ACB=90°,AB=10 cm ,BC=6 cm ,∴AC=8 cm ;(2)S △ABC =12BC ·AC=12×6×8=24(cm 2);(3)∵S △ABC =12BC ·AC=12CD ·AB ,∴CD=·BC AC AB =245cm.11.A 12.D 13.D 14.A 15.C 16.8 17.5或718.设DC=x ,则BD=14-x.在Rt △ABD 和Rt △ACD 中,由勾股定理可得: (14-x)2+AD 2=152,x 2+AD 2=132.两式相减得(14-x)2-x 2=56.解得x=5. 在Rt △ACD 中,由勾股定理得AD=12.∴∠ABD=∠CBD=30°. ∴AD=DB.又∵Rt △CBD 中,CD=5 cm , ∴BD=10 cm.∴BC=22BD CD -=22105-=53(cm). ∴AB=2BC=103 cm.20.连接BD ,∵等腰直角三角形ABC 中,D 为AC 边上中点, ∴BD ⊥AC ,BD=CD=AD ,∠ABD=∠C=45°. ∵DE ⊥DF , ∴∠FDC=∠EDB.在△EDB 与△FDC 中,,,ABD C FDC EDB BD CD ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△EDB ≌△FDC. ∴BE=FC=3.∴AB=7,则BC=7. ∴BF=4.在Rt △EBF 中,EF 2=BE 2+BF 2=32+42, ∴EF=5.第2课时 勾股定理的实际应用要点感知 应用勾股定理解决实际问题时,应先根据题意画出几何图形,分析图形中各线段之间的数量关系,正确运用勾股定理求解.求边长时,一般有两种情况:一是直接运用勾股定理通过计算求解,二是借助勾股定理列方程求解.预习练习 (2014·东营)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行__________米.知识点1 直接利用勾股定理1.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以到达该建筑物的最大高度是( )2.如图,一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8米B.3.9米C.4米D.4.4米3.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( )A.5米B.3米C.(5+1)米D.3米4.假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东拐,仅走了1千米,就找到了宝藏,则门口A到藏宝点B的直线距离是( )A.20千米B.14千米C.11千米D.10千米5.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200 m,结果他在水中实际游了520 m,该河流的宽度为__________m.知识点2 利用勾股定理列方程求解6.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5 m远的水底,竹竿高出水面0.5 m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2 mB.2.5 mC.2.25 mD.3 m7.在一次课外社会实践中,王强想知道学校旗杆的高,但不能爬上旗杆也不能把绳子解下来,可是他发现旗杆上的绳子垂到地面上还多1 m,当他把绳子的下端拉开5 m后,发现下端刚好接触地面,则旗杆的高为( )A.13 mB.12 mC.4 mD.10 m8.如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为__________米.9.如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?10.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )A.0.7米B.0.8米C.0.9米D.1.0米11.如图,沿AC方向开山修路,为加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=210 m,∠D=30°,要正好能使A、C、E成一直线,那么E、D两点的距离等于( )A.1053 mB.2103 mC.703 mD.105 m12.在长、宽、高分别为12 cm、4 cm、3 cm的木箱中,放一根木棒,能放进去的木棒的最大长度为( )A.5 cmB.12 cmC.13 cmD.153 cm13.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为__________mm.14.如图,一辆小汽车在一条东西走向的城市公路上直道行驶,某一时刻刚好行驶到路边的车速检测仪的正前方30 m处,过了2 s后,测得小汽车与车速检测仪的距离为50 m,问这辆小汽车是否超速了?(中华人民共和国交通管理条例规定:小汽车在城市公路上行驶时的速度不得超过70 km/h)15.为了丰富居民的业余生活,某社区要在如图所示AB所在的直线上建一图书室,本社区有两所学校,所在的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B,已知AB=25 km,CA=15 km,DB=10 km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?16.两条公路OM、ON相交成30度角,在公路OM上,距O点80米的A处有一所小学,当拖拉机沿公路ON方向行驶时,路两旁50米以内会受到噪音的影响,已知拖拉机的速度为18千米/时,那么拖拉机沿ON方向行驶时,是否会给小学带来噪声影响?若受影响,计算影响的时间.参考答案预习练习 101.A2.B3.C4.D5.4806.A7.B8.60039.设BD=x米,则AD=(10+x)米,CD=(30-x)米,根据题意得(30-x)2-(x+10)2=202.解得x=5.即树的高度是10+5=15(米).10.A 11.A 12.C 13.15014.小汽车超速了.理由:在Rt△ABC中,AC=30 m,AB=50 m,根据勾股定理得:BC=22AB AC=40 m.小汽车的速度是40÷2=20(m/s)=72(km/h).而规定速度为70 km/h,72>70,∴小汽车超速了.15.设AE=x km,则BE=(25-x)km.在Rt△ACE中,由勾股定理得:CE2=AE2+AC2=x2+152.同理可得:DE2=(25-x)2+102.若CE=DE,则x2+152=(25-x)2+102.解得x=10.答:图书室E应该建在距A点10 km处,才能使它到两所学校的距离相等.16.过点A作AD⊥ON于点D,即点A到ON的最短距离为AD,已知在Rt△OAD中,∠O=30°,OA=80,可得AD=40<50,故学校会受到拖拉机的影响;在D点两侧分别取两点E、F,使得AE=AF=50,在Rt△ADE中,AE=50,AD=40,可得DE=30,又易证Rt△ADE≌Rt△ADF,即DE=DF=30,即EF=60.又拖拉机的速度为18千米/时,故拖拉机经过EF段所用的时间t=0.0618×3 600=12(s).答:拖拉机会给小学带来噪声影响,影响时间为12秒.第3课时勾股定理的逆定理要点感知直角三角形的判定定理(勾股定理的逆定理):如果一个三角形的三边长a、b、c 有下面的关系:a2+b2=c2,那么这个三角形是__________三角形.预习练习1-1三角形的三边长满足(a+b)2=c2+2ab,则这个三角形是( )A.等边三角形B.钝角三角形C.直角三角形D.锐角三角1-2以下列数组为三角形的边长:①5,12,13;②10,12,13;③7,24,25;④6,8,10,其中能构成直角三角形的有( )A.4组B.3组C.2组D.1组知识点勾股定理的逆定理1.下列四组线段中,可以构成直角三角形的是( )A.4,5,6B.1.5,2,2.5C.2,3,4D.1,2,32.已知三角形的三边长之比为1∶1∶2,则此三角形一定是( )A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形3.已知两条线段的长分别为2 cm、3 cm,那么能与它们组成直角三角形的第三条线段的长是( )A.1 cmB.5 cmC.5 cmD.1 cm与5cm4.如图,正方形小方格边长为1,则网格中的△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对c +|a-8|+(b-15)2=0,则△ABC的形状是( )5.若a、b、c表示△ABC的三边,且满足17A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形6.在Rt△ABC中,若AC=2,BC=7,AB=3,则下列结论中正确的是( )A.∠C=90°B.∠B=90°C.△ABC是锐角三角形D.△ABC是钝角三角形7.在△ABC中,a=2,b=6,c=22,则最大边上的中线长为( )A.2B.3C.2D.以上都不对8.三角形三边长分别为4、8、43,则该三角形最小角与最大角依次是( )A.30°,60°B.30°,90°C.60°,90°D.45°,90°9.若在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADC的度数是__________度.10.如图,一根电线杆高8 m.为了安全起见,在电线杆顶部到与电线杆底部水平距离6 m处加一拉线.拉线工人发现所用线长为10.2 m(不计捆缚部分),则电线杆与地面__________(填“垂11.如图,在△ABC中,AB=2,BC=4,AC=23,∠C=30°,求∠B的大小.12.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( )A.CD、EF、GHB.AB、EF、GHC.AB、CF、EFD.GH、AB、CD13.已知一个三角形的三边长分别为n+1,n+2,n+3,则当n=__________时,这个三角形是直角三角形.14.如图所示,是一个零件的形状,按规定这个零件中的AD与CD必须互相垂直,工人师傅通过测量得到A到C的距离是10 cm,AD=8 cm,CD=6 cm.问这个零件是否合格?15.如图,在四边形ABCD中,∠ABC=90°,BC=3,AB=4,AD=12,CD=13.求四边形ABCD的面积.16.已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.17.如图,点D是△ABC内一点,把△ABD绕点B顺时针方向旋转60°得到△CBE,若AD=4,BD=3,CD=5.(1)判断△DEC的形状,并说明理由;(2)求∠ADB的度数.参考答案要点感知直角预习练习1-1 C1-2 B1.B2.D3.D4.A5.B6.A7.A8.B9.90 10.不垂直11.∵△ABC中,AB=2,BC=4,AC=23,∴AB2+AC2=4+12=16=BC2.∴∠A=90°.∴∠B+∠C=90°.又∵∠C=30°,∴∠B=60°.12.B 13.214.合格.连接AC.∵AD2+CD2=82+62=102=AC2,根据勾股定理的逆定理得△ACD是直角三角形,且∠ADC=90°, ∴零件合格.15.连接AC.∵∠ABC=90°,在Rt△ABC中,BC=3,AB=4,∴AC=22BC AB+=2234+=5.在△ACD中,∵AC2+AD2=52+122=132=CD2,∴△ACD是直角三角形.∴S四边形ABCD =S△ABC+S△ACD=12×3×4+12×5×12=36.16.证明:∵CD是AB边上的高,∴△ADC和△BCD都是直角三角形.∴AC2=AD2+CD2,BC2=BD2+CD2.∴AC2+BC2=AD2+CD2+BD2+CD2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2.∴△ABC是直角三角形.17.(1)根据旋转的性质,得AD=EC=4,BD=BE=3,AB=BC,∠DBE=∠ABC=60°,∠ADB=∠BEC.∴△ABC和△DBE均为等边三角形.∴DE=BD=3.∵CD=5,∴DE2+EC2=32+42=52=CD2.故△DEC为直角三角形.(2)∵△DEC为直角三角形,∴∠DEC=90°.又∵△BDE为等边三角形,∴∠BED=60°.故∠BEC=90°+60°=150°,即∠ADB=150°.。
湘教版八年级数学下册_1.2 直角三角形的性质和判定(Ⅱ)
感悟新知
例1
知1-练
一个直立的火柴盒在桌面上倒下,启发人们发现了
勾股定理的一种验证方法 . 如图 1.2-1 所示,火柴盒的
一个侧面 ABCD倒下后到四边形 AB′ C′ D′的位置,连
接 AC, AC ′, CC ′, 设 AB=a, BC=b,AC=c. 请利
用四边形 BCC′ D′的面积说明勾股定理:
(3)设 a=x,则 b=x, c= 2 x. ∵ x2+x2= ( 2 x ) 2,即 a2+b2=c2, ∴这个三角形是直角三角形 . 注意: 这个三角形也是
等腰三角形
感悟新知
方法点拨
知4-练
判断一个三角形是不是直角三角形的方法:
(1) 当已知条件与角度有关时,一般通过计算看 该
三角形中是否有两 个角互余来判断;
感悟新知
特别提醒
知1-讲
用拼图法证明直角三角形三边关系的思路:
(1) 将图形进行割补拼接形成特殊图形,注意割补拼接时图
形之间没有重叠、没有空隙;
(2) 根据同一种图形的面积的不同表示方法列出等式;
(3) 利用等式性质验证结论成立,即拼出图形→写出表示图
形面积的式子→找出等量关系→恒等变形→推导结论 .
知1-练
感悟新知
知2-练
解法提醒 分清待求的是斜边还是直角边,以便合理选择
是直接用勾股定理还是用勾股定理的变形公式 . 若求斜边,则直接用勾股定理;若求直角边,
则用勾股定理的变形公式 .
感悟新知
知2-练
例3 [ 中考·齐齐哈尔 ] 若直角三角形其中两条边的长分 别为 3,4,则该直角三角形斜边上的高的长为 ________.
(1)勾股定理是以“一个三角 形是直角三角形”为条件,进
湘教版八年级下册直角三角形的性质和判定(Ⅱ)课件
仔细看一看,数一数、算一算:
以直角三角形三边长所围成的三个正方形的面积有什么联系?
3²+ 4²= 5²
6²+8²=10²
猜一猜:任意直角三角形,三边长的关系。
假设C 修1
修此公路需要多少钱?
∟
B
D
A
例题剖析
如图,在等腰三角形中,
A
已知
AB=AC=13,BC=10,AD
⊥BC于点D,你能算出
BC边上的高吗AD的长
吗?
B
D
C
[活动1]
1.分别以6cm、8cm、10cm为三边画出两个三角形, 请视察并说出此三角形的形状?
2.根据上面问题,结合三角形三边长度的平方关系, 你能猜一猜三角形的三边长度与三角形形状之间有 怎样关系吗?
“海天”号每小时航行12海里,它们离开港口一个 半小时后相距30海里.如果知道“远航”号沿东北 方向航行,能知道“海天”号沿哪个方向航行吗?
[活动5]
练习
1.在下列长度的各组线段中,能组成直角三角形的是( ). A.12,15,17 B.9,16,25 C.5a,12a,13a(a>0) D.2,3,4
[活动2]
问题
1.三边长度分别为6 cm、8 cm、10 cm的三角形与 以6 cm、8 cm为直角边的直角三角形之间有什 么关系?你是怎样得到的?
2.你能证明以3cm、4cm、5cm为三边长的三角形 是直角三角形吗?
3.如图,若△ABC的三边长为a、b、c,满足
试证明△ABC是直角三角形.
新版湘教版八年级数学下册第1章直角三角形1.2直角三角形的性质和判定Ⅱ
∴ AB2 = c2.
∴ AB= c.
图1-20
在△ABC和△ABC 中, ∵ BC = BC = a,AC = AC = b,
AB = AB= c, ∴ △ABC≌△ ABC. ∴ ∠C =∠C= 90°. ∴ △ABC是直角三角形.
先构造满足某些条件的 图形,再根据所求证的图
形与所构造图形之间的关系,
在Rt△ ABC中,AC= 4 m,BC = 1 m, 故 AB 42 12 15 3.87(m).
因此 AA = 3.87 - 3.71 = 0.16(m).
即梯子顶端A点大约向上移动了0.16 m,而不是向上 移动0.5 m.
例2 (“引葭赴岸” 问题) “今有方池一丈,葭生其 中央, 出水一尺,引葭赴岸,适与岸齐. 问水深, 葭长各几何?” 意思是:有一个边长为10 尺的 正方形池塘,一棵芦苇生长在池的中央,其出水 部分为1 尺. 如果将芦苇沿与水池边垂直的方向拉 向岸边,它的顶端恰好碰到池边的水面. 问:水深 与芦苇长分别为多少?
解 因为6x>90,所以x >15. 又6x<180,所以x<30. 故选B.
图1-18
练习
1. 如图,一艘渔船以30 海里/时 的速度由西向东追赶 鱼群. 在A 处测得小岛C 在船的北偏东60°方向;40 min 后,渔船行至B 处,此时测得小岛C 在船的北偏 东30°方向. 已知以小岛C 为中心,周围10 海里以内 有暗礁,问:这艘渔船继续向东追赶鱼群是否有触 礁的危险?
图1-21
在Rt△ADC中,DC2 = AC2 - AD2 , ∴b,c组成的三角形是不是直角三角形. (1) a = 8,b = 15,c = 17; (2) a = 10,b = 24,c = 25; (3) a = 4,b = 5, c = 41 .
湘教版数学八年级下册 直角三角形全等的判定
“斜边、 直角边”
前 提 在直角三角形中 条件
A' ∴Rt△ABC ≌ Rt△A'B'C'.
知识要点 “斜边、直角边”定理
文字语言:
斜边和一条直角边分别相等的两个直角三角形全等
(简写成“斜边、直角边”或“HL”).
B
几何“语S言SA:”可以判定两个直
在 Rt△角A三BC角和形全Rt△等A,′B但′C是′ 中“,边 A
C
AB=边A”′B′指,的是斜边和一直角
则 △ADB 与 △ADC 全等 (填“全等”或
“不全等”),根据 HL (用简写法).
┑
4. 如图,在 △ABC 中,已知 BD ⊥ AC,CE ⊥AB,
BD = CE. 求证:△EBC ≌ △DCB.
A
证明:∵ BD ⊥ AC,CE ⊥ AB,
∴∠BEC = ∠BDC = 90°.
在 Rt△EBC 和Rt△DCB 中,
为什么?
B
C B′
C′
2. 两个直角三角形中,有一条直角边和一锐角对应相
等,这两个直角三角形全等吗?为什么?
3. 两个直角三角形中,两直角边对应相等,这两个直 角三角形全等吗?为什么?
动脑想一想
B
A E
我们知道,证明三角形全等不存 在 SSA 定理.
C
D
F
动脑想一想
C
B C'
B'
如果这两个三角形都是直角三 角形,即∠C = ∠C' = 90°, 且 AB = A'B',AC = A'C',现在能
CE = BD,
E
D
∴ Rt△EBBCC=≌CRBt,△DCB (HL).
最新湘教版八年级数学下册 1.1 第1课时 直角三角形的性质和判定
第1章直角三角形1.1 直角三角形的性质和判定(Ι)第1课时直角三角形的性质和判定要点感知1直角三角形的性质:(1)直角三角形的两个锐角__________.(2)直角三角形斜边上的中线等于斜边的__________.预习练习1-1在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( ) A.120° B.90° C.60° D.30°1-2如图,在Rt△ABC中,∠ACB=90°,AB=10 cm,点D为AB的中点,则CD=__________cm.要点感知2直角三角形的判定:有两个角__________的三角形是直角三角形.预习练习2-1在△ABC中,∠A=70°,∠B=20°,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定知识点1 直角三角形的两个锐角互余1.若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是( )A.24°B.34°C.44°D.46°2.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于( )A.60°B.75°C.90°D.105°3.如图,在△ABC中,CE、BF是两条高,若∠A=65°,∠BCE=35°,则∠ABF的度数是__________,∠FBC的度数是__________.4.过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较小的角的度数是__________.知识点2 有两个角互余的三角形是直角三角形5.若一个三角形的三个内角的度数之比为1∶2∶3,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.下列条件:(1)∠A=25°,∠B=65°;(2)3∠A=2∠B=∠C;(3)∠A=5∠B;(4)2∠A=3∠B=4∠C中,其中能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个知识点3 直角三角形斜边上的中线等于斜边的一半7.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC=( )A.30°B.40°C.45°D.60°8.如果一个三角形一边的中线等于这边的一半,那么这个三角形为__________三角形.9.如图,Rt△ABC中,DC是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,求∠ACD的度数.10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有( )A.0个B.1个C.2个D.3个11.如图,AB∥DF,AC⊥BC于点C,BC与DF交于点E,若∠A=20°,则∠CEF等于( )A.110°B.100°C.80°D.70°12.如果一个三角形的一个内角等于其他两个内角的差,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定13.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为( )A.3B.3.5C.4D.4.514.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是__________.15.如图,在△ABC中,∠B=∠C,D、E分别是BC、AC的中点,AB=8,求DE的长.16.如图,在△ACD与△ABC中,∠ABC=∠ADC=90°,E是AC的中点.(1)试说明DE=BE;(2)图中有哪些等腰三角形,请写出来.(不需要证明)17.如图,AD∥BC,∠DAB和∠ABC的平分线相交于CD边上的一点E,F为AB边的中点.求证:EF=12 AB.18.如图,已知M是Rt△ABC斜边AB的中点,CD=BM,DM与CB的延长线交于点E.求证:∠E=12∠A.参考答案要点感知1互余一半预习练习1-1 D1-2 5要点感知2互余预习练习2-1 B1.B2.C3.25°30°4.50°5.B6.A7.B8.直角9.∵EF∥AB,∴∠BCF=∠B.∵∠BCF=35°,∴∠B=35°.∵△ABC为直角三角形,∴∠CAB=90°-35°=55°.∵DC是斜边AB上的中线,∴AD=BD=CD,∴∠ACD=∠A=55°.10.C 11.A 12.B 13.A 14.1315.∵∠B=∠C,∴AB=AC.又D是BC的中点,∴AD⊥BC.∴∠ADC=90°.又E是AC的中点,∴DE=12 AC.∵AB=AC,AB=8,∴DE=12AB=12×8=4.16.(1)∵∠ABC=∠ADC=90°,E为AC的中点,∴DE=12AC,BE=12AC.∴DE=BE.(2)图中的等腰三角形有△CDE、△DAE、△AEB、△BEC、△DEB.17.证明:∵AE、BE分别平分∠DAB和∠ABC,∴∠DAB=2∠EAB,∠ABC=2∠ABE.∵AD∥BC,∴∠DAB+∠ABC=180°.∴2∠EAB+2∠ABE=180°.∴∠EAB+∠ABE=90°.∴∠AEB=90°.∴△AEB是直角三角形.∵F为AB边的中点,∴EF=12 AB.18.证明:∵CM是△ABC的中线,CD=BM,∴CD=CM=BM=AM.∴△CDM是等腰三角形,∠MCB=∠MBC,∠CDM=∠CMD.∵∠CDM=∠A+∠AMD,∠CMD=∠MCB+∠E=∠BME+∠E+∠E,即∠A+∠AMD=∠BME+∠E+∠E,∴∠A=2∠E,1 2∠A.即∠E=。
2024八年级数学下册第1章直角三角形的性质和判定(Ⅱ)第2课时勾股定理的实际应用习题课件新版湘教版
A.x2-3=(10-x)2
C.x2+3=(10-x)2
B.x2-32=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,由题意得,BC=3尺.在Rt△ABC
中,AC2+BC2=AB2,即x2+32=(10-x)2.故选D.
艘同时以16 n mile/h的速度离开该岛向北偏东45°方向航
行,经过1.5 h后两船相距( B )
A.25 n mile
B.30 n mile
C.32 n mile
D.40 n mile
【点拨】
如图,由题意得,∠BAC=90°,AB=12×1.5=18(n mile),
AC=16×1.5=24(n mile).
展开,得到长方形EFGH,过点B作BQ⊥EF于点Q,作点A
关于EH的对称点A',连接A'B交EH于点P,连接AP,如图所
示,则AP+PB就是蚂蚁爬行的最短距离,即A'B的长度.
利用面积法求拼图的面积
7.[2022·金华]如图①,将长为2a+3,宽为2a的长方形分割成
四个全等的直角三角形,拼成“赵爽弦图”(如图②),得到
∴小巷的宽度为AC+AE=0.7+1.5=2.2(m),故选C.
知识点3
用展开法求最短距离
5. [新考法 展开平移法]如图,一个三级台阶,它的每一级的
长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台
阶的两个相对的点,A点处有一只壁虎,它想到B点去吃可
口的食物,请你算一算,这只壁虎从A点出发,沿着台阶
平面内).求:
湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)
感悟新知
知1-练
解题秘方:利用直角三角形的性质与判定证明即可 .
证明: ∵∠ ACB=90°,∴∠ A+ ∠ B=90° . ∵∠ ACD= ∠ B,∴∠ A+ ∠ ACD=90° . ∴△ ACD 为直角三角形,且∠ CDA=90° . ∴ CD ⊥ AB.
感悟新知
拓展 满足下列条件的三角形也是直角三角形: (1)在三角形中,两个内 角之和等于第三个内角; (2)在三角形中,两个内角之差等于第三个内角.
知2-讲
感悟新知
特别提醒
知2-讲
◆直角三角形斜边上的中线把直角三角形分成两个
面积相等的等腰三角形.
◆应用这个性质时要注意“直角三角形” 这一前提,
切不可忽略这一前提而在其他任意三角形中生搬
硬套 .
感悟新知
知2-讲
2. 拓展:如果三角形一边上的中线等于这条边的一半,那么 这个三角形是直角三角形 . 数学语言: 如图 1.1-5,在△ ABC 中,
∵ CD=BD=AD=12 AB, ∴∠ ACB=90°,即△ ABC 是直角三角形 .
感悟新知
知2-练
例4 如图 1.1-6, BD, CE 是△ ABC 的两条高, M, N 分别是 BC, DE 的中点 . 求证: MN ⊥ DE.
感悟新知
知2-练
解题秘方:紧扣“N 为 DE 的中点”这一条件和 “MN ⊥ DE”这一结论,建立等腰三 角形“三线合一”模型, 结合直角三 角形斜边上中线的性质求解 .
在 Rt △ CDB 中,∵ M 为斜边 BC 的中点,
∴
DM=
1 2
BC.
在
Rt
△
BEC
中,∵
M
2024八年级数学下册第1章直角三角形的性质和判定(Ⅱ)第4课时勾股定理的逆定理习题课件新版湘教版
步骤1:如图①,将正方形纸板的边三等分,画出九个相同
的小正方形,并剪去四个角上的小正方形;
步骤2:如图②,把剪好的纸板折成无盖正方体纸盒.
猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的
大小关系;
【解】∠ABC=∠A1B1C1.
(2)证明(1)中你发现的结论.
∴AB2+CB2=CA2.∴△ABC是直角三角形,∠B=90°.
当经过4秒时,BM=AB-AM=18-2×4=10(cm),
BN=3×4=12(cm),
∴S△BMN= BM·BN= ×10×12=60(cm2).
故经过4秒时,△BMN的面积为60 cm2.
利用直角三角形的判定求角的度数
12. [新考法 类比迁移法]在△ABC中,CA=CB,∠ACB=
∴∠ABC=45°,∴∠ABC=∠A 1 B 1 C 1 .
利用勾股数的特征求整式值
10.[2023·衡阳二中模拟]已知:整式A=(n2-1)2+(2n)2,整式
B>0.
【尝试】化简整式A.
【解】A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1
=(n2+1)2.
【发现】A=B2,求整式B.
0,m,n是互质的奇数.下列四组勾股数中,不能由该勾股
数计算公式直接得出的是( C )
A.3,4,5
B.5,12,13
C.6,8,10
D.7,24,25
【点拨】
∵当m=3,n=1时,
a= (m2-n2)= ×(32-12)=4,b=mn=3×1=3,c=
湘教版八年级数学下册_1.3 直角三角形全等的判定
1.3 直角三角形全等的判定
学习目标
1 课时讲解 2 课时流程
斜边、直角边定理 三角形全等的判定方法 用尺规作直角三角形
逐点 导讲练课堂 小结Βιβλιοθήκη 作业 提升感悟新知
知识点 1 斜边、直角边定理
知1-讲
定理: 斜边和一条直角边对应相等的两个直角三角形全等
(可以简写成“斜边、直角边”或“HL” ) .
判定两个直角三角形全等.
感悟新知
知3-练
解题秘方:紧扣尺规作直角三角形的基本步骤作图 .
解: 如图 1.3 - 5,△ ABC 即 为所求作的直角三角形 .
课堂小结
直角三角形 全等的判定
特殊 直角三角形 一般
HL
全等的判定
SAS ASA AAS SSS
可证两角的夹边对应相等 或一相等角的对边对应相 等
可证直角与已知锐角的夹 边对应相等或已知锐角(或 直角)的对边对应相等
感悟新知
斜边(H)
直角
三角 形
一直角边
(L)
HL 或 AAS
HL 或 ASA或 AAS 或 SAS
知2-讲
可证一条直角边对应相等 或一锐角对应相等
可证斜边对应相等或与已 知边相邻的锐角对应相等 或已知边所对的锐角对应 相等或另一直角边对应相 等
第三步:设法推导出所缺的条件; 第四步:整理书写证明过程 .
感悟新知
知识点 2 三角形全等的判定方法
判定两个三角形全等常用的思路方法如下表:
知2-讲
已知对应 可选择的 相等的元素 判定方法
需寻找的条件
锐角 三角
两边(SS)
形或
钝角 一边及其邻
三角 角( SA) 形
湘教版八年级数学下册1.1 直角三角形的性质和判定(I)2 第1课时 直角三角形的性质和判定
第1章直角三角形1.1 直角三角形的性质和判定(Ⅰ)第1课时直角三角形的性质和判定【知识与技能】1.体验直角三角形应用的广泛性,理解直角三角形的定义,进一步认识直角三角形.2.学会用符号和字母表示直角三角形.3.经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质.4.会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形.5.理解和掌握直角三角形性质“斜边上的中线等于斜边的一半”.【过程与方法】通过动手,猜想发现直角三角形的性质,引导逆向思维,探索性质的推导方法——同一法.【情感态度】体会从“一般到特殊”的思维方法和“逆向思维”方法,培养逆向思维能力.【教学重点】直角三角形性质和判定的探索及应用.【教学难点】直角三角形性质“斜边上的中线等于斜边的一半”的判定探索过程.一、创设情境,导入新课问题什么叫直角三角形?从定义可以知道直角三角形具有一个角是直角的性质,要判断一个三角形是直角三角形需要判断这个三角形中有一个角是直角.直角三角形除了有一个角是直角这条性质外还有没有别的性质呢?判断一个三角形是直角三角形除了判断一个角是直角还有没有别的方法呢?这节课我们来探究这些问题.【教学说明】引导学生回忆,并巩固所学知识.从实际问题入手,激发学生的兴趣,注意新知识的连贯性.二、思考探究,获取新知问题1 直角三角形两锐角互余思考如图,在Rt△ABC中,两锐角的和∠A+∠B=______.为什么?【教学说明】通过学生思考,总结归纳得出结果,培养学生分析问题和理解问题的能力.试试看:(1)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠A=40°,则∠BCD=______..(2)在△ABC中,∠B=50°,高AD、CE交于H,则∠AHC=______..【教学说明】巩固所学内容,加强对直角三角形两角之间互余的理解.问题2 利用两锐角互余判断三角形是直角三角形思考如图,在△ABC中,如果∠A+∠B=90°,那么△ABC是直角三角形吗?为什么?【教学说明】让学生明白两锐角互余的三角形是直角三角形,从而得到直角三角形的一种判定方法.结论有两个锐角互余的三角形是直角三角形.试试看:如图,AB∥CD,∠A和∠C的平分线相交于H点,那么△AHC 是直角三角形吗?为什么?【教学说明】让学生利用所学知识解决数学问题,逐步掌握解题技巧,培养学生的应用意识和能力.问题3 直角三角形斜边上的中线等于斜边的一半的探索过程思考(1)按要求作图:画一个直角三角形,并作出斜边上的中线.(2)量一量各线段的长度.(3)猜想:你能猜想出什么结论?【教学说明】经历上面的探索过程,学生很容易得出结论,并能对所学知识进行提炼和归纳.问题4 教材第4页例题【教学说明】让学生明确直角三角形斜边上的中线等于斜边的一半这一定理的题设及结论可以相互变换,加深它们之间的区别与联系.三、运用新知,深化理解1.如果三角形的三个内角的比是4∶5∶9,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形2.在△ABC中,若∠A=∠B+∠C,则△ABC是_______.3.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ACD 沿AC边折叠,使点D落在点E处.求证:EC∥AB.【教学说明】由学生独立完成,加深对所学知识的理解和运用以及检查学生掌握情况,有困难的学生教师要及时指导,并及时纠正错误,给予矫正深化.答案:1.B 2.直角三角形3.证明:∵△ACD沿AC边折叠,∴△ADC≌AEC,∴∠ACE=∠ACD,∵CD是AB边上的中线,∠ACB=90°,∴CD=AD,∴∠CAD=∠ACD,∴∠CAD=∠ACE,∴EC∥AB.四、师生互动,课堂小结通过今天的学习,你掌握了直角三角形的哪些性质和判定方法?还有什么值得与大家共同分享的?【教学说明】梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系,同学之间互相取长补短,达到共同提高.1.布置作业:习题1.1中的第1、2题.2.完成练习册中本课时的练习.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中让学生不断强化提高这一点.。
湘教版数学八年级下册《1.3直角三角形全等的判定》说课稿
湘教版数学八年级下册《1.3 直角三角形全等的判定》说课稿一. 教材分析湘教版数学八年级下册《1.3 直角三角形全等的判定》这一节主要讲述了直角三角形全等的判定方法。
在学习了三角形全等的判定之后,学生已经掌握了全等三角形的性质和判定方法。
本节内容是在此基础上,进一步探讨直角三角形全等的判定方法,为后续学习直角三角形相似、解直角三角形等知识打下基础。
本节内容共安排了2个课时,第1课时主要介绍直角三角形全等的判定方法,第2课时通过练习,巩固直角三角形全等的判定方法。
二. 学情分析学生在学习本节内容之前,已经掌握了全等三角形的性质和判定方法,能够识别和判断一般三角形的全等。
但在直角三角形的全等方面,学生可能还存在以下问题:1.对直角三角形全等的判定方法理解不深,容易混淆。
2.在实际操作中,不能灵活运用直角三角形全等的判定方法。
3.对全等三角形的性质和判定方法的应用范围把握不准确。
三. 说教学目标1.知识与技能:使学生掌握直角三角形全等的判定方法,能够灵活运用判定方法判断直角三角形的全等。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:直角三角形全等的判定方法。
2.教学难点:直角三角形全等判定方法的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作学习、探究学习等教学方法,引导学生主动参与、积极思考。
2.教学手段:利用多媒体课件、实物模型、黑板等教学手段,辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习全等三角形的性质和判定方法,引出直角三角形全等的判定。
2.自主探究:让学生观察、思考、交流,探索直角三角形全等的判定方法。
3.讲解演示:教师讲解直角三角形全等的判定方法,并进行实物演示,帮助学生理解。
八年级数学下册第1章直角三角形1.1直角三角形的性质和判定(Ⅰ)第2课时教学课件新版湘教版
第2课时
1.掌握“直角三角形斜边上的中线等于斜边的一半”的性质 定理以及应用. 2.巩固利用添辅助线证明有关几何问题的方法.
3.通过图形的变换,引导学生发现并提出新问题,进行类 比联想,促使学生的思维向多层次多方位发散,从而培养 学生的创新精神和创造能力. 4.从生活的实际问题出发,引发学生学习数学的兴趣,从而 培养学生发现问题和解决问题的能力.
(一)直角三角形的性质[3条]: 1.直角三角形的两个锐角互余. 2.直角三角形斜边上的中线等于斜边的一半. 3.直角三角形中,30度角所对的直角边等于斜边的一半.
(二)直角三角形的判定[2条]: 1.有两个角互余的三角形是直角三角形. 2.在三角形中,若一边上的中线等于该边的一半,那 么这个三角形是直角三角形.
证明:连结CM,
∵∠ACB=90°,BC=AC,
∴∠A=∠B=45°.
∵M是AB的中点,
∴CM平分∠BCA(等腰三角形顶角的平分线和底边
上的中线重合),
∴∠MCE=∠MCB=45°,
BD CE
在△BDM和△CEM中B MCE,
BM CM
B
D M
∴△BDM≌△CEM(SAS),∴MD=ME,
D是AB的中点,CD=4cm,则AB=
cm.
【答案】8
【规律方法】直角三角形中的边角关系,利用角的互余, 直角三角形斜边上的中线等于斜边的一半,等腰直角三 角形的性质,构造全等三角形是证明角、线段相等的常 用方法.
谢谢 观看ຫໍສະໝຸດ 北60° BF
东 A
【解析】过A点作AD ⊥ BF,
由已知可得:
∠FBA=30°
北
∴ AD= 1AB=150km,
2023八年级数学下册第1章直角三角形1.3直角三角形全等的判定教案(新版)湘教版
1. 知识与技能:学生将掌握直角三角形全等的判定定理,并能够运用这些定理判断两个直角三角形是否全等。他们还将能够理解全等三角形的性质,并能够运用这些性质解决实际问题。
2. 过程与方法:学生将通过观察、操作、实验等实践活动,加深对直角三角形全等概念的理解。他们还将通过小组讨论、合作交流等学习方式,培养团队协作能力和沟通表达能力。
教学流程
一、导入新课(用时5分钟)
同学们,今天我们将要学习的是直角三角形全等的判定这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个直角三角形是否完全相同的情况?”举例来说,当你在建筑工地或制作模型时,你可能需要判断两个直角三角形是否完全相同。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索直角三角形全等的奥秘。
- 视频资源:《直角三角形全等判定定理的证明过程》、《直角三角形全等的实际应用案例解析》等。
2. 拓展要求:
- 学生应利用课后时间自主学习和拓展,加深对直角三角形全等知识的理解和应用。
- 鼓励学生通过阅读材料和观看视频资源,了解直角三角形全等的判定定理和实际应用。
- 教师可提供必要的指导和帮助,如推荐阅读材料、解答疑问等。
3. 情感态度与价值观:学生将培养对数学学科的兴趣和好奇心,增强对几何知识的热爱。他们还将学会运用数学思维和方法解决实际问题,培养解决问题的能力和自信心。
4. 创新与实践:学生将通过解决实际问题,培养创新思维和实践能力。他们将学会将所学知识运用到实际生活中,提高解决实际问题的能力。
5. 逻辑推理能力:学生将通过学习直角三角形全等的判定定理,提高逻辑推理能力。他们能够运用逻辑推理方法,正确判断两个直角三角形是否全等,并能够清晰地表达解题过程。
1.3++直角三角形的全等判定+课件++2023-2024学年湘教版八年级数学下册
合作探究
3.如图,已知AC⊥BC,AD⊥BD,垂足分别是 C,D,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F,求证:CE=DF.
合作探究
先根据AD=BC及公共边AB,由“ HL ”证得 Rt△ACB ≌ Rt△BDA ,可得∠CAB=∠DBA,AC=BD,再根据“AAS”证得 △CAE ≌ △DBF ,问题得证.
预习导学
2.由于已知 斜边和一条直角边 对应相等,根据勾股定理
可得
第三条边长 也相等,所以根据“ SSS ”可以
判定这两个三角形全等.
预习导学
归纳总结 直角三角形全等的判定定理:斜边和一条直角边 对应相等的两个直角三角形 全等 (可以简写成“HL”).
预习导学
(1)如图,OD⊥AB于点D,OP⊥AC于点P,且OD=OP,则△AOD与 △AOP全等的理由是 ( D ) A.SSS B.ASA C.SSA D.HL
合作探究
直角三角形全等的判定及应用 1.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( B )
A.40° B.50° C.60° D.75°
合作探究
2.如图,已知AD是BE的垂直平分线,且AB=DE,求证:∠B=∠E.
证明:∵AD是BE的垂直平分 线,∴BC=EC,∠ACB=∠DCE=90°, ∴△ABC和△DEC都是直角三角形.又 ∵AB=DE, ∴Rt△ABC≌Rt△DEC(HL),∴∠B=∠E.
预习导学
(2)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作 过点A的直线的垂线BD,CE,若BD=4 cm,CE=3 cm,则DE= 7____ cm.
预习导学
直角三角形“HL”判定定理的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
桑水出品
第一章 直角三角形
单元测试题
(时限:100分钟 总分:100分)
班级 姓名 总分 一、 选择题(本题共8小题,每小题4分,共32分) 1.下列几组数中,能作为直角三角形三边长度的是 ( )
A. 4,5,6
B.1,1,2
C. 6,8,11
D. 5,12,23 2.一个正方形的面积为216cm ,则它的对角线长为 ( )
A. 4 cm
B.42cm
C.82 cm
D. 6cm
3如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,且PD =PE ,则△APD 与△APE 全等的理由是( )
A .SAS B.AAS C. SSS D .HL
4. 三角形内到三边的距离相等的点是( )
A. 三条中线的交点
B. 三条高的交点
C. 三条角平分线的交点
D. 以上均不对
5. 如果梯子的底端离建筑物5 米,13 米长的梯子可以达到该建筑物的高度是( ) A . 12 米 B. 13 米 C. 14 米 D. 15 米
6. 等边三角形的边长为2,则该三角形的面积为( )
A.43
B.3
C. 23
D. 3
B
A
P
D
E
第3题
7. 如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线 剪去∠C ,则∠1+∠2等于( ) A .315° B .270° C .180° D .135°
8. 在△ABC 中,∠C =90°,角平分线AD 交BC 于点D ,若BC =32,BD ∶CD =9∶7,则D 点到AB 边的距离为( )
A . 18 B. 16 C. 14 D. 12 二、 填空题(本题共8小题,每小题4分,共32分)
9. 已知△ABC 的三边长分别为1,3,2,则△ABC 是 三角形. 10. 等腰三角形的腰长为10,底边上的高为6,则底边的长为 . 11. 如图,小方格都是边长为1的正方形,则四边形ABCD 的周长 是 .
12. 在直角三角形中,两锐角之比为2:1,则两锐角的度数分别
为 .
13. 如图,以Rt △ABC 的三边向外作正方形,其
面积分别为1S ,2S ,3S 且14S =,28S =, 则3S = ;以Rt ∆ABC 的三边向外 作等边三角形,其面积分别为 1S ,2S ,3S ,
则1S ,
2S ,3S 三者之间的关系为 . 14. 如图,△ABC 中,∠C =90°,点D 在BC 上,DE ⊥AB 于E ,且AE=EB ,DE=DC ,则∠B 的度数为 .
15. 如图,△ABC 中,∠C =90°,AC=BC ,AD 平分∠BAC ,BD =3.5,BC =6,则△ABC 的周长是 .
16. 如图,在△ABC 中,∠A =90,BD 是角平分线,若AD =m ,BC =n ,则△BDC 的面积
D
C
A
B
第11题
为.
三、解答题(本题共5小题,共36分)
17.(本小题满分7分)
如图,90
C
∠=︒,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.
18. (本小题满分7分)
如图,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D,若AP平分∠BAC 交BD于点P,求∠APB的度数.
19. (本小题满分7分)
如图,已知△ABC中,∠ACB=90°,且AC=BC. 过点C作
一条射线CE⊥AE于点E,再过点B作BD⊥CE于点D. 试
A
B C
D
E
第16题
证明AE =BD +DE .
20.(本小题满分7分)
如图,一个梯子AB 长10 米,顶端A 靠在墙上的AC 上,这时梯子下端B 与墙角c 距离为6 米,梯子滑动后停在DE 的位置上,测得BD 长为1 米,求梯子顶端A 下落了多少米?(精确到0.01 )
1
21.(本小题满分8分)
小明将一幅三角板如图所示摆放在一起,若已知
4
63
AC
,求CD 的长. A
C
D
B
参考答案
第一章 直角三角形
一、
选择题:
1.B ;
2.B ;
3. D ;
4.C ;
5.A ;
6.B ;
7.B ;8 C. 二、填空题:
9. 直角; 10. 16; 11. 12. 30︒,60︒;
13. 12;S 1+S 2=S 3 14. 30︒ ; 15. 20.5或12+ 16. mn DE BC S ABC 2
1
21=⨯⨯=∆. 三、解答题:
17. △ABD 为直角三角形. 理由如下:
90C ∠=︒Q ,AC =3,BC =4,5AB ∴=.
22251213+=Q ,
222AB AD BD ∴+=. 90BAD ∴∠=︒.
18. 135APB ∠=︒.
19. 利用“AAS ”判定△ACE ≌△CBD ,
,AE CD CE BD ∴==.
AE CD CE DE BD DE ∴==+=+.
20. 梯子顶端A 下落了0.86米. 21. 2.。