高三数学上册第一次月考试题(文)
高中高三数学1月月考试题 文 试题(共4页)

奉新县高中(gāozhōng)2021届高三数学1月月考试题文本套试卷分选择题和非选择题两局部,一共22题,一共150分,一共2页.考试时间是是为120分钟.在在考试完毕之后以后,只交答题卡.第一卷(选择题,一共计60分)一、选择题〔本大题一一共12小题,每一小题5分〕1.集合,,那么A. B. C. D.2.是虚数单位,那么复数对应的点在3. 向量夹角为,且,那么向量在向量方向上的投影为A. B. C. D.4.函数和分别由下表给出:那么满足的的是A. B. C. D.5. 递增等差数列中,,是和的等比中项,那么{}na的通项公式为A.2 B. C. D.6.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它仍然是利用计算机解决多项式问题的最优算法,如下图的程序框图给出了利用秦九韶算法求多项式值的一个实例,假设输人,x的值分別为3,5,那么输出的值是A. B. C. D.7.设,那么使成立的充分不必要条件是A. B.C. D.8.的内角所对的边分别为,假设,那么A. B. C.D.9.抛物线的焦点为,定点,是该抛物线上的一个动点,那么的最小值为A. 2B.C.D.10. 数列(shùliè)满足,满足,那么{}nb 的前项和为A. B. C. D.11.某个四棱锥的三视图如下,根据图中标出的尺寸,这个锥体的外接球〔锥体的各个顶点都在球面上〕的外表积等于A. B.C. D.12.设为常数,函数.以下结论中不正确的选项是A. 假设,那么当时,B. 假设,那么存在实数,当时,C. 假设,那么函数()f x 的最小值为D. 假设,那么函数()f x 在上有唯一一个零点第二卷(非选择题,一共计90分)二、填空题〔本大题一一共4小题,每一小题5分,一共20分〕13.如图,在正方体中,、分别是、的中点,在正方体的12条棱中,与直线垂直的棱为 .〔写出1条即可〕14.假设x,满足,那么的最小值是.15. “石头、剪刀、布〞是个广为流传的游戏,游戏时甲乙双方每次做“石头〞、“剪刀〞、“布〞三种手势中的一种,规定:“石头〞胜“剪刀〞,“剪刀〞胜“布〞,“布〞胜“石头〞,同种手势不分胜负须继续比赛.假定甲乙两人每次都是等可能地做这三种手势,那么一次比赛时两人做同种手势〔即不分胜负〕的概率是 .16.函数在处的切线被双曲线截得的弦长为,那么实数的值为 .三、解答题〔本大题一一共6小题,一共70分〕17.〔此题12分〕在ABC∆中,cba,,分别为角,,A B C的对边,.〔1〕求角的大小;〔2〕假设,求ABC∆的周长的最大值.18. (此题12分)假设甲乙两种品牌的同类产品在某地区场上销售量相等,为理解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进展测试,结果统计如下图,用频率估计概率.〔1〕估计(gūjì)乙品牌产品寿命大于200小时的概率;〔2〕这两种品牌产品中,某个产品没有使用到200小时,试估计该产品是甲品牌的概率.19. (此题12分)如图,在多面体中,是正方形,平面ABCD ,平面ABCD ,,点为棱的中点.〔1〕求证:平面;〔2〕假设,求多面体ABCDEF的体积. 20.(此题12分)函数,.〔1〕当时,假设函数在存在极值点,务实数a的取值范围;〔2〕当,时,假设对任意,恒成立,务实数的取值范围.21.〔此题12分〕椭圆的焦点为,,点在椭圆C上. 〔1〕求椭圆C的方程;〔2〕假设斜率为的直线与椭圆C 相交于两点,点满足,求的面积的最大值.选考题〔一共10分〕请考生在第22、23题中任选一题答题,假如多做,那么按所做的第一题计分.22. [选修4-4:坐标系与参数方程]以直角坐标系的原点为极点,x轴的正半轴为极轴,直线过原点O,且倾斜角为,假设点的极坐标为,圆C以C为圆心、4为半径.〔1〕求圆C的极坐标方程(fāngchéng)和当时,直线l的参数方程;〔2〕设直线l和圆C相交于两点,当 变化时,求的最大值和最小值.23.[选修4-5:不等式选讲]函数,.〔1〕假设,求a的取值范围;〔2〕假设,关于x的不等式的解集为,求的值.答案1-5DBBCC 6-10 DACCC 11-12DC内容总结。
高三上册文科数学第一次月考试题(有答案)

高三上册文科数学第一次月考试题(有答案)2021高三上册文科数学第一次月考试题〔有答案〕测试时间:120分钟全卷总分值150分第一卷一、选择题:(本大题共有12道小题,每题5分,在每题所给的四个选项中,只要一项为哪一项契合标题要求的。
)1.集合,,那么 ( )A. B. C. D.2. 设,那么 ( )A. B. C. D.3.假定偶函数在上是增函数,那么以下关系式中成立的是( )A. B.C. D.4.函数的定义域是( )A. B. C. D.5.设表示中的最小数,表示中的最大数,假定是恣意不相等的两个实数,,那么 ( )A. B. C. D.6.设点 ( )都在函数 ( 且 )的图象上,那么与的大小关系是( )A. B.C. D. 与的大小与的取值状况有关7.下面给出四个命题::假定,那么的逆否命题是假定,那么:是假命题,那么都是假命题;:的否认是:设集合,,那么是的充沛不用要条件其中为真命题的是( )A. 和B. 和C. 和D. 和8.设实数是函数的零点,那么( )A. B. C. D.9.函数的图象大致是( )10.函数与函数互为反函数,且有,假定,那么的最小值为( )A. B. C. D.11.函数,关于,以下不等式恒成立的是( )A. B. C. D.12.定义在上的奇函数,当时,,那么在上关于的函数 ( )的一切的零点之和为( )A. B. C. D.第二卷二、填空题:(本大题共有4道小题,每题5分)13.幂函数的图象经过点,那么此函数的解析式表达式是 .14.设,那么的最小值是 .15.命题,命题,假定是的必要条件,那么实数的取值范围是 .16.下面给出四个命题:①函数的零点在区间内;②假定函数满足,,那么③假定都是奇数,那么是偶数的逆否命题是假定不是偶数,那么都不是奇数④假定,那么函数只要一个零点的逆命题为真命题.其中一切正确的命题序号是 .三、解答题:(有6小题,共70分,解容许写出文字说明、证明进程或演算步骤)17.(此题总分值12分)设函数f(x)=log2(ax-bx) 且f(1)=1,f(2)=log212.(1)求a、b的值;(2)当x[1,2]时,求f(x)的最大值.18.(此题总分值12分)函数f(x)=x+1x+2.(1) 求f(x)的值域;(2) 假定g(x)=f(x)x+ax,且g(x)在区间(0,1)及(1,2)上区分存在一个零点,务实数a的取值范围.19.(此题总分值12分)函数f(x)=(x+2)|x-2|.(1) 假定不等式f(x)a在[-3,1]上恒成立,务实数a的取值范围;(2) 解不等式f(x)3x.20.(此题总分值12分)某服装厂消费一种服装,每件服装的本钱为40元,出厂单价定为60元,该厂为鼓舞销售商订购,决议当一次订购量超越100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,依据市场调查,销售商一次订购量不会超越600件.(1)设一次订购x件,服装的实践出厂单价为p元,写出函数p=f(x)的表达式;(2)当销售商一次订购多少件服装时,该厂取得的利润最大?其最大利润是多少?21.(此题总分值12分)设函数,其中,区间 .(1)求区间的长度;(区间的长度定义为 )(2)给定常数,当时,求区间长度的最小值.四、选做题:22.(此题总分值10分)选修41:几何证明选讲如图,是直角三角形,,以为直径的圆交于点,点是边的中点,衔接交圆于点 .(1)求证:、、、四点共圆;(2)求证:23.(此题总分值10分)选修44:坐标系与参数方程在直角坐标系中,以原点O为极点,以轴正半轴为极轴,与直角坐标系取相反的长度单位,树立极坐标系,设曲线C 参数方程为 ( 为参数),直线的极坐标方程为 .(1)写出曲线C的普通方程和直线的直角坐标方程;(2)求曲线C上的点到直线的最大距离.24.(此题总分值10分)选修45:不等式选讲(1) 、都是正实数,求证: ;(2)设不等的两个正数、满足,求的取值范围.。
河北省大名县第一中学2022届高三(实验班)上学期第一次月考数学(文)试题 Word版含答案

高三文科数学月考试题学校:姓名:班级:考号:评卷人得分一、选择题1. [2021·吉大附中高三四模(文)]已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},则A∩B等于()A. (0,1]B. [1,+∞)C.(0,2] D.2. [2021·哈三中一模(文)]已知f(x)是定义在R上的偶函数,周期为2,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件3. [2021·哈三中一模]下列结论中正确的个数是()①“x=”是“”的充分不必要条件;②若a>b,则am2>bm2;③命题“∀x∈R,sin x≤1”的否定是“∀x∈R,sin x>1”;④函数f(x )=-cos x在[0,+∞)内有且仅有两个零点.A. 1B. 2C. 3D. 44. [2021·吉林长春普高高三二模]下列函数中,既是奇函数又在(0,+∞)上单调递增的函数是() A. y=e x+e-x B. y=ln(|x|+1) C.y= D. y=x-5. [2021·吉大附中高三四模(文)]设函数f(x)=ln(1+x2)-,则使得f(x)>f(2x-1)成立的x的取值范围是()A. B. C.D.6. [2021·吉林市普高高三第三次调研]若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=则此函数的“友好点对”有()A. 3对B. 2对C. 1对 D. 0对7. [2021·河北唐山高三摸底月考]设函数,“是偶函数”是“的图象关于原点对称”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. [2021·吉林长春高三二模(文)]关于函数y=2sin+1,下列叙述有误..的是()A. 其图象关于直线x=-对称B. 其图象可由y=2sin+1图象上全部点的横坐标变为原来的倍得到C. 其图象关于点对称D. 其值域为[-1,3]9. [2022·甘肃省高考诊断(二)(文)]已知△ABC的外接圆半径为1,圆心为O,且=0,则△ABC 的面积为()A. 1+B.C.1+ D.10. [2022·哈尔滨市第六中学高三一模(文)]已知向量a=(cosθ,-sinθ),b=(-cos2θ,sin2θ)(θ∈(π,2π)),若向量a,b的夹角为φ,则有()A. φ=θB. φ=π-θC.φ=θ-π D. φ=θ-2π11. [2021·河北武邑中学高二入学考试]已知数列,都是公差为1的等差数列,是正整数,若,则( )A. 81B. 99C. 108D. 11712. [2021·河南南阳一中高三第三次月考]已知函数,关于的方程R)有四个相异的实数根,则的取值范围是( )A. B. C.D.评卷人得分二、填空题13. [2021·河北五个一名校联盟高三一模(文)]设△的内角,,所对的边长分别为,若,则的值为.14. [2021·河南南阳方城一中高二开学考试]设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sin A=5sin B,则角C= . 15. [2021·河南许昌五校高二第一次联考]已知在中,,,,,,则的值为.16. [2010·高考辽宁卷,16]已知数列{a n}满足a1=33,a n+1-a n=2n,则的最小值为.评卷人得分三、解答题17. [2021·吉林市普高高三第三次调研]已知函数f(x)=cos 2x+2sin2x+2sin x.(1)将函数f(2x)的图象向右平移个单位得到函数g(x)的图象,若x∈,求函数g(x)的值域;(2)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)=+1,A∈,a=2,b=2,求△ABC的面积.18. [2021·吉林长春高三二模(文)]已知数列{a n}满足a1=,a n+1=3a n-1(n∈N*).(1)若数列{b n}满足b n=a n-,求证:{b n}是等比数列;(2)求数列{a n}的前n项和S n.19. [2021·河南八市重点高中高二第一次月考(文)]正项数列满足.(1)求数列的通项公式;(2)令,求数列的前项和为.20. [2021·吉林长春高三二模(文)]已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.(1)求证:平面ABC⊥平面ACD;(2)若E为AB中点,求点A到平面CED的距离.21. [2021·湖南长沙长郡中学高三入学考试]已知椭圆的两个焦点分别为,以椭圆短轴为直径的圆经过点.(1)求椭圆的方程;(2)过点的直线与椭圆相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.22. [2021·广东省仲元中学、中山一中等七校高三联考(一)]在中,角所对的边分别为,且.(1)求的大小;(2)设的平分线交于,求的值.参考答案1. 【答案】A【解析】本题考查集合的基本运算、解一元二次不等式及求指数函数的值域,属于基础题.由于x2+x-2≤0,所以-2≤x≤1,依据指数函数的性质知y=2x>0,所以集合A =,B =,则A∩B =,故选A.2. 【答案】D【解析】本题考查充分条件与必要条件,函数的奇偶性与周期性,属于中档题.函数在上递增,利用偶函数得函数在上递减,利用周期得函数在上递减,故充分性成立;函数在上递减,利用周期得函数在上递减,利用偶函数得函数在上递增,必要性成立,综上,充分性与必要性均成立,故选D.3. 【答案】A【解析】本题考查充分必要条件、不等式性质、命题的否定及命题真假的判定,属于中档题.对于①,当x=时,sin ,充分性成立;当sin 时,x ++2kπ或x ++2kπ,k∈Z,得x=-+2kπ或x=+2kπ,k∈Z,故必要性不成立,故①正确;对于②,当m=0时,若a>b,am2>bm2不成立,故②不正确;对于③,命题“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”,故③不正确;对于④,函数y =与y=cos x的图象有且只有一个交点,故函数f(x )=-cos x 在内有且仅有一个零点,故④不正确.综上,正确的只有一个,故选A.4. 【答案】D【解析】本题考查函数的单调性与奇偶性学问,属于基础题.A,B选项中的函数为偶函数,排解,C选项中的函数是奇函数,但在(0,+∞)上不是单调递增函数.故选D.5. 【答案】A【解析】本题考查函数的奇偶性及导数在争辩函数中的应用,解一元二次不等式、确定值不等式,属于难题.∵f(-x )= ln =ln =f(x),∴函数f(x)为偶函数.当x≥0时,f(x)=ln (1+x2),求导得f'(x )=恒为正,即函数f(x)在单调递增,∵f(x)是偶函数,∴f(x)在(-∞,0)上单调递减,则f(x)>f(2x-1)等价于f(|x|)>f(|2x-1|),即|x|>|2x-1|,平方得3x2-4x+1<0,解得<x<1,故选A.6. 【答案】C【解析】本题考查新概念和函数的图象与性质,考查了数形结合的数学思想,属于中档题.设f(x )=(x>0)图象上任一点为A(x,y)(x>0,y>0),点A关于原点的对称点A'(-x,-y)在y=x+1上,所以-y=-x+1,即y=x-1,得“友好点对”的个数就是方程组的根的个数,而y=x-1(x>0)的图象与y的图象有且只有一个交点,∴“友好点对”共1对,故选C.7. 【答案】B【解析】本题考查函数的奇偶性,考查图象的对称性.若是偶函数,而不肯定是奇函数,故的图象不肯定关于原点对称;当的图象关于原点对称时,函数是奇函数,则是偶函数,因此“是偶函数”是“的图象关于原点对称”的必要不充分条件.故选B.8. 【答案】C【解析】本题考查三角函数的性质、图象变换,属于中档题.关于函数y =2sin+1,令x=-,求得y=-1,为函数的最小值,故A正确;由y =2sin+1图象上全部点的横坐标变为原来的倍,可得y =2sin+1的图象,故B正确;令x =π,求得y=1,可得函数的图象关于点对称,故C错误;函数的值域为[-1,3],故D正确.故选C.9. 【答案】D【解析】本题考查向量的运算.由=0得=-,两边平方可得·=0,则∠AOB =90°;由=0得=-,两边平方可得·=,则∠AOC=135°;同理可得∠BOC=135°,则△ABC的面积为S△AOB+S△BOC+S△AOC =,故选D.10. 【答案】C【解析】本题考查向量的夹角、向量的坐标运算、二倍角、同角三角函数的基本关系、诱导公式.由题意知cosφ==- () =-cosθ=cos(θ-π).由于θ∈(π,2π),所以θ-π∈(0,π),而φ∈[0,π],所以φ=θ-π,故选C.11. 【答案】D【解析】本题考查等差数列的通项公式与数列求和,考查计算力量.,.故选D. 12. 【答案】A【解析】本题考查分段函数导函数的应用,函数与方程的关系.=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.13. 【答案】4【解析】本题考查正弦定理与余弦定理、两角和与差公式,考查计算力量.由正弦定理可得=,又由于==,所以=,即, 所以.14. 【答案】【解析】本题考查正弦定理及余弦定理.由正弦定理得, 5b=3a,又b+c=2a,则,由余弦定理得,,又,所以.15. 【答案】【解析】本题主要考查平面对量的线性运算及平面对量数量积.在中,,建立直角坐标系,,,,依题意有D,E(2,0)得,得,故填. 16. 【答案】【解析】由已知可得a n-a n-1=2(n-1),a n-1-a n-2=2(n-2),…,a3-a2=2×2,a2-a1=2×1,左右两边分别相加可得a n-a1=2(1+2+3+…+(n-1)]=n(n-1),∴a n=n2-n+33.=n+-1,令F(n)=n+-1,n≤5时为减函数,n≥6时为增函数且F(5)>F(6),∴F(n)≥F(6)=,故的最小值为.17.(1) 【答案】f(x)=cos 2x+2sin2x+2sin x=cos2x-sin2x+2sin2x+2sin x=cos2x+sin2x+2sin x=1+2sin x,所以f(2x)=1+2sin2x.由于函数f(2x)的图象向右平移个单位得到函数g(x)的图象,所以g(x )=2sin+1,即g(x )=2sin+1.由于x ∈,所以2x ∈所以sin ∈,所以g(x)∈[0,3],所以函数g(x)的值域为[0,3].(2) 【答案】由于f(A )=+1,所以sin A =,由于A ∈,所以cos A=.又cos A =,a =2,b=2,所以c=4.所以△ABC面积S△ABC=bc sin A =2.18.(1) 【答案】由题可知a n+1=3(n∈N*),从而有b n+1=3b n,b1=a1-=1,所以{b n}是以1为首项,3为公比的等比数列.(2) 【答案】由第1问知b n=3n-1,从而a n=3n-1+,有S n=30++3++…+3n-1+=30+31+32+…+3n-1+×n =.19.(1) 【答案】由,得,由于数列是正项数列,所以.(2) 【答案】由第1问得,,所以.20.(1) 【答案】由于AD⊥平面BCD,BC⊂平面BCD,所以AD⊥BC,又由于AC⊥BC,AC∩AD=A, 所以BC⊥平面ACD,BC⊂平面ABC,所以平面ABC⊥平面ACD.(2) 【答案】由已知可得CD =,取CD中点为F,连接EF,由于ED=EC=AB =,所以△ECD为等腰三角形,从而EF =,S△ECD =,由第1问知BC⊥平面ACD,所以E到平面ACD的距离为1,S△ACD =,令A到平面CED的距离为d,由V A-ECD=·S△ECD·d=V E-ACD=·S△ACD·1,解得d =.所以点A到平面CED 的距离为21.(1) 【答案】由题意得,,, 解得,所以椭圆的方程为.(2) 【答案】①当直线的斜率不存在时,由, 解得,设,则.②当直线的斜率存在时,设直线的方程为,代入整理化简,得,依题意,直线与椭圆必相交于两点,设,则, 又,所以====.综上所述,为定值2.(说明:若假设直线为,按相应步骤给分)22.(1) 【答案】,,,,.(2) 【答案】在中,由正弦定理:,得,,.。
北京市北京工业大学附属中学高三上第一次月考文科数学试题(无答案)

北京工业大学附属中学2021-2021学年度第一学期第一次月考高三年级数学学科试卷(文)(考试时间120分钟,总分150分)一、选择题(本大韪共8小题,每题5分,共40分。
在每题合出的四个选项中,只有一项为哪一项符合要求的)1.命题,,320:=≥∃x x p 那么A.320:≠∀⌝x x p ,< B.320:≠≥∀⌝x x p , C.320:≠≥∃⌝x x p , D.320:≠∃⌝x x p ,< 2.假设,,ππ,π,⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛∈220βα假设(),,97sin 31cos =+-=βαβ那么αsin 的值为 A.271 B.275 C.31 D.2723 3.函数()⎪⎭⎫ ⎝⎛++=200sin π<,>,>ϕωϕωA B x A y 的期为T,在一个周期内的图像如下图,那么正确结论是A.π,23==T AB.63π,==ϕAC.21=-=ω,BD.64ππ,-==ϕT 4、设命题p :“假设,>1x e 那么”>0x ,命题q :“假设b a >,那么”<b a 11,那么A.“q p ∧〞为真命题B.“q p ∨〞为真命题C.“p ⌝〞为真命题D.以上都不对5.△ABC 中,点E 为边AB 的中点,点F 为边AC 的中点,BF 交CE 于点G,,y x +=那么=+y x A.23 B.1 C.34 D.32 6.直线n m 、和平面α,且α⊥m ,那么“m n ⊥〞是“α∥n 〞的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如下图,其俯视图为等腰直角三角形,那么该四棱锥的体积为 A.32 B.32 C.34 D.2 8.非空集合A 、B 满足以下两个条件:(1){};,,,,,,∅==B A B A 654321 (2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中元素.那么有序集合对(A,B)的个数为A.10B.12C.14D.16二、填空题(本大题6题小题,每题5分,共30分)9.在等差数列{}n a 中,假设,2576543=++++a a a a a 那么=+82a a ______.10.两个单位向量b a 、满足,21-=•那么=a 2_______;向量b a -2与b 的夹角为θ,那么=θcos _________. 11.假设y x 、满足,⎪⎩⎪⎨⎧≥≤+≤-010x y x y x 那么y x z 2+=的最大值为_________.12.在△ABC 中,角A 、B 、C 的对边分别为,、、c b a 假设,,π,A B C c sin 2sin 33===那么=a __.13.假设()()(),,π,ππ051cos sin ∈-=+++x x x 那么.____tan ____2sin ==x x , 14.某市2021年各月平均房价同比(与上一年同月比拟)和环比(与相邻上月比拟)涨幅情况如下列图所示:根据此图考虑该市2021年各月平均房价:①同比2021年有涨有跌;②同比涨幅3月份最大,12月份最小;③1月份最高;④5月比9月高,其中正确结论的编号为________________.三、解答题15.(本小题总分值13分){}n a 是等差数列,满足,,,12341=⋯=a a 数列{}n b 满足,,20441==b b 且{}n n a b -为等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n b 的前n 项和.16.(本小题总分值13分)设函数()()(),>0cos sin 3cos ωωωωx x x x f -=()x f 的最小正周期为π. (1)求⎪⎭⎫ ⎝⎛8πf 的值; (2)求()x f 的单调增区间;(3)当⎥⎦⎤⎢⎣⎡∈20π,x 时,求函数()x f 的最大值和最小值及获得最值时x 的值。
贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案

江西省贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案贵溪市实验中学高中部2019-2020学年第一学期第一次月考高三(文科)数学试卷考试时间:120分钟 总分:150 命题人:第Ⅰ卷(选择题 共60分)一、 选择题:本大题共12小题.每小题5分,共60分。
在每个小题给出的四个选项中 ,只有一项是符合题目要求的。
1.已知集合{}31|<<-=x x A ,(){}1lg |-==x y x B ,则()=⋂B C A R ( )A 。
()3,1B 。
()3,1- C.()1,1- D.(]1,1-2.已知命题:p x R ∀∈,1sin x e x ≥+。
则命题p ⌝为( ) A .x R ∀∈,1sin x e x <+ B .x R ∀∈,1sin x e x ≤+ C .0x R∃∈,001sin x e x ≤+D .0x R∃∈,001sin x e x <+3.下列哪一组函数相等( ) A 。
()()xx x g x x f 2==与B.()()()42x x g x x f ==与C.()()()2x x g x x f ==与D.()()362x x g x x f ==与 4. = 255tan ( )A .3-2- B .32-+C .3-2D .32+5.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.()的图像为函数R x x y x ∈-=22( ) A.B.C 。
D 。
7.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )①f (b )>f (a )>f (c );②函数f (x )在x =c 处取得极小值在x =e 处取得极大值;③函数f (x )在x =c 处取得极大值在x =e 处取得极小值;④函数f (x )的最小值为f (d ).A.③ B 。
【解析版】山东省日照一中高三上学期第一次月考 数学(文)试题

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设全集}5,4,3,2,1{=U ,集合}4,3,2{=A ,}5,2{=B ,则()U BC A = ( )A. {5}B. {1,2,5}C.}5,4,3,2,1{D.∅2.定义映射B A f →:,若集合A 中元素在对应法则f 作用下象为3log x ,则A 中元素9的象是( ) A .-3 B .-2 C .3 D . 23.已知命题p :,cos 1,x R x ∀∈≤则( )A .:,cos 1;p x R x ⌝∃∈≥B .:,cos 1;p x R x ⌝∀∈≥C .:,cos 1;p x R x ⌝∃∈>D .:,cos 1;p x R x ⌝∀∈>考点:全称命题的否定.4.函数x x f 21)(-=的定义域是 ( ) A .]0,(-∞ B .),0[+∞ C .)0,(-∞ D .),(+∞-∞5.,,A B C 是三个集合,那么“B A =”是“A C BC =”成立的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.若2313log 3,log 2,log 2a b c ===,则,,a b c 的大小关系是( )A .a b c <<B .b c a <<C .c b a <<D .c a b <<7.若)(x f 为奇函数且在+∞,0()上递增,又0)2(=f ,则0)()(>--xx f x f 的解集是( )A .)2,0()0,2(⋃-B .)2,0()2,(⋃-∞C .),2()0,2(+∞⋃-D .),2()2,(+∞⋃--∞8.已知命题p :关于x 的函数234y =x ax -+在[1,)+∞上是增函数,命题q :函数(21)xy =a - 为减函数,若p q ∧为真命题,则实数a 的取值范围是 ( ) A .23a ≤B. 120a << C .1223a <≤ D. 112a <<9.下列函数中既是奇函数又在区间]1,1[-上单调递减的是( )A .x y sin =B .1+-=x yC .2ln2x y x -=+ D .)22(21x x y -+=10.函数2ln 2,(0)()21,(0)x x x x f x x x ⎧-+>=⎨+≤⎩的零点的个数( )A .4 B. 3C .2D .111.已知函数()()()()0340x a x f x a x a x ⎧<⎪=⎨-+≥⎪⎩,满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,则a 的取值范围是 ( )A.1(0,]4 B.(1,2] C.(1,3) D.1(,1)212.若存在负实数使得方程 112-=-x a x成立,则实数a 的取值范围是 ( ) A .),2(+∞ B. ),0(+∞ C. )2,0( D. )1,0(第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.已知函数()y f x =的图象在(1,(1))M f 处的切线方程是221+=x y ,则(1)(1)f f '+= .14.函数()ln 2f x x x =-的极值点为 .15. 已知函数()y =f x 满足(+1)=(-1)f x f x ,且[1,1]x ∈-时,2()=f x x ,则函数()y =f x 与3log y =|x |的图象的交点的个数是 .16. 用[]x 表示不超过x 的最大整数,如[][][]00,44.3,31.3=-=-=,设函数[])()(R x x x x f ∈-=,关于函数)(x f 有如下四个命题:①)(x f 的值域为[)1,0; ②)(x f 是偶函数 ; ③)(x f 是周期函数,最小正周期为1 ; ④)(x f 是增函数. 其中正确命题的序号是: .三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知集合}.02|{},,116|{2<--=∈>+=m x x x B R x x x A (I )当m =3时,求()R AB ð;(Ⅱ)若}41|{<<-=x x B A ,求实数m 的值.18.(本小题满分12分)已知m R ∈,设命题P : 353m -≤-≤;命题Q :函数f (x )=3x 2+2mx +m +43有两个不同的零点.求使命题“P 或Q ”为真命题的实数m 的取值范围. 【答案】()[),12,-∞-⋃+∞. 【解析】试题分析:对P :353m -≤-≤,即2≤m ≤8 .19.(本小题满分12分)已知函数)(x f 是定义在R 上的偶函数,且0≥x 时,xx f )21()(=,函数)(x f 的值域为集合A . (I )求)1(-f 的值; (II )设函数a x a x x g +-+-=)1()(2的定义域为集合B ,若B A ⊆,求实数a 的取值范围.20.(本小题满分12分)已知定义域为R 的函数141)(++=x a x f 是奇函数. (I )求a 的值;(Ⅱ)判断)(x f 的单调性并证明; (III )若对任意的R t ∈,不等式0)2()2(22<-+-k t f t t f 恒成立,求k 的取值范围.法二、由(1)知,14121)(++-=x x f21.(本小题满分13分)已知函数32()3.f x x ax x =--(Ⅰ)若()(1,)f x +∞在上是增函数,求实数a 的取值范围.(Ⅱ)若1()3x f x =-是的一个极值点,求()[1,]f x a 在上的最大值.22.(本小题满分13分)已知函数2()f x ax bx c =++,[0,6]x ∈的图象经过(0,0)和(6,0)两点,如图所示,且函数()f x 的值域为[0,9].过该函数图象上的动点(,())P t f t 作x 轴的垂线,垂足为A ,连接OP .(I )求函数()f x 的解析式;(Ⅱ)记OAP ∆的面积为S ,求S 的最大值.【解析】。
新疆乌鲁木齐市第八中学2022-2023学年高三上学期第一次月考数学(文)试题及答案

乌鲁木齐市第八中学2022-2023学年第一学期高三年级第一阶段考试文数问卷(命题人:高三数学组考试时间: 120 分钟卷面分值: 150 分)(命题范围:高考)一、单选题(本大题共12小题,共60.0分。
在每小题列出的选项中,选出符合题目的一项)1.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B的真子集个数为.( )A. 1B. 3C. 2D. 42.命题“∀x∈[1,2],x 2−2a≤0”为真命题的一个充分不必要条件是( )A. a≤2B. a≥2C. a≥4D. a≤43.函数y=sin x cos x+3cos2x−3的图像的一个对称中心是.( )B. C. −2π3D.4.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a元一年定期,若年利率为r保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为元( )A. a(1+r)17B. ar [(1+r)17−(1+r)]C. a(1+r)18D. ar[(1+r)18−(1+r)]5.如图,正方形ABCD中,M是BC的中点,若AC=λAM+μBD,则λ+μ=( )A. 43B. 2 C. 158D. 536.设数列{a n}为等差数列,S n是其前n项和,且S5<S6,S6=S7>S8,则下列结论不正确的是( )A. d<0B.S9>S5C. a7=0D. S6与S7均为S n的最大值7.已知θ∈(0,π2),sin (π4−θ)=55,则sin (2θ+π3)的值为( )A. 43+310B. 43−310C. 33+410D.33−4108.若点O 和点F 分别为椭圆x24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⋅FP 的最大值为.( )A. 2B. 3C. 6D. 89.在公比q 为整数的等比数列{ a n }中,S n 是数列{ a n }的前n 项和,若a 1+a 4=18,a 2+a 3=12,则下列说法错误的是( )A. q =2B. 数列{ S n +2 }是等比数列C.数列{ lga n }是公差为2等差数列D. S 8=51010.已知关于x 的不等式x 2−4ax +3a 2<0(a <0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最大值是( )A.63B. −433C. 433D. −23311.在△ABC 中,AC =3,AB =1,O 是△ABC 的外心,则BC ⋅AO 的值为( )A.4B. 6C. 8D. 312.已知函数f(x)=|sinx|+|cos x|−sin 2x−1,则下列说法正确的是( )A. x =π2是函数f(x)的对称轴B. 函数f(x)在区间(π2,5π6)上单调递增C. 函数f(x)的最大值为2,最小值为−2D. 函数f(x)在区间(0,Mπ)上恰有2022个零点,则1011<M ⩽20232二、填空题(本大题共4小题,共20.0分)13.已知x >0,y >0,且32x +6y =2,求4x +2y 的最小值____________14.若函数f(x)=2x +mx +1在区间[0,1]上的最大值为3,则实数m =___________.15.已知当a ∈[0,1]时,不等式x 2+(a−4)x +4−2a >0恒成立,则实数x 的取值范围是 .16.数列{a n }满足a n+2+(−1)n a n =3n−1,前16项和为540,则a 1= .三、解答题(本大题共6小题,共70.0分。
2024-2025学年海南省文昌中学高三(上)第一次月考数学试卷(含答案)

2024-2025学年海南省文昌中学高三(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知A ={x ∈N ∗|x ≤3},B ={x|x 2−4x ≤0},则A ∩B =( )A. {1,2,3}B. {1,2}C. (0,3]D. (3,4]2.若复数a +3i 2+i 是纯虚数,则实数a =( )A. −32B. 32C. −23D. 233.“幂函数f(x)=(m 2+m−1)x m 在(0,+∞)上为增函数”是“函数g(x)=2x −m 2⋅2−x 为奇函数”的( )条件.A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要4.已知tan (3π−α)=12,则sin(π2+α)−sin (π+α)cos(π2−α)+cos (π−α)等于( )A. 1 B. −12 C. 13 D. −135.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.如图,F 1,F 2为椭圆E :x2a 2+y 2b 2=1(a >0,b >0)的左、右焦点,中心为原点,椭圆E 的面积为 5π,直线x =4上一点P 满足△F 1PF 2是等腰三角形,且∠F 1F 2P =120°,则E 的离心率为( )A. 55B. 2 55C. 15D. 256.将甲、乙等8名同学分配到3个体育场馆进行冬奥会的志愿服务,每个场馆不能少于2人,则不同的安排方法有( )A. 2720B. 3160C. 3000D. 29407.已知等边△ABC 的边长为 3,P 为△ABC 所在平面内的动点,且|PA |=1,则PB ⋅PC 的取值范围是( )A. [−32,92]B. [−12,112]C. [1,4]D. [1,7]8.已知函数f(x)=(x +a)⋅e x ,若对任意x 1>x 2>1都有x 1f(x 2)−x 2f(x 1)<0,则实数a 的取值范围是( )A. (−4,+∞)B. [−4,+∞)C. [−1,+∞)D. (−1,+∞)二、多选题:本题共3小题,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高三数学上册第一次月考试题(文) 2019届高三数学上册第一次月考试题(文)
一、选择题:本大题共12小题,每小题5分,共60 分援在每小题给出的四个选项中,只有一项是符合题目要求的援
1.若全集,集合,,则( )
(A) (B) (C) (D)
2.在复平面内,复数对应的点的坐标为( )
(A)(-1,1) (B)(1,1) (C)(1,-1) (D)(-1,-1)
3.设平面向量等于( )
(A)4 (B)5 (C)3 (D)4
4.设是等差数列的前项和,若,则( )
A. B. C. D.
5.已知、的取值如下表所示:若与线性相关,且,则( ) 0134
2.24.34.86.7
(A) (B) (C) (D)
6.若a,bR,且ab,则下列不等式中恒成立的是( )
(A) (B) (C) (D)
7.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点
到该抛物线的焦点距离为3,则( )
(A) (B) 3 (C) (D) 4
8.下列有关命题的说法中错误的是( )
(A)若为假命题,则、均为假命题
(B) 是的充分不必要条件
(C) 的必要不充分条件是
(D)若命题p:实数x使,则命题为对于都有
9.某程序框图如图所示,该程序运行后,输出的值为31,则等于( )
(A) 4 (B) 1 (C)2 (D) 3
10. 函数的零点属于区间( )
A. B. C. D.
11.如果关于的方程有4个不同的实数
解,则实数的取值范围是( )
A. B. C. D.
12.若函数,定义函数给出下列命题:
①;②函数是奇函数;③当时,若,,总有成立,其中所有正确命题的序号是( )
(A)② (B)①② (C)③ (D)②③
二、填空题:本大题4 个小题,每小题5 分,共20 分.
13.已知满足约束条件则的最小值为。
14.函数的定义域为.
15.已知等比数列是递增数列,是的前项和.若是方程的两个根,则_______ .
16.已知是定义在[-1,1]上的奇函数且,当,且时,有,若对所有、恒成立,则实数的取值范围是_________ .
三、解答题:解答应写出文字说明、证明过程或演算步骤.
17.在中,角,,所对的边长分别为,,,向量,,且.
(Ⅰ)求角;
(Ⅱ)若,,成等差数列,且,求的面积.
18.已知等比数列前项和为,且满足,
(Ⅰ)求数列的通项公式;
(Ⅱ)求的值.
19.如图,已知四边形是正方形,平面,PD∥EA,,,,分别为,,的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在一点,使平面? 若存在,求出线段的长;若不存在,请说明理由.
20.P为圆A: 上的动点,点B(1,0).线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为.
(I)求曲线的方程;
(II)当点P在第一象限,且cosBAP=223时,求点M的坐标.
21.已知函数
(I)若函数满足f(1)=2,且在定义域内f(x)bx2+2x恒成立,求
实数b 的取值范围;
(II)若函数f(x)在定义域上是单调函数,求实数a的取值范围;
(III)当
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题计分。
作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑。
23.(本小题10分)选修44:坐标系与参数方程
已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,,曲线的参数方程为。
点是曲线上两点,点的极坐标分别为。
(I)写出曲线的普通方程和极坐标方程;
(II)求的值.
24.(本小题满分10分)选修4―5:不等式选讲
已知函数.
(Ⅰ)若当时,恒有,求的最大值;
(Ⅱ) 若当时,恒有求的取值范围.
冀州中学高三第一次月考数学试卷(文)答案
BADAA CBCDBDD -2 364
17.解: (Ⅰ) ,,
,,4分
又,,,6分
又,,即
将代入得,得,从而,三角形为等边三角形12分
18.
19.(Ⅰ)证明:因为,分别为,的中点,
所以.
又因为平面,平面,
所以平面. 4分
(Ⅱ)因为平面,所以.
又因为,,
所以平面.
由已知,分别为线段,的中点,
所以.
则平面.而平面,
所以平面平面. 8分
(Ⅲ)在线段上存在一点,使平面.证明如下:在直角三角形中,因为,,所以.
在直角梯形中,因为,,所以,
所以.又因为为的中点,所以.
要使平面,只需使.
因为平面,所以,又因为,,
所以平面,而平面,所以.
若,则∽,可得.
可求得,,,所以. 12分
20.解:(Ⅰ)圆A的圆心为A(-1,0),半径等于22.
由已知|MB|=|MP|,于是|MA|+|MB|=|MA|+|MP|=22,
故曲线是以A,B为焦点,以22为长轴长的椭圆,a=2,c=1,b=1,
曲线的方程为x22+y2=1.5分
(Ⅱ)由cosBAP=223,|AP|=22,得P( 5 3,223).8分
于是直线AP方程为y=24(x+1).
由x22+y2=1,y=24(x+1),解得5x2+2x-7=0,x1=1,x2=- 7 5. 由于点M在线段AP上,所以点M坐标为(1,22).12分21.解:(Ⅰ)由f(1)=2,得a=1,又x0,
x2+x﹣xlnx)bx2+2x恒成立1﹣﹣b,
令g(x)=1﹣﹣,可得g(x)在(0,1]上递减,
在[1,)上递增,所以g(x)min=g(1)=0,
即b -----------------------(4分)
(Ⅱ)f(x)=2ax﹣lnx,(x0),
令f(x)0得:2a ,设h(x)= ,当x=e时,h(x)max= ,
当a 时,函数f(x)在(0,+)单调递增(5分)
若0
g(x)=0,x= ,x(0,),g(x)0,x( ,+),g(x)0,
x= 时取得极小值,即最小值.
而当0
f(x)=0必有根,f(x)必有极值,在定义域上不单调
a .---------------------- --------(8分)
(Ⅲ)由(I)知g(x)=1﹣在(0,1)上单调递减,
而
1+lnx0,
.------------------ ------------------------(12分)
23.(1) 参数方程普通方程---3分
普通方程------6分
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
方法1:可知,为直径,
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》
中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。
方法2 直角坐标两点间距离-10分
2019届高三数学上册第一次月考试题(文)就分享到这里了,更多相关信息请继续关注高考数学试题栏目!
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。