七年级数学上册21时用字母表示数新版新人教版
2.1 整式 第1课时 用字母表示数课件2023-2024学年人教版七年级数学
(2) 某商店上月盈利 元,本月盈利比上月的3倍还多100元,本月盈利多少元?
解: .
(1) 一个数 的 与这个数的和;
假分数
分数
乘方
省略
1.书写规范的式子:(1)m×(-7)= ; (2)2×a= ; (3)a÷b= .
-7m
a
3.下列含有字母的式子中,书写规范的是( )A.-1m B.8nC.ab D.(x-y)÷z
[答案] 2
8. 小亮说:“ , , 都是单项式.”你同意他的说法吗?为什么?
[答案] 不同意.只有 是单项式,而 都不是单项式,因为 出现了和的形式,而 是数字与字母商的形式,都不是单纯积的形式
知识点一:多项式(1)几个 的和叫做多项式,其中每一个单项式叫做多项式的 ,不含字母的项叫做 . (2)例如:多项式x-3是单项式x与-3的和,x,-3叫做多项式的项,其中不含字母的项-3是常数项.
括号
平方
相加(减)
相加(减)
平方
实际
意义
字母
4.下列表述不能表示式子6a的意义的是( )A.6的a倍 B.a的6倍C.6个a相加 D.6个a相乘
D
5.列代数式:(1)a,b两数和的平方: ; (2)x,y两数平方的差: ; (3)m,n两数差的平方: ; (4)(2022邯郸一模)m与n的差的3倍: ; (5)a,b两数的和与m的积: .
常数项
项
单项式
2.在x2-2,-1,-2x-1,π,,x2-+1,4x中,多项式为 .
2.1.1用字母表示数(教案)-人教版七年级数学上册
在今天的教学中,我发现学生们对于用字母表示数的概念接受程度不一。有的学生能够迅速理解字母的抽象意义,而有的学生则对这个概念感到困惑。这让我意识到,在接下来的教学中,我需要更加注重对学生的个别辅导,尤其是对于那些理解上存在困难的学生。
在讲授过程中,我尝试通过生活实例引入字母表示数的概念,让学生们感受到数学与生活的紧密联系。这一点从学生的反馈来看,效果还是不错的。他们能够更直观地理解字母在数学中的运用,知道如何将实际问题转化为代数表达式。
在总结回顾环节,我发现学生们对本节课的知识点掌握得还算不错,但仍有一些疑问。这提醒我在课后要关注学生的反馈,及时解答他们的疑惑,确保他们能够真正理解并运用所学知识。
1.加强对学生的个别辅导,关注他们的学习困难,针对性地进行指导。
2.增加字母与数字结合运算的练习,让学生更熟练地掌握这个难点。
3.继续采用实践活动和小组讨论的方式,提高学生的合作能力和实践能力。
-掌握代数式的简写和字母与数字的结合表示方法;
-运用字母表示数进行简单的运算和问题解决。
三、教学难点与重点
1.教学重点
(1)理解字母表示数的意义:字母在数学中的抽象表示是本节课的核心内容。教师应强调字母可以表示未知数、已知数以及数与数之间的关系,如a+b表示a与b的和。
举例:讲解如何用字母表示购买苹果的例子,假设每千克苹果的价格为a元,购买了b千克,那么总共需要支付的金额可以表示为ab元。
(3)用字母表示数进行问题解决:将字母表示数应用于实际问题解决,对学生来说是一个挑战。
难点举例:解决实际问题,如“小明今年a岁,比小红大b岁,求小红今年的年龄。”,让学生学会如何列出代数式并进行求解。
在教学过程中,教师要针对这些难点进行详细的讲解和示范,设计丰富的教学活动,帮助学生克服难点,确保学生对核心知识的理解透彻。
人教版七年级上册数学 3.1代数式表示数量关系 第1课《用字母表示数》
m
B.
m
C.( + 1)m
D.( - 1)m
随堂检测
3.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚
线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然
后按图(2)那样拼成一个正方形,则中间空的部分的面积是( C )
A.2mn
B.(m+n)2
C.(m-n)2
5.
2
4
8
16
32
猜数字游戏中,小明写出如下一组数: , , , , … … ,
5
7
11
19
35
64
小亮猜出第六个数是 ,根据此规律,第n个数是
67
2ⁿ
2ⁿ + 3
.
课程小结
列式时应注意:
(1)表示数的字母相乘时,可用“·”代替乘号或省略不写.如a×b通常写作
a ·b或ab.
(2)两字母相乘、数字与字母相乘、字母与括号相乘以及括号与括号相乘时,
3只青蛙3张嘴,6只眼睛12条腿,扑通3声跳下水;
4只青蛙4张嘴,8只眼睛16条腿,扑通4声跳下水;
a只青蛙 a 张嘴, 2a 只眼睛 4a 条腿,扑通 a 声跳下水.
新知探究
实质上就是用代数式表示数和
数量关系
在小学,我们学过用字母表示数,
知道可以用字母或含有字母的式子表
示数和数量关系,这样的式子在数学
① 抓住问题中的关键词,明确它们的意义以及它们之间的关系,如和、差、
积、商及大、小、多、少、倍、分、倒数、相反数等;
②明确运算及运算顺序,如“和的积”是“先和后积”,也就是“先加法
七年级数学上册 2.1 用字母表示数教案 (新版)新人教版
2.1用字母表示数教学目标:教材分析:用字母表示数 ,使学生的思维实现由数到式的飞跃 ,它是有理数的概括与抽象 ,是由算术进入代数的开始 ,是整式乘除和代数式运算的根底 .在知识的呈现上表达由特殊到一般的思维过程 ,充分展示了知识的发生开展过程 ,知识的呈现过程与学生的已有生活经验密切联系 ,开展学生运用数学的意识和能力 ,用字母表示数的思想 ,对学生学好代数知识起关键作用 ,为后续的代数学习奠定根底 .重点:体会字母表示数的意义 ,掌握用字母表示数的方法 .难点:引导学生抽象概括过程 .教学设计理念:教师在整节课的活动中 ,扮演的是学生学习的参与者、合作者、指导者的角色 .注重学生获得的结论 ,更注重获得结论的过程 .如参与意识、探究方法、表达能力及合作交流的意识 ,等等 .学生情况分析:初一学生对身边有趣的现象充满好奇 ,对一些具有规律性的问题充满了探究的欲望 .他们非常乐于动手操作 ,有很强的好胜心和表现欲;同时学生也具备了一定的归纳总结、表达的能力 ,根本上能在教师的引导下就某一主题展开讨论 .教具准备:多媒体课件、棋子 .教学设计:一、创设情境 ,导入新课导语:字母在我们的日常生活中运用非常广泛 ,谁能举出一些用到字母的实例 ?如:(1 )简谱中的字母表示音调; (2 )飞机从A地到B地 ,字母表示地点; (3 )饮料瓶上标出500ml ,字母ml表示体积单位毫升; (4 )车牌号前字母E表示某地区……看来生活中用字母的例子真不少 ,那么数学中用到字母的例子也很多 ,也可以用字母表示数 .请大家做个抢答游戏 (展示课件 ) .活动1:算24点 .利用给出的四张扑克牌里的数字信息 ,在较短的时间内摆一道四那么运算式子,结果必须是24点,摆好即举手发言 .利用摆出的式子,如:⨯+K ,问K代表什么 ?还有J、Q、A呢 ?+22453=点拨:这里的字母表示的是一个具体数 ,那么数学中字母还可以表示其它的数吗 ?怎样用字母表示数 ?用字母表示数有哪些好处呢 ?今天我们就专门研究 "用字母表示数〞这一节 .板书课题:第二章、走近代数§2.1用字母表示数二、合作交流 ,解读探究活动2:唱儿歌 (展示课件 )要求学生齐声朗读儿歌 ,当声音不齐时 ,问明原因 ,怎么解决 ?(要算眼数、腿数 ,速度不一致 ,有快有慢 ,所以声音不齐 . )有计算规律吗 ? (嘴数 =只数 ,眼数 =只数×2 ,腿数 =只数×4 ) .问:任意只青蛙时怎么唱 ? (文字语言很别扭 ,用符号语言 ,用字母n表示只数 )齐读:n只青蛙n张嘴 ,2n只眼睛 ,4n条腿 .点拨:这里的n表示3、5、6……很多很多数 ,代表一个变化的数 ,那么这样表示的好处是什么 ?简单、明确 ,高度概括 .注意:书写要求 .那么 ,过去你用字母表示过数吗 ?活动3、4:用字母表示学过的运算律和计算公式 (学生答复 ) .问:数字表示和字母表示的运算律或公式意义有什么不同 ?(数字表示只说明一个特例 ,而字母表示代表一般性的规律 ,更简单明确 ,便于应用 . ) 活动5:探索规律 (展示课件 (1 )、 (2 )、 (3 ) ) .通过观看屏幕图形变化过程 ,研究其边数与正方形个数的关系 ,由简单到复杂 ,由具体的正方形与边数关系 ,得出一般性规律性结论 ,并用字母表示出来 .(给学生充分的时间思考、交流、实验 ,从中体会如何用字母代替数分析出数量间的关系 ,从而列出表达式 (代数式和关系式 . )三、稳固应用展示课件 .注意书写要求并板书 ,全部让学生答复 ,初步学会用字母表示数量关系式(列代数式 ) .四、小结本节课学习了用字母表示数 ,请大家说说字母可表示哪些数 ?有什么好处 ?(1)字母可表示一个具体的或变化的数;(2)字母可表示公式、运算律;(3)字母可表示有趣的数学规律 ,它更简单明确 ,便于应用;(4)有了这些 ,本章将带你走进代数世|界 .教学反思1 、要主动学习、虚心请教,不得偷懒. 老老实实做"徒弟〞,认认真真学经验,扎扎实实搞教研.2 、要勤于记录,善于总结、扬长避短. 记录的过程是个学习积累的过程, 总结的过程就是一个自我提高的过程.通过总结, 要经常反思自己的优点与缺点,从而取长补短,不断进步、不断完善.3 、要突破创新、富有个性,倾心投入. 要多听课、多思考、多改良,要正确处理好模仿与开展的关系,对指导教师的工作不能照搬照抄,要学会扬弃,在原有的根底上,根据自身条件创造性实施教育教学,逐步形成自己的教学思路、教学特色和教学风格, 弘扬工匠精神, 努力追求自身教学的高品位.。
最新人教版初中七年级上册数学《用字母表示数》精品课件
学习方法指导
同学们,天道酬勤,一个人学习成绩的优劣取决于 他的学习能力,学习能力包括三个要素:
规范的学习行为; 良好的学习习惯; 有效的学习方法。
只要做好以上三点,相信你一定会成为学习的强者。
加油!加油!加油!
课后研讨
表示两片棉田上棉花的总产量. am bn (kg)
(4)在一个大正方形铁片中挖去一个小正 方形铁片,大正方形的边长是a mm,小正方形 的边长是b mm,用式子表示剩余部分的面积.
a2-b2 (mm2 )
练习2 用式子表示:
m
(1)5箱苹果重m kg,每箱重 5 kg ;
(2)一个数比a的2倍小5,则这个数
(3)回顾以前所学的知识,你还能举出用字母 表示数或数量关系的例子吗?
怎样分析数量关系并用含有字 母的式子表示数量关系呢?
例1(1)苹果原价是每千克p元,按8折优惠 出售,用式子表示现价;
0.8 p
(2)某产品前年的产量是n件,去年的产量 是前年产量的m倍,用式子表示去年的产量;
mn
(3)一个长方体包装盒的长和宽都是a cm,
解:(1)船在这条河中顺水行驶的速度是 (பைடு நூலகம் + 2.5)km/h,逆水行驶的速度是 (v – 2.5)km/h.
(2)买一个篮球需要x元,买一个排球需 要y元,买一个足球需要 z 元,用式子表示买 3 个篮球、5个排球、2个足球共需要的钱数;
解:(2)买3个篮球、5个排球、2个足球 共需要(3x+5y+2z)元.
用字母表示数,字母和数一样可以 参与运算,可以用式子把数量关系简明 地表示出来.
2.1.1 用字母表示数(教学设计)七年级数学上册(人教版)
2.1.1 用字母表示数教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减” 2.1.1 用字母表示数,内容包括:字母表示数的意义、字母表示数的书写要求.2.内容解析用字母表示数是学习数学符号的重要一步,从研究一个个特定的数到用字母表示一般的数,是学生认识上的一个飞跃.用字母表示数,便于从具体情景中抽象出数学关系的变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题.从这一节课开始,意味着将把学生从数的领域带入到代数式的世界,这将使学生的数学知识结构与数学观点.基于以上分析,确定本节课的教学重点为:理解字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系.二、目标和目标解析1.目标(1)理解字母表示数的意义.(抽象能力)(2)会用含有字母的式子表示实际问题中的数量关系.(应用意识)2.目标解析在具体情境中体会字母表示数的意义,能用字母表示数,用含有字母的式子表示数量关系,培养符号感.经历观察、发现、交流、归纳并用含有字母的式子表示规律、数量关系的过程,提高分析、归纳能力,掌握由特殊到一般的认识规律,体验数形结合的数学方法的优越性.激发学生用字母表示数的兴趣,体会发现规律的快乐,感受用字母表示数的简洁美.三、教学问题诊断分析在前面的学习中,主要学习的是数的有关概念和运算,学生习惯用数的相关知识解决实际问题由“数”到“式”的过程,是一个抽象的过程虽然学生小学学过用字母表示数,对含有字母的数学式子不会感到生疏,但七年级学生符号意识较弱,分析问题能力有待逐步提高,在具体的问题情境中,对于如何分析问题、寻找相关数量、确定数量之间的关系、用数学符号表达数量关系,学生会感到困难教学中要通过大量的学生熟悉的实际问题,有针对性地进行引导,充分展示分析数量关系并列式的过程,积累感性认识,丰富学习体验,培养学生解决实际问题的能力.基于以上分析,确定本节课的教学难点为:正确分析实际问题中的数量关系,用式子表示数量关系.四、教学过程设计(一)情境引入1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水;2只青蛙2张嘴,4只眼睛8条腿,扑通2声跳下水;3只青蛙3张嘴,6只眼睛12条腿,扑通3声跳下水;4只青蛙____张嘴,_____只眼睛_____条腿,扑通_____声跳下水;……a只青蛙____张嘴,____只眼睛____条腿,扑通____声跳下水.(二)自学导航独立思考:试着用含有字母的式子表示下列数量.(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价_____元.①数和字母相乘,可省略乘号,并把数字写在字母的前面.(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量______件.①字母和字母相乘,乘号可以省略不写或用“ • ” 表示. 一般情况下,按26个字母的顺序从左到右来写.(3)练习簿的单价为0.5元,圆珠笔的单价是3.2元,买a本练习簿和b支笔的总价是元.①后面带单位的相加或相减的式子要用括号括起来.(4)小明的家离学校s千米,小明骑车上学.若每小时行10千米,则需时.①除法运算写成分数形式,即除号改为分数线.(5)若每斤苹果31元,则买m斤苹果需元.3①带分数与字母相乘时,带分数要写成假分数的形式.(6)姚明个子高,经测量他通常跨一步的距离1米,若取向前为正,向后为负,那么姚明向前跨a步为米,向后跨a步为米.①当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.(三)总结提升列式就是把实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为符号语言.要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;①理清语句层次,明确运算顺序;①牢记一些概念和公式.列式注意事项:1.表示数的字母相乘时,可用“·”代替乘号或省略不写.如:a×b 通常写作a·b 或ab.2.数和字母相乘时,数字应写在字母前面.如:a×2通常写作2a.3.带分数与字母相乘时,应把带分数化成假分数.如:323×a 通常写作113a.4.式子中出现除法运算时,一般按分数形式来写.如:y÷3通常写作:y 3 .5.最后一步是加、减运算时,如果有单位,要用括号把式子括起来.如:温度由2①上升t①后是(2+t)①.(四)考点解析例1.(1)标价是a 元的商品打7折后的售价是_______元;(2)预计某产品今年的产量是xt ,恰好是去年产量的3倍,则去年的产量是______;(3)一个直角三角形的两条直角边长分别为m ,n ,则这个三角形的面积是_______.【迁移应用】1.下列式子符合规范书写要求的是( )A.-1xB.a×7C.b aD.115xy2.在下列表述中,不能用式子5a 表示的是( )A.5的a 倍B.a 的5倍C.5个a 的和D.5个a 的积3.一列火车从甲站出发,5h 行驶mkm ,则这列火车的中m 平均速度是_______km/h.例2.(1)一条河的水流速度是2.5km/h ,船在静水中的速度是vkm/h ,用式子表示船在这条河中顺水行驶和逆水行驶时的速度.【分析】船在河流中行驶时,船的速度需要分两种情况讨论:①顺流行驶时,顺水速度=静水速度+水流速度;①逆流行驶时,逆水速度=静水速度-水流速度.解:(1)船在这条河中顺水行驶的速度为(v +2.5)km/h ,逆水行驶时的速度为(v -2.5)km/h.(2)买一个篮球需要x 元,买一个排球需要y 元,买一个足球需要z 元,用式子表示买 3个篮球、5个排球、2个足球共需要的钱数.【分析】商品买卖问题中重要的数量关系:总价=单价×数量.解:买3个篮球、5个排球、2个足球共需要(352)x y z ++元.(3)如下图(图中长度单位:cm ),用式子表示三角尺的面积.【分析】三角板的面积等于三角形的面积减去圆的面积,根据图形中的数据,得三角形的面积是12ab cm 2,圆的面积是πr 2cm 2.解:三角尺的面积(单位:cm 2)是21π2ab r -.(4)如下图是一所住宅的建筑平面图(图中长度单位:m ),用式子表示这所住宅的建筑面积.【分析】住宅的建筑面积等于各部分面积的和,根据图中标注的尺寸,可以求出各部分的面积,再求和就是住宅的建筑面积.解:这所住宅的建筑面积(单位:m 2)是2218x x ++. 【迁移应用】1.某商品在国庆节期间,为了提高销售量,在原单价为a 元的基础上降价10%,则降价后的单价为( )A.(1+10%)a 元B.(1-10%)a 元C.(1+10%a)元D.10%a 元2.如图是一枚铜钱,外圆半径为acm ,里面的正方形边长为bcm ,则这枚铜钱的面积为_________cm 2.3.(1)办公桌的价格是每张a 元,办公椅的价格是每把b 元,用式子表示买3张办公桌、5把办公椅共需要的钱数;(2)某公司去年的销售额为a 元,成本为销售额的60%,税额和其他费用合计为销售额的p%,用式子表示该公司去年的年利润;(3)如图,有一块长为18m ,宽为10m 的长方形土地,现将左侧和上侧留出宽度是xm(0<x <9)的小路,余下的部分作为菜园,用式子表示长方形菜园的面积.例3.列式表示:(1)连续三个由小到大的奇数,中间的奇数是2n+1,写出第一个和第三个奇数;(2)一个三位数,个位上的数为a,十位上的数为b,百位上的数为c,请写出这个三位数.解:(1)第一个奇数为2n-1,第三个奇数为2n+3;(2)这个三位数为100c+10b+a.【迁移应用】1.一个两位数,十位上的数是a,十位上的数比个位上的数大1,这个两位数是( )A.a(a-1)B.10a(a-1)C.10a+(a-1)D.10a+(a+1)2.已知m是两位数,n是一位数,把m直接写在n后面,就成了一个三位数,这个三位数可表示为( )A.10n+mB.nmC.n+10mD.100n+m【解析】因为m是两位数,n是一位数,把1m直接写在n后面,形成一个三位数,那么n就成了这个三位数百位上的数,所以这个三位数可表示成100n+m.3.一个两位数,个位上的数是m,十位上的数是n,则这个两位数是______;若交换两个数位上的数,则新得到的两位数是______;若在原两位数后面加个1,则得到的三位数是___________.【解析】若在原两位数后面加个1,得到一个三位数,那么这个三位数百位上的数是n,十位上的数是m,个位上的数是1,则所得的三位数为100n+ 10m+1.例4.某市乘坐出租车时,收费标准如下:不超过3km,收取起步价12元;超出3km后,超出部分每千米收取1.8元.写出某人乘坐出租车出行xkm(x>3)的费用.解:因为xkm大于3km,所以超出(x-3)km.所以乘车费用为[12+1.8(x-3)]元.【迁移应用】1.某商店将定价为每件5元的商品按下列优惠方式销售:若购买不超过10件,按原价付款;若一次性购买10 件以上,超过部分打“8折”.小果买了a件(a>10)该商品,应付款______________元.【解析】因为a>10,所以超过部分有(a-10)件,超过部分每件需付5×0.8=4(元) , 故共付款[5×10+4(a-10)]元,即[50+4(a-10)]元.2.为了鼓励节约用电,某地对居民用电收费标准规定如下:每户每月用电不超过100度,每度按0.52元计算;每月用电超过100度,其中的100度仍按原标准收费,超过部分按每度0.75元计算.小敏家4月份用电a度,则小敏家4月份应缴纳电费多少元?(用含a的式子表示)解:当a不超过100时,应缴纳电费0.52a元;当a超过100时,应缴纳电费[52+0.75(a-100)]元.例5.请你用式子表示下列图形中阴影部分的面积.解:(1)直接法:S 阴影=(a -x)b;割补法:S 阴影=ab -bx.(2)S 阴影=12a(a -b). 【迁移应用】1.如图,已知长方形的长为a ,宽为b ,两个半圆的直径都为b ,请用含有字母的式子表示图中阴影部分的面积.解:S 阴影=ab -2×12π(b 2)2=ab -14πb 2.2.用不同的方法表示出图中阴影部分的面积.(至少写出两种)解:对原图进行割补如图所示:方法1:S阴影=bc+d(a-c);方法2:S阴影=ad+c(b-d);方法3:S阴影=ab-(a-c)(b-d).例6.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成……第n(n是正整数)个图案由_______个基础图形组成.(用含n的式子表示)【迁移应用】1.如图,按照规律排列下去,第n个图中有________个三角形.【解析】第1个图中三角形的个数为2×1,第2个图中三角形的个数为2×2,第3个图中三角形的个数为2×3……由此我们可以发现:第n个图中三角形的个数为2n.2.如图是由边长相同的小正方形组成的图形,其中部分小正方形涂有阴影.依此规律,第n个图中有_______个涂有阴影的小正方形.【解析】由题图可得,第1个图中涂有阴影的小正方形的个数为5=4+1,第2个图中涂有阴影的小正方形的个数为9=4×2+1,第3个图中涂有阴影的小正方形的个数为13=4×3+1……故第n个图中涂有阴影的小正方形的个数为4n+1.(五)小结梳理列式时应注意:①数与字母、字母与字母相乘省略乘号;①数与字母相乘时数字在前;①式子中出现除法运算时,一般按分数形式来写;①带分数与字母相乘时,把带分数化成假分数;①带单位时,适当加括号.五、教学反思。
2024年七年级上册数学用字母表示数课件
2024年七年级上册数学用字母表示数课件一、教学内容本节课选自2024年七年级上册数学教材第三章《用字母表示数》的第一节,主要内容为用字母表示数的概念、意义和应用。
具体包括字母与数的对应关系、字母表示数的简便性和适用范围,以及通过实例让学生掌握用字母表示数的方法。
二、教学目标1. 让学生理解用字母表示数的意义,掌握字母与数的对应关系。
2. 使学生能够运用字母表示数,解决实际问题,提高数学表达和逻辑思维能力。
3. 培养学生的抽象思维和概括能力,为后续学习代数知识打下基础。
三、教学难点与重点教学难点:理解字母与数的对应关系,运用字母表示数解决实际问题。
教学重点:掌握用字母表示数的方法,体会其简便性和适用范围。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、铅笔。
五、教学过程1. 实践情景引入利用课件展示实际生活中的问题,如计算长方形面积、三角形面积等,让学生感受用字母表示数的必要性。
2. 例题讲解(1)讲解字母与数的对应关系,举例说明。
(2)通过具体例题,展示用字母表示数的方法和步骤。
3. 随堂练习(1)让学生运用字母表示数,解决实际问题。
(2)教师巡回指导,解答学生疑问。
5. 课堂小结点评学生课堂表现,强调本节课的重点和难点。
六、板书设计1. 用字母表示数2. 内容:(1)字母与数的对应关系(2)用字母表示数的方法和步骤(3)用字母表示数的意义和适用范围七、作业设计1. 作业题目:(1)用字母表示下列各数:a) 3个苹果的质量b) 一个正方形的面积c) 一个三角形的周长(2)已知一个数的3倍加上5等于14,求这个数。
2. 答案:(1)a) 3ab) a^2c) 3a+b(2)3八、课后反思及拓展延伸1. 反思:本节课学生对用字母表示数的概念和方法掌握情况,对实际问题的解决能力。
2. 拓展延伸:引导学生思考用字母表示数的更多应用场景,如解方程、不等式等,为后续学习打下基础。
人教版七年级上册数学用字母表示数
活动4 例题与练习
(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要 z 元, 用式子表示买 3个篮球、5个排球、2个足球共需要的钱数;
解:买3个篮球、5个排球、2个足球共需要 (3x 5y 2z) 元.
活动4 例题与练习
(3)如左下图(图中长度单位:cm),用式子表示三角尺的面积; (4)右 下图是一所பைடு நூலகம்宅的建筑平面图(图中长度单位:m),用式子表 示这所住宅的建筑面积.
则(2)班的总成绩为____23_m_+__5_____分;
(3)某商店积压了一批商品,为尽快售出,该商店采取如下销售方案:将原来 每件m元的商品,加价50%,再做两次降价处理,第一次降价30%,第二次降 价10%.经过两次降价后的价格为___0_._9_4_5_m__元.
练习
1.教材P56 练习第1,2,3,4题.
三、教学设计
活动1 新课导入 做一做: 1.若正方形的边长为a,则它的面积为__a_2_. 2.若三角形的一边长为a,并且这条边上的高为h,则这个三角形的面积 为__a_h_. 3.鸡兔同笼,鸡a只,兔b只,则共有__(a_+__b_)__个头, __(_2_a_+__4_b_)__只脚.
活动2 探究新知
例3 用字母表示下列问题中的数量关系:
(1)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每 个80元,排球每个60元,购买这些篮球和排球的总费用为__(_8_0_m_+__6_0_n_)__元;
2 (2)在运动会中,(1)班的总成绩为m分,(2)班比(1)班总成绩的 3 还多5分,
1.教材P54 例1上面的内容.
例1 用含有字母的式子表示下列数量 (1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价; (2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表
3.1.1 用字母表示数课件 2024-2025学年人教版数学七年级上册
可以表示什么意义?
乙植树m天比甲植树n天多植树的棵树
巩固练习
3.仿照例子,写出下列代数式的含义:
例如:x+y表示x与y的和.
①2(x+y)表示 x与y的和的2倍 ;
2x+y表示 x的2倍与y的和 .
②x²+y²表示 x与y的平方和 ;
(x+y)2表示 x与y的和的平方 .
是5×60=300;t s能识别的范围
是 5×t=5t
.
问题2:该机器人识别n m2范围内的苹果需要的时间是 5
s;
导入新课
对于问题3:
机器人多采摘的苹果个数
=机器人采摘的苹果个数-工人采摘的苹果个数
=一个机械手的采摘效率×工作时间× 机械手的个数-工人的
采摘效率×工作时间
=
1
8
×3600 × m -
100
是 m/s.
(5)长方形的周长是15cm ,一边长为acm,这个长方形的另一
15 − 2
边长是
2
cm.
(6)某校七年级有m名学生,其中女生人数是全年级学生人数
的51%,则女生人数是 51%m .
巩固练习
2.(1) 苹果每千克a元,香蕉每千克b元,2(a+b)
可以表示什么意义?
买2千克苹果和2千克香蕉所花的钱数
省略不写.
代数式的书写规范
③带分数与字母相乘,必须化为假分数。
3.除号:
除法运算要写成分数的形式.
探究新知
用字母表示数,同一个代数式可以表示不同实
际问题中的数量关系.
如上例中的0.9p既可以表
3.1 列代数式表示数量关系(第1课时 用字母表示数) 课件七年级数学上册 (人教版2024)
练一练
2.用字母表示数,说明:
(1)任意两个奇数之和是偶数.
(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数.
答:(1)任意两个奇数之和是偶数:2m+1+2n+1=2(m+n+1).
(2)如果m为自然数,那么与m相邻的两个自然数之和是
偶数:m+1+m - 1=2m.
随堂练
①②④⑥
1.下列式子是代数式的是
因此类推问题(2),该机器人识别n㎡范围内的苹果
需要的时间是(n÷5)s或者 s.
5
(3)若该机器人搭载了10个机械手,它与采摘工人同时工作1 h,假
设工人ms可以采摘一个苹果,则机器人可比工人多采摘多少个苹果?
首先我们先来分析这其中的代数关系:
机器人多采摘的苹果个数
=机器人采摘的苹果个数-工人采摘的苹果个数
(3)a的11倍再加上2;
(4)x,y两个数和的平方;
(5)甲数为a,比甲数的平方大3的数.
解:(1)2x - y.
(3)11a+2.
(2)3(m - 5).
(4)(x+y)2.
(5)a2+3.
随堂练
4.以下各式不是代数式的是
( C)
A.5
B.3x2 - 2x+5
C.a+b=b+a
2
D.
解析:判断是不是代数式,关键是了解代数式的概念,注意代数式与等式、
D. a (10+ a ) cm2
分层练习-基础
6. 【情境题·生活应用】腹有诗书气自华,最是书香能致远.为鼓励和推
广全民阅读活动,某书店开展促销活动,促销方法是将原价为 x 元
《2.1 用字母表示数》(教案)-2024-2025学年北京版(2024)数学七年级上册
教学环节
详细内容
2. 探索用字母表示数的意义 设计意图:让学生理解用字母表示数的简洁性和普遍性。 (1)教师给出一些具体的数量关系,如小明比小红大 3 岁, 如果小红的年龄是岁,那么小明的年龄是多少岁?引导学生用字 母表示小明的年龄。 (2)组织学生进行小组讨论,观察这些用字母表示数的例子, 总结用字母表示数的意义。 (3)教师引导学生归纳用字母表示数的意义:用字母可以表示 任意数,它可以简洁地表示数量关系。
4. 讲解用字母表示数的例题 设计意图:通过讲解例题,让学生掌握用字母表示数的实际应用。 (1)教师讲解一些典型的例题,如已知一个三角形的底是厘米, 高是厘米,求这个三角形的面积。 (2)在讲解过程中,强调用字母表示数的方法和步骤,特别是 要注意单位的写法。 (3)提问学生:“在解决用字母表示数的问题时,需要注意哪些
系?” 引导学生总结解决实际问题的方法。
7. 课堂小结 设计意图:对本节课的教学内容进行总结,帮助学生梳理知识, 巩固所学内容。 (1)教师提问学生:“本节课我们学习了哪些内容?” 引导学生 回顾用字母表示数的意义、方法和规则以及实际问题的解决。 (2)教师总结本节课的重点内容,强调用字母表示数的重要性 和应用方法。 (3)布置课后作业,让学生巩固所学知识。
3. 学习用字母表示数的方法和规则 设计意图:让学生掌握用字母表示数的正确方法和规则。 (1)教师通过具体的例子,如、等,讲解用字母表示数的方法 和规则。强调字母与数字相乘时的写法,如可以写成。 (2)让学生练习用字母表示一些简单的数量关系,如长方形的 周长和面积公式等。 (3)组织学生进行小组交流,互相检查答案,讨论用字母表示 数的注意事项。
《2.1 用字母表示数》(教案)-2024-2025 学年北京版 (2024)数学七年级上册
七年级上册数学用字母表示数课件
七年级上册数学用字母表示数课件一、教学内容本节课我们将学习七年级上册数学教材第3章第2节“用字母表示数”的内容。
具体包括:字母表示数的概念、字母表示数的法则、字母表示数在算式中的应用。
二、教学目标1. 理解并掌握用字母表示数的概念和法则。
2. 能够运用字母表示数进行简单的算式推导和计算。
3. 培养学生的符号意识和逻辑思维能力。
三、教学难点与重点重点:字母表示数的概念、法则及其应用。
难点:理解字母表示数的抽象性,能够灵活运用字母表示数进行算式推导。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、铅笔。
五、教学过程1. 实践情景引入通过展示一组实际生活中用字母表示数的例子(如温度计、方程式等),让学生感受到字母表示数的实际意义。
2. 例题讲解(1)讲解字母表示数的概念和法则。
(2)举例说明字母表示数在算式中的应用。
(3)引导学生通过观察、思考,发现字母表示数的规律。
3. 随堂练习让学生完成教材第3章第2节练习题,巩固字母表示数的概念和应用。
4. 互动环节让学生分组讨论,互相出题,检验对方对字母表示数的掌握情况。
回顾本节课所学内容,强调字母表示数的重点和难点。
六、板书设计1. 字母表示数的概念2. 字母表示数的法则3. 字母表示数在算式中的应用七、作业设计1. 作业题目:(1)用字母表示下列各数:a+3, 4b1, 2c+5。
(2)已知a=5, b=3,求下列各式的值:3a+2b, a^2+b^2。
2. 答案:(1)a+3, 4b1, 2c+5。
(2)3a+2b=19, a^2+b^2=34。
八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对字母表示数的概念和法则是否已经掌握,能否灵活运用字母表示数进行计算。
2. 拓展延伸:(1)引导学生思考:为什么需要用字母表示数?字母表示数有什么优点?(2)让学生尝试用字母表示数解决实际问题,如计算购物时的总价等。
(3)向学生介绍代数学的历史,激发学生的学习兴趣。
人教版七年级数学上册《用字母表示数》课件
…… 第n盏灯的里ຫໍສະໝຸດ 数为15+40(n-1) =40n-25(米), 故当n=14时,40n-25=535米 处是灯,
如图2-1-2,是由形状相同的正六 边形和正三角形镶嵌而成的一组有规律的图案, 则第4nn-个2(图或2案+4中(n-阴1影)) 小三角形的个数是 ____________________(用含有n的式子表示).
图2-1-2
【解析】 由图可知:第一个图案 有阴影小三角形2个,第二图案有阴 影小三角形2+4=6个,第三个图案 有阴影小三角形2+8=10个,那么
1.“x与3的差的2倍”用代数式表示为 B
()
A.2x-3
B.2(x-3)
C.3(x-2)
D.3x-2 D
2.A下.(1列12a代数)式中符合书写B.要n2求的是
C.比原价少80~100元
D.比原
▪不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 ▪书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 ▪正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 ▪书籍是屹立在时间的汪洋大海中的灯塔。
第二章
2.1 整式
整式的加减
第1课时 用字母表示数
知识管理
知识管理
1.用字母表示数,字母和数一样可以参与运 算,可以用式子把数量关系简明地表示出 来.
七年级数学上册第二章整式的加减2.1整式第1课时用字母表示数复习课件(新版)新人教版
(4)某商品的原价是 a,提价 10%后的价格; (5)有一个三位数,个位数字比十位数字少 4,百位数字是个位数字的 2 倍, 设 x 表示十位数字,用式子表示这个三位数.
解:(1)5x2-2; 1 (2)-x+y ; (3)(x-y)2; (4)(1+10%)a; (5)100(2x-8)+10x+(x-4).
3.[2017· 六盘水]下列式子正确的是( C ) A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn 4.[2017· 海南]已知 a=-2,则式子 a+1 的值为( C ) A.-3 B.-2
C.-1 D.1 5.“x 的 2 倍与 5 的和”用代数式表示为
第二章 整式的加减
2.1 第1课时 用字母表示数
学习指
学习指南
★教学目标★ 1.通过数学活动让学生操作、思考、体会字母表示数的意义,初步理解、掌 握用字母表示数的方法,进一步发展学生的数感、符号感. 2.通过引导使学生初步感悟代数思想,提高学生的数学抽象概括能力.
图 2-1-1
解: (1)∵客厅的面积为 6x, 厨房的面积为 2×(6-3)=6, 卫生间的面积为 2y, 卧室的面积为 3×(2+2)=12. ∴总面积为(6x+2y+18)m2. (2)当 x=4,y=1.5 时, 总面积为 6x+2y+18=6×4+2×1.5+18=45, ∴铺地砖的总费用为 45×80=3 600(元).
购买质量x/kg 1 2 3 4 5 表1 售价c/元 4+0.2 8+0.4 12+0.6 16+0.8 20+1
携带质量m/kg
收费标准
0<m≤20 20<m≤100 m>100
不收费 共100元 超过100 kg的部分2元/kg
七年级数学人教版(上册)【知识讲解】第1课时用字母表示数
米,宽为 (10-x) 米.
(2)菜地的面积为
(18-2x)(10-x)
平方米.
16.(2021·石家庄长安区期末)小明跟同学在某餐厅吃饭,下图 为此餐厅的菜单:
套餐一:一份重庆小面 套餐二:一份重庆小面加一杯饮料 套餐三:一份重庆小面加一杯饮料和一份沙拉 若他们一共点了 10 份重庆小面、x 杯饮料、y 份沙拉,则他们 点了 (10-x) 份套餐一.
(2)若把 n 张这样的餐桌拼接起来,四周可坐多少人? 解:(2)n 张餐桌按上述方式拼接,四周可坐(4n+2)人.
51 解:(1)2a-3b. (2)x 与 4 的商的平方.
x 解:(2)(4)2.
1 12.用字母表示“x 的 2 倍与 y 的差的平方的3”,正确的是( D )
1 A.(2x2-y)·3
1 B.2x-3y2
1 C.(2x-3y)2
1 D.3(2x-y)2
6 13.某件夏装的原价是 a 元,因过季打折,以(10a-20)元出售.下 列说法中,能正确表述该夏装出售价格的是( A ) A.原价打六折后再降低 20 元 B.原价打四折后再降低 20 元 C.原价降低 20 元后再打六折 D.原价降低 20 元后再打四折
知识点 3 用含字母的式子表示实际问题中的数量关系
5.已知苹果每千克 m 元,则 2 千克苹果共
元( D )
A.m-2
B.m+2
m C. 2
D.2m
6.一列火车从甲站出发,5 h 后行驶了 m km,则这列火车的平 m
均速度是 5 km/h.
7.小何买了 4 本笔记本,10 支圆珠笔,设笔记本的单价为 a 元,
C.5 个 a 的和
D.5 个 a 的积
3.用式子表示“a 的 2 倍与 3 的和”正确的是( B )
用字母表示数人教版七年级数学上册PPT精品课件
小时的路程为 3(50-a)
千米;
(3)设甲数为x,乙数比甲数的3倍少6,则乙
数表 用字母表示数-2020秋人教版七年级数 学上册 课件
第2章第1课 用字母表示数-2020秋人教版七年级数 学上册 课件
13. 如图,一个窗户的上部是由4个相同的扇形组成 的半圆形,下部是由边长为a的4个完全相同的 小正方形组成的大正方形,则做这个窗户需要 的材料总长为( B ) A. 15a B. 15a+πa C. 15a+πr D. πa+6a
A. p元 B. 0.99p元 C. 1.01p元 D. 1.2p元
第2章第1课 用字母表示数-2020秋人教版七年级数 学上册 课件
第2章第1课 用字母表示数-2020秋人教版七年级数 学上册 课件
三级检测练
一级基础巩固练 9. 买一个足球需要m元,买一个篮球需要n元,则买
4个足球、7个篮球共需( D ) A. 28mn 元 B. 11mn元 C.(7m+4n)元 D.(4m+7n)元
第2章第1课 用字母表示数-2020秋人教版七年级数 学上册 课件
第2章第1课 用字母表示数-2020秋人教版七年级数 学上册 课件
第2章第1课 用字母表示数-2020秋人教版七年级数 学上册 课件
三级拓展延伸练 15. 如图,学校准备新建一个长度为L的读书长廊, 并准备用若干块带有花纹和没有花纹的两种规格大 小相同的正方形地面砖搭配在一起,按图中所示的 规律拼成图案铺满长廊,已知每个小正方形地面砖 的边长均为0.5.
第二章 整式的加减
第1课 用字母表示数(列代数式)
新课学习
知识点1.用字母表示代数型的数量关系
1. 在解决实际问题时,要先找出各个量之间的关系. 要抓住关键词语,明确它们之间的意义及关系,如 和、差、积、商、大、小、多、少、倍、分等,注 意数量关系的运算顺序,正确使用运算符号及括号.
2024年秋季新人教版七年级上册数学教学课件 3.1 第1课时 字母表示数
这个长方体水池的容积是 a ·a ·h cm3,即 a2h cm3. 故池内水的体积为 1 a2h cm3.
1 103600 1 3600 4500 3600
8
m
m
用字母表示 数量关系
合作探究
用含有字母的式子表示数量和数量关系的问题. (1) 一条河的水流速度是 2.5 km/h. 船在静水中的速度是 v km/h,用式子表示船在这条河中顺水行驶的速度;
分析:行船问题 顺水时 船的速度=船在静水中的速度+水流速度 逆水时 船的速度=船在静水中的速度-水流速度
n 用字母表
5
示数
书写规范
②除法运算写成分数形式,即除号改为分数线.
(3) 若该机器人搭载了 10 个机械手,它与采摘工人同 时工作 1 h,假设工人 m s 可以采摘一个苹果,则机 器人可比工人多采摘多少个苹果?
分析:机器人多采摘苹果个数
= 机器人采摘的苹果个数 一 工人采摘的苹果个数
= 机器人的采摘效率×工作时间 一 工人采摘效率×工作时间
3
练一练
1. (1) 某产品前年的产量是 n 件,去年的产量是前年 产量的 m 倍,用代数式表示去年的产量;
解:去年的产量是 mn 件.
书写规范
⑤字母与字母相乘时,按字母表顺序排列.
(2)
若每斤苹果3 1
3
元,则买
m
斤苹果需
元.
书写规范
⑥带分数与字母相乘时,把带分数化成假分数.
(3) 用式子表示数 n 的相反数.
(完整版)七年级数学用字母表示数
七年级数学用字母表示数1用字母表示数【教师寄语】天才就是无止境刻苦勤奋的能力【学习目标】1知道字母能表示什么;能用字母写出简单问题中的数量关系;能用字母和代数式表示以前学过的运算律和计算公式.2体会字母表示数的意义,形成初步的符号感.经历探索规律并用代数式表示规律的过程.3激发求知欲和好奇心;感受数学符号的简洁美.【学习过程】一、学前准备1预习疑难摘要:2小说《阿Q正传》中的Q、扑克牌中Q和“我们学校有Q名学生参加教师节艺演出”,这三个问题中的Q都表示的意思分别是。
二、探究活动(一)自主学习1先利用如下一首儿歌“1只青蛙1张嘴,2只眼睛4条腿,1声扑通跳下水;2只青蛙2张嘴,4只眼睛8条腿,2声扑通跳下水;3只青蛙3张嘴,6只眼睛12条腿,3声扑通跳下水…………”你觉得这首儿歌唱得完吗?你能想办法把这首儿歌中的关系概括出吗?n只青蛙有张嘴,n只眼睛条腿,声扑通跳下水。
2用字母表示出以前所学过的法则和公式:如结合律、分配律、长方形的面积和周长公式、三角形面积公式、梯形面积公式。
(二)合作交流例题解析阅读教材P101例1,解决以下训练题:1.小明步行上学,速度为v米/秒,亮亮骑自行车上学,速度是小明的3倍,则亮亮的速度可以表示为_______米/秒.2某工厂有煤吨,计划每天用n吨,实际每天节约用煤b吨,则节约后可以用________天3.一个两位数,个位数字是a,十位数字是b,这个两位数____________.4.小莉h走了s ,那么她的平均速度是_____________/h..某城市年前人均收入为n元,预计今年收入是五年前的2倍多00元,那么今年人均收入将达________元.归纳总结:通过这堂的学习,你对“用字母表示数有什么优越性”这个问题的认识是。
(三)挑战自我阅读教材P101挑战自我题目,组内讨论交流,共同解决。
三、巩固练习利用小棒搭一个正方形需要四根小棒,那么按照下面的方式,搭两个正方形需要____根小棒。
最新人教版七年级数学上册《用字母表示数》教案
第二章 整式的加减2.1 整式第1课时 用字母表示数【知识与技能】能正确用含字母的式子表示数量关系及以前学过的运算律、计算公式.【过程与方法】体会字母表示数的意义,形成初步的符号感,提高应用数学的意识.【情感态度】探究过程中培养和发展学生学习数学的主动性,提高数学表达能力,发展分析和解决问题的能力.【教学重点】用字母表示数量之间的关系.【教学难点】体会字母表示数的意义,形成初步的符号感.一、情境导入,初步认识做一做1.若正方形的边长为a ,则正方形的面积是 ;2.若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;3.长方形的长与宽分别为a 、b ,则长方形的周长是 ;4.鸡兔同笼,鸡a 只,兔b 只,则共有头 个,脚 只.【教学说明】教师出示上面4个小题,让学生初步体会用字母表示数的意义.教师可向学生提问:它们有什么不同?不管学生对此作出什么回答,教师都应给予鼓励.【答案】1.a 2 2.21ah 3.2(a+b )或2a+2b4.a+b 2a+4b问题 用字母表示数的书写规则.【教学说明】培养学生良好的规范的书写习惯.【归纳结论】(1)乘号的写法:字母与字母相乘,数与字母相乘时,乘号“×”通常省略不写或用“·”代替.例如a ×b 写成ab 或a ·b.(2)除号的写法:除号一般不用除号“÷”,而是写成分数的形式,例如:(a+b )h ÷2写成2h b a )( . (3)带分数的写法:数与字母相乘时,数如果是带分数,要化成假分数,并且数要写在字母的前面,例如计算221与xy 相乘时,写成25xy 或25xy . 二、思考探究,获取新知用字母表示数.问题1 教材第54页例1.【教学说明】上一栏目中,学生已通过做一做大致体会了用字母表示数的意义,因此对于这道例题,教师可放手让学生独立思考并做一做,让学生有更深一步的体会:用字母表示数量关系和用数去表示数量关系是一样的.问题2 教材第55页例2.【教学说明】这道例题也同样是用字母表示数量关系,只不过其结果是多项式.教师仍可让学生独立完成.在这道例题完成后,教师向学生提问:①用字母表示数量关系和用数表示有什么异同?②用字母表示数量关系是不是应用更为广泛一些?③用数表示是不是有其局限性?【归纳结论】事实上,用字母表示数量关系往往更为便捷和直观,而用数表示这些关系往往具有局限性(有些数量关系不能用数表示);用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.试一试 教材第56页练习.三、运用新知,深化理解1.下列各式:①121x;②(a+b)÷c;③2n-1;④2xy 41;⑤2.5xy 2;⑥51ab 3,其中符合书写要求的个数为( )A.1个B.2个C.3个D.4个2.用含有字母的式子填空.(1)某商店前一个月盈利a 元,这个月盈利是前一个月盈利的75%,则这个月盈利 元.(2)三角形的底是高的2倍,若高是xcm,则这个三角形的面积是cm2.(3)1kg橘子a元,1kg苹果6元,购买10kg橘子和mkg苹果共元.(4)x的立方与y的平方的差是.【教学说明】通过这几个小题检测学生对本节课内容的掌握情况.可采取学生抢答的形式完成.【答案】1.C2.(1)75%a (2)x2(3)10a+6m (4)x3-y2四、师生互动,课堂小结1.师生共同回顾用字母表示数的知识点.教师提问:如何用字母表示数量关系?2.你还有什么疑问?说说看.1.教材第56页“练习”及从习题2.1中选取.2.完成练习册中本课时的练习.课堂上通过向学生提供用字母表示数的感性材料,让学生通过观察分析,找到列代数式的思路.教学过程中应注意学生的自主思考,加深理解,为后面的学习打下坚实的基础,并培养学生爱思考,爱学习的好习惯.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xy 17 ab n 3数量关系
例2 (1)一条河的水流速度是2.5 km/h,船在静水中的速度 是 v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时 的速度; 分析:顺水行驶时,船的速度=船在静水中的速度+水流速度;
如果用 v 表示速字母的式子的书写
例1 用含有字母的式子表示下列数量 (1)苹果原价是每千克p元,按8折优惠出售,用式子
表示现价;
(2)某产品前年的产量是n件,去年的产量是前年产量
的m倍,用式子表示去年的产量;
(3)一个长方体包装盒的长和宽都是a cm,高是h cm,
②理清语句层次明确运算顺序种商品每袋4.8元,在一个月内的销售量是m 袋,
用式子表示在这个月内销售这种商品的收入. 4.8m元
(2)圆柱体的底面半径、高分别是 r,h,用式子表示圆
柱体的体积.
πr 2h
(3)有两片棉田,一片有m hm2 (公顷,1 hm2 =104 m2 ),
解:买3个篮球、5个排球、2个足球共需要
度单位:cm),用式子表示 三角尺的面积;
(4)右 下图是一所住宅的建筑平面图(图中长度单 位:m),用式子表示这所住宅的建筑面积.
解:(3)三角尺的面积(单位:cm2 )是( 1 ab πr 2 ). 2
(4)这所住宅的建筑面积(单位:m2是把实际问题中与数量有关的语句,用含有数、
字母和运算符号的式子表示出来,也就是把文字语言转化 为符号语言.
①要抓住关键词语,明确它们的意义以及它们之间的 关系,如和、差、积、商及大、小、多、少、倍、分、倒 数、相反数等;
平均每公顷产棉花a kg;另一片有n hm2 ,平均每公顷产棉花b
kg,用式子表示两片棉田上棉花的总产量. (am bn )kg
(4)在一个大正方形铁片中挖去一个小正方形铁片,大
正方形的边长是a mm,小正方形的边长是b mm,用式子表示
剩余部分的面积.
(a -b静水中的速度-水流速度.
解:(1)船在这条河中顺水行驶的速度是 (v 2.5) km/h,
逆水行驶的速度是
(vkm/2h.5.) 牛牛文档分 享(2)买一个篮球需要x元,买一个排球需要y元, 买一个足球需要 z 元,用式子表示买 3个篮球、5个排 : ①数与字母、字母与字母相乘省略乘号; ②数与字母相乘时数字在前; ③式子中出现除法运算时,一般按分数形式来写; ④带分数与字母相乘时,把带分数化成假分数; ⑤带单位时,适当加括号. 牛牛文档分 享享当堂练习
用式子表示下列数量
(1)5箱苹果重m kg,每箱重
m 5
kg ;
(2)一个数比a的2倍小5,则这个数为 (2a 5);
ቤተ መጻሕፍቲ ባይዱ
(3)全校学生总数是x,其中女生占总数52%,则女生人
数是 0.52x ,男生人数是 0.48x ;
(4)某班有a名学生,现把一批图书分给全班学生阅读,
如果每人分4本,还缺25本,则这批图书共 (4a 本25;)
用式子表示它的体积; (4)用式子表示数n的相反数.
注意带单位!
答案:(1)0.8 p 元;(2)mn 件;(3)a2 数与字母、字母与字母相乘时省略乘号,数与字母相
乘时数字在前;
100×t
100t
② 出现多个字母时,字母按照26个字母顺序排列;
学习目标
1.理解字母表示数的意义.(重点) 2.会用含有字母的式子表示实际到拉萨之间有一段很 长的冻土地段.列车在冻土地段的行驶速度是100 km/h.请思考下列问题: (1)列车2 h行驶多少千米?3 h呢?8 h呢?t h呢? (2)字母 t 表示时间有什么意义?
③ 相同字母相乘时应写成幂n的m形式; mn
nn
n2
④ 1或-1与字母相乘时,1通常省略不写;
1n
n
⑤ 式子中出现除法运算时,一般按分数形式来写,带分
数与字母相乘时,把带分数化成假分数.
n÷3
n 31 1 3 n 牛牛文档分4n 3享做一做
判断下列式子书写是否规范,不规范的请改正.