Matlab工具箱解LMI 线性矩阵不等式详解
matlab怎么解不等式方程

Matlab如何解不等式方程介绍在数学中,不等式方程是一种包含不等式(如大于、小于、大于等于、小于等于等)的方程。
解不等式方程是找到满足不等式条件的变量的取值范围。
Matlab是一种功能强大的数值计算软件,可以用于解决各种数学问题,包括解不等式方程。
本文将详细介绍如何使用Matlab解不等式方程。
解不等式方程的基本步骤解不等式方程的基本步骤如下: 1. 将不等式方程转化为Matlab可识别的形式。
2. 使用Matlab的求解函数来求解不等式方程。
3. 根据求解结果得到不等式方程的解。
下面将详细介绍每个步骤。
步骤一:将不等式方程转化为Matlab可识别的形式在使用Matlab求解不等式方程之前,我们需要将不等式方程转化为Matlab可识别的形式。
Matlab中常用的不等式符号包括:“>”(大于)、“<”(小于)、“>=”(大于等于)和”<=“(小于等于)。
例如,我们有一个不等式方程:2x + 3 > 7。
我们可以将其转化为Matlab可识别的形式:2*x + 3 > 7。
步骤二:使用Matlab的求解函数求解不等式方程Matlab提供了一些专门用于求解不等式方程的函数,如solve和fsolve。
这些函数可以帮助我们求解不等式方程,并得到满足不等式条件的变量的取值范围。
使用solve函数求解不等式方程solve函数是Matlab中常用的求解方程的函数,它可以用于求解不等式方程。
solve函数的基本用法如下:syms xeqn = 2*x + 3 > 7;sol = solve(eqn, x);上述代码中,我们首先定义了一个符号变量x,然后定义了不等式方程2*x + 3 > 7,最后使用solve函数求解该不等式方程,并将结果存储在变量sol中。
使用fsolve函数求解不等式方程fsolve函数是Matlab中用于数值求解方程的函数,它也可以用于求解不等式方程。
Matlab中LMI(线性矩阵不等式)工具箱使用教程

% S2 is 1 by 1 matrix S2 = lmivar(1, [1 0]); % Type of 2, size 1 by 2 M = lmivar(2, [1 2]); 定义完成变量之后,我们就该用 lmiterm 来描述 LMI 中的每一个项了。Matlab 的官方 文档提示我们,如果要描述一个 LMI 只需要描述上三角或者下三角元素就可以了,否则会 描述成另一个 LMI。 When describing an LMI with several blocks, remember to specify only the terms in the blocks on or below the diagonal (or equivalently, only the terms in blocks on or above the diagonal). 语法为:lmiterm(termID,A,B,flag) termID 是一个四维整数向量,来表示该项的位置和包含了哪些矩阵变量。 termID(1)可以为+p 或者-p,+p 代表了这个项位于第 p 个线性矩阵不等式的左边,-p 代表了这个项位于第 p 个线性矩阵不等式的右边。注意:按照惯例来讲,左边通常指较小 的那边。 termID(2:3): 1、对于外部变量来说,取值为[0,0]; 2、对于左边或者右边的内部变量来说,如果该项在(i,j)位置,取值[i,j] termID(4): 1、对于外部变量,取值为 0 2、对于 A*X*B,取值 X 3、对于 A*X'*B,取值-X flag(可选,值为 s): 因为:(A*X*B) + (A*X*B)T = A*X*B + B'*X'*A',所以采用 s 来进行简写。 比如:针对 A*X + X'*A' 我们采用笨方法: lmiterm([1 1 1 X],A,1) lmiterm([1 1 1 -X],1,A') 那么简写就是 lmiterm([1 1 1 X],A,1,'s') 接下来我们就看该论文中的算例吧:(1,1)位置是 -Q+Bd*S2*Bd'+Ad*S1*Ad';
线性矩阵不等式(LMI)的 MATLAB求解

3.LMI 解算器 .......................................................................................................................................................8 4.LMI 结果验证与修改 .......................................................................................................................................8 5.LMI 系统信息的提取 .......................................................................................................................................8 三、LMI 工具箱函数详解 ..........................................................................................................................................9 1.确定 LMI 系统的函数 ......................................................................................................................................9 2.对 LMI 变量的操作 ........................................................................................................................................13 3.LMI 求解器命令 .............................................................................................................................................14 4.结果验证和修改.............................................................................................................................................. 21 5.LMI 系统信息提取 .........................................................................................................................................24 LMI 系统实例分析 ............................................................................................................................................................25 命令行形式解答 ........................................................................................................................................................25 GUI 形式解答 ............................................................................................................................................................27
第14章 LMI工具箱的应用

LMI工具箱的应用
14.1 线性矩阵不等式的建立 14.2 线性矩阵不等式求解器
LMI(linear matrix inequality)本来是指数学中的线性矩阵 不等式,但近年来主要应用在控制理论中,广泛应用于解决系 统与控制中的一系列问题。这些问题的解决一般是根据控制理 论建立线性矩阵不等式,然后再用Matlab中的LMI工具箱求解 (LMI工具箱中的函数一般只能处理固定形式的线性矩阵不等 式)。因此,LMI既可以指线性矩阵不等式,更多是是指 Matlab中的LMI工具箱。 随着解决线LMI内点法的提出以及Matlab中LMI控制工具 箱的推广,LMI这一工具已经受到人重视。LMI控制工具箱已经 成为了从控制工程到系统识别设计和结构设计等诸多领域的一 个强大的设计工具。由于许多控制问题都可以转化为一个LMI
1 2 3 0.972718 0.870460 -3.136305
Result: best value of t: -3.136305 f-radius saturation: 0.000% of R = 1.00e+009 P= 270.8553 126.3999 126.3999 155.1336
A3 P PA3 P 其中: 1 2 0.8 1.5 1.4 0.9 A1 , A2 , A3 , 1 3 1.3 2.7 0.7 2.0
clc clear A1=[-1 2;1 -3]; A2=[-0.8 1.5;1.3 -2.7]; A3=[-1.4 0.9;0.7 -2.0]; setlmis([]); P=lmivar(1,[2,1]); BR=newlmi; lmiterm([BR 1 1 0],1); lmiterm([-BR 1 1 P],1,1); BR=newlmi; lmiterm([BR 1 1 P],1,A1,'s'); lmiterm([-BR 1 1 P],1,1); BR=newlmi; lmiterm([BR 1 1 P],1,A2,'s'); lmiterm([-BR 1 1 P],1,1);
matlab lmi工具箱使用实例

MATLAB(Matrix Laboratory)是一款广泛应用于科学计算和工程领域的专业软件,其功能强大、灵活性高,并且具有丰富的工具箱支持。
LMI(Linear Matrix Inequality)工具箱是MATLAB中的一种工具箱,用于解决线性矩阵不等式相关的问题。
本文将介绍LMI工具箱的基本使用方法,并结合具体实例进行详细讲解。
一、LMI工具箱的安装1.确保已经安装了MATLAB软件,并且软件版本是R2015b及以上版本。
只有在这些版本中,LMI工具箱才会被自动安装。
2.在MATLAB的命令行中输入“ver”,可以查看当前安装的工具箱列表,确认LMI工具箱是否已经成功安装。
二、LMI工具箱的基本功能1. LMI工具箱主要用于解决线性矩阵不等式问题,例如矩阵的稳定性分析、最优控制问题等。
2. LMI工具箱提供了一系列的函数和工具,能够方便地构建和求解线性矩阵不等式问题,同时也包括了一些经典的稳定性分析方法和控制器设计方法。
三、LMI工具箱的基本使用方法1. 定义变量:在使用LMI工具箱时,首先需要定义相关的变量。
可以使用“sdpvar”函数来定义实数变量,使用“sdpvar”函数和“size”函数可以定义矩阵变量。
2. 构建约束:在定义变量之后,需要构建线性矩阵不等式的约束条件。
可以使用“sdpvar”变量的线性组合来构建约束条件,使用“>=”来表示大于等于关系。
3. 求解问题:构建好约束条件之后,即可使用“optimize”函数来求解线性矩阵不等式问题。
在求解问题时,可以指定优化的目标函数和一些额外的约束条件。
四、LMI工具箱的实例应用下面我们通过一个具体的实例来演示LMI工具箱的使用方法。
假设有一个线性时不变系统,其状态方程可以表示为:$\dot{x} = Ax + Bu$其中,A和B分别为系统的状态矩阵和输入矩阵。
我们希望设计一个状态反馈控制器K,使得系统在闭环下能够保持稳定。
线性矩阵不等式的LMI工具箱求解

一、线性矩阵不等式的LMI 工具箱求解 (一)可行性问题(LMIP )1、可行性问题描述系统状态方程:[]1122331000210-414x x x x u x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦在判断系统的稳定性时,根据线性定常系统的李雅普诺夫稳定性判据,需要判断是否存在实对称矩阵P ,使得:TA P +P A =Q -成立,其中Q 为正定矩阵。
那么判断系统稳定性的问题,可以转化为下面不等式是否存在解的问题:TA P +P A <0这种不等式解是否存在的问题可以用MATLAB 的LMI 工具箱进行判断。
2、仿真所需要用到的命令setlmis([]) :开始一个线性矩阵不等式系统的描述; X= lmivar(TYPE,STRUCT):定义一个新的矩阵变量;lmiterm(TERMID,A,B,FLAG):确定线性矩阵不等式的一个项的内容; LMISYS = getlmis :结束一个线性矩阵不等式系统的描述,返回这个现行矩阵不等式系统的内部表示向量LMISYS ;X = dec2mat(LMISYS,DECV ARS,XID):由给定的决策变量得到相应的矩阵变量值。
[tmin,xfeas]=feasp(lmisys):可行性问题的求解器函数,tmin 大于0时,表明LMI 系统不可行,P 阵无解,系统不稳定,tmin 小于0时,便可以用dec2mat 函数求解出P矩阵。
3、仿真结果可以看到,仿真结果tmin<0,因此P阵存在,系统是稳定的。
进一步用dec2mat函数求解出P矩阵。
得:(二)特征值问题(EVP)1、EVP 问题描述该问题对应矩阵工具箱中的LMI 约束的线性目标函数最小化优化问题。
一般采用mincx 求解器求解。
考虑这样一个优化问题:m in ().. 0TTT ra c e X s t A X X A X B B X Q +++<其中:5342154067; 3; 562.78314228A B Q -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪===-- ⎪ ⎪⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2、仿真用到的命令DECV ARS = mat2dec(LMISYS,X1,X2,X3,...) :由给定的矩阵变量得到相应的决策变量值;[copt,xopt]=mincx(LMIs,c,options):用于给定的特征值问题求解,copt 返回全局最优的决策变量,xopt 返回决策变量的最优解。
Matlab中的LMI工具箱的研究与使用

Matlab中的LMI工具箱的研究与使用Matlab中的LMI工具箱的研究与使用摘要:由于内点算法可以利用计算机求解高阶矩阵不等式,使得线性矩阵不等式(LMI)在控制理论得以应用,因而线性矩阵不等式在控制系统分析、设计中扮演着越来越重的角色。
在毕业设计中,我学习了LMI理论,Matlab中LMI工具箱的使用,研究了常见的控制问题与LMI关系以及其表达式,并研究了基于LMI方法的鲁棒控制器设计问题,推导了如何将鲁棒控制器设计问题转化为LMI形式,给出了通过求解LMI方程构造控制率的算法。
LMI是一种较新的方法,可以在控制系统的许多领域得以应用,如鲁棒控制、非线性控制预测控制等有着巨大的潜力。
关键词:线性矩阵不等式;LMI工具箱;控制系统The research and use of the Matlba LMI toolboxStudent majoring in Automation SUN Peng-kunTutorAbstract:Due to the interior point algorithm can use computer to solve high order matrix inequality,It makes the linear matrix inequality (LMI) in the control theory to application and linear matrix inequality (LMI) played more and more heavy role in the control system analysis and design. At the graduation design, I studied the LMI theory, in the use of Matlab LMI toolbox, and studies the problem of common control with LMI relations and its expression,and I studied the problem of the robust contoeller design that based on lmi method, how totransform the robust controller design problem into the LMI form, and given by solving the LMI equation of tectonic control algorithm. LMI is a new method, it can be used in many control system fields, such as robust control, nonlinear control predictive control, and it has great potential.Key words: linear matrix inequality; LMI toolbox; control system;robust control引言线性矩阵不等式(LMI)工具箱是求解一般线性矩阵不等式问题的一个高性能软件包。
LMI(线性矩阵不等式)工具箱介绍学习

LMI:Linear Matrix Inequality,就是线性矩阵不等式。
在Matlab当中,我们可以采用图形界面的lmiedit命令,来调用GUI接口,但是我认为采用程序的方式更方便(也因为我不懂这个lmiedit的GUI)。
对于LMI Lab,其中有三种求解器(solver): feasp,mincx和gevp。
每个求解器针对不同的问题:feasp:解决可行性问题(feasibility problem),例如:A(x)<B(x)。
mincx:在线性矩阵不等式的限制下解决最小化问题(Minimization of a linear objective under LMI constraints),例如最小化c'x,在限制条件A(x) < B(x)下。
gevp:解决广义特征值最小化问题。
例如:最小化lambda,在0<B(x),A(x)<lamba*B(x)限制条件下。
要解决一个LMI问题,首要的就是要把线性矩阵不等式表示出来。
对于以下类型的任意的LMI问题N' * L(X1, . . . , XK) * N < M' * R(X1, . . . , XK) * M其中X1, . . . , XK是结构已经事先确定的矩阵变量。
左侧和右侧的外部因子(outer factors)N和M是给定的具有相同维数的矩阵。
左侧和右侧的内部因子(inner factors)L(.)和R(.)是具有相同结构的对称块矩阵。
每一个块由X1, . . . , XK以及它们的转置组合而成形成的。
解决LMI问题的步骤有两个:1、定义维数以及每一个矩阵的结构,也就是定义X1, . . . , XK。
2、描述每一个LMI的每一项内容(Describe the term content of each LMI)此处介绍两个术语:矩阵变量(Matrix Variables):例如你要求解X满足A(x)<B(x),那么X就叫做矩阵变量。
LMI线性矩阵不等式

对解的最优性不感兴趣,只是希望找到一个解,它可能不 唯一。
Example 2. 确 定 线 性 系 统 的 稳 定 性 :
考虑一个自治线性系统
x ˙ = Ax
那么,用于证明该系统稳定 性(Re{λi(A)} < 0, ∀i)的Lyapunov LMI问题,就是寻
7
找P > 0,使得
AT P + P A > 0
3
而正常情形下,我们看到的变量x是由一个或多个矩阵组 成,这些矩阵的列在不等式(4)中被堆砌成为一个向量, 即:
F (x) = F (X1, X2, · · · , Xn)
(5)
其中,Xi ∈ R
q i × pi
∑n 是一个矩阵,而 i=1 qi × pi = m,所有矩
阵变量的列堆叠起来,形成单个向量变量x。 于是我们考虑下面常用形式的函数:
(14)
这是一个关于变量P > 0的LMI可行性问题,然而,给定满 足该问题的任意的P > 0,明显地集合 { } P = βP : 标量β > 0 中任意矩阵都满足上述问题。
P > 0和(14)所描述的LMI约束,可以等价地组成一个LMI:
(15)
AT P + P A 0 0
8
<0
(16)
考虑一个自治线性系统xax那么用于证明该系统稳定性reia0?i的lyapunovlmi问题就是寻7找p0使得atppa014这是一个关于变量p0的lmi可行性问题然而给定满足该问题的任意的p0明显地集合pp
航空航天飞行器控制、制导与导 航
线性矩阵不等式
Linear matrix inequality(LMI): 矩阵变量集合中线性(或仿
LMI线性矩阵不等式工具箱

LMI:Linear Matrix Inequality,就是线性矩阵不等式。
在Matlab当中,我们可以采用图形界面的lmiedit命令,来调用GUI接口,但是我认为采用程序的方式更方便(也因为我不懂这个lmiedit的GUI)。
对于LMI Lab,其中有三种求解器(solver):feasp,mincx和gevp。
每个求解器针对不同的问题:feasp:解决可行性问题(feasibility problem),例如:A(x)<B(x)。
mincx:在线性矩阵不等式的限制下解决最小化问题(Minimization of a linear objective under LMI constraints),例如最小化c'x,在限制条件A(x) < B(x)下。
gevp:解决广义特征值最小化问题。
例如:最小化lambda,在0<B(x),A(x)<lamba*B(x)限制条件下。
要解决一个LMI问题,首要的就是要把线性矩阵不等式表示出来。
对于以下类型的任意的LMI问题N' * L(X1, . . . , XK) * N < M' * R(X1, . . . , XK) * M其中X1, . . . , XK是结构已经事先确定的矩阵变量。
左侧和右侧的外部因子(outer factors)N和M是给定的具有相同维数的矩阵。
左侧和右侧的内部因子(inner factors)L(.)和R(.)是具有相同结构的对称块矩阵。
每一个块由X1, . . . , XK以及它们的转置组合而成形成的。
解决LMI问题的步骤有两个:1、定义维数以及每一个矩阵的结构,也就是定义X1, . . . , XK。
2、描述每一个LMI的每一项内容(Describe the term content of each LMI)此处介绍两个术语:矩阵变量(Matrix Variables):例如你要求解X满足A(x)<B(x),那么X就叫做矩阵变量。
matlab中LMI应用说明

matlab中LMI应用说明我们要实现的就利用LMI进行求解。
首先我们要用setlmis([])命令初始化一个LMI系统。
接下来,我们就要设定矩阵变量了。
采用函数为lmivar语法:X = lmivar(type,struct)type=1: 定义块对角的对称矩阵。
每一个对角块或者是全矩阵<任意对称矩阵>,标量<单位矩阵的乘积>,或者是零阵。
如果X有R个对角块,那么后面这个struct就应该是一个Rx2阶的的矩阵,在此矩阵中,struct(r,1)表示第r个块的大小,struct(r,2) 表示第r个块的类型<1--全矩阵,0--标量,-1--零阵)。
比如一个矩阵有两个对角块,其中一个是2x2的全对称矩阵,第二个是1x1的一个标量,那么该矩阵变量应该表示为X = lmivar(1, [2 1; 1 0]) 。
type=2: mxn阶的矩阵,只需要写作struct = [m,n]即可。
type=3: 其它类型。
针对类型3,X的每一个条目(each entry of X)被定义为0或者是+(-)xn,此处xn代表了第n个决策变量。
那么针对我们的例子,我们如此定义变量:% Q is a symmetric matrix, has a block size of 2 and this block is symmetricQ = lmivar(1, [2 1]);% S1 a symmeric matrix, size 2S1 = lmivar(1, [2 1]);% S2 is 1 by 1 matrixS2 = lmivar(1, [1 0]);% Type of 2, size 1 by 2M = lmivar(2, [1 2]);定义完成变量之后,我们就该用lmiterm来描述LMI中的每一个项了。
Matlab 的官方文档提示我们,如果要描述一个LMI只需要描述上三角或者下三角元素就可以了,否则会描述成另一个LMI。
线性矩阵不等式的LMI工具箱求解

一、线性矩阵不等式的LMI 工具箱求解 (一)可行性问题(LMIP )1、可行性问题描述系统状态方程:[]11223301000210-414x x x x u x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦&&& 在判断系统的稳定性时,根据线性定常系统的李雅普诺夫稳定性判据,需要判断是否存在实对称矩阵P ,使得:T A P+PA=Q -成立,其中Q 为正定矩阵。
那么判断系统稳定性的问题,可以转化为下面不等式是否存在解的问题:T A P+PA<0这种不等式解是否存在的问题可以用MATLAB 的LMI 工具箱进行判断。
2、仿真所需要用到的命令setlmis([]) :开始一个线性矩阵不等式系统的描述; X= lmivar(TYPE,STRUCT):定义一个新的矩阵变量;lmiterm(TERMID,A,B,FLAG):确定线性矩阵不等式的一个项的内容; LMISYS = getlmis :结束一个线性矩阵不等式系统的描述,返回这个现行矩阵不等式系统的内部表示向量LMISYS ;X = dec2mat(LMISYS,DECVARS,XID):由给定的决策变量得到相应的矩阵变量值。
[tmin,xfeas]=feasp(lmisys):可行性问题的求解器函数,tmin大于0时,表明LMI系统不可行,P阵无解,系统不稳定,tmin小于0时,便可以用dec2mat 函数求解出P矩阵。
3、仿真结果可以看到,仿真结果tmin<0,因此P阵存在,系统是稳定的。
进一步用dec2mat 函数求解出P 矩阵。
得:(二)特征值问题(EVP)1、EVP 问题描述该问题对应矩阵工具箱中的LMI 约束的线性目标函数最小化优化问题。
一般采用mincx 求解器求解。
考虑这样一个优化问题:min ().. 0TTTrace X s t A X XA XBB X Q +++<其中:5342154067; 3; 562.78314228A B Q -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2、仿真用到的命令DECVARS = mat2dec(LMISYS,X1,X2,X3,...) :由给定的矩阵变量得到相应的决策变量值;[copt,xopt]=mincx(LMIs,c,options):用于给定的特征值问题求解,copt 返回全局最优的决策变量,xopt 返回决策变量的最优解。
Matlab控制系统工具箱的鲁棒控制设计指南

Matlab控制系统工具箱的鲁棒控制设计指南导言:在现代科学和工程领域中,控制系统的设计和优化是一个重要的任务。
传统的控制理论往往以线性模型为基础,但实际系统往往包含非线性效应和外部干扰,这使得系统的稳定性和性能更加复杂和困难。
为了解决这些问题,研究者们发展了鲁棒控制理论,以提高系统对不确定性和变化的稳定性和性能。
Matlab控制系统工具箱为工程师和科学家们提供了一套方便强大的工具,用于鲁棒控制设计和分析。
本文将介绍Matlab控制系统工具箱中鲁棒控制设计的基本概念和方法。
I. 鲁棒控制基础在深入了解Matlab控制系统工具箱之前,我们先来回顾一下鲁棒控制的基本概念和原则。
鲁棒控制的目标是设计一个控制器,使得系统对于不确定性和干扰具有鲁棒性,即系统在各种不确定性条件下依然能保持稳定和良好的性能。
鲁棒控制的设计方法主要包括鲁棒性分析和合成控制器设计。
在Matlab中,我们可以使用鲁棒控制工具箱来进行鲁棒性分析。
鲁棒性分析的目标是确定系统的不确定性或变化对系统稳定性和性能的影响。
通过鲁棒分析,我们可以评估系统的稳定性邻域、性能衰减和鲁棒性指标等,从而为合成控制器设计提供依据。
II. 鲁棒控制器设计在Matlab控制系统工具箱中,常用的鲁棒控制器设计方法有H∞控制、μ合成控制和基于线性矩阵不等式(LMI)的方法。
1. H∞控制H∞控制是一种广泛应用于线性系统的鲁棒控制方法。
它基于H∞性能标准,通过最小化系统输入和输出的敏感性函数,来设计具有鲁棒性的控制器。
在Matlab中,我们可以使用“hinfstruct”函数来进行H∞控制器设计。
该函数可以根据给定的性能权重和鲁棒性要求,自动生成鲁棒控制器。
2. μ合成控制μ合成控制是一种基于频域分析的鲁棒控制方法。
它通过最小化系统的复合不确定性,来设计具有鲁棒性和鲁棒性指标的控制器。
在Matlab中,我们可以使用“synthesis”函数来进行μ合成控制器设计。
Matlab LMI(线性矩阵不等式)工具箱中文版介绍及使用教程

⎧ 0,
struct (i,
j)
=
⎪ ⎨
n,
⎪⎩− n,
如果X (i, j) = 0 如果X (i, j) = xn 如果X (i, j) = −xn
例 2:考虑具有三个矩阵变量 X1、X 2 和 X 3 的线性矩阵不等式系统,其中 z X1 是一个 3 × 3 维的对称矩阵; z X 2 是一个 2 × 4 维的长方矩阵;
的决策变量是矩阵 X 中的独立元 x1、x2、x3 。根据对策性,矩阵变量 X 可以写成
⎡1 0⎤ ⎡0 1⎤ ⎡0 0⎤ X = x1 ⎢⎣0 0⎥⎦ + x2 ⎢⎣1 0⎥⎦ + x3 ⎢⎣0 1⎥⎦
将矩阵 A 和上式代入矩阵不等式(2),经整理,可得
⎡− 2 2⎤ ⎡ 0 − 3⎤ ⎡0 0 ⎤
XB⎤
−
S
⎥ ⎦
<
0
(6)
X >0
(7)
S>I
(8)
用命令 lmivar 和 lmiterm 给出线性矩阵不等式系统(6)~(8)的内部描述如下:
setlmis([])
X=lmivar(1,[6 1]) S=lmivar(1,[2 0;2 1])
% 1st LMI lmiterm([1 1 1 X],1,A,’s’) lmiterm([1 1 1 S],C’,C) lmiterm([1 1 2 X],1,B) lmiterm([1 2 2 S],-1,1)
AT X + XA < 0
(2)
也是一个线性矩阵不等式,其中的 X 是一个矩阵变量。我们以一个二阶矩阵
A
=
⎡− 1
⎢ ⎣
0
2⎤ − 2⎥⎦
matlab中LMI应用说明

我们要实现的就利用LMI进行求解。
首先我们要用setlmis([])命令初始化一个LMI系统。
接下来,我们就要设定矩阵变量了。
采用函数为lmivar语法:X = lmivar(type,struct)type=1: 定义块对角的对称矩阵。
每一个对角块或者是全矩阵<任意对称矩阵>,标量<单位矩阵的乘积>,或者是零阵。
如果X有R个对角块,那么后面这个struct就应该是一个Rx2阶的的矩阵,在此矩阵中,struct(r,1)表示第r个块的大小,struct(r,2) 表示第r个块的类型<1--全矩阵,0--标量,-1--零阵)。
比如一个矩阵有两个对角块,其中一个是2x2的全对称矩阵,第二个是1x1的一个标量,那么该矩阵变量应该表示为X = lmivar(1, [2 1; 1 0]) 。
type=2: mxn阶的矩阵,只需要写作struct = [m,n]即可。
type=3: 其它类型。
针对类型3,X的每一个条目(each entry of X)被定义为0或者是+(-)xn,此处xn代表了第n个决策变量。
那么针对我们的例子,我们如此定义变量:% Q is a symmetric matrix, has a block size of 2 and this block is symmetricQ = lmivar(1, [2 1]);% S1 a symmeric matrix, size 2S1 = lmivar(1, [2 1]);% S2 is 1 by 1 matrixS2 = lmivar(1, [1 0]);% Type of 2, size 1 by 2M = lmivar(2, [1 2]);定义完成变量之后,我们就该用lmiterm来描述LMI中的每一个项了。
Matlab 的官方文档提示我们,如果要描述一个LMI只需要描述上三角或者下三角元素就可以了,否则会描述成另一个LMI。
matlab中不等式组的解法

Matlab中不等式组的解法不等式组的解法线性规划(LP,Linear Programming)是优化问题的一种工具Matlab中最优化工具箱中线性规划函数——linprogLinprog函数的用法Linprog 函数的用法提出问题Finds the minimum of a problem specified by ,min ,,T A x b f x such that Aeq x beq lb x ub ⋅≤ ⋅= ≤≤ are vectors, A and Aeq are matrices,,,,,f x b beq lb ubLinpro函数的用法分析问题主要形式:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq)x = linprog(f,A,b,Aeq,beq,lb,ub)x = linprog(f,A,b,Aeq,beq,lb,ub,x0)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) x = linprog(problem)[x,fval] = linprog(...)[x,fval,exitflag] = linprog(...)[x,fval,exitflag,output] = linprog(...)[x,fval,exitflag,output,lambda] = linprog(...)Linpro 函数的用法x = linprog(f,A,b) solves min f*x such that A*x ≤b.x = linprog(f,A,b,Aeq,beq) solves the problem above while additionally satisfying the equality constraints Aeq*x =beq. Set A =[ ] and b =[ ] if no inequalities exist.x = linprog(f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the design variables, x, so that the solution is always in the range lb ≤x ≤ub. Set Aeq =[ ] and beq =[ ] if no equalities exist.x = linprog(f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0. This option is only available with the medium-scale algorithm (the LargeScale option is set to 'off' using optimset). The default large-scale algorithm and the simplex algorithm ignore any starting point. x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.分析问题问题的描述Linpro 函数的用法解决问题Example :Find x that minimizes 目标函数subject to约束条件12312312123203244232300, 0, 0x x x x x x x x x x x −+≤++≤+≤≤≤≤123()546f x x x x =−−−Linpro函数的用法输入下列指令:>> f = [-5; -4; -6];>> A = [1 -1 13 2 43 2 0];>> b = [20; 42; 30];>> lb = zeros(3,1);x= linprog(f,A,b,[],[],lb);输出结果:x =0.000015.00003.0000。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• mincx求解器
• 第一步:建立矩阵不等式,变量命名为X,不 等式组命名为LMIs。
• 第二步:将目标函数Trace(X)写成cTX形式。用 函数mat2dec建立c。
• Mat2dec的调用格式:定义与X同阶的矩阵W, mat2dec(LMIs, W)返回的是W与X对应元素乘 积的和。(延申,257页,defcx等)
提取结果和验证结果:evallmi和 showlmi
• 用法: • EVALSYS = evallmi(LMISYS,DECVARS):计算出矩阵
不等式中所有决策变量项的值(矩阵形式?); • [LHS,RHS]=showlmi(LMISYS,N):给出第N个线性矩
阵不等式的左边和右边的矩阵值。
• lmiterm([-1 1 1 0],0); • lmiterm([-1 2 1 0],B'*P1); • lmiterm([-1 2 2 0],P3*B+B'*P2);
• lmis=getlmis;
• 四、观察所建立的矩阵不等式的信息
• 使用函数lmiinfo(lmisys),lmibr(lmisys), matnbr(lmisys)可以提取所建立的不等式 lmisys的信息。
其它命令
• 1、用于求个数的命令: • lminbr(lmisys):给出系统中线性矩阵不等式的个数;
matnbr(lmisys):给出系统中矩阵变量的个数; decnbr(lmisys):给出系统中决策变量的个数。 • 2、用于查看相关信息的命令: • lmiinfo(LMISYS):给出线性矩阵不等式系统的信息; DECX = decinfo(LMISYS,XID) :给出决策变量和矩阵变 量之间关系的一些详细信息。
调用函数求解不等式
• Feasp求解器
• Options和target是控制参数,一般均使用系统默认值,不做设置。 tmin和xfeas是系统输出值。
• 注意:feasp停有tmin<0时,LMI才是可行的,结果才有意义。
• Dec2mat可以把指定LMI不等式组的可行解中的指定变量转 化成矩阵格式。调用格式:
Matlab工具箱求解LMI
利用工具箱求解LMI步骤
• 调用函数建立不等式; • 调用函数求解不等式; • 提取结果和验证结果。
调用函数建立LMI不等式
• 例如
将下面描述的线性矩阵不等式还原 • setlmis([]); • X=lmivar(2,[2,3]); • lmiterm([1 1 1 X],P2,eye(3),'s'); • lmiterm([1 1 1 0],-eye(3)); • lmiterm([1 2 1 X],P4,1); • lmiterm([1 2 2 0],-1);
• 3、用于变量间转换的命令: • DECVARS = mat2dec(LMISYS,X1,X2,X3,...) :由给定的矩
阵变量得到相应的决策变量值; X = dec2mat(LMISYS,DECVARS,XID):由给定的决策变 量得到相应的矩阵变量值。
• 第三步:调用函数
• 第四步:返回解的矩阵形式。
• gevp求解器:求解如下形式问题
• 调用格式: • 建立不等式lmisys的注意事项: • 不将\lambda声明为变量,建立矩阵不等式中
也不出现\lambda。 • 所有和\lambda有关的方程放在最后,其个数
有参数nlfc指定。求解器会将会面的指定个数 不等式解释成 A(x)<\lambda B(x)。 • 一定要有保证B(x)>0的不等式。