奥数中的数图形个数

合集下载

四年级奥数第二讲图形的计数问题含答案

四年级奥数第二讲图形的计数问题含答案

四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。

练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。

四年级奥数思维训练专题-数数图形

四年级奥数思维训练专题-数数图形

四年级奥数思维训练专题-数数图形专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点:1,弄清被数图形的特征和变化规律.2,要按一定的顺序数,做到不重复,不遗漏.例1:数一数下图中共有多少个三角形.分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个.所以图中共有6×2=12个三角形.试一试1:数一数下面各图中各有多少个三角形.()个三角形()个三角形例2:数一数下图中有多少个长方形.·分析:数长方形与数线段的方法类似.可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形.试一试2:数一数下面各图中分别有多少个长方形.()个长方形数数图形(二)专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来.例1:数一数下图中有多少个长方形?分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形.即:长边线段数×宽边线段数=长方形的个数试一试1:数一数,下图中有( )个长方形.例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)分析:图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个.所以图中的正方形总数为:1+4+9=14个.经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.试一试2:数一数下图中有()个正方形.(每个小方格为边长是1的小正方形)例3:数一数右图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)分析:边长是1个长度单位的正方形有6×4=24个;边长是2个长度单位的正方形有(6-1)×(4-1)=15个;边长是3个长度单位的正方形有(6-2)×(4-2)=8个;边长是4个长度单位的正方形有(6-3)×(4-3)=3个;共有:24+15+8+3=50个.如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m -2)(n-2)+…+(m-n+1)·1试一试3:数一数下图中有( )个正方形.。

三年级奥数数三角形的个数

三年级奥数数三角形的个数

三年级奥数数三角形的个数
在三年级奥数中,数三角形的个数一般是通过数学方法进行分析和计算的,而不是直接统计。

下面是一种常见的数三角形的方法:
1. 给定一个三角形,可以用顶点或边长来表示。

假设三角形的三个顶点分别为A、B、C。

2. 遍历三年级数学教材中相关知识点,并找到关于三角形的特征、性质和分类等概念,例如等边三角形、等腰三角形、直角三角形等。

3. 根据不同分类的三角形特征,进行计算。

例如,如果要计算所有的等边三角形个数,可以遍历所有的三个顶点,以其中任意两个不同顶点作为等边三角形的两个顶点,然后找到剩下的一个顶点,从而确定一个等边三角形。

4. 统计不同分类的三角形个数,最终得到所有三角形的总个数。

需要注意的是,3年级奥数通常不会涉及过于复杂的三角形计算,而是从简单的几何图形开始,让学生对几何图形的特征有一个初步的了解和认识。

3年级奥数-数数图形(教师版)

3年级奥数-数数图形(教师版)

数数图形教学目标认识了解线段、角、三角形、长方形等基本图形;学会数基本图形的个数;掌握数图形的规律。

知识梳理一、学会数图形同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。

要正确数出图形的个数,关键是要从基本图形入手。

首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。

当我们识了线段、角、三角形、长方形等基本图形后,这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

二、解题策略要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。

2.要按一定的顺序数,做到不重复,不遗漏。

典例分析考点一:基本图形例1、数出下图中有多少条线段?【解析】方法一:我们可以采用以线段左端点分类数的方法。

以A点为左端点的线段有:AB、AC、AD3条;以B点为左端点的线段有:BC、BD2条;以C点为左端点的线段有:CD1条。

所以,图中共有线段3+2+1=6(条)。

方法二:把图中线段AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD3条;由2条基本线段构成的线段有:AC、BD2条;由3条基本线段构成的线段有:AD1条。

所以,图中一共有3+2+1=6(条)线段。

例2、数出图中有几个角?【解析】数角的个数可以采用与数线段相同的方法来数。

方法一:以OA为一边的角有:∠AOB、∠AOC、∠AOD3个;以OB为一边的角还有:∠BOC、∠BOD2个;以OC为一边的角还有:∠COD1个。

所以,图中共有角3+2+1=6(个)。

方法二:把图中∠AOB、∠BOC、∠COD看做基本角来数,那么,由1个基本角构成的角有:∠AOB、∠BOC、∠COD3个;由2个基本角构成的角有:∠AOC、∠BOD2个;由3个基本角构成的角有:∠AOD1个。

三年级奥数《数数图形》

三年级奥数《数数图形》

第二讲:数【2 】数图形
常识要点:同窗们,在数图形时,必定要按次序细心数,假如给图形编个号,如许数起来就更便利,不会反复,也不会漏掉.
例【1】下图中有若干条线段?
A B C D E
教室反馈【1】下图中有若干条线段?
例【2】下面图形中有几个角?
O D
C
B
A
教室反馈【2】下面图形中有几个角?例【3】下图中共有若干个三角形?
A B C D E F
A
B C D E
教室反馈【3】数一数图中共有若干个三角形?
例【4】如下图,数一数各图中包含的长方形个数?
教室反馈【4】如下图,数一数各图中包含的长方形个数?例【5】下图中有若干个正方形?
教室反馈【5】下图中有若干个正方形?
课后功课
1.数一数下图中共有若干条线段?
2.数出下图中锐角的个数?
3.数一数下图中共有若干个三角形?
4.数一数下图中一共有若干个长方形?
5.数一数下图中一共有若干个正方形?。

小学奥数-数数图形

小学奥数-数数图形
数数图形(一)
例题:下面图形中有多少正方形?
难度: 适用范围:小学三年级及以上
题目解析:
采用分类数的方法,仔细数,不要遗漏。
题目
类数的方法,
首先确定正方形的类型,一共上面3种,分别数这3种 正方形的个数,按照一定的顺序数,仔细数☺。
3 × 6 = 18 (个) 5 × 2 = 10 (个)
4 × 1 = 4 (个) 合计:18 + 10 + 4 = 32(个)
题目解析:
难度: 适用范围:小学三年级及以上
A
E
F
G
B
J
M
I
D
C
题目
像 AFG一样的三角形有5个。 像 ABF一样的三角形有10个。 像 ABG一样的三角形有5个。 像 ABE一样的三角形有5个。 像 ACD一样的三角形有5个。
图中共有: 5+10+5+5+5+5=35(个) 三角形。
像 A MD一样的三角形有5个。
数数图形(五)
例题:数一数图中共有多少个三角形?
题目解析: 最小的小三角形有16个。
难度: 适用范围:小学三年级及以上
两个小三角形拼接成的三角形有10个。 图中共有
16 +10 + 8+ 2 =36(个)
题目
四个小三角形拼接成的三角形有8个。 三角形。
八个小三角形拼接成的三角形有2个。
数数图形(四)
数数图形(二)
例题:下面图形中有多少个三角形?
题目解析:
继续采用分类数的方法
小三角形共5个。
难度: 适用范围:小学三年级及以上
两个小三角形组成的三角形共6个。
题目

奥数-数图形个数

奥数-数图形个数
所以,图中一共有3+2+1=6(条)线段
练习1:
“(1)数出下图中有多少条线段?
AB
CD E
(2)数出下图中有几个长方形?

A
【例题2】数出图中有几个角?
B
O
C
D
方法一:以OA为一边的角有:∠AOB、∠AOC、 ∠AOD 3个;以OB为一边的角还有: ∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1 个。所以,图中共有角3+2+1=6(个)。
图形个数
一、知识要点
• 同学们,你想学会数图形的方法吗?要想不重复也不遗漏
“地 数 出 线 段 、 角 、 三 角 形 、 长 方 形 … … 那 就 必 须 要 有 次 序 、 有条理地数,从中发现规律,以便得到正确的结果。
” • 要正确数出图形的个数,关键是要从基本图形入手。首先 要弄清图形中包含的基本图形是什么,有多少个,然后再 数出由基本图形组成的新的图形,并求出它们的和。
方法三:我们发现,要数出图中三角形的个 数,只需数出线段 AD中包含几条线段就可以了,即 3+2+1=6(个)。所以图中共有6个三角形。
练习3:
·
数出图中共有多少个三角形?
(1)
A
(2)
B CD E F
A K
GH I G B CD E F
A
B
【例题4】数出右图中有多少个长方形? C
D
【思路导航】数图中有多少个长方形和数三角形的方法
方法二:把图中三角形 △PAB、△PBC、 △PCD看做基本三角形来数,那么,由1个基本三角形构 成的三角形有:△PAB、△PBC、△PCD 3个;由2个基 本三角形构成的三角形有: △PAC、△PBD 2个;由3个 基本三角形构成的三角形有:△PAD 1个。

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

【例题1】数一数下图中有多少个锐角。
【思路导航】 数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点, 因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得: 1+2+3+4=10(个).
【例题2】 数一数下图中有多少个长方形?
【思路导航】 图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边பைடு நூலகம்的
第12讲 数数图形
小学奥数 四年级
同学们对于图形肯定不陌生,但数学中经常会出现这样的题目: (1)下图中共有几条线段? (2)下图中共有几个长方形?
要正确解答这类问题,就要做到数图形时不重复、不遗漏。这就需要 我们按照一定的顺序去数,并找出它的规律,巧妙地数出图形的个数。数 图形的方法一般有两种:按顺序数和分类数。今天就让我们用数学的方法 巧妙地数图形吧!
实践与应用
【练习5】 P94 数一数,下图中共有多少个长方形?
同学们,图形世界是不是非赏精彩呢?数学的魅力就在于千变万化的图形和数字。通过 这一进,我们对图形有了更深的认识,遇到数图形的问题也能有序、严密地思索,关于数 图形,我们来总结一些最基本的方法吧。
(1)数线段。假设端点有n个(n是整数),那么线段的总条数就是从比n小1的数开始, 一直加到1。
每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有 6×3=18个长方形。 数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数
【例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个 长度单位的正方形)
【思路导航】 边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有 2×1=2个。所以,图中正方形的总数为:6+2=8个。 经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份, 宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为: mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.

四年级奥数.计数综合.几何计数

四年级奥数.计数综合.几何计数

几何计数知识结构一、公式计算法几何计数内容很广,包括数线段的条数,角的个数,长方形、正方形、三角形、平行四边形、梯形等图形的个数,也包括数立体图形的个数。

图形的计数一般有两种思考方法:公式计算法和分类计数法。

三年级学习的线段、长方形和正方形的计数就属于公式计算法。

(1)一条线段有两个端点,若这条线段上有n个点,那么线段总数是(n-1)+(n+2)+…+3+2+1(2)如果一个长方形的长边上有n个小格,宽边上有m个小格,那么长方形的总数是(1+2+3+…+n)×(1+2+…+m)(3)如果把正方形各边都n等分,那么正方形的总数是n2+(n-1)2+(n-2)2+…+32+22+12上面计算线数的方法也可用于计算角的个数,而且,根据这些计数方法在以后还可以类推出立体图形的计算方法。

二、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.重难点(1)分类数图形。

(2)对应法数图形。

例题精讲一、分类数图形【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小棍?【巩固】如图所示,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?【例 2】图中有______个正方形.【巩固】数一数:图中共有________ 个正方形。

【例 3】 右图中三角形共有 个.【巩固】 数一数图中有_______个三角形.【例 4】 图中共有多少个三角形?CB A【巩固】 下图是由边长为1的小三角形拼成,其中边长为4的三角形有_____个。

【例 5】 如图,每个小正方形的面积都是l 平方厘米。

则在此图中最多可以画出__________个面积是4平方厘米的格点正方形(顶点都在图中交叉点上的正方形)。

奥数-小二教案-16-数图形

奥数-小二教案-16-数图形

第2讲我会数图形一年级我们已经认识了各种图形,并会数简单的图形.在这个基础上,本节课我们就将进一步深入的学习图形计数的方法.从简单的数线段的方法入手,拓展到数角、三角形、长方形、正方形等.通过数图形的练习,来让学生总结方法,找到计数的技巧.培养学生有序的思考问题的能力.知识点:1.掌握数规则的图形的个数的方法.(如线段、三角形、长方形等)1.教学点将给老师提供本节课的挂图.2.老师把每个图形制成图片.第2讲【教学思路】课前复习通过数简单的图形,使学生养成做记号的好习惯,为后面的学习奠定基础.⑴ 三角形有6个,正方形有3个,长方形有4个,椭圆形有8个.⑵ 正方形有4个,长方形有6个,三角形有3个,平行四边形有4个,圆形有5个.⑴下面的图各画了几个三角形、正方形、长方形和椭圆形?( )个三角形 ( )个正方形 ( )个长方形 ( )个椭圆形⑵ 这所漂亮的房子是用哪些图形拼成的呢?数一数.同学们,我们已经会数简单的图形,今天这节课我们将继续来学习数图形的方法.在数图形的时候,同学们要认真仔细,必须要做到按顺序、有条理、不遗漏、不重复得来数.这样我们在数图形的时候,才能数得又快又准.数一数,下图中有多少条线段?【教学思路】在一年级的时候,我们已经学过了数线段的基本方法,今天继续学习老师要引导学生把这种数图形,有方法, 要认真,别慌张.OEDC B AOE C( )条线段 ( )个角 ( )个三角形这些图形你会数吗?在数这些图形的时候,方法有什么相同和不同?方法进行推广和拓展.数线段有两种方法,具体分析如下:方法一:已知在两点间的直线部分就是一条线段,这两个点就叫做线段的端点,我们分别以不同端点为出发点按顺序数.⑴以A点为左端点的线段有:AB、AC、AD,共3条.⑵以B点为左端点的线段有:BC、BD,共2条.⑶以C点为左端点的线段有:CD,共1条.总共有:3216++= (条).方法二:如果把相邻两点间的线段叫做基本线段,即此图中AB、BC、CD是基本线段,我们也可从基本线段开始数.⑴由1条基本线段组成的线段有:AB、BC、CD共3条.⑵由2条基本线段组成的线段有:AC、BD共2条.⑶由3条基本线段组成的线段有:AD共1条.总共有:3216++= (条).总结方法:在数线段中,我们一定要抓住端点个数减1就是基本线段的条数来计算,而若有n个端点,线段总数则有12321()()条.-+-++++n n1.数一数,下面图形中有多少条线段?【教学思路】数一数一共有6个端点,那么基本线段就有615++++-=条,这个图中一共就有:54321 =(条)线段.152.在一条直线上画9个端点,可以数出(36)条线段.【教学思路】一共有9个端点,那么基本线段就有918-=(条),这个图中一共就有:8765432++++++ +=(条),可以数出36条线段.136数一数,图中共有多少个锐角?【教学思路】从图上可以看出,任意两条从O 点发出的射线都能组成一个角,先数以OA 为公共边的锐角有:∠AOB 、∠AOC 、∠AOD 、∠AOE ,共4个;以OB 为公共边的锐角有:∠BOC 、∠BOD 、∠BOE ,共3个: 以OC 为公共边的锐角有:∠COD 、∠COE ,共2个: 以OD 为公共边的锐角有:∠DOE ,共1个. 所以,锐角总数: 432110+++=(个).角的总数与射线的条数之间的关系:基本角(我们将相邻两条射线构成的角叫基本角)总比射线的条数少1,而角的总数应等于从1开始的一串连续自然数之和,其中最大的自然数等于基本角的个数.如果有1n +条射线,则有n 个基本角,而角的总数应等于12n n -+-+()() 321+++.数角方法也可推广到数三角形.数一数,图中有多少个三角形?【教学思路】数线段的方法也可以推广到数三角形,在这个图中一共有4个基本三角形,那么一共有432110+++=(个)三角形.数一数下图中有多少个长方形?OED C B AOEC【教学思路】注意到图中AD 上的每一条线段与宽都可以构成一个长方形.因此,AD 上有多少条线段就有多少个长方形,AD 上有线段:432110+++= (条),这10条线段都可以和宽AB 组成一个长方形,所以一共有10个长方形.数一数下图中有多少个长方形?【教学思路】上面第一层以AB 为宽的有10个长方形,下面第二层以BE 为宽的也就有10个长方形.另外把第一层和第二层合在一起以AE 为宽的长方形还有10个,一层有10个,共3层,这样一共就有10330⨯=(个)长方形.总结方法:数长方形时,分层数最简单,我们可以先数出一层有多少个,再数出有几层,长方形的个数就是:每层的个数×层数DCB AF E DCB A【教学思路】牧童指给秀才的是左边那条路.“句”字左边添一竖,念“向”,牧童的意思是向左边走.这些图形你会数吗?我们发现,在数图形时,如果图形比较复杂,就应观察能否将图形按某一位秀才赴京赶考.一日,他走到一处三岔路口,感到左右为难.正在这时,有一牧童路过此地,秀才忙上前向他问路.那牧童一句话也没说,只是低头用树枝在地上划了一个“句”字,起身便要离开.秀才以为牧童没有听清楚,不料牧童却指着地上的字说:“我不是已经告诉你了吗!”说完,扬长而去.秀才听了牧童的话,先是一愣,再看一眼牧童写下的这个字,高兴地上路了.你知道牧童指给秀才的是哪一条路吗?数一数,下图中共有多少个三角形?【教学思路】这个图形比较复杂我们可以分类来数,这样不会重复也不会遗漏.具体分析如下:⑴ 左边三角形ABD 中有3216++=(个)三角形; ⑵ 右边三角形ADC 中有3216++=(个)三角形; ⑶ 左右合起来三角形ABC 中有3个三角形; 一共有:66315++=(个)三角形.数一数,图中共有多少个三角形?【教学思路】这道题有两种分类的方法,分析如下:方法一:先看部分,再看整体.观察此图,发现三角形BCO 和三角形ACO 是相同类型的,所以我们仍可分为两类来研究.先看三角形BOC 中有213+=(个)三角形,所以CAO 中仍有3个三角形.最后看由三角形BCO 和三角形CAO 共同组成的三角形,有三角形ADB 和三角形AOB 共2个.所以此图三角形共有:3328++=(个). F EDCBAODCBA方法二:根据三角形包含基本三角形的个数来分类数.先数基本三角形有4个;再数包含两个基本三角形的三角形有3个,分别是三角形BOC、三角形AOC和三角形BDA;最后数包含四个基本三角形的三角形有1个,是三角形AOB.所以此图三角形共有:4318++=(个)如下图,数数有()个三角形.【教学思路】根据三角形包含基本三角形的个数来分类数,方法如下:分类数第一类(含1个基本三角形,最小的):1359++=(个);第二类(含4个基本三角形,次大的):3个;第三类(含9个基本三角形,最大的):1个.一共有93113++=(个)三角形.数一数,下图中共有多少个正方形?【教学思路】仔细观察,这个图形一共有三层.我们可以分层数,具体分析如下:最里面一层有5个正方形.中间一层有5个正方形.外面一层有5个正方形.合起来一共有55515++=(个)正方形.【教学思路】如果时间有限,拓展与提高可留为课后思考题.具体分析如下:⑴ 一共有30条线段.这个大五角星中有5条长线段,每条长线段上共可以数出:3216++=(条)线段,那么五角星中共有6530⨯=(条)线段.⑵ 一共有8个三角形.五角星的每个角上分别有1个小三角形,总共有5个;另外还有5个类似图中阴影的较大三角形,所以共有5510+=(个)三角形.(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)拓 展 与 提 高——巧 数 五 角 星蜘蛛妈妈织了一张漂亮的大网,如图所示.小蜘蛛想跟妈妈学织网,妈妈说:“要想学织网首先要弄明白这张网的结构.你先去数一数,这张网上有多少条线段,多少个三角形.”小蜘蛛数了半天,怎么也数不清,你能帮帮它吗?下面图中给出了五个点,在每两点之间画线段.一共可以画多少条?【教学思路】两点之间可以画一条线段.图中有5个点,每一点都可以向其他4点画线段,这样就可以画5420÷=(条)线段.⨯=条线段,但两点之间都算了两条线段,重复了,所以只能画20210数一数,下图中共有多少个小于180°角?【教学思路】用角的顶点和位置的变化进行分类:以A为顶点的角有∠BA0,∠DA0,BAD共3个,同理:以B、C、D为顶点的角各3个.以0为顶点的角有∠AOB,∠BOC,∠CDD,∠DOA共4个.图中共有小于180°角:34416⨯+= (个)数一数,下图中共有多少个三角形?【教学思路】图中共有44个三角形.其中最大的2个、次大的6个、次小的12个、最小的24个.1.数一数.o(10)条线段(6)个锐角2.数一数,图中有多少个三角形?(5)个(6)个(5)个3.图中有多少个正方形?(17)个(14)个4.数一数,图形中有几个长方形?5.数一数,下图中共有多少个三角形?【答案】根据三角形包含基本三角形的个数来分类数.只含有一个基本三角形的三角形有6个; 恰含两个基本三角形的三角形有3个; 恰含三个基本三角形的三角形有6个;恰含四个或五个基本三角形的三角形一个也没有;恰含六个基本三角形的三角形只有1个. 图中共有三角形:636116+++= (个).( 7 )个( 18 )个 ⑴⑵FEDCB A什么海没有鱼呢?一只蚂蚁可以从日本爬到中国,可能吗?什么牛不会拉车、耕地?什么东西落在水里却不会湿?把一只鸡和一只鹅放到冰箱里,结果鸡冻有一只羊,一年吃了草地上一半的草,问它死了,鹅却活着,这是为什么呢?把草全部吃光,需要多少年?平平把鱼放在鱼缸里,不到十分钟鱼都死在地上有100元钱和一块肉骨头,可是为什了,为什么?么努比拣起了肉骨头而没有拣钱呢?【答案】1.辞海、林海2.可能,在地图上爬3.蜗牛4.影子5.企鹅6.不能全吃光,因为草会年年生长的7.鱼缸里没有水8.努比是一只小狗十大环祸患威胁人类(二)六、化学污染工业带来的数百万种化合物存在于空气、土壤、水、植物、动物和人体中。

小学三年级奥数-数图形个数

小学三年级奥数-数图形个数

二、精讲精练
• 【例题1】数出下图中有多少条线段?
A B C D
【思路导航】方法一:我们可以采用以线段左端点分类 数的方法。以A点为左端点的线段有:AB、AC、AD 3 条;以B点为左端点的线段有:BC、BD 2条;以C点为 左端点的线段有:CD 1条。所以,图中共有线段 3+2+1=6(条)。 方法二:把图中线段 AB、BC、CD看做基本线段来数, 那么,由1条基本线段构成的线段有:AB、BC、CD 3条; 由2条基本线段构成的线段有:AC、BD 2条;由3条基本 线段构成的线段有:AD 1条。所以,图中一共有 3+2+1=6(条)线段。
• 方法三:我们发现,要数出图中三角形的个数,只需 数出线段 AD中包含几条线段就可以了,即3+2+1=6( 个)。所以图中共有6个三角形。
练习3:
• 数出图中共有多少个三角形? A • (1)
B C D
E
F
• ( 2)
A
GH I G B C D E
K
F
A
B
• 【例题4】数出下图中有多少个长方形?
练习1:
• (1)数出下图中有多少条线段?
Aபைடு நூலகம்B C D E
• (2)数出下图中有几个长方形?
A
• 【例题2】数出图中有几个角?
O
B C D
方法一:以OA为一边的角有:∠AOB、∠AOC、 ∠AOD 3个;以OB为一边的角还有: ∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1 个。所以,图中共有角3+2+1=6(个)。 方法二:把图中∠AOB、∠BOC、∠COD看做基本角来 数,那么,由1个基本角构成的角有:∠AOB、∠BOC、 ∠COD 3个;由2个基本角构成的角有: ∠AOC、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。所以,图 中一共有3+2+1=6(个)角。

小学奥数第五讲:图形的计数

小学奥数第五讲:图形的计数

小学奥林匹克数学第一集:第五讲:图形的计数一、数一数小朋友,你知道中有多少个三角形吗?我们可以这样想,图中的小三角形一共有4个,大三角形有1个,所以一共有5个三角形。

在数数时,要做到有次序,有条理,不遗漏也不重复,这样才能正确地数数。

例1:数一数下图各有几条线段?分析:我们可以照下面的方法数:解:共有线段4+3+2+1=10(条)例2:图中有多少个小正方体?分析:这个图形是由小正方体组成的。

可以采用数数的方法,按顺序数。

也可以根据图形的组成规律进行计算,如果每2个一摞,一共有4摞。

解:方法一:一个一个地数出8个正方体。

方法二:2×4=8(个)答:共有8个小正方体。

例3:将9个小正方体组成如图所示的“十”字形,再将表面涂成红色,然后将小正方体分开。

问(1)2面涂成红色的有几个?(2)4面涂成红色的有几个?(3)5面涂成红色的有几个?分析:整个图形表面涂成红色。

只有“粘在一起的”面没有涂色。

中间的一个小正方体2面涂色,四端的4个小正方体都是5面涂色,剩下的四个小正方体都是4面涂色。

解:(1)2面涂成红色的小正方体只有1个。

(2)4面涂成红色的小正方体有4个。

(3)5面涂成红色的小正方体有4个。

例4:亮亮从1写到100,他一共写了多少数字“1”?分析:在1到100这100个数中,“1”可能出现在个位、十位或百位上。

应分三种情况计数:“1”在个位上的数有:1、11、21、31、41、51、61、71、81、91共10个;“1”在十位上的数有:10、11、12、13、14、15、16、17、18、19共10个;“1”在百位上的数有:100 只有1个。

解:10+10+1=21(个)答:共写21个。

例5:27个小方块堆成一个正方体。

如果将表面涂成黄色,求:(1)3面涂成黄色的小方块有几块?(2)1面涂成黄色的小方块有几块?(3)2面涂成黄色的小方块有几块?分析:涂色的有26个小方块。

3面涂色的只有顶点上的8个小方块;1面涂色的只有六个面上中间的小方块;其余的必然是2面涂色的小方块。

小学四年级奥数第17讲 数数图形(含答案分析)

小学四年级奥数第17讲 数数图形(含答案分析)

第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。

4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段。

练习1:数出下列图中有多少条线段。

(2)【例题2】数一数下图中有多少个锐角。

练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。

练习3::数一数下面图中各有多少个三角形。

【例题4】数一数下图中共有多少个三角形。

练习4::数一数下面各图中各有多少个三角形。

【例题5】数一数下图中有多少个长方形。

练习5::数一数下面各图中分别有多少个长方形。

【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形。

【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和。

四年级奥数第17讲 数数图形

四年级奥数第17讲 数数图形

第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果.要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段.练习1:数出下列图中有多少条线段.(2)【例题2】数一数下图中有多少个锐角.练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形.练习3::数一数下面图中各有多少个三角形.【例题4】数一数下图中共有多少个三角形.练习4::数一数下面各图中各有多少个三角形.【例题5】数一数下图中有多少个长方形.练习5::数一数下面各图中分别有多少个长方形.【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形.【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和.(单位:厘米)上式中的5是线段上的5个点,如果设线段上的点数为n,基本线段分别为a1、a2、…a(n-1).以上各线段长度的总和为L,那么L= a1×(n-1)×1+ a2×(n-2)×2+ a3×(n-3)×3+…+ a(n-1)×1×(n-1).练习10:1.一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?2.求下图中所有线段的总和.(单位:米)3.求下图中所有线段的总和.(单位:厘米)三、课后作业1、数一数共有多少条线段?(1)(2)2、数一数共有多少个锐角?EA B C D EDO CBA3、数出下图中有多少个长方形?4、数出下图中有多少个正方形?5、下图中有多少个长方形,其中有多少个是正方形?DC B A。

四年级奥数第18讲-数数图形

四年级奥数第18讲-数数图形

第18讲数数(shù shù)图形一、知识(zhī shi)要点在解决数图形问题时,首先要认真分析图形的组成规律,根据图形特点选择适当的方法,既可以逐个(zhúgè)计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来。

二、精讲精练(jīngliàn)【例题(lìtí)1】数一数下图中有多少个长方形?【思路导航】图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形。

数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数练习1::数一数,下面各图中分别有几个长方形?【例题2】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)【思路导航】图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个。

所以图中的正方形总数为:1+4+9=14个。

经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。

练习2::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题(lìtí)3】数一数下图中有多少个正方形?(其中(qízhōng)每个小方格都是边长为1个长度(chángdù)单位的正方形)【思路(sīlù)导航】边长是1个长度(chángdù)单位的正方形有3×2=6个,边长是2个长度单位的正方形有2×1=2个。

所以,图中正方形的总数为:6+2=8个。

奥数数图形的个数

奥数数图形的个数
巧数图形的个数
例1、数一数,下图中有几条线段?
A BC
3+2+1= 6(条)
单条: AB BC CD 3
D
二条组合: AC 三条组合: AD
BD
2 1
单条: AB BC CD DE 4
A B C D E 二条组合:AC BD CE 3
三条组合:AD BE
2
4+3+2+1=10(条) 四条组合: AE
数出下图中有多少个长方形?

10×3=30(个)

10×6 =60(个)
长的段数: 4+3+2+1=10 宽的段数: 2+1=3
长的段数: 4+3+2+1=10 宽的段数: 3+2+1=6
例3、数一数,下图中有几个正方形?
①②③
④⑤⑥
⑦⑧ ⑨
方法一:
单个: 9
四个组合: 4
九个组合: 1
9+4+1=13(个)
2、三年级有六个班,每两个班要拔河比赛一次,一 共要组织多少场比赛?
5+4+3+2+1=15(场) 答:一共要组织15场比赛。 3.有红、黄、蓝、白四个气球,如果每两个气球扎成 一束,共有多少种不同的扎法?
3+2+1=6(种) 答:共有6种不同的扎法。 4.有1~6六个数字,能组成多少个不同的两位数? 5+4+3+2+1=15(个) 15×2=30(个)
3+2+1=6(个)
4+3+2+1=10(个)
数一数,下图中有几个角?

三年级奥数巧数图形(供参考)

三年级奥数巧数图形(供参考)

第2讲 巧数图形知识要点同窗们,咱们常常会碰到数图形的问题,关于较复杂的图形,常常会显现数重复或数漏掉的错误。

如何才能不重复也不遗漏地数出图形的个数呢?这节课,咱们将一路来寻觅好的方式。

要正确数出图形的个数,关键是要从大体图形入手。

第一要弄清图形中包括的大体图形是什么,有多少个,然后再数出由大体图形组成的新的图形,并求出它们的和。

精典例题例1: 数出以下图中有多少条线段?仿照练习数一数,每种图形有多少个?有( )条线段 有( )个三角形有( )个角 有( )个长方形 有( )个正方形例2: 数出图中共有多少个三角形?从短的线段入手,再两条两条拼接起来数,你发现规律了吗?还能用刚才的方法来数吗?EABCDODC B A FEA仿照练习数一数,每幅图里有多少个三角形? (1) (2)有( )个三角形 有( )个三角形例3:下面的图形中有多少个三角形?(第九届中国青青年数学论坛趣味数学解题技术展现大赛试题)仿照练习数一数,图中共有几个正方形?(2020武汉明心数学资优生水平测试题)精典例题例4: 数出以下图中有多少个长方形?多少个正方形?三角形很多,可以尝试按三角形的方向和大小尝试分类数。

KG I H G A仿照练习1.数一数,图中有多少个长方形?2.数一数图中有多少个正方形?家庭作业1.数一数每幅图里面图形的个数(能计算的写出算式)。

(1) (2)前面学习的数长方形的方法还有用吗?怎么能用上呢?DCBA D CBA有( )条线段 有( )个角2.右图中有多少个三角形?3.图中有多少个长方形?(把你的方式分享给你的爸爸妈妈听,你能教会他们吗?分享后让爸爸妈妈给你打星,最多5颗星)4.数一数,右图中有多少个正方形?5.数一数,其中共有多少个包括“(2020年“陈省身杯”国际青青年数学邀请赛试题)。

四年级奥数-巧数图形个数

四年级奥数-巧数图形个数

姓名:巧数图形个数“数图形的个数”是趣味图形问题的一种,由于几何图形千变万化,错综复杂,要想准确地数出图形中所包含的某一个几何图形的个数,关键是要掌握有条理有次序地数图形的方法。

数图形的个数时,既不能同一图形数两次,又不能把有的图形漏掉不数,常用的计算方法有按顺序和分类数两种。

下面举例介绍两种方法的运用规律:例:数一数下面图中有多少条线段。

第一:按含基本线段的顺序去数。

上图一共有5条小线段,这每条小线段就是基本线段,有5条基本线段,包含有两条基本线段的有4条……第二:按端点进行分类去数。

以线段最左边的点为第一个端点,第二个点为第二个端点……为了方便同学们计数,向大家介绍数线段、三角形、角数量的公式:1+2+…+(n-2)+(n-1)=2)1(nn一、试一试,看谁数得又对又快。

一共有()个三角形。

一共有()个角。

二、填空。

1. 算式中有乘法和加、减法,应先算();算式中有除法和加、减法,应先算();算式中有括号的,应先算()。

2. 在计算25+13×2时,先算( )法,再算( )法。

3. 在计算78÷16×3时,先算()法,再算()法。

4. 在算式50-20÷5里,如果要先算减法,那么算式应该是:()。

里填上“<”“>”或“=”。

20×5+×(5+3)48÷6÷÷(6×8)280-37-280-(37+163)60-24÷60-24)÷12小故事明明和沉沉都十分喜欢数学。

一天明明问沉沉:“你最喜欢几?”“我最喜欢9。

”“那你说说从1数到100,要说几次‘9’?”“啊!……这”沉沉被难住了,“这要数一数才能知道,一分钟时间。

”同学们,请你在一分钟内说出从1到100有多少个9?。

奥数-05图形计数+答案

奥数-05图形计数+答案
单层长方形的数量=长边上的线段数 4+3+2+1=10(个) 单列长方形的数量=宽边上的线段数 2+1=3(个) 总个数=长边上的线段数×宽边上的线段数 10×3=30(个) 练习六 下图中各有几个长方形?
( )个
( )个
4
( )个
【例 7】
下图中各有多少个三角形?
分层法: 上 层: 下 层: 上下层: 总 数:
下图中,有多少个正方形?
解析:利用开小火车法: 火车头为最小正
5
练习一 下图中,有多少个正方形?
1、
2、
3、
( )个
( )个
( )个
【例 2】
下图形中,长方形有多少个? 解析,先将<格 1>与<格 2>隐去,剩下的
练习一
2
【例 2】 数出右图中共有多少条线段。 解析:(加法原理)从基本图形(只包含
最短线段)的个数出发,按序递增,依次数 出它们的个数,并求出它们的和是多少。最 小线段(基础线段)的数量为火车头,有 3
条,由两条基础线段拼成的线段有 2 条,由三条基础线段拼成的线段有 1 条,共有 3+2+1=6(条)。
练习七 下列图形中各有多少个三角形?
按分类加法原理
4+3+2+1=10(个) 4(个) 4+3+2+1=10(个) 10+4+10=24(个)
【例 8】 下图中有多少个三角形? 解析:假设每一个最小三角形的边长为 1。按边
的长度来分类计算三角形的个数。 边长为 1 的三角形,从上到下一层一层地数,有
一、图形计数方法——分类计数法
它是指先把所要计数的对象按性质、特点进行分类,统计出每一类的个数,再求 各类之和。分类计数的理论基础是“加法原理”。
运用加法原理的关键问题:确定分类的方法。 举例:下图中共有多少个图形? 可以分成圆、正方形、三角形和长方形 4 类,统计出各类的个数,再相加。也可 以按位置分上、中、下分别统计,再求和。

三年级奥数举一反三图形个数5教案

三年级奥数举一反三图形个数5教案

第10讲:图形个数学生姓名 年级 授课教师备课时间教 学目标重、 难 考 点教学内容同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。

要正确数出图形的个数,关键是要从基本图形入手。

首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。

【例题1】数出下图中有多少条线段?【思路导航】方法一:我们可以采用以线段左端点分类数的方法。

以A 点为左端点的线段有:AB 、AC 、AD 3条;以B 点为左端点的线段有:BC 、BD 2条;以C 点为左端点的线段有:CD 1条。

所以,图中共有线段3+2+1=6(条)。

基础狂记例题狂学DABC方法二:把图中线段 AB 、BC 、CD 看做基本线段来数,那么,由1条基本线段构成的线段有:AB 、BC 、CD 3条;由2条基本线段构成的线段有:AC 、BD 2条;由3条基本线段构成的线段有:AD 1条。

所以,图中一共有3+2+1=6(条)线段。

练习1:(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?【例题2】数出图中有几个角?【思路导航】数角的个数可以采用与数线段相同的方法来数。

方法一:以OA 为一边的角有:∠AOB 、∠AOC 、∠AOD 3个;以OB 为一边的角还有: ∠BOC 、∠BOD 2个;以OC 为一边的角还有:∠COD 1个。

所以,图中共有角3+2+1=6(个)。

方法二:把图中∠AOB 、∠BOC 、∠COD 看做基本角来数,那么,由1个基本角构成的角有:∠AOB、∠BOC 、∠COD 3个;由2个基本角构成的角有: ∠AOC 、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。

所以,图中一共有3+2+1=6(个)角。

练习2:数出图中有几个角?(1) (2)【例题3】数出右图中共有多少个三角形?【思路导航】方法一:我们可以采用按边分类数的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数中的数图形个数 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
第三讲数数与计数(二)
例1 数一数,图3-1中共有多少点
解:(1)方法1:如图3-2所示从上往下一层一层数:第一层 1个
第二层 2个
第三层 3个
第四层 4个
第五层 5个
第六层 6个
第七层 7个
第八层 8个
第九层 9个
第十层 10个
第十一层 9个
第十二层 8个
第十三层 7个
第十四层 6个
第十五层 5个
第十六层 4个
第十七层 3个
第十八层 2个
第十九层 1个
总数1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1
=(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+2+1)
=55+45=100(利用已学过的知识计算).
(2)方法2:如图3-3所示:从上往下,沿折线数
第一层 1个
第二层 3个
第三层 5个
第四层 7个
第五层 9个
第六层 11个
第七层 13个
第八层 15个
第九层 17个
第十层 19个
总数:1+3+5+7+9+11+13+15+17+19=100(利用已学过的知识计算).
(3)方法3:把点群的整体转个角度,成为如图3-4所示的样子,变成为10行10列的点阵.显然点的总数为10×10=100(个).
想一想:
①数数与计数,有时有不同的方法,需要多动脑筋.
②由方法1和方法3得出下式:
1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10
即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想:
1=1×1
1+2+1=2×2
1+2+3+2+1=3×3
1+2+3+4+3+2+1=4×4
1+2+3+4+5+4+3+2+1=5×5
1+2+3+4+5+6+5+4+3+2+1=6×6
1+2+3+4+5+6+7+6+5+4+3+2+1=7×7
1+2+3+4+5+6+7+8+7+6+5+4+3+2+1=8×8
1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×9
1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10这样的等式还可以一直写下去,能写出很多很多.
同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.
③由方法2和方法3也可以得出下式:
1+3+5+7+9+11+13+15+17+19=10×10.
即从1开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想:
1+3=2×2
1+3+5=3×3
1+3+5+7=4×4
1+3+5+7+9=5×5
1+3+5+7+9+11=6×6
1+3+5+7+9+11+13=7×7
1+3+5+7+9+11+13+15=8×8
1+3+5+7+9+11+13+15+17=9×9
1+3+5+7+9+11+13+15+17+19=10×10
还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.
例2 数一数,图3-5中有多少条线段
解:(1)我们已知,两点间的直线部分是一条线段.以A点为共同端点的线段有:
AB AC AD AE AF 5条.
以B点为共同左端点的线段有:
BC BD BE BF 4条.
以C点为共同左端点的线段有:
CD CE CF 3条.
以D点为共同左端点的线段有:
DE DF 2条.
以E点为共同左端点的线段有:
EF1条.
总数5+4+3+2+1=15条.
(2)用图示法更为直观明了.见图3-6.
总数5+4+3+2+1=15(条).
想一想:①由例2可知,一条大线段上有六个点,就有:总数=5+4+3+2+1条线段.由此猜想如下规律(见图3-7):
还可以一直做下去.总之,线段总条线是从1开始的一串连续自然数之和,其中最大的自然数比总数小1.我们又发现了一条规律.它说明了点数与线段总数之间的关系.
②上面的事实也可以这样说:如果把相邻两点间的线段叫做基本线段,那么一条大线段上的基本线段数和线段总条数之间的关系是:
线段总条数是从1开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见图3-8).基本线段数线段总条数
还可以一直写下去,同学们可以自己试试看.
例3 数一数,图3-9中共有多少个锐角
解:(1)我们知道,图中任意两条从O点发出的射线都组成一个锐角.
所以,以OA边为公共边的锐角有:
∠LAOB,∠AOC,∠AOD,∠AOE,
∠AOF共5个.
以OB边为公共边的锐角有:∠BOC,∠BOD,∠BOE,∠BOF共4个.
以OC边为公共边的锐角有:∠COD,∠COE,∠COF共3个.以OD边为公共边的锐角有:∠DOE,∠DOF共2个.以OE边为一边的锐角有:∠EOF只1个.
锐角总数5+4+3+2+1=15(个).
②用图示法更为直观明了:如图3-10所示,锐角总数为:5+4+3+2+1=15(个).
想一想:①由例3可知:由一点发出的六条射线,组成的锐角的总数
=5+4+3+2+1(个),由此猜想出如下规律:(见图3-11~15)
两条射线1个角(见图3-11)
三条射线2+1个角(见图3-12)
四条射线3+2+1个角(见图3-13)
五条射线4+3+2+1个角(见图3-14)
六条射线5+4+3+2+1个角(见图3-15)
总之,角的总数是从1开始的一串连续自然数之和,其中最大的自然数比射线数小1.
②同样,也可以这样想:如果把相邻两条射线构成的角叫做基本角,那么有共同顶点的基本角和角的总数之间的关系是:
角的总数是从1开始的一串连续自然数之和,其中最大的自然数等于基本角个数.
③注意,例2和例3的情况极其相似.虽然例2是关于线段的,例3是关于角的,但求总数时,它们有同样的数学表达式.同学们可以看出,一个数学式子可以表达表面上完全不同的事物中的数量关系,这就是数学的魔力.
习题三
1.书库里把书如图3-16所示的那样沿墙堆放起来.请你数一数这些书共有多少本
2.图3-17所示是一个跳棋盘,请你数一数,这个跳棋盘上共有多少个棋孔
3.数一数,图3-18中有多少条线段
4.数一数,图3-19中有多少锐角
5.数一数,图3-20中有多少个三角形
6.数一数,图3-21中有多少正方形
习题三解答
1.解:方法1:从左往右一摞一摞地数,再相加求和:
10+11+12+13+14+15+14+13+12+11+10
=135(本).
方法2:把这摞书形成的图形看成是由一个长方形和一个三角形“尖顶”组成.
长方形中的书 10×11=110
三角形中的书 1+2+3+4+5+4+3+2+1=25
总数:110+25=135(本).
2.解:因为棋孔较多,应找出排列规律,以便于计数.
仔细观察可知,图中大三角形ABC上的棋孔的排列规律是(从上往下数):1,2,3,4,5,6,7,8,9,10,11,12,13,另外还有三个小三角形中的棋孔的排列规律是1,2,3,4,所以棋孔总数是:
(1+2+3+4+5+6+7+8+9+10+11+12+13)+(1+2+3+4)×3=91+10×3=121(个).
3.解:方法1:按图3-22所示方法数(图中只画出了一部分)
线段总数:7+6+5+4+3+2+1=28(条).
方法2:基本线段共7条,所以线段总数是:
7+6+5+4+3+2+1=28(条).
4.解:按图3-23的方法数:
角的总数:7+6+5+4+3+2+1=28(个).
5.解:方法1:(1)三角形是由三条边构成的图形.
以OA边为左公共边构成的三角形有:△OAB,△OAC,△OAD,△OAE,△OAF,△OAG,△OAH,共7个;
以OB边为左公共边构成的三角形有:△OBC,△OBD,△OBE,△OBF,△OBG,△OBH,共6个;
以OC边为左公共边构成的三角形有:△OCD,△OCE,△OCF,△OCG,△OCH,共5个;
以OD边为左公共边构成的三角形有:△ODE,△ODF,△ODG,△ODH,共4个;
以OE边为左公共边构成的三角形有:△OEF,△OEG,△OEH,共3个;
以OF边为左公共边构成的三角形有:△OFG,△OFH,共2个;
以OG边和OH,GH两边构成的三角形仅有:△OGH1个;
三角形总数:7+6+5+4+3+2+1=28(个).
(2)方法2:显然底边AH上的每一条线段对应着一个三角形,而基本线段是7条,所以三角形总数为:7+6+5+4+3+2+1=28(个).
6.解:最小的正方形有25个,
由4个小正方形组成的正方形 16个;
由9个小正方形组成的正方形 9个;
由16个小正方形组成的正方形 4个;
由25个小正方形组成的正方形 1个;
正方形总数:25+16+9+4+1=55个.。

相关文档
最新文档