神经网络学习算法matlab仿真
神经网络与深度学习——基于MATLAB的仿真与实现
![神经网络与深度学习——基于MATLAB的仿真与实现](https://img.taocdn.com/s3/m/16248d40178884868762caaedd3383c4bb4cb426.png)
目录分析
第1章神经网络概 述
读书笔记
读书笔记
这是《神经网络与深度学习——基于MATLAB的仿真与实现》的读书笔记模板,可以替换为自己的心得。
精彩摘录
精彩摘录
这是《神经网络与深度学习——基于MATLAB的仿真与实现》的读书笔记模板,可以替换为自己的精彩内容 摘录。
谢谢观看
第6章径向基神经网络
6.1径向基神经网络的基本结构与算法基础 6.2径向基神经网络的MATLAB实现 6.3关于径向基神经网络的几点讨论
第7章 Hopfield神经网络
7.1 Hopfield神经网络的基本结构与算法基础 7.2 Hopfield神经网络的MATLAB实现 7.3关于Hopfield神经网络的几点讨论
第9章概率神经 网络
第3章感知机
3.1感知机的基本结构与算法基础 3.2感知机的MATLAB实现
第4章线性神经网络
4.1线性神经网络的基本结构与算法基础 4.2线性神经网络的MATLAB实现 4.3关于线性神经网络的几点讨论
第5章 BP神经网络
5.1 BP神经网络的基本结构与算法基础 5.2 BP神经网络的MATLAB实现 5.3关于BP神经网络的几点讨论
第8章 SOM神经网络
8.1 SOM神经网络的基本结构与算法基础 8.2 SOM神经网络的MATLAB实现 8.3关于SOM神经网络的几点讨论
第9章概率神经网络
在Matlab中实现神经网络的方法与实例
![在Matlab中实现神经网络的方法与实例](https://img.taocdn.com/s3/m/aaca620bb80d6c85ec3a87c24028915f814d8444.png)
在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。
在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。
而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。
本文将介绍在Matlab中实现神经网络的方法与实例。
首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。
一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。
每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。
这样,神经网络就能够模拟复杂的非线性关系。
常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。
前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。
神经网络的训练是通过最小化损失函数来优化模型的参数。
常用的训练算法包括梯度下降法和反向传播算法。
其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。
二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。
首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。
例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。
改进的小波神经网络及其Matlab仿真
![改进的小波神经网络及其Matlab仿真](https://img.taocdn.com/s3/m/290b7bda33d4b14e85246889.png)
40 2
内
蒙
古
民
族
大
学
学
报
2 1 正 01
s p : ( )( ) 算 隐层及 输 出层 的输 出 ; t 3用 1一 3计 e s p 计 算误 差 , ( ) 1 ) t 4: e 用 8 (3计算 梯 度 向量 ; s p : m+ , 果 m P 则 转 s p ; 则 , 算 代 价 函数 E, ( ) 6 修 改 网 络 参 数 , 时计 算 t 5 m= 1 如 e <, t4否 e 计 用 4 一() 同 A (E:E )一E W一 )若△ <0,0 EA ( ( ) ; E 。 贝 置田 =rx12 反 之 町=钾× . ; / 5, . 08 sp : t 6 当性 能 指 标 E小 于 预先 设 定 的某 个 值 £( 0 , 停 止 网络 的学 习 , 则将 r重置 为 1并 转 e s> )则 否 l l ,
005图 2 图 3 . . 和 0 分别 为小 波 网络 和改 进结 构 的小 波 网络 的训练误 差 与步 数之 间 的关 系 曲线 .
图 2 标 准 小 波 网 络 误 差 曲线
Fi u e 2 Th ea i n c r e o r i i g g r e r lt u v ftan n o e r r a d se fW a ee- t r r o n tp o v l t Ne wo k
n=l
1
二2 l ,
Y N
图 1 改 进 的 小 汲 1l 结 构 )络 。 I
Fi 1 g The m pr ve s r t e f W NN i o d t uc ur o
( 3)
2 性 能指标 )
( 一 )
毕业设计-神经网络控制算法仿真设计
![毕业设计-神经网络控制算法仿真设计](https://img.taocdn.com/s3/m/bb281570a21614791711287d.png)
摘要目前,由于PID结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。
电厂主汽温被控对象是一个大惯性、大迟延、非线性且对象变化的系统,常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的围。
但当运行工况发生较大变化时,却很难保证控制品质。
因此本文研究基于BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。
本处用一个多层前向神经网络,采用反向传播算法,依据控制要时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。
对这样一个系统在MATLAB平台上进行仿真研究,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。
关键词:主汽温,PID,BP神经网络,MATLAB仿真ABSTRACTAt present, because PID has a simple structure and can be adjusted proportional 、integral and differential to satisfactory control performance, it is widely used in power plants of various control process. The system of power plant main steam temperature is an large inertia、big time-delayed and nonlinear dynamic system. Conventional steam temperature control system adopted cascade PID control or the differential control of lead before. When the unit is stable, these methods will control the steam temperature in a certain range ,but when operating conditions changed greatly, it is difficult to ensure the quality of control. This article studies PID control based BP neural network . Using such characteristics of neural network self-learning, nonlinear and don't rely on model realize PID parameters auto-tuning. It can make full use of the advantages of PID and neural network. Here, we use a multilayer feedforward neural network using back propagation algorithm. This net can real-time output Kp, Ki, Kd as the PID controller parameters , insteading of the traditional PID parameters determined by experience, so it can obtain good control performance .For such a system ,we can simulate in MATLAB simulation platform. The simulation results show that the PID control based BP neural network has good adaptive ability and self-learning ability. For the system of large delay and free-model can obtain good control effect.KEY WORDS: main steam temperature ,PID ,BP neural network, MATLAB simulation目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 选题背景和意义 (1)1.2 国外研究现状 (1)1.3 立论依据 (5)1.4 本文所做的主要工作 (6)第二章神经网络的基本原理 (8)2.1 人工神经元模型 (8)2.2 神经网络的学习方式和学习规则 (9)2.2.1 神经网络的学习方式 (9)2.2.2 神经网络的学习规则 (9)2.3 神经网络的特点及应用 (10)2.4 BP神经网络 (11)2.4.1 BP神经网络的结构 (11)2.4.2 BP神经网络的算法 (12)2.5 本章小结 (16)第三章基于BP神经网络的PID控制 (17)3.1 PID控制器的离散差分方程 (17)3.2 基于BP神经网络的PID整定原理 (18)3.3 基于BP神经网络的PID控制算法流程 (22)3.4 本章小结 (22)第四章基于BP神经网络的PID控制在主汽温控制系统中的应用 (23)4.1 主汽温的控制任务 (23)4.2 主汽温被控对象的动态特性 (23)4.3 主汽温控制策略 (24)4.3.1 主汽温控制信号的选择 (24)4.3.2 主汽温控制的两种策略 (26)4.4仿真分析 (27)4.5 本章总结 (34)结论与展望 (35)参考文献 (37)致 (39)第一章绪论1.1 选题背景和意义在控制系统设计中,最主要而又最困难的问题是如何针对复杂、变化及具有不确定性的受控对象和环境作出有效的控制决策。
6.3 基于RBF神经网络的辨识 [系统辨识理论及Matlab仿真]
![6.3 基于RBF神经网络的辨识 [系统辨识理论及Matlab仿真]](https://img.taocdn.com/s3/m/41e3af4aa216147916112830.png)
RBF网络特点
(1) RBF网络的作用函数为高斯函数,是局部 的,BP网络的作用函数为S函数,是全局的;
(2) 如何确定RBF网络隐层节点的中心及基宽 度参数是一个困难的问题;
(3) 已证明RBF网络具有唯一最佳逼近的特性, 且无局部极小[1]。
RBF网络结构 RBF网络是一种三层前向网络,由于输入
到输出的映射是非线性的,而隐含层空间到 输出空间的映射是线性的,从而可以大大加 快学习速度并避免局部极小问题。
RBF网络结构图1所示。
图1 RBF网络结构
2、RBF网络的逼近
采用RBF网络逼近一对象的结构如图2所 示。
图2 RBF神经网络逼近
在RBF网络结构中,X x1,x2,....xnT 为网络的输入
m
wjhj
j 1
c1 j x1 b2j
其中取 x1 u(k) 。
3、RBF网络逼近仿真实例
使用RBF网络逼近下列对象:
y(k)
u(k
)3
1
y(k 1) y(k 1)2
• RBF网络逼近程序见chap6_4.m
参考文献
[1] J.Park, I.W.Sandberg, Universal approximation
6.3 基于RBF神经网络的辨识
1、RBF神经网络 径向基函数(RBF-Radial Basis Function)神经 网络是由J.Moody和C.Darken在80年代末提出的 一种神经网络,它是具有单隐层的三层前馈网络 。由于它模拟了人脑中局部调整、相互覆盖接收 域(或称感受野-Receptive Field)的神经网络结 构,因此,RBF网络是一种局部逼近网络,已证 明它能任意精度逼近任意连续函数[1]。
神经网络PID 控制策略及其Matlab 仿真研究.
![神经网络PID 控制策略及其Matlab 仿真研究.](https://img.taocdn.com/s3/m/5eab065079563c1ec5da716e.png)
神经网络PID 控制策略及其Matlab 仿真研究赵娟平(沈阳化工学院,辽宁,沈阳 110142 )摘要:本文讨论了神经网络PID 控制策略,利用神经网络的自学习能力进行PID控制参数的在线整定,并使用Matlab 软件进行了仿真研究。
仿真结果表明,神经网络PID 控制器参数调整简单,具有很高的精度和很强的适应性,可以获得满意的控制效果。
关键词:神经网络,BP 网络,PID ,参数整定,仿真中图分类号:TP183 文献标识码:ANeural Network PID control and its Matlab Simulation researchJuanPing Zhao(ShenYang institute of chemical industry, LiaoNing, ShenYang 110142 )Abstract: This paper discusses the nerve network PID control strategy, makes use of the study ability of the nerve network to turning the PID control parameters, and proceeds the simulation research using matlab software. From the simulation results, it is can be shown that Neural Network PID controller have the higher accuracy and stronger adaptability, and can get satisfied control result.Key word: neural network, BP neural network, PID, parameter turning, simulation1.引言PID 控制由于其具有直观性好、实现简单、可靠性高以及强鲁棒性等优点,在工业控制中得到广泛的应用,尤其适用于建立了精确数学模型的确定性系统。
Matlab中的神经网络算法实现指南
![Matlab中的神经网络算法实现指南](https://img.taocdn.com/s3/m/80c398f90d22590102020740be1e650e52eacfac.png)
Matlab中的神经网络算法实现指南1. 引言神经网络是一种基于生物神经系统的模型,旨在模拟人脑的学习和决策过程。
在现代机器学习领域,神经网络被广泛应用于图像识别、语言处理、预测分析等各种任务中。
而Matlab作为一种功能强大的数值计算和可视化软件,提供了丰富的神经网络工具箱,可以帮助开发人员快速实现和调试各种神经网络算法。
本文将介绍Matlab中的神经网络工具箱,并提供一些实现神经网络算法的指南。
2. Matlab中的神经网络工具箱Matlab提供了一个名为"Neural Network Toolbox"的工具箱,包含了大量的函数和工具,用于构建、训练和评估神经网络模型。
该工具箱支持多种类型的神经网络结构,包括前馈神经网络、递归神经网络、卷积神经网络等。
此外,Matlab还提供了各种用于优化神经网络的算法,如反向传播算法、遗传算法等。
3. 构建神经网络模型在Matlab中,我们可以使用"feedforwardnet"函数来构建一个前馈神经网络模型。
该函数接受一个包含神经网络层结构的向量作为输入参数,并返回一个神经网络对象。
我们可以通过修改这个向量的元素来调整神经网络的结构和参数。
例如,下面的代码展示了如何构建一个包含两个隐藏层的前馈神经网络模型:```matlabnet = feedforwardnet([10, 5]);```4. 导入和预处理数据导入和预处理数据对于构建和训练神经网络模型至关重要。
Matlab提供了各种用于数据导入和预处理的函数和工具。
例如,可以使用"csvread"函数来导入CSV 格式的数据文件;可以使用"mapminmax"函数来对数据进行归一化处理;可以使用"splittingData"函数将数据划分为训练集、验证集和测试集等。
5. 为神经网络模型训练数据在Matlab中,我们可以通过调用"train"函数来训练神经网络模型。
神经网络与深度学习基于MATLAB的仿真与实现
![神经网络与深度学习基于MATLAB的仿真与实现](https://img.taocdn.com/s3/m/f6afbf40eef9aef8941ea76e58fafab069dc448f.png)
目录分析
目录分析
《神经网络与深度学习基于MATLAB的仿真与实现》是一本介绍神经网络和深 度学习理论的书籍,由电子工业社于2016年。该书以通俗易懂的方式,结合 MATLAB仿真与实现,详细阐述了神经网络与深度学习的基本概念、原理和实践。 下面,我们对其目录进行简要分析。
目录分析
本书的目录结构清晰明了,逻辑性强。它以循序渐进的方式引导读者从基础 知识入手,逐步深入到高级主题。全书共分为11章,各章的主题相对独立,又相 互,形成了一个完整的神经网络和深度学习知识体系。
精彩摘录
“循环神经网络(RNN)是一种能够处理序列数据的神经网络。它们通过使用 循环结构来捕捉序列数据的时间依赖关系。”这句话解释了循环神经网络的特点 和应用领域,对于处理序列数据具有重要的指导意义。
精彩摘录
“长短期记忆(LSTM)是一种特殊的RNN,它通过引入记忆单元来解决普通 RNN存在的长期依赖问题。”这句话介绍了LSTM的特点和应用领域,对于处理序 列数据中的长期依赖关系具有重要的指导意义。
精彩摘录
“Dropout是一种正则化技术,它通过在训练过程中随机地丢弃一部分神经元 来防止过拟合。”这句话说明了Dropout的作用和效果,有助于读者理解如何防 止过拟合这一重要问题。
精彩摘录
“卷积神经网络(CNN)是一种专门用于处理图像数据的神经网络。它们通过 使用卷积层来捕捉图像中的空间结构信息。”这句话揭示了卷积神经网络的特点 和应用领域,对于处理图像数据具有重要的指导意义。
精彩摘录
“反向传播算法是训练神经网络的核心步骤。这个算法通过计算损失函数关 于权重的梯度,并使用梯度下降法来更新权重,从而减小预测误差。”这句话解 释了反向传播算法的工作原理和目的,对于理解神经网络的训练过程至关重要。
MATLAB中的神经网络算法详解
![MATLAB中的神经网络算法详解](https://img.taocdn.com/s3/m/23df9d3aa7c30c22590102020740be1e650eccac.png)
MATLAB中的神经网络算法详解一、引言神经网络是一种模拟生物神经元工作原理的计算模型,具有模式识别、分类、优化等各种应用。
在日常生活和工业生产中,我们经常会遇到需要处理大量数据并进行复杂计算的问题。
而神经网络算法正是为了解决这些问题而设计的。
MATLAB作为一种功能强大的数值计算软件,提供了丰富的神经网络算法库。
本文将通过对MATLAB中神经网络算法的详细解释,展示其在数据处理和分析方面的广泛应用。
二、神经网络基础1. 神经网络结构神经网络由神经元(或称为节点)和连接这些神经元的权重组成。
一般而言,神经网络通过层与层之间的连接来进行信息传递。
常见的神经网络结构包括前馈神经网络和循环神经网络。
前馈神经网络是最常见的神经网络结构之一。
它的信息传递是单向的,不会存在回路。
循环神经网络则允许信息在网络中进行循环传递,这使得它能够处理具有时序特点的数据。
2. 权重与偏置在神经网络中,每个连接都有一个权重,用来表示两个神经元之间的关系强度。
权重值可以是正、负,以及接近于零的任意值。
权重值越大,表示两个神经元之间的相关性越强。
除了权重,神经网络中还存在一个偏置值,用来表示神经元的激活阈值。
3. 激活函数激活函数决定了神经元的输出结果。
常见的激活函数包括Sigmoid函数、ReLU函数等。
激活函数的引入可以使神经网络模型拟合非线性问题。
三、MATLAB中的神经网络算法1. 建立神经网络模型在MATLAB中,可以利用神经网络工具箱来建立神经网络模型。
首先,我们需要确定网络的架构,包括输入层的节点数、隐藏层的节点数、输出层的节点数等。
然后,我们可以使用MATLAB提供的函数创建一个神经网络对象,设定各层的节点数以及激活函数类型。
2. 训练神经网络神经网络的训练过程是一个优化问题。
训练过程中,我们需要定义一个损失函数来衡量模型在训练数据上的拟合程度。
MATLAB提供了多种优化算法,如反向传播算法、遗传算法等,用于调整网络中的权重和偏置,从而最小化损失函数。
各种BP学习算法MATLAB仿真
![各种BP学习算法MATLAB仿真](https://img.taocdn.com/s3/m/82d902cd6137ee06eff918e4.png)
3.3.2 各种BP学习算法MATLAB仿真根据上面一节对BP神经网络的MATLAB设计,可以得出下面的通用的MATLAB程序段,由于各种BP学习算法采用了不同的学习函数,所以只需要更改学习函数即可。
MATLAB程序段如下:x=-4:0.01:4;y1=sin((1/2)*pi*x)+sin(pi*x);%trainlm函数可以选择替换net=newff(minmax(x),[1,15,1],{'tansig','tansig','purelin'},'trainlm');net.trainparam.epochs=2000;net.trainparam.goal=0.00001;net=train(net,x,y1);y2=sim(net,x);err=y2-y1;res=norm(err);%暂停,按任意键继续Pause%绘图,原图(蓝色光滑线)和仿真效果图(红色+号点线)plot(x,y1);hold onplot(x,y2,'r+');注意:由于各种不确定因素,可能对网络训练有不同程度的影响,产生不同的效果。
如图3-8。
标准BP算法(traingd)图3-8 标准BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)增加动量法(traingdm) 如图3-9。
图3-9 增加动量法的训练过程以及结果(原图蓝色线,仿真图+号线)弹性BP算法(trainrp)如图3-10图3-10 弹性BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)动量及自适应学习速率法(traingdx)如图3-11。
图3-11 动量及自适应学习速率法的训练过程以及结果(原图蓝色线,仿真图+号线)共轭梯度法(traincgf)如图3-12。
图3-12 共轭梯度法的训练过程以及结果(原图蓝色线,仿真图+号线)Levenberg-Marquardt算法(trainlm)如图3-13。
【MATLAB代做】GNN神经网络
![【MATLAB代做】GNN神经网络](https://img.taocdn.com/s3/m/0d7f3464f242336c1eb95e6b.png)
GNN神经网络,整个训练的算法流程我们按如下的步骤进行:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------你所提供的工具箱也是按照这个算法流程写的,只是工具箱貌似应用了其他一些改进,所以非常复杂,具体工具箱的程序,我没有详细去看,这里我按这个算法流程进行设计。
然后,我们的学习算法大致也是按照上面的算法流程来设计的,这个部分之前编写的时候遇到一些问题,所以时间上延迟了一天。
不同节点的仿真时间:从上面的仿真结果可以看到,随着节点数目的增加,仿真耗时近似线性递增。
不同状态维度的仿真时间:从上面的仿真结果可以看到,随着状态维度数目的增加,仿真耗时指数增加。
神经网络训练误差仿真:406080100120140160180200Number of nodesc o m p u t a t i o n t i m e (s )Number of nodesc o m p u t a t i o n t i m e (s )从上面的仿真结果对比可知,当训练次数大于100的时候,系统达到最优训练效果。
不同学习率下的训练效果:从上面得仿真结果可知,当学习率较大的时候,神经网络收敛较快,较小的时候,神经网络收敛较慢。
Jacobian 及训练估计结果010020030040050060010101010-510105Train IterationM e a n E r r o r100200300400500600700800900100010101010-510105Train IterationM e a n E r r o r其他:50100150200250300350400450Train Iteration输出50100150200250300350400450Train IterationJ a c o b i a n上面这个是State x 的仿真结果。
MATLAB中的神经网络算法和实现方法
![MATLAB中的神经网络算法和实现方法](https://img.taocdn.com/s3/m/14b3e20982c4bb4cf7ec4afe04a1b0717fd5b309.png)
MATLAB中的神经网络算法和实现方法简介:神经网络是一种模仿生物神经系统活动的数学模型,广泛应用于机器学习和模式识别领域。
MATLAB作为一种功能强大的科学计算软件,提供了丰富的工具箱和函数,用于神经网络的设计、训练和应用。
本文将介绍MATLAB中的神经网络算法和实现方法。
1. 神经网络的基本原理神经网络由多个神经元组成的网络结构,每个神经元都有多个输入和一个输出。
神经网络的基本原理是通过对输入和权重的加权求和,经过激活函数的处理得到输出。
神经网络的学习过程就是通过调整权重的数值和选择合适的激活函数,使网络能够逼近目标函数。
2. MATLAB中的神经网络工具箱MATLAB提供了神经网络工具箱(Neural Network Toolbox),用于快速实现各种类型的神经网络。
神经网络工具箱包含了各种神经网络算法和函数,可用于网络的创建、训练和应用。
3. 神经网络的创建与配置在MATLAB中创建神经网络可以通过网络构建函数(newff、newcf、newp等)来实现。
可以根据网络的拓扑结构、层数和节点数目来创建神经网络。
配置神经网络可以通过设置网络的参数,如网络输入、目标输出、激活函数、训练算法等。
4. 神经网络的训练神经网络的训练过程是调整网络的权值和偏置,使网络能够对输入进行正确的分类或预测输出。
在MATLAB中,可以使用train函数进行神经网络的训练。
train函数提供了多种训练算法,如梯度下降、Levenberg-Marquardt算法等。
训练过程中,可以设置训练次数、学习率、误差目标等参数。
5. 神经网络的应用神经网络可以用于各种应用领域,如模式识别、数据挖掘、图像处理等。
在MATLAB中,可以使用已经训练好的神经网络对新的输入进行分类或预测。
可以使用sim函数对训练好的网络进行模拟,并根据输出结果进行判断。
6. 神经网络的性能评估与改进在使用神经网络进行建模和预测时,需要对网络的性能进行评估。
神经网络故障的MATLAB仿真毕业设计论文
![神经网络故障的MATLAB仿真毕业设计论文](https://img.taocdn.com/s3/m/f4e853552b160b4e767fcfd5.png)
毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
基于MATLAB的神经网络的仿真
![基于MATLAB的神经网络的仿真](https://img.taocdn.com/s3/m/2c82355765ce0508773213de.png)
智能控制基于MATLAB 的神经网络的仿真学院:姓名:学号:年级:学科:检测技术与自动扮装置日期:一.引言人工神经网络以其具有信息的散布存储、并行处置和自学习能力等长处, 已经在模式识别、信号处置、智能控制及系统建模等领域取得愈来愈普遍的应用。
MATLAB中的神经网络工具箱是以人工神经网络理论为基础, 利用MATLAB 语言构造出许多典型神经网络的传递函数、网络权值修正规则和网络训练方式,网络的设计者可按照自己的需要挪用工具箱中有关神经网络的设计与训练的程序, 免去了繁琐的编程进程。
二.神经网络工具箱函数最新版的MATLAB 神经网络工具箱为它几乎涵盖了所有的神经网络的大体常常利用类型,对各类网络模型又提供了各类学习算法,咱们能够按照自己的需要挪用工具箱中的有关设计与训练函数,很方便地进行神经网络的设计和仿真。
目前神经网络工具箱提供的神经网络模型主要用于:1.数逼近和模型拟合;2.信息处置和预测;3.神经网络控制;4.故障诊断。
神经网络工具箱提供了丰硕的工具函数,其中有针对某一种网络的,也有通用的,下面列表中给出了一些比较重要的工具箱函数。
三.仿真实例BP 网络是一种多层前馈神经网络,由输入层、隐层和输出层组成。
BP 网络模型结构见图1。
网络同层节点没有任何连接,隐层节点能够由一个或多个。
网络的学习进程由正向和反向传播两部份组成。
在正向传播中,输入信号从输入层节点经隐层节点逐层传向输出层节点。
每一层神经元的状态只影响到下一层神经元网络,如输出层不能取得期望的输出,那么转入误差反向传播进程,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,逐次地向输入层传播去进行计算,在经正向传播进程,这两个进程反复运用,使得误差信号最小或达到人们所期望的要求时,学习进程结束。
利用神经网络工具箱进行设计和仿真的具体步骤:1.肯定信息表达方式:将实际问题抽象成神经网络求解所能同意的数据形式;2.肯定网络模型:选择网络的类型、结构等;3.选择网络参数:如神经元数,隐含层数等;4.肯定训练模式:选择训练算法,肯定训练步数,指定训练目标误差等;5.网络测试:选择适合的训练样本进行网络测试。
RBF神经网络:原理详解和MATLAB实现
![RBF神经网络:原理详解和MATLAB实现](https://img.taocdn.com/s3/m/32b10420be23482fb4da4ce1.png)
RBF神经网络:原理详解和MATLAB实现——2020年2月2日目录RBF神经网络:原理详解和MATLAB实现 (1)一、径向基函数RBF (2)定义(Radial basis function——一种距离) (2)如何理解径向基函数与神经网络? (2)应用 (3)二、RBF神经网络的基本思想(从函数到函数的映射) (3)三、RBF神经网络模型 (3)(一)RBF神经网络神经元结构 (3)(二)高斯核函数 (6)四、基于高斯核的RBF神经网络拓扑结构 (7)五、RBF网络的学习算法 (9)(一)算法需要求解的参数 (9)0.确定输入向量 (9)1.径向基函数的中心(隐含层中心点) (9)2.方差(sigma) (10)3.初始化隐含层至输出层的连接权值 (10)4.初始化宽度向量 (12)(二)计算隐含层第j 个神经元的输出值zj (12)(三)计算输出层神经元的输出 (13)(四)权重参数的迭代计算 (13)六、RBF神经网络算法的MATLAB实现 (14)七、RBF神经网络学习算法的范例 (15)(一)简例 (15)(二)预测汽油辛烷值 (15)八、参考资料 (19)一、径向基函数RBF定义(Radial basis function——一种距离)径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意一点c的距离,c点称为中心点,也就是Φ(x,c)=Φ(‖x-c‖)。
任意一个满足Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数。
标准的一般使用欧氏距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。
在神经网络结构中,可以作为全连接层和ReLU层的主要函数。
如何理解径向基函数与神经网络?一些径向函数代表性的用到近似给定的函数,这种近似可以被解释成一个简单的神经网络。
径向基函数在支持向量机中也被用做核函数。
常见的径向基函数有:高斯函数,二次函数,逆二次函数等。
神经网络PPT课件-基于MATLAB算法(BP.遗传算法.RBF.小波)
![神经网络PPT课件-基于MATLAB算法(BP.遗传算法.RBF.小波)](https://img.taocdn.com/s3/m/f592d61ca6c30c2259019eae.png)
正因为人工神经网络是对生物神经网络的模仿,它具有一些传统 逻辑运算不具有的优点。主要包括: 一、非线性。非线性是自然界的普遍特性。人脑的思考过程就是 非线性的。人工神经网络通过模仿人脑神经元结构的信息传递过 程,可以进行线性或者非线性的运算,这是人工神经网络的最特 出的特性。
二、自适应性。神经网络的结构中设置了权值和阈值参数。网络 能够随着输入输出端的环境变化,自动调节神经节点上的权值和 阈值。因此,神经网络对在一定范围变化的环境有பைடு நூலகம்强的适应能 力。适用于完成信号处理、模式识别、自动控制等任务。系统运 行起来也相当稳定。
③引入陡度因子
误差曲面上存在着平坦区域。权值调整进入平坦区的原因是神经元输出进入了转 移函数的饱和区。如果在调整进入平坦区域后,设法压缩神经元的净输入,使其 输出退出转移函数的饱和区,就可以改变误差函数的形状,从而使调整脱离平坦 区。实现这一思路的具体作法是在原转移函数中引入一个陡度因子。
BP神经网络的MATLAB算法
BP神经网络模型
• BP (Back Propagation)神经网络,即误差反向传播算法的学习过 程,由信息的正向传播和误差的反向传播两个过程组成。输入 层各神经元负责接收来自外界的输入信息,并传递给中间层各 神经元;中间层是内部信息处理层,负责信息变换,根据信息 变化能力的需求,中间层可以设计为单隐含层或者多隐含层结 构;最后一个隐含层传递到输出层各神经元的信息,经进一步 处理后,完成一次学习的正向传播处理过程,由输出层向外界 输出信息处理结果。
l n 1 l
m n a
l log 2 n
步骤2:隐含层输出计算 根据输入变量 X,输入层和隐含层间连接权值 ij 以及隐含层阈值 a, 计算隐含层输出H。
第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子
![第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子](https://img.taocdn.com/s3/m/0366e621453610661ed9f451.png)
BP网络应用实例
x=imread(m,’bmp’); bw=im2bw(x,0.5); 为二值图像 [i,j]=find(bw==0); )的行号和列号 imin=min(i); )的最小行号 imax=max(i); )的最大行号 %读人训练样本图像丈件 %将读人的训练样本图像转换 %寻找二值图像中像素值为0(黑
4
BP网络学习算法
图5.5具有多个极小点的误差曲面
5
BP网络学习算法
另外一种情况是学习过程发生振荡,如图5.6所示 。 误差曲线在m点和n点的梯度大小相同,但方向相反 ,如果第k次学习使误差落在m点,而第k十1次学习 又恰好使误差落在n点。 那么按式(5.2)进行的权值和阈值调整,将在m 点和n点重复进行,从而形成振荡。
图 5.16
待分类模式
20
BP网络应用实例
解(1)问题分析 据图5.16所示两类模式可以看出,分类为简单的非 线性分类。有1个输入向量,包含2个输入元素;两 类模式,1个输出元素即可表示;可以以图5.17所 示两层BP网络来实现分类。
图 5.17
两层BP网络
21
BP网络应用实例
(2)构造训练样本集
6
BP网络学习算法
图5.6学习过程出现振荡的情况
7
BP网络的基本设计方法
BP网络的设计主要包括输人层、隐层、输出层及各 层之间的传输函数几个方面。 1.网络层数 大多数通用的神经网络都预先确定了网络的层数,而 BP网络可以包含不同的隐层。
8
BP网络的基本设计方法
但理论上已经证明,在不限制隐层节点数的情况下 ,两层(只有一个隐层)的BP网络可以实现任意非 线性映射。 在模式样本相对较少的情况下,较少的隐层节点, 可以实现模式样本空间的超平面划分,此时,选择 两层BP网络就可以了;当模式样本数很多时,减小 网络规模,增加一个隐层是必要的,但BP网络隐层 数一般不超过两层。
“人工神经网络”教学中的Matlab仿真工程实践
![“人工神经网络”教学中的Matlab仿真工程实践](https://img.taocdn.com/s3/m/bb671585a0116c175f0e48c0.png)
The Ap ia i n o o lBa e n BP ur lNe wo k i plc to fM da s d o Ne a t r n ANN a h ng Te c i
图 2B P神经 网络结构 图
利用人 工 神 经 网络 建 立 海 产 食 品 的风 险 分 析 模 型有很 大 的优 越 性 , 先 , 种 方法 是 开 放 的 , 首 这 输 入输 出 的调整 比较灵 活 , 比较 适 合 目前 海 产 食 品种 类 繁多 的行 业 现状 。神 经 网络 模 型 的调 整 具 有 很 大 的灵活 性 。模 型 的 建立 依 赖 于 训 练 的样 本 , 本 样
s o h rh tcu e a d sr cu e, rt nd k yt c oo y i eal h ws t e ac i tr n tu t r me isa e e hn l g n d t i。Fia l e n ly,t e p p rt sst lo ih o h h a e e t hea g rt m ft e s se t r u h s me a t a aa,a d t e r s lss o t a hi d li t ih a c r c n i d e s l to y tm h o g o c u ld t n h e u t h w h tt smo a swih h g c u a y a d fn sa n w ou in b t e he c a s a d a p i ain. ewe n t l s n p lc to Ke wo ds:BP e r lnewo k;rs n l ss;Mal b;n n l e r y r n u a t r i k a a y i ta o —i a n
如何使用Matlab进行神经网络算法实现
![如何使用Matlab进行神经网络算法实现](https://img.taocdn.com/s3/m/e64917e877a20029bd64783e0912a21615797f53.png)
如何使用Matlab进行神经网络算法实现神经网络是一种模拟人类大脑思维和学习方式的计算机算法。
它通过一系列互联的节点(也称为神经元)来模拟大脑中的神经元之间的连接和信息传递。
Matlab 作为一种功能强大的数学软件,也提供了丰富的工具和函数来实现神经网络算法。
本文将介绍如何使用Matlab来实现神经网络算法。
第一部分: 神经网络基础在开始介绍如何使用Matlab实现神经网络算法之前,我们先来了解一些基础知识。
神经网络由输入层、隐藏层和输出层组成。
输入层接收输入数据,隐藏层进行中间计算,输出层产生最终结果。
每个节点与其他节点之间存在连接,连接上有权重,通过调整权重实现学习和优化。
第二部分: Matlab中的神经网络工具箱Matlab提供了专门的神经网络工具箱,可以方便地实现各种神经网络算法。
通过安装并加载这个工具箱,我们可以使用其中的函数和工具来构建和训练神经网络模型。
第三部分: 构建神经网络模型在Matlab中,我们可以使用nprtool函数来进行神经网络模型的构建。
该函数提供了一个图形化界面,可以方便地添加输入层、隐藏层和输出层,并设置相应的参数。
第四部分: 训练神经网络模型构建好神经网络模型后,我们需要训练模型,以使其能够准确地预测和分类数据。
在Matlab中,可以使用train函数来进行神经网络模型的训练。
该函数可以选择不同的训练算法和训练参数,以获得最佳的模型性能。
第五部分: 评估和优化神经网络模型在训练完神经网络模型后,我们需要对其进行评估和优化,以提高其性能和泛化能力。
Matlab提供了多种评估指标和优化方法,例如误差曲线、准确率、召回率等。
第六部分: 应用案例在本部分,我们将通过一个简单的应用案例来演示如何使用Matlab进行神经网络算法实现。
假设我们有一组房屋价格的数据,我们希望通过神经网络来预测新房屋的价格。
我们可以使用Matlab中的数据集导入工具箱来导入数据,然后使用nprtool函数构建和训练神经网络模型,最后使用该模型对新房屋的价格进行预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东南大学自动化学院智能控制概论神经网络学习算法研究学院:姓名:学号:日期:目录1 任务要求叙述 ........................................................ 错误!未定义书签。
2 系统分析及设计原理 ............................................ 错误!未定义书签。
3 设计实现................................................................. 错误!未定义书签。
4仿真验证.. (6)5 讨论与分析............................................................. 错误!未定义书签。
一.任务要求叙述(1)任务(a) 运行算法,观察和分析现有学习算法的性能;clear all;close all;nu=20;pi=3.1415926;for i=1:nup(i)=2*pi*i/nu;t(i)=0.5*(1+cos(p(i)));endminmax=[min(p(:)) max(p(:))]net = newff([ 0 7],[6 1],{'logsig' 'purelin'},'traingd');% traingd traingdm trainlmnet.trainParam.epochs = 10000;net.trainParam.goal = 0.0001;net.trainParam.show=200;net.trainParam.lr=0.1;net.trainParam.mc=0.6; %0.9 default value; available for momentumnet = train(net,p,t);y1 = sim(net,p);figure(2);plot(p,t,'*-',p,y1,'r--')%************** test data ******************nu2=nu*3/2;for i=1:(nu2)p2(i)=2*pi*i/(nu2);t2(i)=0.5*(1+cos(p2(i)));endy2 = sim(net,p2);figure(3);plot(t2,'*-');hold on; plot(y2,'r');xlabel('times');ylabel('outputs');figure(4);plot(t2-y2);xlabel('times');ylabel('error');(b) 为了进一步提高学习逼近效果,可以采取那些措施,调节规律如何?根据所提的每种措施,修改算法程序,给出仿真效果验证、过程以及相应的曲线图,给出适当的评述;(c) 联系、结合前向神经网络的算法样本学习、测试等过程,谈谈本人对神经网络系统的一些认识和看法。
(2)要求提交完整的报告,包括:封面(题目、个人学号姓名等信息)、目录、任务要求叙述、系统分析及设计原理(包括神经网络学习过程的原理图及文字分析)、完整的设计实现过程(包括神经网络结构、参数等选择与实现、计算、原理过程等)、仿真验证(算法流程图、实现手段介绍、系统参数选择、曲线图、结合调参对响应曲线的影响给出必要的分析)、讨论与分析,总字数要求在2000以上。
二.系统分析及设计原理(1)神经网络的学习算法学习过程实质上是针对一组给定的输入),2,1(N p x p =使网络产生相应的期望输出的过程。
总的来说,神经网络的学习算法分为两大类: 有导师学习和无导师学习。
图 1:有导师指导神经网络学习方式 图 2无导师指导神经网络学习方式由上图可见,所谓有导师学习就是在训练过程中,始终存在一个期望的网络输出。
期望输出和实际输出之间的距离作为误差度量并用于调整权值。
而无导师学习指的是网络不存在一个期望的输出,因而没有直接的误差信息,因此,为实现对网络的训练,徐建立一个简洁的评价函数,以对网络的某种行为取向做出评价。
(2)多层传播网络的学习算法给定N 组样本);,;,;,(2211p p T X T X T X 。
这里i X 为i n 维输入矢量,i T 为o n 维期望的输出矢量,P i 2,1=,.假设矢量y 和o 分别表示网络的输出层和隐含层的输出矢量。
则训练过程为:(1) 选0>η,m ax E 作为最大容许误差,并将权系数,,2,1,,L l W ll=θ初始化成某一小的随机权矩阵。
0,1←←E p(2) 训练开始p p p T T X O ←←,)1(按照12,1,0),(1111)1(-=+Γ=∑=++++L r o w Orn i r j r pl r jl r r pjθ计算出各隐含层神经元的尽力输出,按照o n i L j L pi L ji L L pjL pj n L o wNet y L 2,1),()(111=+Γ=Γ=∑-=-θ计算出各输出层神经元的激励输出。
(3) 计算误差[]o k k n k E y t E 2,1,2/)(2=+-← (4) 按公式)()(Lpj L pj pj Lpjpjpj p LpjpLpj Net y t Net y y E Net E Γ'-=∂∂∂∂-=∂∂-=δ))()(())()((1111∑∑Γ'=Γ'∂∂∂∂-=∂∂∂∂-=∂∂-=++++krpj r r kj r pk kr pj r rpjr pkr pkp r pjr pj rpjp rpjp rpj Net w o Net oNet NetE Neto oE NetE δ计算出rpjL pj δδ, (5) 调整权阵系数1,-=∆r pj r pj r ji o w ηδ rpj r j ηδθ=∆(6) 若P p <,1+←p p ,跳转到(2),否则跳转到(7) (7) 若max E E <,结束,否则0,1←←E p ,跳转到(2)。
三.设计实现(1)神经网络的结构(BP 算法的神经网络结构)下图是一个多层传播结构。
即在输入层和输出层之间嵌入一层或多层隐含层的网络结构。
隐含层单元既可以与叔叔出单元相连也可以与其他隐含层单元相连。
隐含层单元与输入单元之间通过突触权系数1ij w 连接,并可用矩阵1w 表示全部关系。
隐含层单元与输出单元之间通过突触权系数21ij w 连接,全部关系可用矩阵2w 表示。
图 3:神经网络结构图(2)Maltab神经网络工具箱1函数介绍①newc()创建级联前向网络②②newff()创建前向BP网络③③newffd()创建存在输入延迟的前向网络在此次实验中,采用第二个函数即创建的是前向BP网络。
前向网络中各神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示,这种神经网络称为前向网络。
前向网络中节点分为两类,输入节点和计算节点。
每个输入节点可以有任意个输入,但只有一个输出。
而输出可以耦合到任意多个其他节点的输入。
前向网络通常可以分为不同的层,第i层的输入仅与第i-1层的输出连接。
一般认为输入节点为第一层,具有一层计算节点的网络实际上是一个两层网络。
由于输入节点和输出节点可以和外界连接,直接接受环境的影响,所以称为可见层。
而其他中间层则称为隐层。
2Newff()函数参数介绍newff函数的格式为:net=newff(PR,[S1 S2 ...SN],{TF1 TF2...TFN},BTF,BLF,PF),函数newff建立一个可训练的前馈网络。
输入参数说明:PR:Rx2的矩阵以定义R个输入向量的最小值和最大值;Si:第i层神经元个数;TFi:第i层的传递函数,默认函数为tansig函数;BTF:训练函数,默认函数为trainlm函数;BLF:权值/阀值学习函数,默认函数为learngdm函数;PF:性能函数,默认函数为mse函数。
3程序中参数含义(1)Newff()函数中的参数a)传递函数有三种tansig(n)=2/(1+exp(-2*n))-1logsig(n)=1/(1+exp(-n))purelin(n)=nb)训练函数有12种trainbrBayes 规范化BP训练函数trainc 循环顺序渐增训练函数traincgb Powell-Beale连接梯度BP训练函数traincgf Fletcher-Powell连接梯度BP训练函数traincgp Polak-Ribiere连接梯度BP训练函数traingda 自适应lrBP的梯度递减训练函数traingdx 动量及自适应lrBP的梯度递减训练函数trainlm Levenberg-Marquardt BP训练函数trainoss 一步正切BP训练函数trainr 随机顺序递增更新训练函数trainrp 带反弹的BP训练函数trains 顺序递增BP训练函数trainscg 量化连接梯度BP训练函数(2)其他参数net.trainParam.epochs=10000; 允许最大训练步数10000net.trainParam.goal=0.001; 训练目标最小误差0.001net.trainParam.show=200; 每间隔200步显示一次训练结果net.trainParam.lr=0.1; 学习步长0.1net.trainParam.mc=0.6; 动量因子四.仿真验证(1)参数调节方法首先改变传递函数,保持其他参数不变的条件下,将传递函数换成其余两个传递函数,观察运行结果,比较选出最符合要求的传递函数;然后使用最符合要求的传递函数,改变训练函数,同样选出最符合要求的训练函数;最后使用最符合要求的传递函数和训练函数,改变精度、步长、动量因子,比较分析,总结变化规律。
(2)调节运行结果1初始运行结果图4:初始结果minmax =0.3142 6.2832TRAINGD, Maximum epoch reached, performance goal was not met.在初始算法中,采用的是net = newff([ 0 7],[6 1],{'logsig' 'purelin'},'traingd'); 由上图发现即使最大步长为10000 Epochs,最后也没有收敛到我们所需要的精度。
这是因为traingd为单纯的梯度下降训练函数。