八年级数学下册直角三角形教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章直角三角形

§1.1直角三角形的性质和判定(Ⅰ)

(第1课时)

教学目标:

1、掌握“直角三角形的两个锐角互余”定理。

2、掌握“有两个锐角互余的三角形是直角三角形”定理。

3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

4、巩固利用添辅助线证明有关几何问题的方法。

教学重点:直角三角形斜边上的中线性质定理的应用。

难点:直角三角形斜边上的中线性质定理的证明思想方法。

教学方法:观察、比较、合作、交流、探索.

教学过程:

一、复习提问:(1)什么叫直角三角形?

(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,

还具备哪些性质?

二、新授

(一)直角三角形性质定理1

请学生看图形:

1、提问:∠A与∠B有何关系?为什么?

2、归纳小结:定理1:直角三角形的两个锐角互余。

3、巩固练习:

练习1

(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数

(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。(3)与∠B相等的角有。

(二)直角三角形的判定定理1

1、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”

2、利用三角形内角和定理进行推理

3、归纳:有两个锐角互余的三角形是直角三角形

练习3:若∠A= 600,∠B =300,那么△ABC是三角形。

(三)直角三角形性质定理2

1、实验操作:要学生拿出事先准备好的直角三角形的纸片

(l)量一量斜边AB的长度

(2)找到斜边的中点,用字母D表示

(3)画出斜边上的中线

(4)量一量斜边上的中线的长度

让学生猜想斜边上的中线与斜边长度之间有何关系?

归纳:直角三角形斜边上的中线等于斜边的一半。

三、巩固训练:

练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

练习5:已知:∠ABC=∠ADC=90O,E是AC中点。

求证:(1)ED=EB

(2)∠EBD=∠EDB

(3)图中有哪些等腰三角形?

练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?

四、小结:

这节课主要讲了直角三角形的那两条性质定理和一条判定定理?

五、课后反思:

§1.1直角三角形的性质和判定(Ⅰ)

(第2课时)

一、教学目标:

1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

2、巩固利用添辅助线证明有关几何问题的方法。

3、通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进学生的

思维向多层次多方位发散。培养学生的创新精神和创造能力。

4、从生活的实际问题出发,引发学生学习数学的兴趣。从而培养学生发现问题

和解决问题能力。

二、教学重点与难点:

直角三角形斜边上的中线性质定理的应用。

直角三角形斜边上的中线性质定理的证明思想方法。

三、教学方法:观察、比较、合作、交流、探索.

四、教学过程:

(一)引入:如果你是设计师:(提出问题)

2008年将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点45路、13路、23路的距离相等的位置。而这三个公交站点的位置正好构成一个直角三角形。如果你是设计师你会把地铁站的出口建造在哪里?

(通过实际问题引出直角三角形斜边上的中点和三个顶点之间的长度关系,引发学生的学习兴趣。)

动一动想一想猜一猜(实验操作)

请同学们分小组在模型上找出那个点,并说出它的位置。

请同学们测量一下这个点到这三个顶点的距离是否符合要求。

通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长度之间有什么关系?

(通过动手操作找到那个点,通过测量的结果让学生猜测斜边的中线与斜边的关系。)

(二)新授:

提出命题:直角三角形斜边上的中线等于斜边的一半

证明命题:(教师引导,学生讨论,共同完成证明过程)

推理证明思路:①作点D1②证明所作点D1具有的性质③证明点D1 与点D 重合

E

D

C

B

A

应用定理:

例1、已知:如图,在△ABC 中,∠B=∠C ,AD 是∠BAC 的平

分线,

E 、

F 分别AB 、AC 的中点。

求证:DE=DF

分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜边相等即可证得。

(上一题我们是两个直角三角形的一条较长直角边重合,现在我们将图形变化使斜边重合,我们可以得到哪些结论?) 练习变式:

1、 已知:在△ABC 中,BD 、CE 分别是边AC 、AB 上的高,F 是BC 的中点。

求证:FD=FE 练习引申:

(1)若连接DE ,能得出什么结论?

(2)若O 是DE 的中点,则MO 与DE 存在什么结论吗?

上题两个直角三角形共用一条斜边,两个直角三角形位于斜边的同侧。如果共用一条斜边,两个直角三角形位于斜边的两侧我们又会有哪些结论? 2、已知:∠ABC=∠ADC=90º,E 是AC 中点。你能得到什么结论?

例2、求证:一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形。P4 练习P4 2 (三)、小结:

通过今天的学习有哪些收获? (四)、作业:P7 习题A 组 1、2 (五)、课后反思:

§1.1直角三角形的性质和判定(Ⅰ)

F

E

D

C

B

A

F

C

B

相关文档
最新文档