有理数的乘法第二课时

合集下载

(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

有理数的乘法(第二课时) 教案[教学目标]知识目标:有理数乘法运算能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:体会用计算器给有理数运算带来的方便[教学重点与难点]重点: 有理数乘法运算有理数的乘法运算 你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解]活动一: 从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯-③()()()()5432-⨯-⨯-⨯- ④()()()50432-⨯⨯⨯-⨯-学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)①()()1432-⨯⨯⨯- ②()()()6532-⨯-⨯⨯-③()()()222-⨯-⨯- ④()()()()3333-⨯-⨯-⨯-活动二:例3 计算:41)54(6)5()2();41()59(65)3()1(⨯-⨯⨯--⨯-⨯⨯- 几个数相乘,如果其中有因数0,积等于0 课堂练习计算:(1)(-85)×(-25)×(-4);(2)(-87)×15×(-171); (3)(151109-)×30;(4)2524×7. (5)-9×(-11)-12×(-8);课后作业教科书第38页 习题1.4第7题(1)(2)(3)课后选作题1.计算:).8(161571)6(;04.0311843)5(;36187436597)4(;534.265)3();1.0()24.8()10)(2();8(25.12014)1(-⨯⎪⎭⎫ ⎝⎛--⨯-⨯⎪⎭⎫ ⎝⎛-+-⨯⨯--⨯-⨯--⨯⨯⎪⎭⎫ ⎝⎛- 2.2003减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20031,求最后剩下的数。

有理数的乘法2教案

有理数的乘法2教案

有理数的乘法第二课时一、学习目标1、经历探索多个有理数相乘的符号确定法则.2、会进行有理数的乘法运算.3、通过对问题的探索,培养观察、分析和概括的能力.4、学习重点:多个有理数乘法运算符号的确定5、学习难点:正确进行多个有理数的乘法运算二、预习导学知识点一:多个有理数乘法运算符号的确定学一学:阅读教材,完成以下问题。

1、多个有理数相乘,可以把它们按顺序依次相乘。

计算下面各题:(1)2×3×4×(-5)(2)2×3×(-4)×(-5)(3)2×(-3)×(-4)×(-5)(4)(-2)×(-3)×(-4)×(-5)2、观察上面各式的特点,指出各式子中分别有几个负因数,它们的积是正的还是负的?它们积的绝对值相等吗?3、想一想:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?归纳总结:几个不为0的数相乘,•积的符号由负因数个数决定.当负因数的个数是_______时,积为正;负因数的个数是_______时,积为负。

练一练:判断下列积的符号(口答):①(-2)×3×4×(-1);②(-5)×(-6)×3×(-2);③(-2)×(-2)×(-2);④(-3)×(-3)×(-3)×(-3).知识点二:几个不是0的有理数的乘法运算学一学:阅读并理解教材,完成以下问题。

1、以下四个式子的结果相等吗?几个不是0的数相乘的积怎样确定呢?(1)2×3×4×(-5)(2)2×3×(-4)×5(3)2×(-3)×4×5 (4)(-2)×3×4×52、计算:38(4)4⎛⎫⨯-⨯-⎪⎝⎭3、计算:591(1)(3)()();654-⨯⨯-⨯- 41(2)(5)6().54-⨯⨯-⨯归纳小结:几个不是0的数相乘,先确定积的_______,再 练一练:(1)(5)8(7)(0.25);-⨯⨯-⨯- 5812(2)()()121523-⨯⨯⨯-知识点三:含有因数为0的几个数的乘积学一学:阅读教材,完成以下问题。

1.4.1 有理数的乘法(第二课时)教学案

1.4.1  有理数的乘法(第二课时)教学案

3 4 14 ×(8- ) 4 3 15
(2)19
18 ×(-15) 19
5 9 1 ×(- )×(- )×(-8)×(-1) 6 5 4
【分析】 ①利用乘法分配律 ②将 19
18 1 换成 20,再用分配律计算. 19 19
学生板演、练习. 【提示】先找出其中负因数的个数为 5 个,故积的符号为负,再将绝对值相乘.
4.已知 x、y 为有理数,如果规定一种新运算※,定义 x※y=xy+1.•根据运算符号的意义完成下列 备选例题 (2004·江苏泰州)-1 A.
2 3
B.
3 2
1 的倒数是 ( ) 2 2 3 C.D.3 2
各题. (1)2※4=9 (2)求 1※4※0=1 (3)任意选取两个有理数(至少一个为负数)分别填入下例□与○内,•并比较两个运算结果, 你能发现什么?
五、拓展提升: 本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵 □※○与○※□ (4)根据以上方法,设 a、b、c 为有理数.请与其他同学交流 a※(b+c)与 a※b+•a※c 的关 活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力, 系,并用式子把它们表达出来. 要寻找最佳解题途径,不断总结经验,使自己的能力得到提高. 1、一列数 a1,a2,a3,„an. 若 a=100+(-6)×1, a=100+(-6)×2, a=100+(-6)×3, „ 则 an= ;当 an=-2002 时,n= . ,最大的负数= . (六)资料采撷 原始的计算工具 计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的 四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数” ,说 明人们常用手指来计算简单的数. 在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普” ,意即打了绳结的 绳子.基普是古人用来计数和记事的.传说公元前 6 世纪,•波斯国王在一次征战中曾命令一支部 队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结 全部解完了才准撤退. 在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打

有理数的乘法第2课时 有理数的乘法运算律

有理数的乘法第2课时 有理数的乘法运算律
A.加法交换律 B.乘法交换律 C.乘法结合律 D.乘法对加法的分配律
3.运用分配律计算(-3)×(-8+2-3),有下列四种不同的结果,其中正
确的是(
)
D
A.-3×8-3×2-3×3
B.-3×(-8)-3×2-3×3
C.(-3)×(-8)+3×2-3×3
D.(-3)×(-8)-3×2+3×3
4.(天水中考)下列运算过程中,错误的个数是( B ) ①(3-412)×2=3-412×2; ②-4×(-7)×(-125)=-(4×125×7); ③[3×(-2)]×(-5)=3×2×5. A.0 个 B.1 个 C.2 个 D.3 个
12.下列计算(-55)×99+(-44)×99-99正确的是(
C)
A.原式=99×(-55-44)=-9801
B.原式=99×(-55-44+1)=-9702
C.原式=99×(-55-44-1)=-9900
D.原式=99×(-55-44-99)=-19602
13.计算: (1)1.25×(-2801)×(-8)=____8_21______;
5.算式(16-12-13)×24 的值为( A.-16 B.16 C.24 D.-24
A)
6.计算 25×(-4215)时,可转化为下列算式:
①25×(-4+215);②-25×(4+215);
③-25×(4-215);④25×(-4-215). 其中正确的个数是( B ) A.1 个 B.2 个 C.3 个 D.4 个
方法技能: 1.应用乘法的交换律和结合律时,要连同该项的符号一起“换位”. 2.可以考虑从正、逆两方面来运用乘法对加法的分配律. 易错提示: 运用乘法分配律时,要把括号外面的因数连同符号与括号内的每一项相 乘.

北师在版七年级数学上册2 有理数的乘法(第2课时)课件李老师

北师在版七年级数学上册2 有理数的乘法(第2课时)课件李老师
北师大版 数学 七年级 上册
2.7 有理数的乘法 (第2课时)
导入新知 在小学里,我们都知道,数的乘法满足交换律、结合律
和分配律,例如
3×5=5×3 (3×5)×2=3×(5×2) 3×(5+2)=3×5+3×2
引入负数后,三种运算律是否还成立呢?
素养目标 3.发展学生观察、归纳、猜测、验证等能力.
-15)-999
×18
3 5
.
连接中考
解:(1)999×(-15) =(1000-1)×(-15)
=15-15000
=-14985;
(2)999×118
4 5
+999×(
-15)-999
×18
3 5
.
=999×[118
4 5
+( -15
)-18
3 5
]
.
=999×100
=99900.
课堂检测
基础巩固题
方法点拨:在有理数乘法的运算中,可根据算式的特点, 灵活运用有理数乘法的运算律,如逆用有理数乘法对加法 的分配律.
巩固练习
变式训练
计算:
(1)(-47)×
5×(-134)×(-0.2)(2)(-12)×(
1 4
-
1 3

解:原式= -47× 5×74×15
原式=
1 4
×(-12)-13×(-12)
探究新知
3.乘法对加法的分配律: 一个数同两个数的和相乘,等于把这个数分别同这两个
数相乘,再把积相加. a(b+c) = ab+ac
根据分配律可以推出: 一个数同几个数的和相乘,等于把这个数分别同这几个数
相乘,再把积相加. a(b+c+d)=ab+ac+ad

六年级数学上册2.7有理数的乘法(第2课时) 优秀课件鲁教版五四制(1)

六年级数学上册2.7有理数的乘法(第2课时) 优秀课件鲁教版五四制(1)
2.7有理数的乘法
(第二课时)
知识回顾
1.有理数乘法法则: 两数相乘,同号得正,异号得负,并把 绝对值相乘.任何数同0相乘,都得0. 2.几个不是零的数相乘, 奇数时积为负数 负因数的个数为 偶数时积为正数
3.几个数相乘若有因数为零则积为零。
2.7有理数的乘法(2)
教学目标
1、通过计算、比较,探讨有理数乘法的运 算律在有理数范围内仍然适用。 2、会运用乘法运算律进行简化计算。
预习诊断
用字母表示乘法的运算律
乘法的交换律: ; a b ) c a ( b c ); 乘法的结合律: (
( b c ) a b a c; 乘法对加法的分配律: a
a b b a
精(1) ( 3 14
a ( b c ) a b a c
注意:字母a、b、c可以表示正数、负数,也可以表示零, 即a、b、c可以表示任意有理数。 一定号 做乘法前先确定积的符号 带分数化成假分数 或者小数化分数等
乘法运算 一般步骤
二化假
三先约 四再乘 五写积 约分
绝对值相乘 不要漏写符号
我们都希望自己能有一个知己,从相逢,相识,到相知,到无话不谈的知己,穷尽一生,朋友广而远,知己少而近,友情文章告诉我们,如果遇到这样一个互相懂得的人, 就要好好珍惜。自己是把剑,知己是剑鞘,利剑出鞘,锋芒毕露之时,剑鞘则系在腰间默默守候。一把剑经过一番打打杀杀,江湖缠扯过后,必会五骨通乏,六筋俱困,疲 惫充斥于脏腑之间,这个时候,就需要躺在剑鞘里好好休养了。剑鞘是一把剑最坚实的维修基地,提供最可靠地后勤保障,每当宝剑元气大伤之时,务必要返厂疗伤,作为 知己的剑鞘,定是倾其所有,哪怕是砸了老锅,卖了陈铁,也要肝胆相照,以最大功率输出自己的真气,只为保住这把剑。有人腰缠万贯,有人流落街头,有人名扬四海, 有人一生庸碌,人这一辈子,旅途虽短,路却难走。注定逃不过酸甜苦辣,悲欢离合的音速飞镖,注定要吃尽五颜六色的风霜。若能赐一知己,得之是命,惜之是福,可不 能随意糟蹋。知己就是半个自己,如果自己是左脑,那知己就是右脑,如果自己是左手,那知己就是右手,如果自己是左边的这瓣心,那知己就必须是右边的另一半。若缺 了另一半,就是个死人了,并且还死无全尸,若是挣扎着不死,无异于变异僵尸,理性失效,良心残废,吞噬人血,不带怜悯,岂不更可怕?人,是个对称的生命,什么都有 左右两半,若缺了知己,自己就只剩一半了,不就成了一头怪物了吗?那不就要天天被奥特曼追杀吗?跌倒了,很多人懂得扶你,摔伤了,很多人懂得止血,噎住了,很多人 懂得端杯水。可是,当你内心受伤了,即使是小到纳米级的伤痕,有人能看出来吗,你既没感冒,也没发烧,脸色红润,满面轻风,盖住了内心那瞬间的小小波动,可能不 会有任何震感,也许连自己都找不到震源。而这个时候,偏偏有人感觉到地震了,准确侦测出了震级和震源,只有知己才能扫描出你心房里的病毒,唯有知己才会专门为你 安装一台精密地动仪。知己能读出你心里最深处的悲伤,埋得再深,填得再厚实,也会被掘出来,而这种近乎奇迹的事只有知己才做得到。人生的轨迹既不是常数函数式的 一马平川,也不会是指数函数式的一路腾达,而是正弦曲线式的跌宕起伏,有升有降,有顶峰,有谷底,盛极必衰,摔倒了最低处,再开始爬升。而知己,就是在我们直线 飙升时给我们及时降温,以免过热烧坏了头脑,主机一旦报废了,整台机器随之瘫痪;在我们堕落腐朽时给我们添加柴火,用木棒在雪花缤纷的寒冬里,擦出希望的火花,给 我们解冻,帮我们去潮,重新启动。根据牛顿力学定律,力的作用是相互的,人也是这样,知己是自己的知己,那自己就是知己的知己,互为知己,才是真正的知己。若仅 有单方面的输出,另一方却浑然不知,只能说明,一方作践自己,另一方没心没肺。一个不会珍惜自己,另一个不会珍惜别人,作为知己的这两半,都没有得到精心照顾, 土壤干裂,缺水少肥,杂草丛生,怎么指望这两半茁壮成长呢,将来不是畸形就是异形,怎么能做知己呢?人心不在大小,而在于单人间和双人间的纠葛,纵使心再大,可就 住了你一个人,不觉得空虚寂寞冷吗,就算心再小,可也住下了两个人,那份互为知己的温暖,连上帝都会羡慕的。朋友大薇去北京出差,约了十几年没见的朋友吃饭,大 薇在城东,朋友在城西,两个人耽搁在路上的时间,比见面聊天的时间还长。匆匆吃饭,匆匆告别,大薇苦笑着说,曾经好得睡一个被窝,说要好一辈子的闺蜜,生生被时 间隔在了两岸,再也回不去。每个人都是这样的吧,一路走来,人生的每个阶段,总会有那么几个死党或闺蜜,和你一起疯,一起闹,一起哭,一起笑,在你孤单时给你温 暖,在你受伤时给你安慰,在你受欺负时,为你出头……走着走着,在某个人生的转角说了再见,然后就再也没见到;即使再见,也因为时过境迁,找不到来时的路,无法 再走近。就像席慕蓉说的:回顾所来径,只剩苍苍横着的翠微。只有少数人,会陪你一生。坦然面对友情的得到与失去,不必追,不必挽留,这才是人生常态。人生漫长, 总有一些人来来去去,总有一些人要离去; 也总有一些人,无论风风雨雨,会陪你一辈子。电影《七月与安生》里的七月与安生,是两个截然不同的少女。七月文静乖巧, 有个幸福温暖的家庭,是大家眼里的好孩子;安生叛逆桀骜,父亲去世母女相爱相杀,是个缺爱的女孩。偏偏两个人好得要命,彼此踩着对方的影子,恨不能一辈子在一起, 一起洗澡,一起翘课……15岁那年,她们都喜欢了一个男孩子家明。家明的出现,让七月和安生之间的情感发生了不可言喻的变化,而家明的摇摆不定,也让两个女孩面对 友情与爱情,备受煎熬。最终,安生在确认自己也爱上家明以后,选择把家明让给七月,自己离开小镇,去流浪。她说,在七月与家明之间,她选择七月。七月明白安生的 离开,是成全,但还是任由安生的列车徐徐驶离,爱情在某个时刻,会战胜友情。但是,分开的两个人,仍然彼此牵挂。七月羡慕安生的自由,安生羡慕七月的岁月静好。 再次见面,却又像刺猬一样彼此伤害,然后各自哭泣疗伤。电影结尾,七月难产去世,临终前,将孩子托付给安生。不管我们之间有多少误会和伤害,我还是选择最信任你, 把孩子托付给你。这也许就是最动人的友情。想起《乱世佳人》里梅兰妮和斯嘉丽。一个相貌平平,但是优雅得体、善解人意的贵族小姐,女人中的女人;一个妩媚动人, 任性倔强热情似火的庄园主女儿,女人中的男人。一开始,斯嘉丽便把梅兰妮当作情敌,认为是梅兰妮夺走了自己暗恋的阿希礼。 所以,她心怀嫉恨,处处刁难,把梅兰妮 当作眼中钉。然而,随着美国南北战争的爆发,家园被毁,两个性格截然不同的女性,不得不相依为命。郝思嘉勇敢强韧,为了养活一家人,复兴家业,忍受各种屈辱,冒 着各种危险,梅兰妮则在一边贴心陪伴,护着她,开导她,看着她一天天褪去浮华与虚荣,她们的友情也开始萌芽。哪怕自己的丈夫和郝思嘉的绯闻传得满城风雨,哪怕郝 思嘉的名声在上流社会差到了极点,她都挺身而出,帮她解围。所以,当梅兰妮难产需要照顾,连她的姑妈都抛下她逃跑的危急时刻,斯嘉丽不离不弃,克服内心的恐惧, 照顾她顺利产下儿子小博。如果说这个时候,斯嘉丽还有是为了阿希礼的托付,但是,当她带着一家人逃回被毁的家园,枪杀闯入家园的“北方佬”,胆小如兔的梅兰妮却 勇敢地帮着她处理尸体的那一刻,她们的友谊完成了升华。就像梅兰妮说的那样,她一直羡慕斯嘉丽旺盛的生命力和坚强勇敢的性格。但其实,斯嘉丽也羡慕梅兰妮那种成 熟,识大体,包容的胸怀吧。两个本来是情敌的人,在战争的灾难中,相互取暖,结成了深厚的友情。梅兰妮临死前,把儿子托付了斯嘉丽照顾,并嘱咐她珍惜巴特勒的爱。 梅兰妮比斯嘉丽自己还了解她,她了解她的缺点和不完美,更了解她的能力与骨子里善良,所以,她把儿子托付给她。最好的��

人教版初一数学 2.2.1 有理数的乘法 第2课时PPT课件

人教版初一数学 2.2.1  有理数的乘法  第2课时PPT课件

探究新知
根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换因数的位置,也可先
把其中的几个数相乘.
3.乘法分配律:
一个数同两个数的和相乘,等于把这个数分别同 这两个数相乘,再把积相加.
a(b+c) = ab+ac
探究新知
根据分配律可以推出: 一个数同几个数的和相乘,等于把这个数分别
2
C. 2×3–(–2)×(– 1 )
2
D.(–2)×3+2×(– 1 )
2
当堂训练
2.如果有三个数的积为正数,那么三个数中负数的个数是
( B)
A. 1
B. 0或2
C. 3
D. 1或3
3. 有理数a, b, c满足a+b+c>0,且abc<0,则在a, b, c中,正数
的个数( C )
A. 0
B. 1
3
解:原式= –8×(–0.125) ×(–12) ×(– 1 ) ×(–0.1)
3
=[–8×(–0.125)] ×[(–12) ×(– 1 )] ×(–0.1)
3
=1×4×(–0.1) = –0.4
探究新知
素养考点 2 利用乘法分配律进行简便运算
例2 用两种方法计算 (1 1 1)12
462
乘法交换律、乘法结合律、乘法分配律.
探究新知
知识点 有理数乘法的运算律 第一组:
1. 2×3= 6
3×2= 6
2×3 = 3×2
2. (3×4)×0.25= 3 3×(4×0.25)= 3
(3×4)×0.25 = 3×(4×0.25)
3. 2×(3+4)= 14 2×3+2×4= 14
2×(3+4) = 2×3+2×4

有理数的乘法2

有理数的乘法2

想一想
计算:
(-24)×(
1 3

3 4

1 6

5 8
)
正确解法:
_____ ______ _____ ______ 原式=(-24)×
1 3
+(-24)×(-
3 4
)+(-24)×
1 6
+(-24)×(-
5 8
)
= - 8 + 18 - 4 + 15
= - 12 +33 = 21
特别提醒: 1.不要漏掉符号, 2.不要漏乘.
不要漏写符号
思考:你能看出下式的结果吗?如果能,请说
明理由。
7.8×(-8.1)×0×(-19.6)=?
归纳:
几个数相乘,如果其中 有因数为0,积等于(0)
练习:不计算,判断下列各题的结果是否为零, 如果不为零,请说出它们的符号及结果.
(1) 3×(-5) = -15;负 (2) 3×(-5)×(-2) = 30; 正 (3) 3×(-5)×(-2)×(-4)= -120; 负
学以致用---分配律
53
(1)(- + )×(-24)
68
(2)7 3 ×5
15
(3)
(-11)×(- 52)+(-11)×2
53+(-11)×(-
1 5)
例题
例2 计算
先确定积的 多个不是0 符号,再把
(1) 3 5 9 1
6 5 4
5×3+5×(-7) = 15+(-35)=-20
乘法分配律
一般地,一个数与两个数的和相乘,等于 把这个数分别与这两个数相乘,再把积相 加。
如果a,b,c分别表示任一有理数, 那么:a(b+c)=ab+ac

2.7《有理数的乘法第2课时》教案

2.7《有理数的乘法第2课时》教案
3.重点难点解析:在讲授过程中,我会特别强调同号得正、异号得负的乘法规则以及混合运算的顺序。对于难点部分,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用计算器或卡片模拟乘法运算,直观展示乘法规则。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数乘法的基本概念。有理数乘法是指两个有理数相乘的运算,其结果是符号由两数符号决定,绝对值为两数绝对值相乘的结果。它是数学运算的基础,帮助我们解决生活中的许多问题。
2.案例分析:接下来,我们来看一个具体的案例。如果一家商店对商品进行8折促销,我们如何计算打折后的价格?这个案例展示了有理数乘法在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.增强学生的数学建模意识:通过实际问题的引入和解决,使学生学会将现实问题转化为数学模型,感受数学在生活中的应用,提高数学建模能力。
4.培养学生的合作交流意识:在小组讨论和交流中,鼓励学生积极表达自己的观点,倾听他人意见,提高合作解决问题的能力。
5.激发学生的创新意识:鼓励学生尝试不同的解题方法,培养学生的创新思维和解决问题的多样化策略。

有理数的乘法第2课时有理数乘法的运算律课件

有理数的乘法第2课时有理数乘法的运算律课件

乘法对加法的分配律
两个数的和与一个数相乘,可以先把它们 分别与这个数相乘,再将积相加.
新课探究
计算下列各题,并比较它们的结果. (1)( - 7 )×8 与 8×( - 7 );
5 3
9 10

9 10
5 3
.
解:( - 7 )×8 = - 56
8×( - 7 ) = - 56
5 3
9 10
=
10 2
9 10
5 3
=
10 2
(2)[(-4)×(-6)]×5与(-4)×[(-6)×5];
1 2
7 3
4 与
1 2
7 3
4
.
解:[(-4)×(-6)]×5 =120
(-4)×[(-6)×5]=120
1 2
7 3
4
=
14 3
1 2
7 3
4
(1)0
5 6

0
(2)3
1 3
;1
(3) 3 0.3;0.9(4)Fra bibliotek1 6
6 7
.
1 7
2.计算:
(1)
3 4
8;
(2)30
1 2
1 3

(3)
0.25
2 3
36;
(4)8
4 5
1 16
.
解:(1)
3 4
8
=
3 4
8
=
6
(2)30
1 2
1 3
=
30
1 2
30
=
14 3
(3)
2
3
+
3 2

1.3 有理数的乘法与除法(第2课时 有理数的乘法运算律)(课件)-六年级数学上册(沪教版2024)

1.3 有理数的乘法与除法(第2课时 有理数的乘法运算律)(课件)-六年级数学上册(沪教版2024)
乘时,可以先把前两个数相乘,再把积与第三个数相乘;或者先把后两个数
相乘,再把积与第一个数相乘.按两种顺序得到的运算结果相等。
概念归纳
乘法交换律
乘法结合律
a× = ×
( a× ) × = × ( × )
其中a、b、c表示有理数.
注:三个或三个以上的有理数相乘,可以任意交换乘数的位置,也可
3

4
1
− )
6
解:方法一:0.12×
9
=0.12× (
12
7
=0.12×
12
2
− )
12
3

4
=0.07
3
1
方法二:0.12× ( − )
4
6
3
1
=0.12× − 0.12 × )
4
6
=0.09-0.02
=0.07
1
3
4
15
1
3
4
15
(2)( +

1
)
6
(2)( +
1
3
= × 30 +
=10+8-27
12
-15
-3
(−3)×(−4)+(−3)×5=_____+_____=_______.
由此,你发现了什么?
我们发现,一个有理数与两个有理数的和相乘,等于把这个数分别与这两
个加数相乘,再把积相加,即
乘法对加法的分配律a×(b+c)=a×b+a×c.
其中a、b、c表示有理数.
课本例题
例3计算:
(1) 0.12×
以先把其中的几个乘数相乘.

《有理数的乘法》(第2课时)教案 探究版

《有理数的乘法》(第2课时)教案 探究版

《有理数乘法的运算律》教案新课标要求知识与技能1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律,结合律和分配律,能用字母表示运算律的内容.3.能较熟练地运用运算律进行乘法运算.过程与方法1.体验乘法运算律在实际运算中的应用.2.能运用有理数的乘法解决问题.情感与态度通过思考、观察、比较等体验数学的创新思维和发散思维,激发学生的学习兴趣.教学重点理解和掌握乘法交换律、乘法结合律和乘法分配律.教学难点灵活运用乘法的运算律简化运算.教学过程设计一、合作探究1.计算下列各题,并比较它们的结果,你有什么发现?(1)(-6)×5与5×(-6);(2)59310⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭与95103⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.师生活动:让学生计算,然后在组内交流,验证答案的正确性,讨论两个算式相等有什么发现,最后师生一起总结规律.教师强调a×b也可以写出a·b或ab.当用字母表示乘数时,“×”号可以写成“·”或省略.小结:(1)5×(-6)=-30,(-6)×5=-30,即5×(-6)=(-6)×5.(2)5933102⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,9531032⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,即5995310103⎛⎫⎛⎫⎛⎫⎛⎫-⨯-=-⨯-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.归纳:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等. 乘法交换律:ab =ba .设计意图:学生运用有理数的乘法运算计算两个算式和探究其规律,是让学生在解题的过程中有目的性地思考,为下面引出乘法交换律作铺垫.2.计算下列各题,并比较它们的结果,你有什么发现? (1)[(-4)×(-6)] ×5与(-4)×[(-6)×5]; (2)()17423⎡⎤⎛⎫⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦与()17423⎡⎤⎛⎫⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦. 师生活动:学生自主探究,讨论、交流.师生共同归纳乘法结合律的内容并用数学表达式表示.小结:(1)[(-4)×(-6)] ×5=24×5=120, (-4)×[(-6)×5]=(-4)×(-30)=120. 即[(-4)×(-6)] ×5=(-4)×[(-6)×5]. (2)()()177********⎡⎤⎛⎫⎛⎫⨯-⨯-=-⨯-=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ()1712814423233⎡⎤⎛⎫⨯-⨯-=⨯= ⎪⎢⎥⎝⎭⎣⎦. 即()()1717442323⎡⎤⎡⎤⎛⎫⎛⎫⨯-⨯-=⨯-⨯- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦. 归纳:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab )c =a (bc ).设计意图:通过学生的自主探究,感受有理数乘法结合律的推导,培养学生的观察、归纳、总结能力.3.计算下列各题,并比较它们的结果,你有什么发现? (1)()()3232⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦与()()()32322⎛⎫-⨯-+-⨯- ⎪⎝⎭;(2)()4575⎡⎤⎛⎫⨯-+- ⎪⎢⎥⎝⎭⎣⎦与()45755⎛⎫⨯-+⨯-⎪⎝⎭.师生活动:让学生独立思考,然后再进行组内的讨论、交流,最后小组长将组内成员的意见、想法汇总,由代表汇报讨论的结果,教师让学生用自己的语言来描述分配律并引导学生用字母来表示分配律.小结:(1)()()()39232922⎡⎤⎛⎫⎛⎫-⨯-+-=-⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()()()32326392⎛⎫-⨯-+-⨯-=+= ⎪⎝⎭.即()()()()()332323222⎡⎤⎛⎫⎛⎫-⨯-+-=-⨯-+-⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. (2)()4395753955⎡⎤⎛⎫⎛⎫⨯-+-=⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ()()4575354395⎛⎫⨯-+⨯-=-+-=- ⎪⎝⎭.即()()445757555⎡⎤⎛⎫⎛⎫⨯-+-=⨯-+⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.归纳:一般地,有理数乘法中,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加.分配律:a (b +c )=ab +ac .设计意图:学生通过观察思考主动地进行学习,在共同探索、共同发现的过程中分享成功的喜悦.并使学生感受到集体的力量.培养学生的语言表达能力及从特殊到一般的归纳能力.4.这里为什么只说“和”呢?3×(5-7)能不能利用分配律?师生活动:四人一小组,小组讨论、交流,小组长收集汇总.教师巡查,关注学生是否认真讨论.小结:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3×(5-7)可以看成3乘以5与-7的和,当然可利用分配律.设计意图:通过举例说明,突破分配律理解和掌握的难点,并且培养学生合作的精神. 5.上面我们做的题中,你发现了什么?在有理数运算律中,乘法的交换律、结合律以及分配律还成立吗?小结:小学学习的乘法运算律都适用于有理数乘法.我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样. 在有理数运算律中,乘法的交换律、结合律以及分配律还成立.设计意图:学生通过观察思考主动地进行学习,在共同探索、共同发现的过程中分享成功的喜悦.并使学生感受到集体的力量.培养学生的语言表达能力及从特殊到一般的归纳能力.二、例题分析 例 计算:(1)()532468⎛⎫-+⨯- ⎪⎝⎭;(2)()457314⎛⎫-⨯-⨯ ⎪⎝⎭. 师生活动:采用大组竞赛的方法,让其中的两个大组采用一般的运算顺序进行计算,另两个大组采用运算律进行计算.教师强调:运算律在运算中有重要作用,它是解决许多数学问题的基础.(1)解法1:()()()53209112424241168242424⎛⎫⎛⎫⎛⎫-+⨯-=-+⨯-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解法2:()()()()5353242424209116868⎛⎫⎛⎫⎛⎫-+⨯-=-⨯-+⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)()()4554541077314143233⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯=-⨯⨯-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.设计意图:通过竞赛让学生更深刻地体验到运用运算律可简化运算,同时也增强了学生的竞争意识与集体荣誉感.通过比较,学生会选取用运算律来简化运算,形成知识的正迁移.问题:比较上面(1)中两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种运算量小?师生活动:教师提出问题,学生观察、比较,小组讨论,小组长收集、汇总,汇报结果. 小结:解法1先做加法运算,再做乘法运算.解法2先做乘法运算,再做加法运算.解法2用了分配律.解法2的运算量小,因为解法1先要计算两个分数的和.设计意图:通过讨论,加深学生对运算律在运算中有重要作用的认识,培养探究精神. 三、练习巩固 1.计算(1)506⎛⎫⨯- ⎪⎝⎭; (2)133⎛⎫⨯- ⎪⎝⎭; (3)()30.3-⨯; (4)1667⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.解:(1)5006⎛⎫⨯-= ⎪⎝⎭;(2)1133133⎛⎫⎛⎫⨯-=-⨯=- ⎪ ⎪⎝⎭⎝⎭; (3)()()30.330.30.9-⨯=-⨯=-; (4)1616167677⎛⎫⎛⎫⎛⎫-⨯-=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.计算:(1)()384⎛⎫-⨯- ⎪⎝⎭; (2)113023⎛⎫⨯- ⎪⎝⎭;(3)()20.25363⎛⎫-⨯- ⎪⎝⎭; (4)418516⎛⎫⨯-⨯ ⎪⎝⎭.解:(1)()3388644⎛⎫⎛⎫-⨯-=+⨯= ⎪ ⎪⎝⎭⎝⎭;(2)1111303030151052323⎛⎫⨯-=⨯-⨯=-=⎪⎝⎭;(3)()()()()212120.25363636369241534343⎛⎫⎛⎫-⨯-=-⨯-=⨯--⨯-=-+= ⎪ ⎪⎝⎭⎝⎭; (4)41411428885165161655⎛⎫⎛⎫⎛⎫⨯-⨯=-⨯⨯=-⨯⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 设计意图:考查了对有理数乘法运算律的理解和掌握. 四、课堂小结 1.乘法交换律:两个数相乘,交换因数的位置,积相等. 符号表示:ab =ba . 2.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. 符号表示:(ab )c =a (bc ).3.分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 符号表示:a (b +c )=ab +ac .设计意图:鼓励学生用自己的语言加以总结,通过知识反馈,优化学生的认知结构. 五、布置作业 1.计算:(1)11124346⎛⎫+-⨯ ⎪⎝⎭; (2)(-4)×(-5)×0.25; (3)100×(-3)×(-5)×0.01; (4)111369618⎛⎫--⨯⎪⎝⎭; (5)111128428⎛⎫--⨯⎪⎝⎭; (6)()1944⎛⎫⨯-⨯-⎡⎤ ⎪⎣⎦⎝⎭; (7)()32.25 2.325⨯-⨯; (8)()32.1 6.57⎛⎫-⨯⨯- ⎪⎝⎭. 设计意图:加深对乘法交换律、乘法结合律、分配律的理解,培养学生的应用意识和能力.2.如果两个数的乘积为负数,你能说出这两个数的符号分别是什么吗?如果两个数的乘积为正数呢?你能推广到多个数相乘的情形吗?3.用“>”“<”“=”填空: (1)若a <0,则a 2a ; (2)若a <c <0<b ,则a ×b ×c 0.参考答案:1.解:(1)1111112424242486410346346⎛⎫+-⨯=⨯+⨯-⨯=+-= ⎪⎝⎭;(2)(-4)×(-5)×0.25=20×0.25=5;(3)100×(-3)×(-5)×0.01=100×3×5×0.01=100×0.01×3×5=15;(4)11111136363636462496189618⎛⎫--⨯=⨯-⨯-⨯=--=-⎪⎝⎭;(5)11111112812812812832641648428428⎛⎫--⨯=⨯-⨯⨯-⨯=--=⎪⎝⎭;(6)()()()111949494919444⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯-=⨯-⨯-=⨯-⨯-=⨯=⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦;(7)()()32.25 2.3 2.25 2.30.120.62125⨯-⨯=-⨯⨯=-; (8)()332.1 6.5 2.1 6.50.9 6.5 5.8577⎛⎫⎛⎫-⨯⨯-=+⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭. 2.由于“两数相乘,同号得正,异号得负”,所以两数乘积为负数,说明这两数符号是一正一负;如果两数乘积为正数,说明这两数符号或者同时为正,或者同时为负.对于多个数相乘,积的符号由负因数的个数决定:当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正;只要有一个因数为0,积就为0.3.解析:(1)因为1<2,a <0,所以a >2a .(2)因为a <c <0<b ,所以a ,c 为负,b 为正,则a ×b ×c >0. (1)>;(2)>.六、目标检测设计 1.计算:(1)()()()587.2 2.512-×-×-×; (2)-|-0.25|×(-5)×4×125-⎛⎫ ⎪⎝⎭.2.计算:(1)111(8)1248-×-+⎛⎫ ⎪⎝⎭;(2)1131(48)123646--+-×-⎛⎫ ⎪⎝⎭.3.计算:2215130.34(13)0.343737-×-×+×--×.设计意图:考查了对乘法交换律、乘法结合律、分配律的理解与掌握. 目标检测答案:1.(1)53655(8)(7.2)( 2.5)860125212-×-×-×=-×××=-⎛⎫ ⎪⎝⎭; (2)1110.25(5)40.25(5)425255--×-××-=-×-××-=-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.2.(1)111111(8)1(8)(8)1(8)5248248-×-+=-×--×+-×=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭;(2)1131(48)123646--+-×-⎛⎫ ⎪⎝⎭1131(48)(48)(48)(48)123646=-×--×-+×--×-⎛⎫⎪⎝⎭=443683+-+2223=-.3.2215130.34(13)0.343737-×-×+×--× 2125(13)0.343377=-×++×--⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=-13-0.34 =-13.34.。

1.4.1 有理数的乘法(第2课时)-公开课-优质课(人教版精品)

1.4.1 有理数的乘法(第2课时)-公开课-优质课(人教版精品)

1.4有理数的乘除法(第2课时)一、内容和内容解析1.内容利用有理数乘法法则进行运算,有理数的运算律.2.内容解析本节课的内容有两项:一是有理数乘法法则的应用,总结一些规律,主要是乘积的符号,由此可把有理数相乘转化为正数相乘或含有因数0的积等,并由此给出一般的运算步骤,以提高运算技能;二是有理数乘法的运算律,这些运算律(特别是分配律)是整个代数学的基础.本节课的内容主要用于简化运算,运算律是本章中的核心内容之一.本课的教学重点:有理数的乘法运算律;几个有理数相乘的运算步骤.二、教材解析教科书以“思考”栏目,提出几个不是0的数相乘其积的符号有什么规律的问题,并安排了一组具体数字相乘的题目,让学生采用从特殊到一般的方法,归纳出符号规律.然后安排例题,让学生通过计算,总结出“先定符号,再算绝对值”的运算步骤.再通过“思考”栏目,提出直接得出含有因数0时多个数相乘的结果的任务,实际上,这里强调了“先观察,后计算”的运算习惯问题.对于运算律,教科书采取“直接告知”的方法,指出“像前面那样规定有理数乘法法则后,就可以使交换律、结合律与分配律在有理数乘法中仍然成立”,然后采用具体例子验证的方法,给出有理数乘法运算律的文字表述和符号表示.最后用例子说明了运算律在简化运算中的作用.三、目标和目标解析1.教学目标(1)掌握多个有理数相乘时的运算步骤;(2)掌握有理数乘法运算律,会利用有理数的乘法运算律进行计算.2.目标解析(1)学生知道多个有理数相乘的运算步骤:第一步,观察算式,如果含有因数0,直接得出结果;第二步,确定符号;第三步,利用运算律进行运算.(2)能用文字语言、符号语言表达运算律;能根据算式的特点选用适当的运算律简化运算.四、教学问题诊断分析数系的运算律是整个代数学的基础,也就是说,无论是数的运算还是式(包括整式、分式、根式、指数式等)的运算以及解方程和解不等式,都要以运算律为基础.因此,运算能力的培养,其关键也在于运算律的灵活运用,学生的运算能力往往与此相关.例如:(1)在两个有理数的乘法运算中,确定符号常常与加法法则中的符号规律相混淆;(2)利用分配律计算时,常常漏乘其中的某一个数或弄错符号;(3)把带分数中的整数部分与分数部分看成相乘的关系;(4)忽略了符号;等等.本课的教学难点:多个有理数相乘时,算式特点的观察;运算律的选择和运用.五、教学过程设计1.复习回顾问题1前面我们学习了有理数的乘法法则,你能叙述出法则吗?用法则进行运算时,可以按照怎样的步骤完成?师生活动:学生回答,教师可以强调“先确定符号,再算绝对值”.【设计意图】为多个有理数相乘的步骤做准备.2.引入新课问题2观察下列各式,它们的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)×(-4)×(-5),(-2)×(-3)×(-4)×(-5).师生活动:学生独立完成,学生代表发言.教师通过问“为什么”,引导学生用运算法则说明理由.追问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?在学生归纳的基础上,教师让学生填空:归纳:几个不是0的数相乘,负因数的个数是_______时,积是正数;负因数的个数是_________时,积是负数.【设计意图】让学生用乘法法则说明理由,起到巩固法则的作用;观察多个有理数相乘的算式,归纳积的符号和负因数个数的奇偶数的关系,既培养观察、归纳的能力,又为提高运算技能打基础.问题3你能看出下式的结果吗?你是怎么得到的?7.8×(8.1)×0×(-19.6).学生思考回答.教师引导学生根据已有的知识进行解答,得出几个数相乘,其中有一个因数为0时的特殊规律.学生填空:几个数相乘,如果其中有因数为0,积等于_______.【设计意图】这一规律比较容易,只要提出问题,学生可以顺利作答.3.归纳运算步骤问题4 计算:(1)0.3×(-10)×(-25)×4×0;(2)(-3)×65×⎪⎭⎫ ⎝⎛-59×⎪⎭⎫ ⎝⎛-41; (3)(-5)×6×⎪⎭⎫ ⎝⎛-54×41. 师生活动:学生独立完成,并核对结果.追问:你能总结一下多个有理数相乘时的运算步骤吗?师生活动:学生归纳,教师总结,要得出:第一步,先观察,如果含因数0,直接得0;第二步,确定结果的符号;第三步,算出绝对值.【设计意图】巩固有理数的乘法运算,归纳多个有理数相乘的运算步骤,培养良好的运算习惯.4.探索有理数乘法的运算律问题5 在小学我们已经知道,乘法有交换律、结合律和分配律等运算律,它们可以帮 助我们简化运算.在有理数范围内,这些运算律还成立吗?请大家自己举出一些例子,通过计算验证.师生活动:学生分组,先独立举例计算,再小组交流,再派代表汇报.在学生举例的过程中,教师可以提醒学生注意例子的代表性,即要考虑含有负数的乘法算式.要让学生用自己的语言表述结论.(1)两个数相乘,交换因数的位置,积相等.乘法交换律:ab =ba .(2)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab )c =a (bc ).教师说明:a ×b 也可以写为a ·b 或ab .当用字母表示乘数时,“×”号可以写为“·”,或省略.(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 分配律:a (b +c )=ab +ac .【设计意图】运算律的得出并不困难,所以在提出问题后,让学生自己通过具体例证探索获得.安排学生自主活动,可以活跃课堂气氛,培养学生的语言表达能力.5.练习巩固练习 用两种方法计算⎪⎭⎫ ⎝⎛21-61+41×12. 解法1:⎪⎭⎫ ⎝⎛21-61+41×12 =⎪⎭⎫ ⎝⎛126-122+123×12 =-121×12 =-1.解法2:⎪⎭⎫ ⎝⎛21-61+41×12 =41×12+61×12-21×12 =3+2-6=-1.思考:比较上面两种解法,它们在运算上有什么区别?解法2用了什么运算律?哪种解法运算量小?师生活动:学生分析,独立完成,选两名学生板书.完成后,教师与学生一起归纳运算律的作用.【设计意图】通过多种方法让学生感受运用运算律可以简化计算.6.小结(1)请你总结有理数乘法运算的基本步骤;(2)有理数乘法有哪些运算律?它们有哪些作用?7.作业习题1.4,第7题(1)(2)(3),第8题(4),第14题.。

1.5.1有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

1.5.1有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

有理数的乘方(第二课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第二课时),内容包括:有理数加、减、乘、除、乘方混合运算.2.内容解析有理数的混合运算是在学生学习并掌握了有理数的加、减、乘、除、乘方运算的基础上提出的,它涵盖了有理数一章的主要内容,是对前面所学的运算的小结.教材在前面学习有理数加、减、乘、除法运算时,就已经适时介绍过加减法混合、乘除法混合和加减乘除混合运算的内容在此加入乘方与前面四种运算的混合,构成了三级混合运算(加减法是第一级运算;乘除法是第二级运算;乘方以及以后将学习的开方是第三级运算)以期进一步培养学生的运算能力进行有理数的混合运算的关键是熟练地掌握有理数的加、减、乘、除、乘方的运算法则、运算律和运算顺序.基于以上分析,确定本节课的教学重点为:有理数的混合运算顺序、运算法则和运算律的应用.二、目标和目标解析1.目标(1)知道有理数加、减、乘、除、乘方混合运算的运算顺序.(2)会进行有理数的混合运算.(运算能力)2.目标解析在有理数的加、减、乘、除和乘方混合运算中,加减法叫做第一级运算;乘除法叫做第二级运算;乘方和开方(以后再学)叫做第三级运算.一个式子里如果含有几级运算,应先算高级运算,再算低一级运算,即先乘方,再乘除,后加减;同一级运算按从左到右的顺序进行;如果有括号,先算小括号,再算中括号,最后算大括号里的运算;如果有绝对值,就先算绝对值.进行有理数的混合运算,首先要看清算式的层次如括号、运算层级等,确定运算顺序,再根据各种运算法则,先确定每一种运算结果的符号,再计算其结果的绝对值.能够使用加法与乘法运算律的,应使用运算律来提高运算的速度与准确率.三、教学问题诊断分析在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识.由于七年级的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、纳等数学活动,总结发现理数的加、减、乘、除和乘方混合运算规律.基于以上学情分析,确定本节课的教学难点为:应用有理数的混合运算解决规律探究和实际应用问题.四、教学过程设计(一)复习回顾乘方的定义这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.乘方的符号法则:(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(二)自学导航问题:我们学习了有理数的哪些运算?加法,减法,乘法,除法,乘方.一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.思考:有理数的混合运算顺序是什么?思考下列问题:(1)2÷(2×3)与2÷2×3有什么不同?(2)2÷(12-2)与2÷12-2有什么不同? (3)6÷(-3)2与6÷(-32)有什么不同?思考:下面的算式含有哪几种运算?先算什么,后算什么?【运算顺序】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(三)考点解析例1.计算:(1)(-1)3-32÷(-4)×13; (2)(-3)2×(1-3)-(3-32); (3)(-4)×[(-3)2+2]-(-3)3÷(-2). 解:(1)原式=-1+32×14×13=-1+18=-78(2)原式=×(-2)-(3-9)=-18-(-6)=-18+6=-12;(3)原式=(-4)×(9+2)-(-27)÷(-2)=(-4)×11-13.5=-44-13.5=-57.5.【迁移应用】计算:(1)-14-(-12)÷3×|-2|; (2)-23÷49×(-23)2; (3)9+5×(-3)-(-2)2÷4; (4)(-4)3-22-|-12|×(-8)2; (5)-32+[1-(-1)3]×2÷12; (6)-53+[(-4)2-(1-62)×3]. 解:(1)原式=-1-(-12)×13×2=-1+13=-23;(2)原式=-8÷49×49=-8×94×49=-8;(3)原式=9+(-15)-4÷4=9-15-1=-7;(4)原式=-64-4-12×64=-64-4-32=-100; (5)原式=-9+(1+1)×2×2=-9+2×2×2=-9+8=-1 ;(6)原式=-125+[16-(1-36)×3]=-125+16+105=-4.例2.计算:(1)-43÷916×(-34)2-(1-32)×2; (2)-14-(2-112)×13×[5+(-2)3];(3)-24÷[1-(-3)2]+(23-35)×(-15); (4)-32-|(-5)3|×(-25)2-18+|-(-3)2|. 解:(1)原式=-64×169×+8×2=-64+16=-48; (2)原式=-1-12×13×(5-8)=-1-12×13×(-3)=-1+12=-12;(3)原式=-16+(1-9)+(-23×15+35×15) =-16÷(-8)+(-10+9)=2-1=1;(4)原式=-9-125×425-18÷9=-9-20-2=-31.【迁移应用】计算:(1)-(-2)2+22-(-1)9×(13-12)+16-8; (2)112×[3×(-23)2-1]-14÷(-4)2;(3)(58-23)×24+14÷(-12)3+|-22|; (4)|-57|×(45-13)÷(-23)2-(12)2; (5)-23÷[214×(-113)2]×(-0.25)2; (6)|-1+89|÷(59-34+112)-32×(-34)3.解:(1)原式=-4+4+1×(-16)-8=-8;(2)原式=32×(3×49-1)-14÷16=32×13-164=3164; (3)原式=58×24-23×24+14×(-8)+22=15-16-2+22=19; (4)原式=57×715÷49-14=13×94-14=12; (5)原式=-8÷(94×169)×116=-8×14×116=-18;(6)原式=19÷(−19)-32×(-2764)=-1+272=1212. 例3.观察下面三行数:-2, 4, -8, 16, -32, 64,…;①0, 6, -6, 18, -30, 66,…; ①-1, 2, -4, 8, -16, 32,…. ①(1)第①行数按什么规律排列?分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,…(2)第①①行数与第①行数分别有什么关系?(2)第①行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…第①行数是第①行相应的数除以2,即-2÷2,(-2)2÷2,(-2)3÷2,(-2)4÷2,…(3)取每行数的第10个数,计算这三个数的和.(3)每行数中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×0.5=1024+(1024+2)+1024×0.5=1024+024+512=2562.【迁移应用】(1)计算:①2-1=___;①22-2-1=___; ①23-22-2-1=___; ①24-23-22-2-1 =___; ①25-24-23-22-2-1=___.(2)根据上面的计算结果猜想:22020-22019-22018-…-22-2-1的值为____;2n-2n-l-2n-2-.….-22-2-1的值为____.(3)根据上面猜想的结论,求213-212-211-210-29-28-27-26的值.解:由猜想的结论得:213-212-211-210-29-28-27-26-25-24-23-22-2-1=1所以,213-212-211-210-29-28-27-26=1+1+2+22+23+24+25=1+2+4+8+16+32=64例4.小王在电脑上设计了一个有理数的运算程序:输入数a,按“*”键,再输入数b,得到运算:a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b).(1)求(-2)*12;解:(1)(-2)*12=(-2)2-(12)2-{2×[(-2)3-1]-1÷12}÷(-2-12)=-174.(2)小王在运算a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b)中出现无法操作的情况,可能是因为除数或分母中有0的存在.1÷b中如果b=0,那么无意义,无法操作;或者a-b作为除数,如果a-b=0,即a=b,那么无意义,也无法操作.所以有两种可能:输入了b=0或输入了b=a,才使得程序无法操作.【迁移应用】1.如图是计算机程序的计算流程图,若开始输入x=-2,则最后输出的结果是_______.2.如图是一个数值运算程序,当输出的值为-5时,输入的x的值为_______.五、教学反思。

1.4.1有理数的乘法(第二课时)

1.4.1有理数的乘法(第二课时)

正解:
1 3 1 5 ( 24) ( ) 3 4 6 8
1 3 1 5 (24) 24 24 24 3 4 6 8注意:1.不 要漏项;2.不 可符号重用
变式

1 1 1 计算: ( ) ( 5 ) 0.25 ( 3.5) ( ) 2 4 2 4
5 (6) 30, (6) 5 30, 就是: (6) (6) 5. 5 [3 4) 5)( 12 5) 60, ( ]( ) ( 3 ( 4) 5) 3 20 60, [ ( ] 就是: 4) 5) 3 ( 4) 5) [3 ( ]( [ ( ].
再看一个例子:
5 [3 (7)] 5 (4) 20, 5 3 5 (7) 15 35 20. 5 [3 (7)] 5 3 5 (7).
思考?
从这个例子中大家能得到什么?
3.一个数同两个数的和相乘,等于把这个数分别 同这两个数相乘,再把积相加.
(2)
5 9 1 3 6 5 4
9 8
4 1 5 6 5 4
4 1 5 6 5 4
6
练习:
5 4 1 2 (1).(3) ( ) (1 ) ( ) (1 ) 6 5 4 7
2 1 1 1 (2).( )( )(5 )(1 ) 3 2 3 5
例1 计算
5 9 1 (1) 3 6 5 4
4 1 (2) 5 6 5 4
3 5 9 1 解(1)
6 5 4
多个不是0 的数相乘, 先做哪一步, 再做哪一步?

第2章 7 第2课时 有理数的乘法运算律

第2章 7 第2课时 有理数的乘法运算律

5.计算: (1)(-172)×(-2)×(-4)×(-517)×(-25)×5; 解:原式=-(172×376)×(2×5)×(4×25) =-3×10×100 =-3000 (2)(1375-47+54)×(-35). 解:原式=1375×(-35)+(-47)×(-35)+54×(-35) =-17+20-28 =-25
1.填写计算过程中应用的运算律.
[(8×4)×125-5]×25
=[(4×8)×125-5]×25 =[4×(8×125)-5]×25
乘法交换律 乘法结合律
=4000×25-5×25
乘法分配律
2.计算:(-3.14)×5.597+(-31.4)×(-0.5597)= 0 .
3.计算:(12-56+152-274)×24 的结果是( D )
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

6.(-0.125)×20×(-8)×(-0.8)=[(-0.125)×(-8)]×[20×(-0.8)],运算
中没有运用的乘法运算律为( C )
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/32021/9/3Friday, September 03, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/32021/9/32021/9/39/3/2021 10:00:40 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/32021/9/32021/9/3Sep-213-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/32021/9/32021/9/3Friday, September 03, 2021
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 1 9 9 解:原式 3 6 4 5 8 1 4 多个不是0的 (2)(-5) ×6×()× 4 5 数相乘,先怎 4 1 么做再怎么做? 解:原式 5 6 6 5 4
(3)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
解:原式=0
解:原式 0.5 1 2.5 8 5
1 2 3 4 5 9 (3). ( ) ( ) ( ) ( ) 10 2 3 4 5 6 1 2 3 4 5 6 7 8 9 1 解:原式 2 3 4 5 6 7 8 9 10 10

1、几个不等于零的数相乘,积的符号由负因数的 个数决定: (1)当负因数的个数是偶数时,积是正数;
(2)当负因数的个数是奇数时,积是负数。 2、几个数相乘,如果其中有因数为0,积等于0.
3、两个数相乘,交换两个因数的位置,积不变. 乘法交换律:ab=ba 4、三个数相乘,先把前两个数相乘,或先把后 两个数相乘,积不变. 乘法结合律:(ab)c=a(bc).
换些数再试一试, 你得到了什么结论?
比较它们 的结果,发 现了什么?
有理数乘法的运算律: 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc). 根据乘法交换律和结合律可以推出:三个以上有理 数相乘,可以任意交换因数的位置,也可先把其中的 几个数相乘
例1 计算:
9 1 5 (1)(-3) × ×(- ) ×(- 5 ) 4 6
2005个(-1)相乘
你能看出下式的结果吗?如果能,请说明理由.
7.8×(-8.1) ×0×(-19.6)
解:原式=0 数0在乘法中的特殊作用:
几个数相乘,如果其中有因数为0,积等于0.
例2 计算:
2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
结论: 几个不等于零的数相乘,积的符号由负因数的 个数决定:
(2) 2×3×(-4) ×(-5) =+120
(4) (-2) ×(-3) ×(-4) ×(-5) =+120
(1)当负因数的个数是偶数时,积是正数;
(1)2×3×4×(-5) =-120
(3) 2×(-3) ×(-4) ×(-5) =-120
7
< < 3、填空:若ab>0,a+b<0.则a___0,b___0.
探索新知
计算下列各题:
(1)2×3×4×(-5) (2)2×3×(-4) ×(-5) (3)2×(-3) ×(-4) ×(-5) =-120 =+120 =-120
(4) (-2) ×(-3) ×(-4) ×(-5)=+120
几个不是0的数相乘,积的符号 与负因数的个数有什么关系?
(2)当负因数的个数是奇数时,积是负数。
计算:
(1)(-6 )×5
=-,交换两个因数的位置,积不变. 乘法交换律:ab=ba
换些数再试一试, 你得到了什么结论?
比较它们 的结果,发 现了什么?
计算:
(3)[3×( -4)] ×(- 5 ) =(-12) ×(-5)=60 (4)3×[(-4)×(-5)] =3 ×20 =60 三个数相乘,先把前两个数相乘,或先把后 两个数相乘,积不变. 乘法结合律:(ab)c=a(bc).
11 解:原式 ) 35 0.0045 3.5 3.5) 2008 ( ( 3 11 ( ) 35 0.0045 0 2008 3
=0
1、计算:
(1). (-0.5) ×(-1) ×( - 2.5 )×(-8)
7 (2). 78.6×(-0.34) ×2005×0×( 9 ) 13
1.4.2有理数的乘法(2)
复习巩固
1、乘法法则:
得正 得负 绝对值相乘 两数相乘,同号______,异号_______,并把___________。 仍为0 任何数与0相乘,积________.
2、计算: (1).(-2.5) ×4 = - 10 (2).(-2005) ×0 = 0 1 (3).(-2.25) ×(-3 ) = 7.5 3 2 (4).3.5× = 1
相关文档
最新文档