三角形的内角和教学设计与评析

合集下载

三角形的内角和教学设计及评析[优秀范文五篇]

三角形的内角和教学设计及评析[优秀范文五篇]

三角形的内角和教学设计及评析[优秀范文五篇]第一篇:三角形的内角和教学设计及评析《三角形的内角和》教学设计及评析执教:万州区红光小学黄美香评析:万州区教科所郭正洪教学内容:人教版《义务教育课程标准实验教科书数学》四年级下册第85页及“做一做”。

教学目的:1、通过数学探究活动使学生发现并验证三角形的内角和等于180度。

2、在应用三角形内角和知识解决问题的过程中促进学生数学思维发展。

3、让学生在亲历探究数学的过程中发展空间想象能力和推理能力。

教学重点:让学生探究发现并验证三角形内角和等于180度。

教学难点:帮助学生建立空间观念。

教学准备:多媒体课件,师生准备不同类型三角形纸片,剪刀,量角器。

一、课前谈话。

同学们,黄老师今天非常高兴能和咱们四年级的同学一起走进知识的王国,在数学的海洋里遨游,去探索一个又一个新的秘密。

早就听说咱们班的同学特别爱动脑筋,大胆发言,我坚信一定能和同学们合作愉快,你们有信心吗?〔点评〕因为是借班上课,课前,老师以富有激情语言与学生简单的交流,1 消除师生之间的陌生,沟通师生之间的情感,为学生树立学习信心,完成本节数学学习任务奠定了一定的基础。

二、复习引入。

﹡复习旧知。

(1)、请同学们回忆我们以前学过那些平面图形?(2)、这些是我们早已认识的平面图形,那你能告诉大家长方形有什么特征吗?(生汇报:长方形对边相等,有4个角,4个角都是直角)那这4个角一共是多少度?(3600),你怎么算的?(900×4=3600)(课件出示长方形),3600相当于几个平角?(生:2个平角)为什么?(课件展示4个直角拼成平角的过程)(3)、通过刚才的学习,同学们了解到长方形的4个内角和是3600,那么三角形有几个内角?它的几个内角的和又是多少度呢?今天这节课我们就来研究三角形的内角和。

(板书:三角形的内角和)(课件弹出三角形)〔点评〕在数学教学中,学生对数学知识的学习,在很多时候都是对已有数学知识的延伸和发展。

三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)

三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)

三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)《三角形内角和》数学教案篇一尊敬的各位评委老师:大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。

领悟转化思想在解决问题中的应用。

1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。

“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。

请学生画一个三角形,要求:有两个直角。

为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。

板书课题。

(二)、自主探究、合作交流1、探索特殊三角形内角和拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

三角形内角和是多少度呢?指名汇报。

90°+30°+60°=180°90°+45°+45°=180°从刚才两个三角形内角和的计算中,你发现了什么?2、探索一般三角形的内角和一般三角形的内角和是多少度?猜一猜。

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

人教版数学四年级下册三角形的内角和教案与反思(精推3篇)

人教版数学四年级下册三角形的内角和教案与反思(精推3篇)

人教版数学四年级下册三角形的内角和教案与反思(精推3篇)〖人教版数学四年级下册三角形的内角和教案与反思第【1】篇〗教学目标:1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。

重点、难点:经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。

三角形内角和是180°的探索和验证。

教学过程:一、揭示课题1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)出示课件2、提出问题,为后面做铺垫。

现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。

锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。

孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。

二、新授1、任意画不同的类型的三角形,算一算三个内角和是多少度。

我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。

(小组合作,画图,量角,记录,计算)指名汇报结果并板书(至少一种一个板书),有不同意见的举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?(三角形的内角和都是一样大的,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)1、拼一拼,折一折孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。

三角形内角和教学设计(通用6篇)

三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】一、激趣引入。

1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。

师:那么,下面老师给大家出个谜语。

请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。

(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。

3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。

试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。

1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。

师:三角形有几个内角啊?生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。

教资《三角形内角和》的教学设计(通用12篇)

教资《三角形内角和》的教学设计(通用12篇)

教资《三角形内角和》的教学设计教资《三角形内角和》的教学设计(通用12篇)作为一名默默奉献的教育工作者,就有可能用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

那么优秀的教学设计是什么样的呢?以下是小编收集整理的教资《三角形内角和》的教学设计(通用12篇),仅供参考,大家一起来看看吧。

教资《三角形内角和》的教学设计篇1教学目标:1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。

并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。

3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。

教学难点:通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。

"教师准备:4组学具、课件学生准备:量角器、练习本教学过程:一、兴趣导入,揭示课题1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"(生出示三角形并汇报各类三角形及特点)2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。

"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。

"(设置矛盾,使学生在矛盾中去发现问题、探究问题。

)3、我们来帮帮它们好吗?4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。

你能标出三角形的三个角吗?(生快速标好)数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。

这节课我们就来研究一下"三角形的内角和"(课件片头1)"同学们,用什么方法能知道三角形的内角和?"二、猜想验证,探究规律(动手操作,探究新知)1.量角求和法证明:先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人量,一人记录,一人计算,看哪一小组完成的好?(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。

)(板书三角形的内角和是180度。

)师:那我们再看看刚刚汇报的结果。

为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。

现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。

早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。

七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。

是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。

教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。

教材还安排了“试一试”,“练一练”的内容。

已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。

他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

三角形内角和教学设计(通用4篇)

三角形内角和教学设计(通用4篇)

三角形内角和教学设计(通用4篇)作为一名人民老师,时常会须要打算好教案,借助教案可以更好地组织教学活动。

如何把教案做到重点突出呢。

以下是我为大家收集的三角形内角和教学设计(通用4篇),仅供参考,欢迎大家阅读。

三角形内角和教学设计篇1【教学内容】《人教版九年义务教化教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

2.让学生经验量一量、折一折、拼一拼等动手操作的过程。

通过视察、推断、沟通和推理探究用多种方法证明三角形的内角和是180。

3.培育学生自主学习、互动沟通、合作探究的实力和习惯,培育学习数学的爱好,感受学习数学的乐趣。

【教学重点】使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

【教学难点】通过多种方法验证三角形的内角和是180。

【教学打算】课件。

四组教学用三角板。

铅笔。

大帆布兜子。

固体胶。

剪刀。

筷子若干。

【教学过程】一、激趣导入,提炼学习方法1.课程起先,老师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。

激发学生的新奇心。

然后自述:“你们好,我是一个有三十多年工作阅历的老木匠了。

我收了三个徒弟,他们已经从师学艺三年了,今日我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.接着以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。

老师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的其次个问题。

4.导入新课。

图中有许多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜爱的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二、动手操作,探究沟通新知1.分组活动,探究新知依据学生的选择把学生分成三组,分别采纳量一量、折一折和拼一拼的方法探究新知。

“三角形的内角和”教学设计与评析

“三角形的内角和”教学设计与评析

“三角形的内角和”教学设计与评析“三角形的内角和”教学设计与评析【教学内容】《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页【教学目标】1、通过”量一量”,”算一算”,”拼一拼”,”折一折”的方法, 让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、通过把三角形的内角和转化为平角进行探究实验,渗透”转化”的数学思想.3、通过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践能力.【教学重难点】理解并掌握三角形的内角和是180度【教具学具准备】多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。

【教学流程】(一)创设情境,激发兴趣现在正是春暖花开,万物复苏的季节。

在这美好的日子里,我们相聚在这里,刘老师非常高兴认识大家,你看把蝴蝶也引来了。

(课件)师:请大家仔细观察,它把这条绳子围成了什么三角形?(课件)师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?生答师:这节课我们一起来研究三角形的内角和。

(板书:三角形的内角和)【评析:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情。

】(二)动手操作,探索新知1、揭示“内角”和“内角和”的概念(1)“内角”的概念(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。

一个三角形有几个内角啊?每人从学具筐中任选一个三角形,指出它的内角。

(2)“内角和”的概念师:大家知道了什么是三角形的内角,那什么叫“内角和”呢?师小结:三角形的内角和就是三个内角的度数之和。

2、猜测内角和(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?(2)直角三角形与钝角三角形同上。

(3)师:看来大家都认为三角形的内角和是180º,但这仅仅是我们的一种猜测,有了猜测就可以下结论了吗?我们还需要进一步的验证.3、动手验证,汇报交流(1)介绍学具筐刘老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮助你想出好办法。

《三角形的内角和》教学案例评析与教学反思1

《三角形的内角和》教学案例评析与教学反思1

《三角形的内角和》教学案例评析与教学反思最近,在区教研室的支配下,我在全区新课改教材培训会上讲了一节示范课,内容是人教版试验教材第八册《三角形的内角和》。

这节课课前得到了区教研室专家的细心指导,课后受到学生和听课老师的相同好评。

我想这节的胜利之处就在于给学生一个开放的学习环境,给学生一个探究的学习天地,让学生“启思质疑引探新知”。

纵观本课,猜测的提出、验证,方法、结论的得出,都是学生个体主动参加、合作探究的结果。

这样的数学课堂教学过程,充溢了视察、试验、猜测、验证、推理与沟通等丰富多彩的数学活动,造就了学生的探究精神,并在探究过程中获得丰富的情感体验。

教学内容:义务教育课程标准试验教科书数学第八册〔人教版〕【片段1】创设情景,提醒课题。

出示多媒体课件:如图1图1师:同学们视察到什么?生1:两条直线相交形成四个角。

生2:这四个角有两个锐角、两个钝角。

生3:因为∠1和∠2组成一个平角,所以∠1+∠2=180°;同样道理,∠3+∠4=180°。

生4:∠1+∠2+∠3+∠4=360°出示多媒体课件:如图2图2师:什么变了?什么没变?生1:∠1和∠2的大小都变了,但∠1和∠2的和还是180°;∠3和∠4的大小都变了,但∠3和∠4的和还是180°。

它们的和没变。

生2:∠1+∠2+∠3+∠4=360°,这四个角的总和也没变。

师:教师把其中一条直线接着旋转,如图3,让∠1变成了一个直角,你们知道其它三个角的是什么角吗?各是多少度?图3生1:其它四个角都是直角,都等于90°。

师:想一想,哪些平面图形中有四个直角。

生:长方形和正方形。

多媒体课件出示一个图片:如图4。

图4师:我们把长方形和正方形里的四个直角叫做内角。

师:想一想,什么叫做内角和?生:〔略〕师:三角形有几个内角?生:〔略〕师:什么是三角形的内角和?生:〔略〕师:三角形的内角和会是多少度呢?是锐角三角形的内角和大还是钝角三角形的内角和大呢?请同学猜一猜。

小学数学《三角形内角和》教学设计(优秀5篇)

小学数学《三角形内角和》教学设计(优秀5篇)

小学数学《三角形内角和》教学设计(优秀5篇)《三角形内角和》数学教案篇一【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。

【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。

【学情分析】:学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。

对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。

另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

【学习目标】:1、结合具体图形能描述出三角形的内角、内角和的含义。

2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

【评价任务设计】:1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。

达成目标1。

2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。

达成目标2。

3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。

达成目标3。

4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

通过“做一做”和习题第9、10、12题达成目标4和目标3。

【重难点】教学重点:探索和发现三角形的内角和是180°。

教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°【教学过程】一、复习准备。

《三角形的内角和》评课稿(通用5篇)

《三角形的内角和》评课稿(通用5篇)

《三角形的内角和》评课稿(通用5篇)数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

从这个意义上,数学属于形式科学,而不是自然科学。

不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

以下是小编收集整理的《三角形的内角和》评课稿,希望能够帮助到大家。

《三角形的内角和》评课稿篇1三角形的内角和是四年级下册第五单元的内容,是在学生认识三角形的特征、分类的基础上进行教学的,主要通过不同形式的动手操作验证三角形的内角和的度数。

一、亮点1.注重数学思想方法的渗透。

在教学中,孔石蕾老师首先通过猜想,让学生通过量一量锐角三角形、直角三角形和钝角三角形每个角的度数,有的学生得到三角形的内角和正好是180°,有的大于180°,而有的则小于180°,由此让学生去想办法去验证三角形的内角和的度数。

在验证的过程中,学生采用了把三角形的三个角撕下来拼成直角的方法、把三角形的三个角折成平角的方法得出了三角形的内角和是180度,接着教师又通过动画演示操作和几何画板的量角的优势,让学生清晰地看出三角形内角和的度数是180度,最后又应用这一知识进行了综合的练习。

在整个教学过程中,教师采用了猜想、验证、得出结论、应用的四个探究环节,让学生经历了知识的发生、发展过程,提高了解决问题的能力。

2.精心准备,精彩呈现。

在教学过程中,孔石蕾老师在课件的制作,几何画板的应用、知识材料的拓展、习题的选择等方面进行了精心设计和准备,教学过程流畅、教学环节紧凑,教学语言清晰,有效地达成了教学目标,使学生在学习的过程中不仅掌握了知识,也掌握了学习数学的方法。

二、建议在教学过程中,可以适当的进行知识的延伸拓展,如通过学习三角形的内角和对于后续的学习有什么影响,可以想到四边形的内角和等等方面的内容。

《三角形的内角和》评课稿篇2“三角形的内角和”是人教版小学四年级下册第五单元第四节的内容。

小学数学《三角形内角和》教学设计(通用8篇)

小学数学《三角形内角和》教学设计(通用8篇)

小学数学《三角形内角和》教学设计(通用8篇)下文是我为您精心整理的《小学数学《三角形内角和》教学设计(通用8篇)》,您浏览的《小学数学《三角形内角和》教学设计(通用8篇)》正文如下:小学数学《三角形内角和》教学设计篇1教学目标:1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

教学重点:1、探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:表格、课件。

学具准备:各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、一天两个三角形发生了争执,他们请你们来评评理。

大三角形说:“我的个头大,所以我的内角和一定比你大。

”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。

”谁说得有道理呢?今天让我们来做一回裁判吧。

生1:大三角形大(个子大)生2:小三角形大(有钝角)(教师不做判断,让学生带着问题进入新课)2、什么是三角形的内角和?(板书:内角和)讲解:三角形内两条边所夹的角就叫做这个三角形的内角。

每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:1、你认为谁说得对?你是怎么想的?2、你有什么办法可以比较一下这两个三角形的内角和呢?生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

生3:用折一折的办法把三个角折到一起看它们能不能组成平角(二)探索与发现活动一:量一量(1)①了解活动要求:(屏幕显示)A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。

(测量时要认真,力求准确)B、把测量结果记录在表格中,并计算三角形内角和。

《三角形的内角和》评课稿[通用9篇]

《三角形的内角和》评课稿[通用9篇]

《三角形的内角和》评课稿[通用9篇]在教学工作者实际的教学活动中,通常会被要求编写评课稿,通过评课的反馈信息可以调节教师的教学工作,了解、掌握教学实施的效果,反省成功与失败原因之所在,激发教师的教学积极性、创造性,及时修正、调整和改进教学工作。

怎么样才能写出优秀的评课稿呢?下面是小编帮大家整理的《三角形的内角和》评课稿,欢迎阅读,希望大家能够喜欢。

《三角形的内角和》评课稿1在整个教学设计上谢老师充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入——猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。

具体体现在以下几点:1、善用激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。

刚开始上课,谢老师用选王大会设悬念,三种类型的角在激烈的争执,到的谁的内角和大呢?这样,在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,而且也很自然地揭示了课题。

2、巧用猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时谢老师就提到到底三角形的内角和是不是180度呢,我们总不能口说无凭吧?使后边的探索和验证活动有了明确的目标。

3、善用验证{自主探索}:学生形成统一的猜想{即三角形的`内角和等于180度}后,谢老师就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{即验证三角形的内角和是否是180度?},在活动中,把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。

不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。

具体过程为:量一量——拼一拼——看一看。

4、善于引导巩固内化:俗话说的好:“熟能生巧”。

数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。

养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。

《三角形的内角和》教学设计(优秀7篇)

《三角形的内角和》教学设计(优秀7篇)

《三角形的内角和》教学设计(优秀7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形的内角和》教学设计(优秀7篇)作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。

《三角形的内角和》教学设计优秀8篇

《三角形的内角和》教学设计优秀8篇

《三角形的内角和》教学设计优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《三角形的内角和》教学设计优秀8篇作为一名默默奉献的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。

《三角形内角和》的数学教学设计(最新7篇)

《三角形内角和》的数学教学设计(最新7篇)

《三角形内角和》的数学教学设计(最新7篇)角形内角和教学设计篇一教学内容:教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

重点难点:掌握三角形的内角和是180°。

教学准备:三角形卡片、量角器、直尺。

导学过程一、复习1、什么是平角?平角是多少度?2、计算角的度数。

3、回忆三角形的相关知识。

(出示直角三角形、锐角三角形、钝角三角形)二、新知(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。

同时,培养学生的综合素养)1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)(4)汇报结论(清楚明白的给小组加优秀10分)5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。

)三、知识运用(课件出示练习题,生解答)1、填空(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

2023年人教版数学四年级下册三角形的内角和教案与反思(优选3篇)

2023年人教版数学四年级下册三角形的内角和教案与反思(优选3篇)

人教版数学四年级下册三角形的内角和教案与反思(优选3篇)〖人教版数学四年级下册三角形的内角和教案与反思第【1】篇〗学情分析:学生已经掌握了角的概念、角的分类和角的度量等知识。

在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。

这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。

三角形的内角和是三角形的一个重要性质。

它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

教学目标:1、知识与技能:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、过程与方法:通过量一量、剪一剪、拼一拼,培养学生的合作能力、动手实践能力,并运用新知识解决问题的能力。

3、情感态度:使学生体验数学学习成功的`喜悦,激发学生主动学习数学的兴趣。

教学重点:探索发现和验证三角形的内角和是180度。

教学难点:对不同探究方法的指导和学生对规律的灵活应用。

教具准备:教师准备:多媒体课件、不同类形大小不一的三角形若干个、记录表学生准备:量角器、直尺、剪刀教学过程:一、激趣导入多媒体展示三角形出示谜语:形状似座山,稳定性能坚三竿首尾连,学问不简单(打一图形名称)(预设:三角形)师:谁能介绍介绍三角形?(生1:三角形有三条边、三个顶点、三个角。

生2:三角形按角分类,分为钝角三角形、锐角三角形、直角三角形。

)师:你喜欢哪种三角形?(钝角三角形、锐角三角形、直角三角形)师:同学们会画三角形吗?请你在练习本上画一个你喜欢的三角形。

师:钝角、直角、锐角三角形三兄弟吵起来了?我们快去看一看。

师:今天我们就来研究一下三角形的内角和。

二、学习目标1、通过动手操作,使学生理解并掌握三角形内角和是180度的结论。

2、能运用三角形的内角和是180度这一规律,求三角形中未知角的度数。

3、培养动手动脑及分析推理能力。

三、自主学习(展示量角法)1.理解三角形的内角、内角和(1)板书展示三角形师:要想知道什么是三角形的内角和,我们得先知道什么是三角形的内角?(三角形里面的三个角都是三角形的内角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形的内角和》教学设计与评析设计南乐县第二实验小学杨向华评析南乐县第二实验小学王凤霞[教学内容]《义务教育课程标准实验教科书·数学》(人教版)四年级下册第85页例5及相应练习。

[设计理念]《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

”本着“学生的数学学习过程是一个自主构建知识的过程”的教学理念,利用多媒体课件、采用探究式教学设计,让学生在动手操作、积极探索的实践活动中体验知识的形成过程,积累数学活动经验,发展空间观念,渗透转化的数学思想和科学探究的方法,培养学生的推理能力,为后续学习奠定必要的基础。

[学情分析]:1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与技能基础。

2、学生的生活经验是可利用的教学资源。

我在课前了解到,已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。

[教学目标]1、通过"量一量","算一算","拼一拼","折一折"等活动,让学生探索和发现三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、通过把三角形的内角和转化为平角的探究实验,渗透"转化"的数学思想。

同时让学生体会几何图形的内在结构美。

3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

[教学重点]:理解并掌握三角形的内角和是180度这一结论。

;[教学难点]:验证所有三角形的内角和都是180°。

[教学过程]:一、创设情景,激发兴趣1.变魔术师:你能把长方形纸变成三角形吗学生汇报后师在黑板上展示。

2.说一说师:他用什么方法把长方形转化成三角形的(剪、拼、折)你们都了解三角形的哪些知识呢(三边、三角、三角形的分类等)}【评析:“兴趣是最好的老师”。

利用变魔术激发学生的学习兴趣,同时让学生初步感受通过剪、拼、折进行“转化”这一数学思想方法,为后面的探索奠定基础。

同时,自然复习三角形的相关知识。

】二、猜想实践、科学探究师:瞧!我们的老朋友来了,大家认识它们吗(课件出示:直角三角形、钝角三角形、锐角三角形)师:这弟兄三人关系可好啦,可今天不知为什么,竟争吵起来了。

吵什么呢让我们赶快去听听吧!1.三角形的内角、内角和师:内角、内角和是什么意思请你拿出一个三角形,指一指它的内角并用彩笔标出来。

,三角形的内角和指的是什么(出示课件)2.猜想:师:你认为哪一个三角形的内角和大呢三角形内角和是多少你是怎么知道的,生1:(指黑板上的长方形和三角形)长方形的内角和是360度,分开后每个三角形的内角和就是180度。

生2:三角板上三个内角的和就是180度。

(课件出示三角板)师:直角三角形是特殊的三角形,它的内角和是1800,其他类型的三角形内角和也是1800吗【评析:激趣是新课导入的抓手。

学生对相关旧知充分回忆后,通过一个童话故事,立即把学生思维聚焦于新知学习的始端,好像把学生领到了思维的入门口,一下子激起了学生思维:三角形的内角和到底是怎样的呢认知情趣油然生发,有意义学习心向产生了。

】3.思考讨论:师:怎样验证三角形内角和是不是1800呢独立思考后交流讨论。

生:量一量三角形每个内角的度数再计算。

师:测量几个三角形就能验证这一问题呢怎样在短时间内测量出很多三角形的内角和呢、生:小组合作,每人选一种三角形来测量。

这样全班就能测量几十个三角形。

生:可以用三个同样的三角形把三个不同的内角拼在一起。

4.动手验证,汇报交流师:四人小组合作,选择你们喜欢的方法验证。

想一想怎样分工速度会最快(课件出示要求)测量的同学:量出每个角的度数,把它写在三角形里面。

三个角的度数都量好后,再汇报给记录的同学登记。

记录的同学:监督小组其他同学量得是不是很准确、真实。

不能改掉小组成员度量出来的数据。

(1)小组合作探究¥(2)汇报交流A.测量方法:师:首先请测量色同学来汇报你们组的结果。

(学生汇报,师分别对这几个数进行统计)师:观察这些测量结果你能发现什么(三角形内角和大约是180°左右)师:178度,181度,179度,但都在180度左右,看来,三角形的内角和还真跟180°有缘!大家测量的结果并不完全一致,回想一下,在刚才用量角器测量的过程中哪些因素影响了我们测量结果的准确性【评析:对于验证过程中出现的179°、180°、181°等,教师并没有否定,而是引导学生通过分析让学生明确:测量求和的时候,我们发现虽然这些答案都很接近180°,但是测量人和测量工具的不同,在测量或计算时出现了误差,看来这种方法不能使人彻底信服。

帮助学生辨证地认识科学,从而形成科学的认知态度。

】B.剪拼、撕拼师:用度量的方法验证,得到的结果不统一。

有没有比度量更精确的验证方法也就是不用度量你能用别的方法验证吗(学生操作演示)…师:你是怎么想到把三个内角撕下来拼成一个平角来验证的呢师:“你们把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,运用了转化策略,真了不起。

”(出示课件)C.折拼师:用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了。

有没有更好验证方法(用折的方法)学生演示操作:先要找到两条边的中点,用线连接起来,再按这条线折起来。

再把另外的两个角折起来就可以了。

(课件演示)5.引导归纳:师:通过量、撕、拼、折,你发现什么(任何三角形的内角和都是180°)师:这些方法虽然不同,但都有异曲同工之妙,就是都运用了转化的策略,把新知识(三角形的内角和)转化成已经知道的知识(平角),这是数学学习中常用的方法。

/【评析:把三个角折、拼在一起这个验证的过程,实质上是把三个内角和转化为一个平角的过程。

利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。

在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。

在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到充分发挥。

】6、课外拓展,积淀文化师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°。

比如:任意一个直角三角形或钝角三角形都可以看做两个直角三角形拼成的大三角形。

到初中我们还要更严密地证明三角形的内角和是180°。

师:早在300多年前就有一位法国科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°。

(出示课件并及时鼓励学生)师:你认为刚才争吵的三角形中谁的内角和谁大呢为什么【评析:适当的引入课外知识,它既可以激发学生的学习兴趣,又有机的渗透了向帕斯卡学习,做一个善于思考、善于发现的孩子,对学生的情感、态度、价值观的形成与发展能起到了潜移默化的作用。

】三、应用新知,解决问题1.抢答游戏:~把一个大三角形分成两个小三角形,每个小三形的内角和是多少度为什么把两个小三角形拼成一个大三角形,大三形的内角和是多少度为什么【评析:通过三角形分与合的过程,让学生进一步理解三角形内角和等于180度这个结论,认识到三角形的内角和不因三角形的大小而改变。

】③锐角三角形、直角三角形、钝角三角形内角和有什么关系④一个直角三角形中最多有几个直角,为什么一个钝角三角形中最多有几个钝角,为什么【评析:将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征, 较好地沟通了知识之间的联系。

】2.智慧大比拼>(1)下面三个角哪些能组成三角形1)60°75°30°()2)120°30°40°()3)45°45°90°()4)35°45°100°()(2)三角形中∠1=140°∠3=25°求∠2的度数。

(3)课本88页第9题、第10题。

)【评析:将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形、等腰三角形等图形特征求三角形内角的度数。

】!(4)判断(我来当个小法官)、一个三角形最多有1个钝角(或1个直角),最少有两个锐角。

()、钝角三角形有内角和大于锐角三角形的内角和。

()③把一个等腰三角形分成两个完全一样的小三角形,每个三角形的内角和都是90度。

()④、直角三角形的两个锐角和是90度。

()⑤、所有三角形的内角和一定都相等。

()【评析:根据问题的不同难度,兼顾不同层次的学生,设计不同程度的练习,使每位学生都有所收获,都有机会体会到成功的喜悦。

】四、回顾实践、全课总结|师:同学们通过这堂课的学习活动,说说你感受最深的是什么怎样进行科学地验证我们的猜想【评析:这样用谈话的方式进行总结,不仅总结了所学知识技能,还体现了学法的指导,增强了情感体验。

】五、课后思考、拓展延伸师:你能根据所学知识求出四边形、五边形、六边形的内角和吗如果要求10边形的内角和,你会求吗你有什么发现【评析:由课内到课外,让学生带着问题走出教室,用课堂上积累的活动经验去解决新问题,再次让学生体验学习的快乐!激发探究的热情!】附、板书设计:三角形的内角和转↓化…平角量直角三角形锐角三角形钝角三角形猜想拼(1800)(1800)(1800)验证折三角形的内角和是180结论【总评】:“三角形的内角和是180°”是三角形是一个重要性质,是数学“空间与图形”领域里的重要内容之一。

把握简单几何或平面图形的基本特征,对小学生来说都比较抽象,如何解决数学的抽象性与小学生思维特点的矛盾这是这节课的重点,为此,杨老师通过巧妙的设计,充分发挥多媒体课件的优势,采用探究式教学设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,体验知识的形成过程,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。

具体体现在以下几个方面:1.恰当运用教学手段,精心设计学习活动,变“学数学”为“做数学”。

杨老师为学生提供了丰富的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。

发展了学生的动手操作能力、推理归纳能力,实现了学生对知识的主动建构。

相关文档
最新文档