学生-行程问题之环形跑道问题

合集下载

小升初奥数行程问题-环形跑道经典例题

小升初奥数行程问题-环形跑道经典例题

小升初奥数行程问题-环形跑道经典例题
小升初奥数行程问题-环形跑道经典例题
经典例题
例1、运动场的跑道一圈长400m,甲骑自行车每分钟490m;乙
跑步平均每分钟跑250m。

两人从同一地点同时同向出发,至少经过
多少分钟两人又同时到达起点?
例2、甲乙两车同时从同一点A出发,沿周长6千米的圆形跑道
以相反的方向行驶。

甲车每小时行驶65千米,乙车每小时行驶55
千米。

一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上
乙车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离A
点有多少米?(每一次甲车追上乙车也看作一次相遇)
例4、一个圆的周长为90厘米,三个点把这个圆圈分成三等分,3只甲虫A、B、C按顺时针方向分别在这三个点上,它们同时按顺
时针方向沿着圆爬行,A的速度为每秒10厘米,B的速度为每秒5
厘米,C的速度为每秒3厘米。

问3只甲虫爬出多少时间后第一次
到达同一位置?
例5、如图在400米的跑道上有A、B两点相距170米,甲乙同
时分别从A、B两点出发,顺时针方向跑步。

每秒钟甲跑5米,乙跑
4米,两人每跑100米,都要休息10秒。

甲需多少秒才能追上乙?。

初中初奥:数行程问题之环形跑道经典例题

初中初奥:数行程问题之环形跑道经典例题

【导语】奥数能够有效地培养学⽣⽤数学观点看待和处理实际问题的能⼒,提⾼学⽣⽤数学语⾔和模型解决实际问题的意识和能⼒,提⾼学⽣揭⽰实际问题中隐含的数学概念及其关系的能⼒等等。

使学⽣能够在创造性思维过程中,看到数学的实际作⽤,感受到数学的魅⼒,增强学⽣对数学美的感受⼒。

以下是为您整理的相关资料,希望对您有⽤。

1、⼀般环形跑道 这⾥出现最多的就是我们现实⽣活中的由长⽅形和两个半圆组成的运动场形状的环形跑道! 例、⼩张和⼩王各以⼀定速度,在周长为500⽶的环形跑道上跑步,⼩王的速度是180⽶/分。

(1)⼩张和⼩王同时从同⼀地点出发反向跑步,75秒后两⼈第⼀次相遇,⼩张的速度是多少⽶/分? (2)⼩张和⼩王同时从同⼀点出发、同⼀⽅向跑步,⼩张跑多少⽶后才能第⼀次追上⼩王? 例1、如图所⽰,沿着某单位围墙外⾯的⼩路形成⼀个边长300⽶的正⽅形,甲、⼄两⼈分别从两个对⾓处沿逆时针⽅向同时出发。

已知甲每分⾛90⽶,⼄每分⾛70⽶。

问:⾄少经过多长时间甲才能看到⼄?(3⽉27⽇天天练) 例2、甲、⼄两⼈在周长400⽶正⽅形跑道上匀速跑步,假设正⽅形的四个顶点A、B、C、D的顺序依逆时针⽅向排列,起点是A,甲⽐⼄快,⼆⼈同向跑每隔3分20秒相遇⼀次,反向跑每隔80秒相遇⼀次。

如果甲、⼄⼆⼈先同向跑(逆时针)相遇⼀次,紧接着反向跑(甲⽅向不变,⼄按顺时针⽅向)相遇⼀次。

甲⼄⼆⼈第⼆次相遇地点离正⽅形的四个顶点A、B、C、D的哪⼀点最近?最近距离是多少? 2、圆形跑道 例1、在周长为220⽶的圆形跑道的⼀条直径的两端,涛涛、昊昊⼆⼈骑⾃⾏车分别以6⽶/秒和5⽶/秒的速度同时、相向出发(即⼀个顺时针,⼀个逆时针),沿跑道⾏驶,则210秒内涛涛昊昊相遇⼏次?(3⽉28⽇天天练) 例2、⼀个圆周长70厘⽶,甲、⼄两只蚂蚁从同⼀地点,同时出发同向爬⾏,甲以每秒4厘⽶的速度不停地爬⾏,⼄爬⾏15厘⽶后,⽴即反向爬⾏,并且速度增加1倍,在离出发点30厘⽶处与甲相遇。

小学五年级环形跑道的行程问题例题精选十五道

小学五年级环形跑道的行程问题例题精选十五道

环形跑道的行程问题经典例题1.甲、乙两人在一个周长为180米的环形跑道上跑步,甲每秒跑5米,乙每秒跑4米,如果两人从同一点同时出发反向跑步,秒后两人第二次相遇。

2.阿呆和阿瓜在周长为400米的环形跑道上练习长跑,阿呆的速度是每秒3米,阿瓜的速度是每秒2米,如果两人从同一地点同时出发反向跑,经过秒两人第一次相遇。

3.甲、乙两人在周长为300米的环形跑道上同时同地同向而行,甲的速度是75米/分,乙的速度是50米/分,那么经过分钟甲第三次追上乙。

4.有一个圆形跑道,周长为360米,甲、乙二人同时从同一点沿同一方向出发,甲每秒跑5米,乙每秒跑2米,秒后甲第三次追上乙。

5.甲乙两人再周长为220米的环形跑道上同时同地背向而行练习跑步,已知甲的速度是每秒6米,乙的速度是每秒4米,那么到第五次相遇共用了秒。

6.周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米,已知林荫道周长是480米,他们从同一地点同时背向而行,在他们第三次相遇后,王老师还需走米能回到出发点。

7.甲乙两人在湖边散步,甲每分钟走50米,乙每分钟走40米,如果湖一周的长度是1800米,他们同时同地背向而行,在他们第四次迎面相遇后,甲再走米就能回到出发点。

8.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需要走米才能回到出发点。

9.周长为800米的圆形跑道上,甲、乙两人从A点同时同向而行,速度分别是3米/秒和5米/秒,那么秒后乙第三次追上甲。

10.周长为600米的圆形跑道上,甲、乙两人从A点同时同向而行,速度分别是3.5米/秒和5米/秒,那么乙第二次追上甲时距离出发地米。

11.小雨和小凡各以一定速度,在周长为1000米的环形跑道上跑步,小雨的速度是55米/分,小凡的速度是45米/分,两人同时从同一地点出发,反向跑步,分钟后两人第二次迎面相遇。

行程问题 路程问题 环形跑道相遇问题与追及问题以及综合题型练习题

行程问题 路程问题 环形跑道相遇问题与追及问题以及综合题型练习题

环形跑道中的相遇问题与追及问题以及综合题型一、环形路线中同地出发的环形相遇问题周期性:1、环形跑道中的相遇问题:路程和:每相遇一次,两人合走一圈;环形跑道一周的长=速度和×相遇时间2、相遇时间:毎隔相同时间,相遇1次;相遇时间=环形跑道一周的长÷速度和3、第n次相遇所花的时间=相遇一次的时间×n某点与出发点之间的距离:1、看一个运动对象,根据运动时间求出路程;2、用带余除法求圈数,看余数;3、看小圈。

1.一条环形跑道长500米,萱萱每分钟跑260米,小明每分钟跑240米,两人同时同向出发,经过多长时间两人相遇?2.环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?3.阳光小学圆形操场跑道的周长是1000米,小光与小阳同时同地背向而行.小光每分钟走56米,小阳每分钟走44米.经过多少分钟两人第一次相遇?经过多少分钟两人第六次相遇?4.小光和小阳在周长为2000米的环形跑道上同时同地背向而行.小光的速度是200米/分,小阳的速度是300米/分.经过多少分钟两人第一次迎面相遇?经过多少分钟两人第五次迎面相遇?5.小美的速度是4米/秒,小爱的速度是3米/秒。

跑道一圈长度是350米,那么她俩从同一地点同时反向出发,经过多长时间她们第4次相遇?第10次呢?6.阿呆、阿瓜两人在周长为600米的环形跑道上同时同地背向而行。

阿呆的速度是70米/分,阿瓜的速度是50米/分.两人第三次迎面相遇时,阿呆距离出发点多少米?7.高老师、张老师两人在周长为560米的环形跑道上同时同地背向而行。

高老师的速度是60米/分,张老师的速度是80米/分.两人第五次迎面相遇时,高老师距离出发点多少米?8.小美和小爱沿着周长为350米的操场跑,小美的速度是4米/秒,小爱的速度是3米/秒,若两人同时从同一点出发,背向而行,那两人第一次相遇的地点距离出发点有多远?9.周长为400米的圆形跑道上,有相距100米的A、B两点,甲乙两人分别从A、B两点同时相背而行,速度分别是2米/秒和3米/秒.请问:多少秒后两人第三次相遇?二、环形路线中同地出发的追及问题周期性:1、路程差:每追及一次,路程相差一圈;2、追及时间:每隔相同时间,追及1次;3、第n次追及所花的时间=追及一次的时间 x n某点与出发点之间的距离:1、看一个运动对象,根据运动时间求出路程;2、用带余除法求圈数,看余数;3、看小圈。

上海五年级数学讲义1数学2-学生-行程问题之环形跑道问题

上海五年级数学讲义1数学2-学生-行程问题之环形跑道问题

数学辅导讲义学员学校:年级:小五课时数:2学员姓名:辅导科目:数学学科教师:学科组长签名组长备注课题行程问题之环形跑道问题授课时间:备课时间:教学目标理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分析,培养学生的逻辑思维能力重点、难点1、环形跑道问题中的数量关系及解题思路的分析2、理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈,正确将环形跑道问题转化成追及问题。

考点及考试要求应用题教学内容知识精要本次课中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

环线型同一出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S行程问题之环形跑道问题解题关键是:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

1、掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题热身练习1、环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?2 、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?3、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇4、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

行程问题之环形问题

行程问题之环形问题

行程问题之环形问题【例1】:一条环形跑道长500米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑200米,两人同时同地反向而行,经过多少分钟两人相遇练习1:一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?【例2】甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速度是乙的1.25倍,甲在乙前100米,问多少分钟后,甲可以追上乙?练习2:两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?【例3】甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是60分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?练习3:甲、乙二人沿公园同一地点同时出发,背向而行。

现在已知甲走一圈的时间是20分钟,如果在出发后12分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?【例4】在480米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分钟20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度?练习4:一圆形跑道周长300米,甲、乙两人分别从A、B两端同时出发,若反向而行1分钟相遇,若同向而行5分钟,甲可追上乙,求甲、乙两人的速度。

【例5】小张、小王和小李同时从湖边同一地点出发,绕湖行走。

小张速度是每小时5.4千米,小王速度是每小时4.2千米,他们两人同方向而行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇。

那么,绕湖一周的行程是多少千米?课堂小测1、甲、乙两地相距450米,A、B两人从两地同时相向而行,经过5分钟相遇,已知A每分钟比B 每分钟慢6米,求A、B两车的速度各是多少米?2、A、B二人沿着公园同一地点同时出发,背向而行。

六年级奥数行程问题专题:环形跑道的要点及解题技巧

六年级奥数行程问题专题:环形跑道的要点及解题技巧

六年级奥数行程问题专题:环形跑道的要点及解题技巧一、什么是环形跑道问题?环形跑道问题特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

二、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差三、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

奥数行程:环形跑道的例题及答案(一)环形跑道问题特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

下面通过几道例题来帮助大家巩固环形跑道的相关知识。

例1。

甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0。

1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【解答】设乙的速度是x米/分0。

1米/秒=6米/分8x+8x+8×6=400×5x=122122×8÷400=2。

176那么两人第五次相遇的地点与点A沿跑道上的最短路程是176米例2。

二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。

问第十五次击掌时,甲走多长时间乙走多少路程?【解答】甲走完10圈走了10*400=4000米他们每击掌一次,甲走一圈(画画图就会明白的),则15*400=6000米总共走了6000+4000=10000米10000/400=25分钟因为甲乙所走时间想同所以乙走了25/7*400≈1428米例3。

五年级下册数学试题-奥数专题:行程问题之环形跑道问题学生版

五年级下册数学试题-奥数专题:行程问题之环形跑道问题学生版

行程问题之环形跑道问题2 、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?3、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇4、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

如果同向而行,几秒后两人再次相遇5、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?6、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?求此圆形场地的周长?举一反三1、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C 点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.2、如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行.它们第一次相遇在离A点8厘米处的B点,第二次相遇在离C点处6厘米的D点,问,这个圆周的长是多少?第一次相遇第二次相遇DCBA3、A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?二、环形跑道——变道问题【例 1】如图是一个跑道的示意图,沿ACBEA走一圈是400米,沿ACBDA走一圈是275米,其中A到B的直线距离是75米.甲、乙二人同时从A点出发练习长跑,甲沿ACBDA的小圈跑,每100米用24秒,乙沿ACBEA的大圈跑,每100米用21秒,问:⑴乙跑第几圈时第一次与甲相遇?⑵发多长时间甲、乙再次在A相遇?相反方向跑去。

相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。

【精编版】环形跑道问题.学生版

【精编版】环形跑道问题.学生版

1、 掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次 (2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次 2、遇见多人多次相遇、追及能够借助线段图进行分析 3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。

已知林荫道周长是480米,他们从同一地点同时背向而行。

在他们第10次相遇后,王老师再走 米就回到出发点。

知识精讲教学目标环形跑道问题【例2】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【巩固】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【巩固】一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【巩固】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?【巩固】幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?【巩固】小明和小刚清晨来到学校操场练习跑步,学校操场是400米的环形跑道,小刚对小明说:“咱们比比看谁跑的快”,于是两人同时同向起跑,结果10分钟后小明第一次从背后追上小刚,同学们一定知道谁跑得快了,小明的速度是每分钟跑140米,那么如果小明第3次从背后追上小刚时,小刚一共跑了米.【巩固】如图1,有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米。

小学思维数学:行程问题之环形跑道问题-带详解

小学思维数学:行程问题之环形跑道问题-带详解

1、 掌握如下两个关系: (1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。

已知林荫道周长是480米,他们从同一地点同时背向而行。

在他们第10次相遇后,王老师再走 米就回到出发点。

【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试知识精讲 教学目标环形跑道问题【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。

小学数学行程问题之环形跑道含答案

小学数学行程问题之环形跑道含答案

环形跑道知识框架本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

环线型同一出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S例题精讲【例 1】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】右图中C表示甲、乙第一次相遇地点.因为乙从B到C又返回B时,甲恰好转一圈回到A,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C点距B点180-90=90(米).甲从A到C用了180÷20=9(分),所以乙每分行驶90÷9=10(米).甲、乙第二次相遇,即分别同时从A,B出发相向而行相遇需要90÷(20+10)=3(分).【答案】3分【巩固】周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】如下图,记甲乙相遇点为C.当甲跑了AC的路程时,乙跑了BC的路程;而当甲跑了400米时,乙跑了2BC的路程.由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A点所需时间的12.即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A,乙到达B时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.【答案】1000米【例 2】甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】首先是一个相遇过程,相遇时间:6(6555)0.05÷+=小时,相遇地点距离A点:550.05 2.75⨯=千米.然后乙车调头,成为追及过程,追及时间:6(6555)0.6÷-=小时,乙车在此过程中走的路程:550.633⨯=千米,即5圈余3千米,那么这时距离A点3 2.750.25-=千米.甲车调头后又成为相遇过程,同样方法可计算出相遇地点距离A点0.25 2.753+=千米,而第4次相遇时两车又重新回到了A点,并且行驶的方向与开始相同.所以,第8次相遇时两车肯定还是相遇在A点,又11332÷=,所以第11次相遇的地点与第3次相遇的地点是相同的,距离A点是3000米.【答案】3000米【巩固】二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。

小学奥数行程问题环形跑道问题解析【三篇】

小学奥数行程问题环形跑道问题解析【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《⼩学奥数⾏程问题环形跑道问题解析【三篇】》供您查阅。

【第⼀篇:变相环形跑道】【第⼆篇:正⽅形问题】甲、⼄两⼈从周长为1600⽶的正⽅形⽔池ABCD相对的两个顶点A,C同时出发绕⽔池的边沿A---B---C---D----A的⽅向⾏⾛。

甲的速度是每分钟50⽶,⼄的速度是每分钟46⽶则甲、⼄第⼀次在同⼀边上⾏⾛,是发⽣在出发后的第多少分钟?第⼀次在同⼀边上⾏⾛了多少分钟? 解析: 要使两⼈在同⼀边⾏⾛,甲⼄相距必须⼩于⼀条边,并且甲要迈过顶点。

甲追⼄1600÷4=400⽶,⾄少需要400÷(50-46)=100分钟,此时甲⾏了50×100=5000⽶,5000÷400=12条边……200⽶。

因此还要⾏200÷50=4分钟,即出发后100+4=104分钟两⼈第⼀次在同⼀边上⾏⾛。

此时甲⼄相距400×2-104×(50-46)=384⽶,⼄⾏完这条边还有16⽶,因此第⼀次在同⼀边上⾛了16÷46=8/23分钟。

【第三篇:环形跑道多⼈⾏程】设A,B,C三⼈沿同⼀⽅向,以⼀定的速度绕校园⼀周的时间分别是6、7、11分。

由开始点A出发后,B⽐A晚1分钟出发,C⽐B晚5分钟出发,那么A,B,C第⼀次同时通过开始出发的地点是在A出发后⼏分钟? 解析: 从条件可以知道,C出发时,A刚好⾏了5+1=6分钟,即⼀圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。

由于B还需要7-5=2分钟才能通过,说明要满⾜66的倍数除以7余2分钟。

当66×3=198分钟时,198÷7=28……2分钟,满⾜条件。

因此ABC第⼀次同时通过出发地点是A出发后6+198=204分钟的时候。

四年级数学下册《行程问题》环形跑道归纳!

四年级数学下册《行程问题》环形跑道归纳!

时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)3.成才小学有一条200米长的环形跑道,包包昊昊同时从起跑线起跑包包每秒钟跑6米,昊昊每秒钟跑4米,问包包第一次追上昊昊时两人各跑了多少米?第一次追上昊昊时两人各跑了多少圈?解:包包追上昊昊多跑一周200米,需用时200÷(6-4)=100(秒)因此,追上昊昊时包包跑了6×100=600米600÷200=3(圈)昊昊跑了4×100=400米400÷200=2(圈)4.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒…(连续的奇数),就调头爬行。

那么,它们相遇时已爬行的时间是多少秒?解:它们相遇时应是行了半个圆周,半个圆周长为:1.26÷2=0.63(米)=63(厘米)如不调头,它们相遇时间为:63÷(3.5+5.5)=7(秒)根据它们调头再返回的规律可知:由于1-3+5-7+9-11+13=7(秒)所以13+11+9+7+5+3+1=49(秒)相遇答:它们相遇时已爬行的时间是49秒。

点评:完成本题关健是发现蚂蚁爬行方向的变化是有规律可循。

小学数学 行程问题之环形跑道问题 完整版题型训练 PPT带答案带作业

小学数学 行程问题之环形跑道问题 完整版题型训练 PPT带答案带作业
(1)300÷(6-4)=150(秒) 东:150×6=900(米) 方:150×4=600(米) (2)150×2=300(秒) 东:300×6÷300=6(圈) 方:300×4÷300=4(圈) 答:第一次追上时,东东跑了900米、方方跑了600米,第二次追上时,东东跑了6圈, 方方跑了4圈。
练习2:
本题知识点【较复杂环形行程问题】 【分析】本题中,并没告诉我们环形跑道一圈的长度,我们不妨设其为1200米。 则甲、乙两人的速度和为:1200÷4=300(米/分钟) 甲、乙两人的速度差为:1200÷12=100(米/分钟) 甲的速度为:(300+100)÷2=200(米/分钟) 即甲走一圈的时间为:1200÷200=6(分钟) 乙的速度为:(300-100)÷2=100(米/分钟) 即乙走一圈的时间为:1200÷100=12(分钟) 答:甲跑一圈需要6分钟,乙需要12分钟。
练习1
练习1 (1)环形行程问题中,甲、乙若是相向而行,则属于(相遇),若 是背向而行,则属于(相遇),若是同向而行,则属于(追及)。
(2)环形行程问题中,甲、乙从同一地点背向而行,若两人相遇5次,则 说明(甲乙合走5圈 )。 (3)甲、乙两人绕着长600米的环形操场跑步,甲、乙同时、同一地点、 背向出发,甲一共跑了1500米,乙一共跑了2100米,则两人相遇(6)次。 (4)甲、乙两人绕着长400米的环形操场跑步,甲、乙同时、同一地点、 同向出发,甲一共跑了1500米,乙一共跑了3200米,则两人相遇(4)次。 (5)甲、乙两人绕着环形操场跑步,甲每秒跑5米,乙每秒跑7米,若两人 同时同地同向出发,乙5分钟第一次追上甲,则操场全长(600)米。
练习 2 (1)小张和小王各以一定速度,在周长为500米的环形跑道上跑步。小王的 速度是200米/分,小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一 次相遇,小张的速度是多少米每分钟?

用行程问题环形跑道

用行程问题环形跑道

运动场一圈为400米,张森和丁烁一同参加学校运动 会的长跑比赛。已知丁烁然平均每分钟跑230米,张森每 分钟跑150米。
(1)若两人从同一处同时同向起跑,问经过多长时间两 人可以首次相遇?
(2)若两人从同一处同向起跑,且张森先跑2分钟。问经 过多长时间两人可以首次相遇?
(3)若两人从同一处同时反向起跑,问经过多长时间两 人可以首次相遇?
分析:圆形跑道中的规律:
(第1次相遇:)快者跑的路程+慢者跑的路程=1圈的长度 (第2次相遇:)快者跑的路程+慢者跑的路程=2圈的长度 (第3次相遇:)快者跑的路程+慢者跑的路程=3圈的长度
………. (第n次相遇:)快者跑的路程+慢者跑的路程=n圈的长度
解:设经过x分钟首次相遇,则依题意可得 350x+250x=400 解得:x= 2
行程问题
路程=速度×时间
时间
路程 速度
速度
路程 时间
例1、 运动场的跑道一圈长400m,甲练习骑自行车, 平均每分骑350m,乙练习跑步,平均每分250m.两 人从同一处同时同向出发,经过多少时间首次相遇?
分析:圆形跑道中的规律:
(第1次相遇:)快者跑的路程-慢者跑的路程=1圈的长度 (第2次相遇:)快者跑的路程-慢者跑的路程=2圈的长度 (第3次相遇:)快者跑的路程-慢者跑的路程=3圈的长度
(4)若两人从同一处反向起跑,且张森先跑2分钟。问经 过多长时间两人可以首次相遇?
错车问题
• 甲、乙两列火车的长为144m和180m, 甲车比乙车每秒多行4m.两列火车相 向而行,从相遇到全部错开需9s,问 两车的速度各是多少
超车问题
• 高速公路上,一辆长4m,速度为110km/h 的轿车准备超越一辆长12m,速度为 90km/h的卡车.估计轿车从开始追及到完 全超越卡车,大约需要多少秒?

最新小学奥数 环形路上的行程问题学生版

最新小学奥数 环形路上的行程问题学生版

最新小学奥数环形路上的行程问题例1小张和小王各以一定速度,在周长为500 米的环形跑道上跑步.小王的速度是180 米/分.(1)小张和小王同时从同一地点出发,反向跑步,75 秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?例2、小君在360米长的环形跑道上跑一圈。

已知他前一半时间每秒跑5米,后一半时间每秒跑4米。

那么小君后一半路程用了多少秒?例2 如图,A、B 是圆的直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C离A点80米;在D 点第二次相遇,D点离B 点6O米.求这个圆的周长.例3 甲村、乙村相距6 千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40 分钟两人第一次相遇.小王到达甲村后返回,在离甲村2 千米的地方两人第二次相遇.问小张和小王的速度各是多少?例4 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5 千米处第一次相遇,在离乙村2 千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.例5 绕湖一周是24 千米,小张和小王从湖边某一地点同时出发反向而行.小王以4 千米/小时速度每走1 小时后休息5 分钟;小张以6 千米/小时速度每走50 分钟后休息10 分钟.问:两人出发多少时间第一次相遇?例6 一个圆周长90 厘米,3 个点把这个圆周分成三等分,3 只爬虫A,B,C 分别在这3 个点上.它们同时出发,按顺时针方向沿着圆周爬行.A 的速度是10 厘米/秒,B 的速度是5 厘米/秒,C 的速度是3 厘米/秒,3 只爬虫出发后多少时间第一次到达同一位置?例7 图上正方形ABCD 是一条环形公路.已知汽车在AB 上的速度是90 千米/小时,在BC 上的速度是120 千米/小时,在CD 上的速度是60 千米/小时,在DA 上的速度是80 千米/小时.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 处相遇.求巩固练习:1.一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇(不用解方程)2.两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

行程问题4环形跑道问题

行程问题4环形跑道问题

本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

【例1】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【例2】(2008年第八届“春蕾杯”小学数学邀请赛决赛)上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【巩固】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?【巩固】幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?【例3】在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?【巩固】在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?【巩固】两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?【巩固】(第4届希望杯培训题)在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次,已知环形跑道的长度是1600米,那么两人的速度分别是多少?【例4】(难度等级※※)周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。

奥数行程问题——环形跑道

奥数行程问题——环形跑道

行程问题——环形跑道环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

1、相遇问题:题型特点:甲、乙两人同时从同地反向出发。

解题规律:两人相遇时一起走一圈(跑道周长)。

之后每见面一次,就一起走1圈;见面n次,两人一起走n个周长。

2、追及问题:题型特点:甲、乙两人同时从同地同向出发。

解题规律:开始出发时由于速度不同两人之间的距离会越来越远,之后快的会追上慢的,此时快的人比慢的人多走1圈(路程差为跑道周长)。

之后每追上一次,就多走1圈;追上n次,快的就比慢的多走n个周长。

3、需要处理的问题:a、环形跑道中速度、时间、路程之间的关系处理。

(b、多次追及问题的处理。

c、不同地点出发的追及问题。

1、一个圆形荷花池的周长为400米,甲、乙两人绕荷花池顺时针跑步。

甲每分钟跑250米,乙每分钟跑200米,现在甲在乙后面50米,甲第二次追上乙需要多少分钟2、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑140米,两人同时反向出发,经过几分钟两人相遇3、上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,小亚第一次追上小胖时,小胖跑了多少米4、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第2次追上晶晶时,冬冬跑了多少圈5、甲、乙二人骑自行车从环形公路上的同一地点出发,背向而行。

现在已知甲走一圈的时间为75分钟,如果在出发后第50分钟甲、乙两人相遇,那么乙走一圈的时间是多少分钟6、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70 分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟7、两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过几分钟两人相遇8、在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲的速度是多少米/秒—9、环形跑道的周长是800米,甲乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题之环形跑道问题
2 、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?
3、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇
4、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

如果同向而行,几秒后两人再次相遇
5、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?
6、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?
求此圆形场地的周长?
举一反三
1、如图,A 、B 是圆的直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点6O 米.求这个圆的周长.
2、如图,有一个圆,两只小虫分别从直径的两端A 与C 同时出发,绕圆周相 向而行.它们第一次相遇在离A 点8厘米处的B 点,第二次相遇在离C 点处6厘米的D 点,问,这个圆周的长是多少?
第一次相遇
第二次相遇
D
C B
A
3、A 、B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇.已知C 离A 有75米,D 离B 有55米,求这个圆的周长是多少米?
二、环形跑道——变道问题
【例 1】如图是一个跑道的示意图,沿ACBEA 走一圈是400米,沿ACBDA 走一圈是275米,其中A 到B 的直线距离是75米.甲、乙二人同时从A 点出发练习长跑,甲沿ACBDA 的小圈跑,每100米用24秒,乙沿ACBEA 的大圈跑,每100米用21秒,问:
⑴ 乙跑第几圈时第一次与甲相遇? ⑵ 发多长时间甲、乙再次在A 相遇?
三、环形跑道——变速问题
【例 1】(难度等级※※)甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。

求甲原来的速度。

【例 2】(2003年迎春杯)甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的2.5倍,当乙第一次追上甲时,甲的速度立即提高25%,而乙的速度立即减少20%,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是米.
B C
A
巩固练习
1、(难度等级※※※)两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?
2、(难度等级※※※)周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?
3、(难度等级※※※)在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?
4、(难度等级※※※)(2000年华校入学试题)甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?
5、二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。

问第十五次击掌时,甲走多长时间乙走多少路程?
6、(难度等级※※)下如右图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?
7、(难度等级※※※)如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?
8、(难度等级※※※)如图,在400米的环形跑道上,A,B两点相距100米.甲、乙两人分别从A,B两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么甲追上乙需要时间是多少秒?
9、(难度等级※※※)下图是一个边长90米的正方形,甲、乙两人同时从A点出发,甲逆时针每分行75米,乙顺时针每分行45米.两人第一次在CD边(不包括C,D两点)上相遇,是出发以后的第几次相遇?
10、(难度等级※※※※)如图,8时10分,有甲、乙两人以相同的速度分别从相距60米的A,B 两地顺时针方向沿长方形ABCD的边走向D点.甲8时20分到D点后,丙、丁两人立即以相同速度从D点出发.丙由D向A走去,8时24分与乙在E点相遇;丁由D向C走去,8时30分在F点被乙追上.问三角形BEF的面积为多少平方米?
二、环形跑道——变道问题
1、如图所示,大圈是400米跑道,由A到B的跑道长是200米,直线距离是50米。

父子俩同时从A点出发逆时针方向沿跑道进行长跑锻炼,儿子跑大圈,父亲每跑到B点便沿直线跑。

父亲每100米用20秒,儿子每100米用19秒。

如果他们按这样的速度跑,儿子在跑第几圈时,第一次与父亲相遇?
B
A
2、(2005年《小学生数学报》优秀小读者评选活动)有一种机器人玩具装置,配备长、短不同的两条跑道,其中长跑道长400厘米,短跑道长300厘米,且有200厘米的公用跑道(如下图)。

机器
人甲按逆时针方向以每秒6厘米的速度在长跑道上跑动,机器人乙按顺时针方向以每秒4厘米的速度在短跑道上跑动。

如果甲、乙两个机器人同时从A点出发,那么当两个机器人在跑道上第3次迎面相遇时,机器人甲距离出发点A点多少厘米?
200200
100
A
3、(难度等级※※)下图中有两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米。

两只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿两个圆爬行。

问:当小圆上甲虫爬了几圈时,两只甲虫首次相距最远?
4、三个环行跑道如图排列,每个环行跑道周长为210厘米;甲、乙两只爬虫分别从A、B两地按箭头所示方向出发,甲爬虫绕1、2号环行跑道作“8”字形循环运动,乙爬虫绕3、2号环行跑道作“8”字形循环运动,已知甲、乙两只爬虫的速度分别为每分钟20厘米和每分钟l5厘米,甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米?
3
2
1B
A。

相关文档
最新文档