2019高考物理总复习考查点8圆周运动练习
高考物理生活中的圆周运动的基本方法技巧及练习题及练习题(含答案)及解析
高考物理生活中的圆周运动的基本方法技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()221 2A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.4.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
6.1 圆周运动 习题—2020-2021学年人教版(2019)高中物理必修第二册
一、圆周运动分题型练习同轴转动1.汽车后备箱盖一般都有可伸缩的液压杆,如图甲所示,图乙为简易侧视示意图,液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O点的固定铰链转动,在合上后备箱的过程中()甲乙A.A点相对于O′点做圆周运动B.B点相对于O′点做圆周运动C.A与B相对于O点线速度大小相同D.A与B相对于O点角速度大小相同2.如图所示是一个玩具陀螺.a、b和c是陀螺外表面上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大3.(多选)甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是()A.它们的半径之比为2∶9B.B.它们的半径之比为1∶2C.它们的周期之比为2∶3D.D.它们的周期之比为1∶34.如图所示,两个小球固定在一根长为l的杆的两端,绕杆上的O点做圆周运动。
当小球A的速度为v A时,小球B的速度为v B,则轴心O到小球A的距离是()A.v A(v A+v B)l B.vAlvA+v BC.vA+v B lvAD.vA+v B lvB5.如图所示,一偏心轮绕垂直纸面的轴O匀速转动,a和b是轮边缘上的两个点,则偏心轮转动过程中a、b两点()A.角速度大小相同B.线速度大小相同C.周期大小不同D.转速大小不同6.如图所示,圆环以直径AB为轴匀速转动,已知其半径R=0.5 m,转动周期T=4 s,求环上P点和Q点的角速度和线速度总结:同轴转动的各点角速度、转速、周期相等,线速度与半径成正比。
传动装置7.(多选)-如图所示为某一皮带传动装置。
主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是( )A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为r 1 r 2 nD.从动轮的转速为r2r1n8.如图所示为锥形齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v1、v2,则() A.ω1<ω2,v1=v2B.ω1>ω2,v1=v2C.ω1=ω2,v1>v2D.ω1=ω2,v1<v29.(多选)变速自行车靠变换齿轮组合来改变行驶速度,如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则() A.该车可变换两种不同挡位B.该车可变换四种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮角速度之比ωA∶ωD=4∶110.在如图所示的传动装置中,B、C两轮固定在—起绕同—转轴转动。
高一物理 必修2 5.4圆周运动的运动学问题 知识点总结 题型总结 同步巩固 新高考 练习
高中物理 必修2 圆周运动的运动学问题1、描述圆周运动的物理量描述圆周运动的基本参量有:半径、线速度、角速度、周期、频率、转速、向心加速度等。
(1)v =∆l∆t =2πr T =2πrf(2)ω=∆θ∆t =2πT(3)T =1f =2πr v3、圆周运动中的运动学分析 (1)对公式v =ωr 的理解当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比。
(2)对a =v 2r=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比。
在分析传动装置中的各物理量时,要抓住不等量和想等量的关系,具体有: (1)同一转轴的轮上各点角速度ω相同,而线速度v=ωr 与半径r 成正比。
(2)当皮带(或链条、齿轮)不打滑时,传动皮带上各点以及用皮带连接的两轮边沿上的各点线速度大小相等,而角速度ω=vr 与半径r 成反比。
(3)齿轮传动时,两轮的齿数与半径成正比,角速度与齿数成反比。
1、如图所示装置中,A、B、C三个轮的半径分别为r、2r、4r,b点到圆心的距离为r,求图中a、b、c、d各点的线速度之比、角速度之比、加速度之比,周期之比,转速之比,频率之比。
答案:①2:1:2:4;②2:1:1:1;③4:1:2:4;④1:2:2:2;⑤2:1:1:1;⑥2:1:1:12、一个环绕中心线AB以一定的角速度转动,P、Q为环上两点,位置如图所示,下列说法正确的是(A)A.P、Q两点的角速度相等B.P、Q两点的线速度相等C.P、Q两点的角速度之比为3∶1D.P、Q两点的线速度之比为3∶13、自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A,如图所示.正常骑行时三轮边缘的向心加速度之比a A∶a B∶a C等于(C)A.1∶1∶8 B.4∶1∶4C.4∶1∶32 D.1∶2∶44、如图所示,传动轮A、B、C的半径之比为2︰1︰2,A、B两轮用皮带传动,皮带不打滑,B、C两轮同轴,a、b、c三点分别处于A、B、C三轮的边缘,d点在A轮半径的中点。
人教版(2019)高一物理必修第二册第六章圆周运动第3节向心加速度同步练习试题(word 含答案)
高一物理第二学期人教版(2019)必修二第六章圆周运动第3节向心加速度同步练习题▲不定项选择题1.关于向心加速度的物理意义,下列说法中正确的是()A.描述线速度的方向变化的快慢C.描述角速度变化的快慢B.描述线速度的大小变化的快慢D.描述向心力变化的快慢2.A、B、C三个物体放在旋转的水平圆台上,A的质量是2m,B、C质量各为m;C离轴心的距离是2r,A、B离轴心距离为r,当圆台匀速转动时,A、B、C都没发生滑动,则A、B、C三个物体的线速度、角速度、向心加速度和向心力的大小关系正确的是()A.ωA:ωB:ωC=1:1:2C.aA:aB:aC=2:2:1B.vA:vB:vC=1:1:1D.FA:FB:FC=2:1:23.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是()A.线速度B.向心加速度C.合外力D.角速度4.在光滑的水平面上,一质量为m的小球在绳的拉力作用下做半径为r的匀速圆周运动,小球运动的线速度为v,角速度为ω,则绳的拉力F大小为()v2A.rB.mω2rC.mω2r D.mv2r5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r1、r2、r3,若甲轮匀速转动的角速度为ω,三个轮相互不打滑,则丙轮边缘上各点的向心加速度大小为()r12ω2A.r3r32ω2B.2r1r33ω2C.2r1r1r2ω2D.r36.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度大小逐渐减小.汽车转弯时的加速度方向,可能正确的是A.B.C.D.7.关于质点做匀速圆周运动的下列说法中,正确的是()A.由ω=2π可知,ω与T成反比TB.由a=ω2r可知,a与r成正比2vC.由v=ωr可知,ω与r成反比,v与r成正比D.由a=可知,a与r成反比r8.荡秋千是人们平时喜爱的一项休闲娱乐活动,如图所示,某同学正在荡秋千,A和B分别为运动过程中的最低点和最高点,若忽略空气阻力,则下列说法正确的是()A.在B位置时,该同学速度为零,处于平衡状态B.在A位置时,该同学处于超重状态C.在A位置时,该同学对秋千踏板的压力大于秋千踏板对该同学的支持力,处于超重状态D.由B到A过程中,该同学向心加速度逐渐增大9.如图所示为学员驾驶汽车在水平面上绕O点做匀速圆周运动的俯视图。
高考物理圆周运动经典练习题
圆周运动水平圆周运动【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。
当圆筒的角速度增大以后,下列说法正确的是( D )A 、物体所受弹力增大,摩擦力也增大了B 、物体所受弹力增大,摩擦力减小了C 、物体所受弹力和摩擦力都减小了D 、物体所受弹力增大,摩擦力不变【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a 、b 两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B )A .在a 轨道上运动时角速度较大B .在a 轨道上运动时线速度较大C .在a 轨道上运动时摩托车对侧壁的压力较大D .在a 轨道上运动时摩托车和运动员所受的向心力较大【例题】长为L 的细线,拴一质量为m 的小球,一端固定于O 点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L 与竖直方向的夹角是α时,求:(1)线的拉力F ;(2)小球运动的线速度的大小; (3)小球运动的角速度及周期。
★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。
因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。
由平行四边形法则得小球受到的合力大小为mgtanα,线对小球的拉力大小为F=mg/cosα由牛顿第二定律得mgtanα=mv 2/r 由几何关系得r=Lsinα 所以,小球做匀速圆周运动线速度的大小为an sin v gLt αα=a bLα O小球运动的角速度小球运动的周期2cos 2L T gπαπ==ω点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不可忽视对解题结果进行动态分析,明确各变量之间的制约关系、变化趋势以及结果涉及物理量的决定因素。
1、竖直平面内:(1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即rmv mg 2临界=⇒rg =临界υ(临界υ是小球通过最高点的最小速度,即临界速度)。
第六章 圆周运动复习题 -2022-2023学年高一下学期物理人教版(2019)必修第二册
圆周运动复习题(一)1.关于匀速圆周运动,下列说法中正确的是()A.匀速圆周运动就是匀速运动B.匀速圆周运动的线速度不变C.匀速圆周运动的向心加速度不变D.匀速圆周运动实质是变加速度的曲线运动2.如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则A的受力情况正确的是()A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.受重力、支持力、向心力、摩擦力D.向心力、摩擦力3.如图所示,A、B两点分别位于大、小轮的边缘上,C点位于大轮半径的中点,大轮的半径是小轮的2倍,他们之间靠摩擦传动,接触面上没有滑动.下列说法正确的是()A.A、B、C三点的线速度大小关系是V A>V B>V CB.A、B、C三点的角速度大小关系是ωA=ωC<ωBC.A、B、C三点的向心加速度大小关系是a B>a A>a CD.以上说法均不正确4.如图所示,细绳的一端固定,另一端系一小球,让小球在竖直面内做圆周运动,关于小球运动到P点时的加速度方向,下列图中可能的是()A.B.C.D.5.如图所示,水平转台上放着A、B、C三个物体,质量分别为2m、m、m,离转轴的距离分别为R、R、2R,与转台间的摩擦因数相同,转台旋转时,下列说法中,正确的是()A.若三个物体均未滑动,A物体的向心加速度最大B.若三个物体均未滑动,B物体受的摩擦力最大C.转速增加,A物比B物先滑动D.转速增加,C物先滑动6.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A.A与B的线速度大小相等B.A与B的角速度相等C.A与B的向心加速度大小相等D.悬挂A、B的缆绳与竖直方向的夹角相等7.中国高铁是具有自主核心技术的“中国造”,随“一带一路”走出国门.在高速铁路弯道设计中,外轨略高于内轨,当列车以规定速度运行时,刚好不侧向挤压轨道,则()A.当列车的速度大于规定速度时将侧向挤压内轨B.当列车的速度大于规定速度时将侧向挤压外轨C.当列车的速度小于规定速度时将侧向挤压外轨D.当列车的速度小于规定速度时不侧向挤压轨道8.如图所示,放于竖直面内的光滑金属细圆环半径为R,质量为m的带孔小球穿于环上,同时有一长为R的细绳一端系于球上,另一端系于圆环最低点,绳的最大拉力为2mg.当圆环以角速度ω绕竖直直径转动时,发现小球受三个力作用.则ω可能为()A.3B.C.D.9.如图将悬线拉至水平无初速度释放,当小球到达最低点时,细线被一个与悬点在同一竖直线上的小钉B挡住,比较悬线被挡住前后瞬间()A.小球的动能不变B.小球的向心加速度变小C.小球的角速度变大D.悬线的张力变小10.A、B两质量相同的质点被用轻质细线悬挂在同一点O,在同一水平面上做匀速圆周运动,如图所示,则()A.A的角速度一定比B的角速度大B.A的线速度一定比B的线速度大C.A的加速度一定比B的加速度大D.A所受细线的拉力一定比B所受的细线的拉力大11.如图所示,小物块位于放于地面的半径为R的半球的顶端,若给小物块以水平的初速度v时物块对半球刚好无压力,则下列说法正确的是()A.小物块立即离开球面做平抛运动B.小物块落地时水平位移为RC.小物块沿球面运动D.物块落地时速度的方向与地面成45°角12.如图所示光滑管形圆轨道半径为R(管径远小于R),小球a、b大小相同,质量均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是()A.当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mg B.当v=时,小球b在轨道最高点对轨道无压力C.速度v至少为,才能使两球在管内做圆周运动D.只要v≥,小球a对轨道最低点的压力比小球b对轨道最高点的压力大6mg13.如图所示,一半径为r圆筒绕其中心轴以角速度ω匀速转动,圆筒内壁上紧靠着一个质量为m的物体与圆筒一起运动,相对筒无滑动.若已知筒与物体之间的摩擦因数为μ,试求:(1)物体所受到的摩擦力大小(2)筒内壁对物体的支持力.14.如图所示,有一长为L的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在竖直面内做完整的圆周运动.已知水平地面上的C 点位于O点正下方,且到O点的距离为1.9L,重力加速度为g,不计空气阻力.(1)求小球通过最高点A时的速度v A;(2)若小球通过最低点B时,细线对小球的拉力T恰好为小球重力的6倍,且小球经过B点的瞬间让细线断裂,求小球落地点到C点的距离.15.如图所示,半径R=0.9m的光滑的半圆轨道固定在竖直平面内,直径AC竖直,下端A与光滑的水平轨道相切.一个质量m=1kg的小球沿水平轨道从A端以V A=3m/s的速度进入竖直圆轨道,后小球恰好能通过最高点C.不计空气阻力,g取10m/s2.求:(1)小球刚进入圆周轨道A点时对轨道的压力为多少?(2)小球从C点离开轨道后的落地点到A点的距离为多少?16.如图所示装置可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B、C两点,当细线AB沿水平方向绷直时,细线AC与竖直方向的夹角θ=37°.已知小球的质量m=1kg,细线AC长L=1m,(重力加速度取g=10m/s2,sin37°=0.6)(1)若装置匀速转动时,细线AB刚好被拉直成水平状态,求此时的角速度ω1.(2)若装置匀速转动的角速度ω2=rad/s,求细线AB和AC上的张力大小T AB、T AC.参考答案1.D2.B3.C4.D5.D6.B7.B8.B9. AC 10.BCD 11.AB 12.BD13.解:物体做匀速圆周运动,合力指向圆心;对物体受力分析,受重力、向上的静摩擦力、指向圆心的支持力,如图其中重力mg与静摩擦力f平衡,故有:f=mg支持力N提供向心力,由牛顿第二定律可得:N=mω2R;答:(1)物体所受到的摩擦力大小为mg(2)筒内壁对物体的支持力为mω2R.【点评】本题中要使静摩擦力与重力平衡,角速度要大于某一个临界值,即重力不能大于最大静摩擦力!14.解:(1)小球恰好能做完整的圆周运动,则小球通过A点时细线的拉力为零,根据向心力公式有:mg=m解得:V A=;(2)小球在B点时根据牛顿第二定律有:T﹣mg=m小球运动到B点时细线断裂,小球做平抛运动,有:竖直方向:1.9L﹣L=gt2水平方向:x=v B t=×=3L答:(1)小球在最高点的速度为;(2)小球落地点到C点的距离3L.【点评】小球在竖直面内圆周运动一般会和机械能守恒或动能定理结合考查,要注意临界值的应用及正确列出机械能的表达式.15.解:(1)在A点,根据向心力公式得:N﹣mg=m解得:N=60N根据牛顿第三定律得:小球对轨道的压力为60N(2)小球恰好能通过最高点C,则在C点只有重力提供向心力,mg=m解得:v C=3m/s小球从C点抛出后做平抛运动,则t=s=0.6s所以x=v C t=1.8m16.解:(1)当细线AB刚好被拉直,则AB的拉力为零,靠AC的拉力和重力的合力提供向心力,根据牛顿第二定律有:,解得.(2)若装置匀速转动的角速度ω2=rad/s,竖直方向上有:T AC cos37°=mg,水平方向上有:,代入数据解得T AC=12.5N,T AB=2.5N.答:(1)此时的角速度为rad/s.(2)细线AB和AC上的张力大小T AB、T AC分别为2.5N、12.5N.【点评】解决本题的关键知道小球向心力的来源,抓住临界状态,结合牛顿第二定律进行求解.如图所示,一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球做半径为R的圆周运动,以下说法正确的是()A.小球过最高点时,杆所受的弹力可以等于零B.小球过最高点时的最小速度为C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反D.小球过最高点时,杆对球作用力一定与小球所受重力方向相反【考点】4A:向心力;37:牛顿第二定律.【专题】521:牛顿第二定律在圆周运动中的应用.【分析】轻杆带着物体做圆周运动,只要物体能够到达最高点就可以了,在最高点和最低点时物体的重力与杆对球的作用力的合力作为向心力.【解答】解:A、当小球在最高点恰好只有重力作为它的向心力的时候,此时球对杆没有作用力,所以A正确.B、轻杆带着物体做圆周运动,只要物体能够到达最高点就可以了,所以速度可以为零,所以B错误.C、小球在最高点时,如果速度恰好为,则此时恰好只有重力作为它的向心力,杆和球之间没有作用力,如果速度小于,重力大于所需要的向心力,杆就要随球由支持力,方向与重力的方向相反,如果速度大于,向心力大于重力,杆对小球的作用力跟重力相同,所以C正确,D错误.故选:AC。
高考物理生活中的圆周运动解题技巧及练习题(含答案)含解析
高考物理生活中的圆周运动解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 20164mv mg R+ (3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题.(1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+= 以木板为对象受力分析得2112F mg F =+根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小202164mv F mg R=+ (3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤ ②若小球能通过圆形轨道的最高点 小球能通过最高点有:22(3)(3)m m v m m g R++≤ 由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++= 由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤ 综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求:(1)小球在D 点的速度v D 大小;(2)小球在B 点对圆轨道的压力N B 大小;(3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m【解析】【分析】【详解】(1)小球恰好过最高点D ,有:2D v mg m r = 解得:2m/s D v =(2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2B v N mg m R-= N B =N联解③④⑤得:N =45N(3)小球从A 到B ,由动能定理:2122B x F mgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
圆周运动高考题(含答案)
匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Tr t s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Tt πφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
高中物理高考物理生活中的圆周运动解题技巧分析及练习题(含答案)
高中物理高考物理生活中的圆周运动解题技巧分析及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析
高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.3.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题
第六章:圆周运动章末复习知识点一:匀速圆周运动及其描述一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v=Δs Δt.如果Δt取的足够小,v就为瞬时线速度.此时Δs的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n:做圆周运动的物体单位时间内转过的圈数,常用符号n表示.(2)周期T:做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T=1n .4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v=2πr T.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v=ωr.知识点二、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA=ωB,T A=T B.(2)线速度的关系:vAvB=rR.2.皮带(齿轮)传动(1)线速度的关系:v A=v B(2)角速度(周期)的关系:ωAωB=rR、TATB=Rr.知识点三、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=m v2 r.3.方向:总是沿半径指向圆心,方向时刻改变.4.效果力向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二:向心力的来源物体做圆周运动时,向心力由物体所受力中沿半径方向的力提供.几种常见的实例如下:实例向心力示意图用细线拴住的小球在竖直面内转动至最高点时绳子的拉力和重力的合力提供向心力,F向=F+G用细线拴住小球在光滑水平面内做匀速圆周运动线的拉力提供向心力,F向=F T物体随转盘做匀速圆周运动,且相对转盘静止转盘对物体的静摩擦力提供向心力,F向=F f小球在细线作用下,在水平面内做圆周运动重力和细线的拉力的合力提供向心力,F向=F合知识点四:向心加速度的方向及意义1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.2.方向总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.3.圆周运动的性质不论向心加速度a n的大小是否变化,a n的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.“匀速圆周运动中”的“匀速”应理解为“匀速率”.4.变速圆周运动的向心加速度做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.二:向心加速度的公式和应用1.公式a n =v2r=ω2r=4π2T2r=4π2n2r=4π2f2r=ωv.2.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比.(3)当线速度一定时,向心加速度与运动半径成反比.(4)a n与r的关系图象:如图552所示.由a nr图象可以看出:a n与r成正比还是反比,要看ω恒定还是v恒定.图552知识点五:生活在的圆周运动一:火车转弯问题1.轨道分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平面指向圆心.图5732.向心力分析如图573所示,火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tan θ.3.规定速度分析若火车转弯时只受重力和支持力作用,不受轨道压力,则mg tan θ=m v 2 0R,可得v0=gR tan θ(R为弯道半径,θ为轨道所在平面与水平面的夹角,v0为转弯处的规定速度).4.轨道压力分析(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和弹力的合力提供,此时火车对内外轨道无挤压作用.(2)当火车行驶速度v与规定速度v0不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下:①当火车行驶速度v>v0时,外轨道对轮缘有侧压力.②当火车行驶速度v<v0时,内轨道对轮缘有侧压力.二:拱形桥汽车过凸形桥(最高点)汽车过凹形桥(最低点) 受力分析牛顿第二定律求向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r牛顿第三定律求压力F 压=F N =mg -m v 2rF 压=F N =mg +m v 2r讨论v 增大,F 压减小;当v 增大到rg 时,F 压=0v 增大,F 压增大 超、失重汽车对桥面压力小于自身重力,汽车处于失重状态汽车对桥面压力大于自身重力,汽车处于超重状态知识点六:离心运动1.离心运动的实质离心现象的本质是物体惯性的表现.做圆周运动的物体,由于惯性,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切向方向拉回到圆周上来.2.离心运动的条件做圆周运动的物体,提供向心力的外力突然消失或者合外力不能提供足够大的向心力.3.离心运动、近心运动的判断如图578所示,物体做圆周运动是离心运动还是近心运动,由实际提供的向心力F n 与所需向心力⎝ ⎛⎭⎪⎫m v 2r 或mr ω2的大小关系决定.图578(1)若F n =mr ω2(或m v 2r)即“提供”满足“需要”,物体做圆周运动.(2)若F n>mrω2(或m v2r)即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F n<mrω2(或m v2r)即“提供”不足,物体做离心运动.由以上关系进一步分析可知:原来做圆周运动的物体,若速率不变,所受向心力减少(或向心力不变,速率变大)物体将做离心运动;若速度大小不变,所受向心力增大(或向心力不变,速率减小)物体将做近心运动.知识点七.竖直平面的圆周运动1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。
专题08圆周运动-【好题汇编】三年(2022-2024)高考物理真题分类汇编(全国通用)(解析版)
圆周运动专题08考点01水平面内圆周运动1.(2024高考辽宁卷)“指尖转球”是花式篮球表演中常见的技巧。
如图,当篮球在指尖上绕轴转动时,球面上P、Q两点做圆周运动的()A.半径相等B.线速度大小相等C.向心加速度大小相等D.角速度大小相等【答案】D 【解析】由题意可知,球面上P 、Q 两点转动时属于同轴转动,故角速度大小相等,故D 正确;由图可知,球面上P 、Q 两点做圆周运动的半径的关系为P Q r r <,故A 错误;根据v r ω=可知,球面上P 、Q 两点做圆周运动的线速度的关系为P Q v v <,故B 错误;根据2n a r ω=可知,球面上P 、Q 两点做圆周运动的向心加速度的关系为P Q a a <,故C 错误。
2.(2024年高考江苏卷第8题)生产陶瓷的工作台匀速转动,台面面上掉有陶屑,陶屑与桌面间的动摩擦因数处处相同(台面足够大),则A.离轴OO’越远的陶屑质量越大B.离轴OO’越近的陶屑质量越大C.只有平台边缘有陶屑D..离轴最远的陶屑距离不超过某一值R 【参考答案】D【名师解析】由μmg=mRω2,解得离轴最远的陶屑距离不超过某一值R=μg/ω2,D 正确。
3.(2024年高考江苏卷)如图所示,细绳穿过竖直的管子拴住一个小球,让小球在A 高度处做水平面内的匀速圆周运动,现用力将细绳缓慢下拉,使小球在B 高度处做水平面内的匀速圆周运动,不计一切摩擦,则()A .线速度v A >v BB.角速度ωA <ωBC.向心加速度a A <a BD.向心力F A >F B 【答案】AD 【解析】设绳子与竖直方向的夹角为θ,对小球受力分析有F n =mg tan θ=ma由题图可看出小球从A 高度到B 高度θ增大,则由F n =mg tan θ=ma 可知a B >a A ,F B >F A 故C 错误,D 正确;再根据题图可看出,A 、B 位置在同一竖线上,则A 、B 位置的半径相同,则根据22n v F m m rrω==可得v A >v B ,ωA >ωB 故A 正确,B 错误。
高考物理生活中的圆周运动答题技巧及练习题(含答案)
高考物理生活中的圆周运动答题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
圆周运动-高考物理复习
3.变速圆周运动中向心力来源
如图所示,当小球在竖直面内摆动时,沿半径方向的合力提供向心力, Fn=FT-mgcos θ=mvR2 ,如图所示.
4.圆周运动中动力学问题的分析思路
考向1 圆周运动的动力学问题
例4 (多选)(2021·河北卷·9)如图,矩形金属框MNQP竖直放置,其中 MN、PQ足够长,且PQ杆光滑,一根轻弹簧一端固定在M点,另一端连 接一个质量为m的小球,小球穿过PQ杆,金属框绕MN轴分别以角速度ω 和ω′匀速转动时,小球均相对PQ杆静止,若ω′>ω,则与以ω匀速转 动时相比,以ω′匀速转动时 A.小球的高度一定降低
压内轨和外轨 C.列车过转弯处的速度 v< gRdh时,列车轮缘会挤压外轨 D.若减小 α 角,可提高列车安全过转弯处的速度
考向3 生活中的圆周运动
例9 列车转弯时的受力分析如图所示,铁路转弯处的圆弧半径为R,两 铁轨之间的距离为d,内外轨的高度差为h,铁轨平面和水平面间的夹角 为α(α很小,可近似认为tan α≈sin α),重力加速度为g,下列说法正确的是 A.列车转弯时受到重力、支持力和向心力的作用
√B.列车过转弯处的速度 v= gRdh时,列车轮缘不会挤
2.离心运动和近心运动 (1)离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供 圆周运动所需向心力的情况下,就做 逐渐远离圆心 的运动. (2)受力特点(如图) ①当F=0时,物体沿切线方向飞出,做匀速直线运动. ②当0<F<mrω2时,物体逐渐 远离圆心,做 离心 运动. ③当F>mrω2时,物体逐渐 向圆心靠近 ,做 近心 运动. (3)本质:离心运动的本质并不是受到离心力的作用,而是提供的力_小_于__ 做匀速圆周运动需要的向心力.
高考物理总复习 第四章 第3节 圆周运动检测
避躲市安闲阳光实验学校圆周运动(建议用时:40分钟)1.如图所示,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上.若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( ) A.t1<t2B.t1=t2C.t1>t2D.无法比较t1、t2的大小解析:选A.在滑道AB段上取任意一点E,比较从A点到E点的速度v1和从C点到E点的速度v2,易知,v1>v2.因E点处于“凸”形轨道上,速度越大,轨道对小滑块的支持力越小,因动摩擦因数恒定,则摩擦力越小,可知由A滑到C比由C滑到A在AB段上的摩擦力小,因摩擦造成的动能损失也小.同理,在滑道BC段的“凹”形轨道上,小滑块速度越小,其所受支持力越小,摩擦力也越小,因摩擦造成的动能损失也越小,从C处开始滑动时,小滑块损失的动能更大.故综上所述,从A滑到C比从C滑到A在轨道上因摩擦造成的动能损失要小,整个过程中从A滑到C平均速度要更大一些,故t1<t2.选项A正确.2.某同学为感受向心力的大小与哪些因素有关,做了一个小实验:绳的一端拴一小球,手牵着在空中甩动,使小球在水平面内做圆周运动(如图所示),则下列说法正确的是( )A.保持绳长不变,增大角速度,绳对手的拉力将不变B.保持绳长不变,增大角速度,绳对手的拉力将增大C.保持角速度不变,增大绳长,绳对手的拉力将不变D.保持角速度不变,增大绳长,绳对手的拉力将减小解析:选B.由向心力的表达式F n=mω2r可知,保持绳长不变,增大角速度,向心力增大,绳对手的拉力增大,选项A错误,B正确;保持角速度不变,增大绳长,向心力增大,绳对手的拉力增大,选项C、D错误.3.(多选)(2018·高考江苏卷)火车以60 m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10 s内匀速转过了约10°.在此10 s时间内,火车( )A.运动路程为600 mB.加速度为零C.角速度约为1 rad/sD.转弯半径约为3.4 km解析:选AD.在此10 s时间内,火车运动路程s=vt=60×10 m=600 m,选项A正确;火车在弯道上运动,做曲线运动,一定有加速度,选项B错误;火车匀速转过10°,约为15.7rad,角速度ω=θt=157rad/s,选项C错误;由v =ωR ,可得转弯半径约为3.4 km ,选项D 正确.4.如图所示,运动员以速度v 在倾角为θ的倾斜赛道上做匀速圆周运动.已知运动员及自行车的总质量为m ,做圆周运动的半径为R ,重力加速度为g ,将运动员和自行车看做一个整体,则( )A .受重力、支持力、摩擦力、向心力作用B .受到的合力大小为F =mv 2RC .若运动员加速,则一定沿斜面上滑D .若运动员减速,则一定加速沿斜面下滑解析:选 B.将运动员和自行车看做一个整体,则系统受重力、支持力、摩擦力作用,向心力是按力的作用效果命名的力,不是物体实际受到的力,A 错误;系统所受合力提供向心力,大小为F =m v2R,B 正确;运动员加速,系统有向上运动的趋势,但不一定沿斜面上滑,同理运动员减速,也不一定沿斜面下滑,C 、D 均错误.5.质量为m 的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的直径,如图所示.已知小球以速度v 通过最高点时对圆管的外壁的压力大小恰好为mg ,则小球以速度v2通过圆管的最高点时( )A .小球对圆管的内、外壁均无压力B .小球对圆管的外壁压力等于12mgC .小球对圆管的内壁压力等于12mgD .小球对圆管的内壁压力等于mg解析:选C.以小球为研究对象,小球通过最高点时,由牛顿第二定律得mg+mg =m v 2r ,当小球以速度v2通过圆管的最高点,由牛顿第二定律得mg +F N =m ⎝ ⎛⎭⎪⎫v 22r ,解以上两式得F N =-12mg ,负号表示圆管对小球的作用力向上,即小球对圆管的内壁压力等于12mg ,故选项C 正确.6.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定转轴以恒定的角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/sD .0.5 rad/s解析:选C.当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r ,解得ω=1.0rad/s ,故选项C 正确.7.(2016·高考全国卷Ⅱ)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点 ( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度解析:选C.小球从释放到最低点的过程中,只有重力做功,由机械能守恒定律可知,mgL =12mv 2,v =2gL ,绳长L 越长,小球到最低点时的速度越大,A项错误;由于P 球的质量大于Q 球的质量,由E k =12mv 2可知,不能确定两球动能的大小关系,B 项错误;在最低点,根据牛顿第二定律可知,F -mg =m v2L ,求得F =3mg ,由于P 球的质量大于Q 球的质量,因此C 项正确;由a =v 2L=2g 可知,两球在最低点的向心加速度相等,D 项错误.8.(多选)如图所示,半径r =0.5 m 的光滑圆轨道被竖直固定在水平地面上,圆轨道最低处有一小球(小球的半径比r 小很多).现给小球一个水平向右的初速度v 0,要使小球不脱离轨道运动,重力加速度大小g 取10 m/s 2,v 0应满足( )A .v 0≥0B .v 0≥2 5 m/sC .v 0≥5 m/sD .v 0≤10 m/s解析:选CD.最高点的临界情况为mg =m v 2r,解得v =gr ,小球从最低点到最高点的过程,根据动能定理得-mg ·2r =12mv 2-12mv 20,解得v 0=5 m/s.若恰好不超过圆心高度,根据动能定理有-mgr =0-12mv 20,解得v 0=2gr =10m/s ,所以v 0应满足的条件是v 0≥5 m/s 或v 0≤10 m/s ,故选项C 、D 正确,A 、B 错误.【B 级 能力题练稳准】9.如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲转动且无相对滑动.甲圆盘与乙圆盘的半径之比为r 甲∶r 乙=3∶1,两圆盘和小物体m 1、m 2之间的动摩擦因数相同,m 1距O 点为2r ,m 2距O ′点为r ,当甲缓慢转动起来且转速慢慢增加时( )A.m1与m2滑动前的角速度之比ω1∶ω2=3∶1B.m1与m2滑动前的向心加速度之比a1∶a2=1∶3C.随转速慢慢增加,m1先开始滑动D.随转速慢慢增加,m2先开始滑动解析:选D.甲、乙两圆盘边缘上的各点线速度大小相等,有ω甲r甲=ω乙r乙,因r甲∶r乙=3∶1,则ω甲∶ω乙=1∶3,所以小物体相对盘开始滑动前,m1与m2的角速度之比ω1∶ω2=1∶3,故选项A错误;小物体相对盘开始滑动前,根据a=ω2r得m1与m2的向心加速度之比为a1∶a2=(ω21·2r)∶(ω22r)=2∶9,故选项B错误;根据μmg=mrω2=ma知,因a1∶a2=2∶9,圆盘和小物体的动摩擦因数相同,可知当转速增加时,m2先达到临界角速度,所以m2先开始滑动.故选项C错误,D正确.10.(多选)如图甲所示为建筑行业使用的一种小型打夯机,其原理可简化为一个质量为M的支架(含电动机)上由一根长为l的轻杆带动一个质量为m的铁球(铁球可视为质点),如图乙所示,重力加速度为g.若在某次打夯过程中,铁球以角速度ω匀速转动,则( )A.铁球转动过程中机械能守恒B.铁球做圆周运动的向心加速度始终不变C.铁球转动到最低点时,处于超重状态D.若铁球转动到最高点时,支架对地面的压力刚好为零,则ω=(M+m)gml解析:选CD.由于铁球在做匀速圆周运动的过程中动能不变,但重力势能在不断地变化,所以其机械能不守恒,选项A错误;由于铁球做圆周运动的角速度和半径均不发生变化,由a=ω2l可知,向心加速度的大小不变,但其方向在不断地发生变化,故选项B错误;铁球转动到最低点时,有竖直向上的加速度,故杆对铁球的拉力要大于铁球的重力,铁球处于超重状态,选项C正确;以支架和铁球整体为研究对象,铁球转动到最高点时,只有铁球有向下的加速度,由牛顿第二定律可得(M+m)g=mω2l,解得ω=(M+m)gml,选项D正确.11.(2018·高考全国卷Ⅲ )如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道PA在A点相切,BC为圆弧轨道的直径,O为圆心,OA 和OB之间的夹角为α,sin α=35.一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g.求(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C 点落至水平轨道所用的时间.解析:(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有F 0mg=tan α① F 2=(mg )2+F 20②设小球到达C 点时的速度大小为v ,由牛顿第二定律得F =m v 2R③由①②③式和题给数据得 F 0=34mg ④v =5gR 2.⑤(2)设小球到达A 点的速度大小为v 1,作CD ⊥PA ,交PA 于D 点,由几何关系得DA =R sin α⑥CD =R (1+cos α)⑦由动能定理有-mg ·CD -F 0·DA =12mv 2-12mv 21⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为p =mv 1=m 23gR2.⑨(3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有v ⊥t +12gt 2=CD ⑩v ⊥=v sin α⑪由⑤⑦⑩⑪式和题给数据得 t =355R g.⑫答案:见解析12.(2019·湖南六校联考)如图所示为水上乐园的设施,由弯曲滑道、竖直平面内的圆形滑道、水平滑道及水池组成,圆形滑道外侧半径R =2 m ,圆形滑道的最低点的水平入口B 和水平出口B ′相互错开,为保证安全,在圆形滑道内运动时,要求紧贴内侧滑行.水面离水平滑道高度h =5 m .现游客从滑道A 点由静止滑下,游客可视为质点,不计一切阻力,重力加速度g 取10 m/s 2,求:(1)起滑点A 至少离水平滑道多高?(2)为了保证游客安全,在水池中放有长度L =5 m 的安全气垫MN ,其厚度不计,满足(1)的游客恰落在M 端,要使游客能安全落在气垫上,安全滑下点A 距水平滑道的高度取值范围为多少?解析:(1)游客在圆形滑道内侧恰好滑过最高点时,有mg =m v 2R①从A 到圆形滑道最高点,由机械能守恒定律得 mgH 1=12mv 2+mg ·2R ②解得H 1=52R =5 m .③(2)落在M 点时抛出速度最小,从A 到C 由机械能守恒定律得 mgH 1=12mv 21④v 1=2gH 1=10 m/s ⑤水平抛出,由平抛运动规律可知 h =12gt 2⑥得t =1 s则s 1=v 1t =10 m落在N 点时s 2=s 1+L =15 m则对应的抛出速度v 2=s 2t=15 m/s ⑦由mgH 2=12mv 22得H 2=v 222g=11.25 m安全滑下点A 距水平滑道高度范围为 5 m ≤H ≤11.25 m.答案:(1)5 m (2)5 m ≤H ≤11.25 m。
2019人教版高中物理必修二圆周运动导与练学案
圆周运动导与练【知识清单】1、匀速圆周运动的特点:(1)匀速圆周运动的定义:做圆周运动的物体在相等的时间内通过的弧长相等(2)匀速圆周运动的轨迹:是圆,且任意相等的时间内半径转过的角度相等(3)匀速圆周运动的性质:a 、“匀速”指的是“匀速率”,即速度的大小不变但速度的方向时刻改变b 、加速度大小不变,但加速度的方向时刻改变,所以是变加速曲线运动2、圆周运动的表征物理量:(1)线速度v :定义:圆周运动的瞬时速度;单位时间内通过的弧长大小:线速度=弧长/时间,即v=s/t ;方向:圆周的切线方向;匀速圆运动线速度的特点:线速度大小不变,但方向时刻改变(2)角速度ω:定义:半径在单位时间内转过的角度; 大小:角速度=角度(弧度)/时间即:ω=φ/t单位:弧度每秒,即:rad/s ;匀速圆周运动中角速度特点:角速度恒定不变(3)周期T :定义:匀速圆周运动物体运动一周所用的时间;大小:周期=周长/线速度,即:T=2πr/v单位:秒,即s ;匀速:圆周运动中周期的特点:周期不变(4)频率f :定义:每秒钟完成匀速圆周运动的转数大小:f=1/T单位:赫兹,即Hz ,1Hz=1转/秒(5)转速n :定义:单位时间内做匀速圆周运动的物体转过的圈数,符号n大小:转速的大小就等于频率的大小单位:国际单位制中用转/秒,日常生活中也用转/分3、匀速圆周运动各物理量之间的关系:(1)各物理量之间的关系:Tn T r T w rw v 1,2,2,====πυπ 说明: rw v =在非匀速圆周运动中同样适用,其中w v ,为任一相同时刻的线速度和角速度。
(2)同一转盘上半径不同的各点,角速度相等但线速度大小不同(3)皮带传动或齿轮传动的两轮边缘线速度大小相等,但角速度不一定相同(4)当半径一定时,线速度与角速度成正比;当角速度一定时,线速度与半径成正比【考点分析】命题点一圆周运动的运动学问题1.对公式v=ωr的理解当r一定时,v与ω成正比.当ω一定时,v与r成正比.当v一定时,ω与r成反比.2.常见的传动方式及特点(1)皮带传动:如图3甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A=v B.图3(2)摩擦传动和齿轮传动:如图4甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A=v B.图4(3)同轴转动:如图5甲、乙所示,绕同一转轴转动的物体,角速度相同,ωA=ωB,由v=ωr 知v与r成正比.【例1】匀速圆周运动是一种()A.匀速运动B.匀加速运动C.匀加速曲线运动D.变速曲线运动【答案】D【详解】匀速圆周运动物体的加速度的方向不断变化,所以是一种变速曲线运动,故D正确,ABC 错误。
专题06 圆周运动中的临界问题-2019高考物理一轮复习专题详解(原卷版)
1.二种模型 模型 绳模型杆模型实例球与绳连接、水流星、翻滚过山车球与杆连接、球过竖直的圆形管道,套在圆环上的物体等 图示在最高 点受力 重力,弹力F 弹向下或等于零 mg +F 弹=m v 2R重力,弹力F 弹向下、向上或等于零 mg ±F 弹=m v 2R恰好过 最高点 F 弹=0,mg =m v 2Rv =Rg ,即在最高点速度不能为零 v =0,mg =F 弹在最高点速度可为零2.铭记三点(1)向心力一定指向圆心,而只有做匀速圆周运动的物体的合外力才始终指向圆心.(2)用杆固定小球在竖直面内做圆周运动时,v =gR 为杆对小球的弹力为零的条件,也是杆对小球是拉力还是支持力的转折点. (3)熟记动力学方程:F =ma =m v 2R =mω2R =mωv =m 4π2T 2R =m 4π2f 2R .3.规律方法(1)求解水平面、竖直面内圆周运动问题的思想(2).系在绳上的物体在竖直平面内做圆周运动的条件是v 高≥gl ; 绳改为杆后,则v 最高≥0均可;在最高点的速度v 最高>gl 时,杆拉物体; v 最高<gl 时杆支持物体; v 最高=gl 时杆的作用力为零.(3).物体随圆盘一起做圆周运动的最大角速度为ω=μgR,与物体的质量无关,决定于物体到圆心的距离R 和动摩擦因数μ.(4).火车转弯时既不挤压内轨,也不挤压外轨时的行驶速率约为v 限=ghrL,取决于内、外轨的高度差h 、内外轨间距L 及铁路弯道的轨道半径r .典例分析:【例1】 (多选)如图,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l .木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg【例2】如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是()A. 5 rad/sB. 3 rad/sC.1.0 rad/s D.0.5 rad/s【例3】如图所示,一质量为m=0.5 kg的小球,用长为L=0.4 m的轻绳拴住在竖直平面内做圆周运动.求(1)小球要做完整的圆周运动,在最高点的速度至少为多大?(2)当小球在最高点的速度为4 m/s时,细线拉力多大?(3)若轻绳能承受的最大张力为45 N,求小球的速度不能超过多大值?专题练习1 .(2017年湖北武汉模拟)如图所示的装置可以测量子弹的飞行速度.在一根轴上相距s=1 m处安装两个平行的薄圆盘,使轴带动两圆盘以n=3 000 r/min的转速匀速转动,飞行的子弹平行于轴沿一条直线穿过两圆盘,即在盘上留下两个小孔,现测得两小孔所在半径间的夹角为30°,子弹飞行的速度大小可能是下述的(设在穿过两圆盘的过程中子弹的速度保持不变)()A.500 m/s B.600 m/sC.700 m/s D.800 m/s2.(多选)如图所示,半径r=0.5 m的光滑圆轨道被竖直固定在水平地面上,圆轨道最低处有一小球(小球的半径比r小很多).现给小球一个水平向右的初速度v0,要使小球不脱离轨道运动,重力加速度大小g 取10 m/s2,v0应满足()A.v0≥0 B.v0≥2 5 m/sC.v0≥5 m/s D.v0≤10 m/s3.如图所示,用一根细绳一端系一个小球,另一端固定,给小球不同的初速度,使小球在水平面内做角速度不同的圆周运动,则下列细绳拉力F、悬点到轨迹圆圆心高度h、向心加速度a、线速度v与角速度平方ω2的关系图象正确的是()4.(2017年河北保定质检)如图所示,内壁光滑的竖直圆桶,绕中心轴做匀速圆周运动,一物块用细绳系着,绳的另一端系于圆桶上表面圆心,且物块贴着圆桶内表面随圆桶一起转动,则()A.绳的张力可能为零B.桶对物块的弹力不可能为零C.随着转动的角速度增大,绳的张力保持不变D.随着转动的角速度增大,绳的张力一定增大5.(2017年河南八市重点高中质量监测)如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点)处于静止状态,现轻微扰动一下,小环从大环的最高处由静止滑下.重力加速度大小为g,当小环滑到大环的最低点时,下列说法正确的是()A.大环对小环的弹力为3mgB.大环对小环的弹力为4mgC.轻杆对大环的弹力为Mg+5mgD.轻杆对大环的弹力为Mg+6mg6.(多选)(2017年开封高三5月冲剌)如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速加快到两物体刚好还未发生滑动时,最大静摩擦力等于滑动摩擦力,下列说法正确的是()A .此时绳子张力为T =3μmgB .此时圆盘的角速度为ω=2μg rC .此时A 所受摩擦力方向沿半径指向圆外D .此时烧断绳子,A 仍相对盘静止,B 将做离心运动7.(多选)如图所示,一质量为m 的小球置于半径为R 的光滑竖直圆轨道最低点A 处,B 为轨道最高点,C 、D 为圆的水平直径两端点.轻质弹簧的一端固定在圆心O 点,另一端与小球拴接,已知弹簧的劲度系数为k =mgR ,原长为L =2R ,弹簧始终处于弹性限度内,若给小球一水平初速度v 0,已知重力加速度为g ,则( )A .无论v 0多大,小球均不会离开圆轨道B .若2gR <v 0<5gR ,则小球会在B 、D 间脱离圆轨道C .只要v 0>4gR ,小球就能做完整的圆周运动D .只要小球能做完整圆周运动,则小球与轨道间最大压力与最小压力之差与v 0无关8.(多选)如图所示,在水平转台上放一个质量M =2.0 kg 的木块,它与台面间的最大静摩擦力F fm =6.0 N ,绳的一端系住木块,另一端穿过转台的中心孔O(为光滑的)悬吊一质量m =1.0 kg 的小球,当转台以ω=5.0 rad/s 的角速度转动时,欲使木块相对转台静止,则它到O 孔的距离不可能是A .6 cmB .15 cmC .30 cmD .34 cm9.(2017·焦作二模)如图所示,ABC 为竖直平面内的金属半圆环,AC 连线水平,AB 为固定在A 、B 两点间的直金属棒,在直棒和圆环的BC 部分上分别套着小环M 、N(棒和半圆环均光滑),现让半圆环绕竖直对称轴以角速度ω-1做匀速转动,小环M 、N 在图示位置.如果半圆环的角速度变为ω-2,ω-2比ω-1稍微小一些.关于小环M 、N 的位置变化,下列说法正确的是( )A .小环M 将到达B 点,小环N 将向B 点靠近稍许 B .小环M 将到达B 点,小环N 的位置保持不变C .小环M 将向B 点靠近稍许,小环N 将向B 点靠近稍许D .小环M 向B 点靠近稍许,小环N 的位置保持不变10.(多选)如图所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数均为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r.设本题中的最大静摩擦力等于滑动摩擦力.以下说法中正确的是( )A .B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3mω2rC .转台的角速度一定满足ω≤ 2μg3r D .转台的角速度一定满足ω≤μg r11.(多选)如图所示,将长为3L 的轻杆穿过光滑水平转轴O ,两端分别固定质量为2m 的球A 和质量为3m 的球B ,A 到O 的距离为L ,现使杆在竖直平面内转动,当球B 运动到最高点时,球B 恰好对杆无作用力,两球均视为质点.则球B 在最高点时( )A .球B 的速度大小为gL B .球A 的速度大小为122gLC .球A 对杆的作用力大小为3mgD .水平转轴对杆的作用力为5mg12.(2017·西安市模拟)如图所示,一个质量为M 的人,站在台秤上,一长为R 的悬线一端系一个质量为m 的小球,手拿悬线另一端,小球绕悬线另一端点在竖直平面内做圆周运动,且小球恰好能通过圆轨道最高点,则下列说法正确的是( )A .小球运动到最低点时,台秤的示数最大且为(M +6m)gB .小球运动到最高点时,台秤的示数最小且为MgC .小球在a 、b 两个位置时,台秤的示数不相同D .小球从最高点运动到最低点的过程中台秤的示数增大,人处于超重状态13.(2017·定州市模拟)如图所示,圆筒的内壁光滑,一端B 固定在竖直转轴OO ′上,圆筒可随轴转动,它与水平面的夹角始终为30°,在筒内有一个用轻质弹簧连接的小球A(小球直径略小于圆筒内径),A 的质量为m ,弹簧的另一端固定在圆筒的B 端,弹簧原长为32L ,当圆筒静止时A 、B 之间的距离为L(L 远大于小球直径).现让圆筒开始转动,其角速度从0开始缓慢增大,当角速度增大到某一值时保持匀速转动,此时小球A 、B 之间的距离为2L ,重力加速度大小为g ,求圆筒保持匀速转动时的角速度ω0.14.如图所示,光滑圆杆MN 段竖直,OC 段水平且与MN 相接于O 点,两杆分别套有质量为m 的环A 和2m 的环B ,两环的内径比杆的直径稍大,A 、B 用长为2L 的轻绳连接,A 、O 用长为L 的轻绳连接,现让装置绕竖直杆MN 做匀速圆周运动,当ω=2gL时,OA 段绳刚好要断,AB 段绳能承受的拉力足够大,求:(1)OA 段绳刚刚拉直时转动的角速度多大; (2)OA 段绳能承受的最大的拉力; (3)当ω=2gL且转动稳定时,A 向外侧移动的距离多大.15.如图所示,水平传送带的右端与竖直面内的用光滑钢管弯成的“9”形固定轨道相接,钢管内径很小.传送带的运行速度为v 0=6 m/s ,将质量m =1 kg 的可看作质点的滑块无初速地放到传送带A 端,传送带长度为L =12 m ,“9”字全高H =0.8 m ,“9”字CDE 部分圆弧半径为R =0.2 m 的34圆弧,滑块与传送带间的动摩擦因数为μ=0.3,取重力加速度g =10 m/s 2.(1)求滑块从传送带A端运动到B端所需要的时间;(2)求滑块滑到轨道最高点D时对轨道作用力的大小和方向;(3)若滑块从“9”形轨道F点水平抛出后,恰好垂直撞在倾角θ=45°的斜面上的P点,求P、F两点间的竖直高度h.16.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60 m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。
高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析
高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。
高考物理复习专题三 平抛运动与圆周运动单元练习题(含详细答案)
高考物理复习专题三平抛运动与圆周运动一、单选题1.特战队员在进行素质训练时,抓住一端固定在同一水平高度的不同位置的绳索,从高度一定的平台由水平状态无初速开始下摆,如图所示,在到达竖直状态时放开绳索,特战队员水平抛出直到落地。
不计绳索质量和空气阻力,特战队员可看成质点。
下列说法正确的是()A.绳索越长,特战队员落地时的水平位移越大B.绳索越长,特战队员在到达竖直状态时绳索拉力越大C.绳索越长,特战队员落地时的水平速度越大D.绳索越长,特战队员落地时的速度越大2.如图所示是倾角为45°的斜坡,在斜坡底端P点正上方某一位置Q处以速度v0水平向左抛出一个小球A,小球恰好能垂直落在斜坡上,运动时间为t1.小球B从同一点Q处自由下落,下落至P点的时间为t2.不计空气阻力,则t1:t2=()A. 1:2B. 1:C. 1:3D. 1:3.如图,质量相同的钢球①,②分别放在A,B盘的边缘,A,B两盘的半径之比为2:1,a,b分别是与A盘,B盘同轴的轮,a,b轮半径之比为1:2。
当a,b两轮在同一皮带带动下匀速转动时,钢球①,②受到的向心力大小之比为( )A. 2:1B. 4:1C. 1:4D. 8:14.关于平抛运动,下列说法正确的是()A.不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大B.不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长C.不论抛出速度多大,抛出位置越高,其飞行时间一定越长D.不论抛出速度多大,抛出位置越高,飞得一定越远5.在空中某一高度将一小球水平抛出,取抛出点为坐标原点,初速度方向为轴正方向,竖直向下为y轴正方向,得到其运动的轨迹方程为y=ax2(a为已知量),重力加速度为g。
则根据以上条件可以求得()A.物体距离地面的高度B.物体作平抛运动的初速度C.物体落地时的速度D.物体在空中运动的总时间6.某游乐场开发了一个名为“翻天滚地”的游乐项目。
原理图如图所示:一个3/4圆弧形光滑圆管轨道ABC,放置在竖直平面内,轨道半径为R,在A点与水平地面AD相接,地面与圆心O等高,MN是放在水平地面上长为3R,厚度不计的减振垫,左端M正好位于A点.让游客进入一个中空的透明弹性球,人和球的总质量为m,球的直径略小于圆管直径。
圆周运动-高考物理复习
目录
研透核心考点
(多选)(2024·河北邯郸高三期中)竖直平面内有一半径为0.5 m
的光滑圆环,质量为0.5 kg的小球(视为质点)套在圆环上,当
圆环以一定的角速度绕过圆环的竖直直径的转轴OO′匀速转动
目录
研透核心考点
方法总结 圆锥摆和圆锥筒的分析思路
圆锥摆
(1)向心力 F 向=mgtan θ=mvr2=mω2r,且 r=Lsin θ,解得 v=
gLtan θsin θ,ω=
g Lcos
θ。
(2)稳定状态下,θ 越大,角速度ω和线速度 v 就越大,小球受到
的拉力 F=cmosgθ和运动所需向心力也越大
以ω′匀速转动时( BD )
A.小球a的高度更低
B.弹簧弹力的大小相等
C.小球b所受杆的摩擦力更大
D.小球b所受合外力更大
图9
目录
研透核心考点
解析 对小球 a 受力分析,设弹力为 T,弹簧与水平方向的 夹角为 θ,小球在竖直方向有 Tsin θ=mg,而 T=kcMosbθ-l0, 可知 θ 为定值,T 不变,则当转速增大后,小球 a 的高度不
一、描述圆周运动的物理量及关系
定义、意义
公式、单位
1.描述圆周运动的物体运动__快__慢___的
l
2πr
线速度 物理量
1.v=___t___(定义式)=___T___
(v) 2.是矢量,方向和半径__垂__直___,和圆 (与周期的关系)
周__相__切___
2.单位:m/s
θ
2π
角速度 1.描述物体绕_圆__心__转动快慢的物理量 1.ω=___t___(定义式)=__T____
图2
目录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考查点8 圆周运动
第1课时圆周运动(1)
考点突破
1.物体在做匀速圆周运动的过程中,下列物理量中变化的是( )
A.周期B.动能C.线速度D.角速度
2.(2016·无锡模拟)甲、乙、丙三个物体,甲放在海南,乙放在无锡,丙放在天津.当它们随地球一起转动时,下列说法中正确的是( )
A.三个物体的角速度相等
B.甲的线速度最小
C.三个物体的线速度都相等
D.甲的角速度最大
3.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,有下列说法,其中正确的是( )
A.小球线速度大小一定时,线越长越容易断
B.小球线速度大小一定时,线越短越不容易断
C.小球角速度一定时,线越长越容易断
D.小球角速度一定时,线越短越容易断
第4题图
4.如图所示,一圆盘可绕过圆盘的中心O且垂直于盘面的竖直轴转动,在圆盘上放一小木块A,它随圆盘一起做匀速圆周运动,则关于木块A的受力,下列说法中正确的是( ) A.木块A受重力、支持力和向心力
B.木块A受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相反
C.木块A受重力、支持力和静摩擦力,摩擦力的方向指向圆心
D.木块A受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同
5.物体做匀速圆周运动时,下列说法中不正确的
是( )
A.向心力一定指向圆心
B.向心力一定是物体受到的合外力
C.向心力的大小一定不变
D.向心力的方向一定不变
第6题图
6.如图所示是一个玩具陀螺.a、b和c是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )
A.a、b和c三点的线速度大小相等
B.a、b和c三点的角速度相等
C.a、b的角速度比c的大
D.c的线速度比a、b的大
7.下列关于向心力的说法中正确的是( )
A.物体由于做圆周运动而产生了一个向心力
B.向心力会改变做圆周运动物体的速度大小
C.做匀速圆周运动的物体其向心力即为其所受的合力
D.做匀速圆周运动的物体其向心力是不变的
8.甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是( )
A.它们的半径之比为9∶2
B.它们的半径之比为1∶2
C.它们的周期之比为2∶3
D.它们的周期之比为1∶3
9.自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A,R C=8R A,如图所示.正常骑行时三轮边缘的向心加速度之比a A∶a B∶a C等于( )
第9题图
A.1∶1∶8 B.4∶1∶4
C.4∶1∶32 D.1∶2∶4
10.一石英钟的分针和时针的长度之比为3∶2,均可看作是匀速转动,则( ) A.分针和时针转一圈的时间之比为1∶60
B.分针和时针的针尖转动的线速度之比为40∶1
C.分针和时针转动的角速度之比为12∶1
D.分针和时针转动的周期之比为1∶6
11.如图为皮带传动示意图,假设皮带没有打滑,R>r,则下列说法中正确的是( )
第11题图
A.大轮边缘的线速度大于小轮边缘的线速度
B.大轮边缘的线速度小于小轮边缘的线速度
C.大轮边缘的线速度等于小轮边缘的线速度
D.大轮的角速度较大
12.物体做匀速圆周运动时,下列说法正确的是( )
A.物体必须受到恒力的作用
B.物体所受合力必须等于零
C.物体所受合力的大小可能变化
D.物体所受合力的大小不变,方向不断改变
志在夺A
1.如图所示,水平转台上有一个质量m=1kg的小物体,离转台中心的距离为r=0.5m.求:
(1)若小物体随转台一起转动的线速度大小为1m/s,物体的角速度多大?
(2)在第(1)问条件下,物体所受的摩擦力为多大?
(3)若小物体与转台之间的最大静摩擦力大小为4.5N,小物体与转台间不发生相对滑动时,转台转动的最大角速度应为多大?
第1题图
2.如图一辆质量为500kg的汽车静止在一座半径为50m的圆弧形拱桥顶部.(取g=10m/s2)
(1)此时汽车对圆弧形拱桥的压力是多大?
(2)如果汽车以6m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?
(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?
第2题图
第2课时圆周运动(2)
考点突破
1.甲、乙两个物体都做匀速圆周运动,其质量之比为1∶3,转动半径之比为1∶4,在相同时间里甲转过90°角,乙转过45°角,则它们的向心力之比为( )
A.2∶3 B.1∶3
C.4∶9 D.1∶6
2.如图所示是自行车的轮盘与车轴上的飞轮之间的链条传动装置.P是轮盘的一个齿,Q是飞轮上的一个齿,下列说法中正确的是( )
第2题图
A.P、Q两点角速度大小相等
B.P、Q两点向心加速度大小相等
C.P点向心加速度小于Q点向心加速度
D.P点向心加速度大于Q点向心加速度
3.质量为m的小球,用长为L的线悬挂在O点,在O点正下方L/2处有一光滑的钉子P,如图所示,把小球拉到右边某个位置,将小球从静止释放,当球第一次碰到钉子的瞬间( )
第3题图
A.小球角速度突然减小
B.小球线速度不变
C.小球的向心加速度突然减小
D.摆线上的张力突然减小
4.轻杆一端固定在光滑水平轴上,另一端固定一质量为m的小球,如图所示,给小球一初速度,使其在竖直平面内运动,且刚好能通过最高点,下列说法正确的是( )
第4题图
A .小球在最高点时对杆的作用为零
B .小球在最高点时对杆的作用力为mg
C .若增大小球的初速度,则在最高点时球对杆的力一定增大
D .小球到达最高点仍然有初速度
5.如图所示,压路机后轮半径是前轮半径的2倍,A 、B 分别为前轮和后轮边缘上的一点,则A 、B 两点的角速度之比ωA ∶ωB 和向心加速度之比a A ∶a B 为( )
第5题图
A .ωA ∶ω
B =1∶2,a A ∶a B =1∶2 B .ωA ∶ωB =1∶2,a A ∶a B =1∶3
C .ωA ∶ωB =1∶1,a A ∶a B =1∶2
D .ωA ∶ωB =1∶3,a A ∶a B =1∶2
6.如图所示,一圆筒绕其中心轴匀速转动,圆筒内壁上紧靠着一个物体与圆筒一起运动,相对圆筒无滑动,物体所受向心力是( )
第6题图
A .物体的重力
B .筒壁对物体的弹力
C .筒壁对物体的静摩擦力
D .物体所受重力与弹力的合力
7.如图所示,把一个长为20cm ,系数为360N /m 的弹簧一端固定作为圆心,弹簧的另
一端连接一个质量为0.50kg 的小球,当小球以360
π
rad /min 的转速在光滑水平面上做匀速圆
周运动时,弹簧的伸长量为( )
第7题图
A.5.2cmB.5.3cm
C.5.0cmD.5.4cm
8.如图所示,一根跨越光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点),演员a站在地面,演员b从图示的位置由静止开始向下摆,运动过程中绳始终处于伸直状态,当演员b摆至最低点时,演员a刚好对地面无压力,则演员a与演员b质量之比为( )
第8题图
A.1∶1 B.2∶1
C.3∶1 D.4∶1
9.如图所示,在匀速转动的圆盘上有一个与转盘相对静止的物体,物体相对于转盘的运动趋势是( )
第9题图
A.沿切线方向B.沿半径指向圆心
C.沿半径背离圆心D.没有运动趋势
10.长L=0.5m、质量可忽略的杆,其一端固定于O点,另一端连有质量m=2kg的小球,它绕O点做竖直平面内的圆周运动,当通过最高点时,如图所示.求下列情况下球所受到的力.
(1)当v=1m/s时;
(2)当v=4m/s时.
第10题图
11.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为3
4d ,重
力加速度为g.忽略手的运动半径,绳重和空气阻力.
(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2; (2)问绳能承受的最大拉力多大?
(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
第11题图
志在 夺A
1.如图所示,一不可伸长的轻质细绳,绳长为L 一端固定于O 点,另一端系一质量为m 的小球,小球绕O 点在竖直平面内做圆周运动(不计空气助力),小球通过最低点时的速度为v.
(1)求小球通过最低点时,绳对小球拉力F 的大小;
(2)若小球运动到最低点或最高点时,绳突然断开,两种情况下小球从抛出到落地水平位移大小相等,求O 点距地面的高度h ;
(3)在(2)中所述情况下试证明O 点距离地面高度h 与绳长l 之间应满足h ≥3
2
l.
第1题图
2.如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个用细线相连的质量均为m的小物体A、B(均可看作质点),它们到转轴的距离分别为r A=20cm,r B=30cm,A、B与盘面间最大静摩擦力均为重力的0.4倍,试求:
(1)当细线上开始出现张力时,圆盘的角速度ω0;
(2)当A开始滑动时,圆盘的角速度ω;
(3)当A即将滑动时,烧断细线,A、B运动状态如何?
第2题图。