第06章 热力学第二定律
《热力学第二定律》 讲义
《热力学第二定律》讲义一、热力学第二定律的引入在我们生活的这个世界中,热现象无处不在。
从烧开水时的水汽蒸腾,到冬天取暖时的热量传递,热的变化和流动贯穿于我们的日常生活。
而热力学第二定律,则是用来描述热现象中能量转换和传递的重要规律。
想象一下,一个热的物体和一个冷的物体相互接触,热量会自发地从热的物体流向冷的物体,直到它们的温度相等。
但是,你有没有想过,为什么热量不会自发地从冷的物体流向热的物体呢?这就是热力学第二定律所要探讨的核心问题之一。
二、热力学第二定律的表述热力学第二定律有多种表述方式,其中最常见的有克劳修斯表述和开尔文表述。
克劳修斯表述:热量不能自发地从低温物体传递到高温物体而不引起其他变化。
开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
为了更好地理解这两种表述,我们来举几个例子。
假如在一个封闭的房间里,有一台没有外接电源的冰箱。
如果热量能够自发地从冰箱内部的低温区传递到外部的高温环境,那么冰箱内部就会越来越冷,而房间却不会因为接收了这些热量而有任何其他变化。
但在现实中,这是不可能发生的。
再比如,有一个热机,它从高温热源吸收了一定的热量,并将其中一部分转化为有用功。
如果能够从单一热源吸收热量并完全转化为有用功,而不向低温热源排放任何热量,那么这样的热机就是“永动机”,但根据热力学第二定律,这种情况是不可能实现的。
三、热力学第二定律的实质热力学第二定律的实质是揭示了自然界中一切与热现象有关的实际过程都是不可逆的。
什么是不可逆过程呢?比如说,一滴墨水滴入一杯清水中,墨水会逐渐扩散,最终使整杯水都变得有颜色。
但是,我们不可能让这杯已经混合均匀的水自动地恢复到墨水和清水分离的状态。
再比如,一块光滑的冰块在常温下会逐渐融化成水,而这些水不会自动地再重新凝结成原来形状规则的冰块。
这些过程一旦发生,就无法自发地逆向进行,这就是不可逆过程。
而热力学第二定律正是说明了这类不可逆过程的方向性。
热学-第6章热力学第二定律
气体自 由膨胀
会自动发生
不会自动发生
气体自 动收缩
气体向真空自由膨胀,对外没有做功,没有 吸收热量,是一个内能不变的过程。
外界不发生变化,气体收缩到原来状态是不 可能的。
•假设外界不发生变化,气体可以收缩到原来状态。
设计一个过程R ,使理想气体和单一热源接触,图(b)。从热源 吸取热量Q,进行等温膨胀对外做功A’=Q。 通过R过程使气体复原,图(c) 。 图(a),(b),(c) 过程总的效果:自单一热源吸取热量,全部 转变为对外做功而没有引起其他变化。
Q1 U(T) A u(T)S (T)S (u )S
表面系统经历微小卡诺循环对外做功:
所以
f (1,2 )
f (3,2 ) f (3,1)
3
因为
是任意温度,所以,
3
1
f (1,2 )
f (3,2 ) (2 ) f (3,1) (1)
Q2 Q1
2
即
((12))
Q2 Q1
( ) 是 的普适函数,形式与 的选择有关。
开尔文建议引入温标T,且
T ( )
T叫做热力学温标或开尔文温标。
Q2 Q1
1
f
(1,2 )
(1)
f (1,2 )是 的普适函数,与工作物质性
质及Q1 和Q2无关。
设另有一温度为 3 的热源
两部热机工作与
3
,
和
2
3 ,1之间
3 1 1
22
则
Q2 Q3
f
(3,2 )
Q1 Q3
f (3,1)
(2)
因为
Q2
Q2 Q3
《热力学第二定律》 讲义
《热力学第二定律》讲义在我们探索自然世界的奥秘时,热力学定律是不可或缺的重要基石。
而其中的热力学第二定律,更是具有深远的意义和广泛的应用。
让我们先来理解一下什么是热力学第二定律。
简单地说,热力学第二定律指出,热量不能自发地从低温物体传向高温物体,而不引起其他变化。
这就好比水总是从高处往低处流,如果要让水从低处往高处流,就必须要施加外力,消耗其他形式的能量。
从宏观角度来看,热力学第二定律表明,在任何自发的过程中,系统的熵总是增加的。
熵这个概念可能有点抽象,我们可以把它理解为系统的混乱程度。
一个封闭系统,如果没有外界的干预,它会自然而然地朝着更加混乱的方向发展。
比如说,一间整洁的房间,如果没有人去整理,它会逐渐变得杂乱无章,东西到处乱放,这就是熵增加的表现。
再比如,一堆燃烧的木材,燃烧的过程中,能量从高温的木材传递到周围的环境中,这个过程是不可逆的,而且系统的熵在增加。
那么,为什么热力学第二定律如此重要呢?首先,它对于理解能源的利用和转化具有关键意义。
在实际的能源利用过程中,比如发电、驱动汽车等,我们都无法实现能量的完全转化和利用。
总会有一部分能量以废热的形式散失掉,导致能源的效率无法达到 100%。
这就是热力学第二定律所限制的。
其次,热力学第二定律对于生命现象的理解也有启示。
生命是一个高度有序的系统,似乎与熵增加的趋势相违背。
但实际上,生命通过不断地从环境中摄取能量和物质,来维持自身的低熵状态。
但这个过程是以环境的熵增加为代价的。
在工业生产中,热力学第二定律也起着重要的指导作用。
例如,在设计热机、制冷设备等时,工程师们必须充分考虑热力学第二定律的限制,以提高设备的性能和效率。
为了更深入地理解热力学第二定律,我们来看几个具体的例子。
想象一下一个热的物体和一个冷的物体接触。
根据热力学第二定律,热量会自动从热的物体传递到冷的物体,直到两者的温度相等。
这个过程是不可逆的,也就是说,热量不会自动地从冷的物体返回热的物体,而不产生其他的变化。
热学-统计物理6 第6章 热力学第二定律
热功转换
3. 热传导
两个温度不同的物体放在一起,热量将自动地由高温物体 传向低温物体,最后使它们处于热平衡,具有相同的温度。 温度是粒子无规热运动剧烈程度即平均平动动能大小的宏观 标志。初态温度较高的物体,粒子的平均平动动能较大,粒 子无规热运动比较剧烈,而温度较低的物体,粒子的平均平 动动能较小,粒子无规热运动不太剧烈。若用粒子平均平动 动能的大小来区分它们是不可能了,也就是说末态与初态比 较,两个物体的系统的无序度增大了,这种自发的热传导过 程是向着无规热运动更加无序的方向进行的。
热机Q2
A , A
E
Q1
Q1
T1
A Q2
Q1 可
逆 热 机
T2 E’
用反证法,假设
得到
A A Q1 Q1
Q1 Q1
Q1 Q2 Q1 Q2
Q2 Q2
两部热机一起工作,成为一部复合机,结果外界不对复合
机作功,而复合机却将热量 Q1 Q2 Q1 Q2 从低温热源送到高温热源,违反热力学第二定律。
自然界中的自发热传导具有方向性。
通过某一过程,一个系统从某一状态变为另一状态, 若存在另一过程,能使系统与外界同时复原,则原来的过 程就是一个可逆过程。否则,若系统与外界无论怎样都不 能同时复原,则称原过程为不可逆过程。单摆在不受空气 阻力和摩擦情况下的运动就是一个可逆过程。
注意:不可逆过程不是不能逆向进行,而是说当过程逆向 进行时,逆过程在外界留下的痕迹不能将原来正过程的痕 迹完全消除。
现在考虑4个分别染了不同颜色的分子。开始时,4个分 子都在A部,抽出隔板后分子将向B部扩散并在整个容器内无 规则运动。隔板被抽出后,4分子在容器中可能的分布情形如 下图所示:
第六章 热力学第二定律第六节 亥姆霍兹函数和吉布斯函数
——说明
•应用此判据时,需注意适用的条件
•A是系统的广度性质,单位:J
2023/2/20
3
二、吉布斯函数G(Gibbs function)
●定义
G=H-TS=U+pV-TS=A+pV
●应用
由G=H-TS =U+pV-TS
G=U+(pV)- (TS)=Q-psurrdV+W’+ (pV)-(TS) 定温定压下 GT,p=Qp-p V +W’+p V- TS = Qp+W’- TS 代热二律SQ/T入
的ΔA和ΔG。
解:不可逆相变过程,需设计可逆过程计算。在例6.2中已求出-
10℃,101.325 kPa时,水凝固成冰的ΔS=-20.59 J·K-1,ΔH=-5643 J。 故
●说明 过程定温定压,ΔG<0,说明在题给条件下,过冷水能
自发地凝固成冰
2023/2/20
11
5. 掌握热力学基本方程;理解吉布斯——赫姆霍兹方程及其应用
6. 掌握偏摩尔量和化学势的概念;了解逸度、活度及标准态的概 念;理解化学势在处理平衡问题和研究多组分系统性质中的作用。
7.202了3/2解/20 稀溶液的依数性。
1
第六节 亥姆霍兹函数和吉布斯函数
一、亥姆霍兹函数A( Helmholz function)
——在定温定压及不做非体积功时条件下,吉氏函数的值总自发 地向减小的方向变化,当G之值不再减小后,系统即达平衡状态, 在此条件下时吉氏函数增大是不可能的——吉氏函数判据
——应用此判据时,也需注意适用的条件
化学变化和相变化大多在恒温恒压条件下进行。因此,吉氏函数 应用得更广泛
●注意 A和G皆为系统的容量性质,其绝对数值不知,乃辅助
热力学第二定律-PPT课件
答案 C
18
典例精析 二、热力学第一定律和热力学第二定律
返回
【例3】 关于热力学第一定律和热力学第二定律,下列论述正 确的是( ) A.热力学第一定律指出内能可以与其他形式的能相互转化,
而热力学第二定律则指出内能不可能完全转化为其他形式 的能,故这两条定律是相互矛盾的 B.内能可以全部转化为其他形式的能,只是会产生其他影响, 故两条定律并不矛盾
答案 B
15
典例精析 一、热力学第二定律的基本考查 返回
【例2】 如图1中汽缸内盛有一定质量的理想气体,汽缸壁是 导热的,缸外环境保持恒温,活塞与汽缸壁的接触是光滑的, 但不漏气,现将活塞杆缓慢向右移动,这样气体将等温膨胀并 通过活塞对外做功.若已知理想气体的内能只与温度有关,则 下列说法正确的是( )
的是( D )
A.随着低温技术的发展,我们可以使温度逐渐降低,并最终达 到绝对零度
B.热量是不可能从低温物体传递给高温物体的 C.第二类永动机遵从能量守恒定律,故能制成 D.用活塞压缩汽缸里的空气,对空气做功2.0×105 J,同时空
气向外界放出热量1.5×105 J,则空气的内能增加了0.5×105 J
解析 由于汽缸壁是导热的,外界温度不变,活塞杆与外界连 接并使其缓慢地向右移动过程中,有足够时间进行热交换,所 以汽缸内的气体温度也不变,要保持其内能不变,该过程气体 是从单一热源即外部环境吸收热量,即全部用来对外做功才能 保证内能不变,但此过程不违反热力学第二定律.此过程由外 力对活塞做功来维持,如果没有外力对活塞做功,此过程不可 能发生.
程都具有
,都是不可逆的.
方向性
7
一、热力学第二定律 返回 延伸思考
热传导的方向性能否简单理解为“热量不会从低温物体传给高温物 体”? 答案 不能.
热力学第二定律
熵变
1.23×103 J · K -1 ×
熵的概念、 熵的概念、熵的热力学表示
1. 熵概念的引入 熵概念的引入——熵的热力学表示 熵的热力学表示 对可逆过程,由卡诺热机的效率公式, 对可逆过程, 卡诺热机的效率公式,
Q1吸 − | Q2放 | T1 −T2 = Q1吸 T1
Q1 Q2 + =0 T1 T2
引言
违背热力学第一定律的过程都不可能发生。 不违背热力学第一定律的过程不一定都可以发生。 自然过程是按一定方向进行的。
高温 物体 低温 物体 高温 物体 低温 物体
Q
会自动发生
Q
不会自动发生
续上
违背热力学第一定律的过程都不可能发生。 不违背热力学第一定律的过程不一定都可以发生。 自然过程是按一定方向进行的。
6
6/16
4 共 16 种微观态 5 种宏观态 1
4/16 1/16
10
2 10 23
有人计算过,概率这样小的事件 自宇宙存在以来都不会出现。
气体自由膨胀的不可逆性, 气体自由膨胀的不可逆性,从统计观点解释就是一个不 受外界影响的理想气体系统,其内部所发生的过程总是向着 受外界影响的理想气体系统,其内部所发生的过程 大(或 大)的方向进行的。
表述的等价性
举一个反证例子: 假如热量可以自动地从低温热源传向 高温热源,就有可能从单一热源吸取热量使之全部变为有用 功而不引起其它变化。
高温热源 高温热源
假 想自 的动 传 热 装 置
等价于
卡诺热机
低温热源 (但实际上是不可能的)
低温热源
凡例
热力学第二定律不但在两种表述上是等价的,而且它 在表明一切与热现象有关的实际宏观过程都是不可逆过程。 历史上的两种表述只是一种代表性的表述。
热力学第二定律ppt课件
从单一热源吸收热量,全 部用来做功而不引起其它 变化叫做第二类永动机。
热力学第二定律的另一种表述就是: 第二类永动机不可能制成。
P61
对宏观过程方向的说明,都可以作为热二的表述。 例如:气体向真空的自由膨胀不可逆;
一切宏观自然过程的进行都具有方向性。
P61
柴薪时期
煤炭时期
石油时期
P61-62
Q2=Q1+W Q1=Q2+W
热机工作时能否将从高温热 库吸收的热量全部用来做功?
不能,从高温热库吸收的热量的一部分 用来做功,剩余的部分释放到低温热库。
Q1
热机工作:
P60
燃料燃烧 冷凝器或大气
漏气热损 散热热损 摩擦热损
燃料产生的 热量Q
输出机械功W
W< Q
P60
P61
对周围环境不产生 热力学方面的影响, 如吸热、放热、做 功、压强变化等。
P59
适用于宏观过程对微观过程不适用
P59
电冰箱通电后箱内温度低于箱外温度,并且还会 继续降温,直至达到设定的温度。显然这是热量从低 温物体传递到了高温物体。这一现象是否违背热力学 第二定律呢?
不违背。电冰箱能实现热量从低温物体传给高温 物体,但这不是自发地进行的,需要消耗电能。
制冷机工作时热量是自发地 从低温热库传到高温热库吗? 不是,有外界做功。
3.4 热力学第二定律
P59
可能发生这样的逆过程吗? 热量自发地由高温物体向低温物体传递的过程是不可逆的
可能发生这样的逆过程吗?
功可以自动转化为热 , 但热却不能自动转化为功。 通过摩擦而使功转变为热的过程是不可逆的。
热现象
物体间的传热 气体的膨胀
热力学第二定律讲稿
– 由功变热过程的不可逆性推断热传导过程的不 可逆性.(见图1 .(见图 可逆性.(见图1)
T1
Q2
Q1
T1
Q1-Q2 A WA
Q2
T2
Q2
T22 Q
图1
上页
下页
假定:热传导是可逆的. 假定:热传导是可逆的. 之间设计一卡诺热机, 在T1和T2之间设计一卡诺热机,并使它在一次 循环中从高温热源T1 吸热Q1,对外作功|A|,向 循环中从高温热源 吸热 ,对外作功 , 低温热源T 放热Q ) 然后, 低温热源 2 放热 2(Q1- Q2= |A|).然后,Q2 恢复原状. 可以自动地传给 T1 而使低温热源 T2 恢复原状. 总的结果是,来自高温热源的热量Q 总的结果是,来自高温热源的热量 1 - Q2全部 转变成为对外所作的功|A|,而未引起其它变化. 转变成为对外所作的功 ,而未引起其它变化. 这就是说功变热的过程是可逆的.显然, 这就是说功变热的过程是可逆的.显然,此结 论与功变热是不可逆的事实和观点相违背. 论与功变热是不可逆的事实和观点相违背.因 热传导是可逆的假设并不成立. 此,热传导是可逆的假设并不成立.
上页 下页
还可由热传导过程的不可逆性推断功变热过程 的不可逆性(可自行证明). ).实际上与第一例 的不可逆性(可自行证明).实际上与第一例 结合就证明了第二定律的两种表述是等效的. 结合就证明了第二定律的两种表述是等效的. 类似的例子不胜枚举, 类似的例子不胜枚举,都说明自然界中各种不 可逆过程是相互关联的,都可以作为第二定律 可逆过程是相互关联的, 的一种表述.但不管具体方式如何, 的一种表述.但不管具体方式如何,第二定律 的实质在于指出, 的实质在于指出,一切与热现象有关的实际宏 观过程都是不可逆的. 观过程都是不可逆的.第二定律揭示的这一客 观规律, 观规律,向人们指示出实际宏观过程进行的条 件和方向. 件和方向.
第6、7章_热力学第I、第II定律原理及应用
第6、7章 热力学第I 、第II 定律原理及应用热力学第I 定律就是能量守恒定律:各种形式能量间相互转化或传递,在转化或传递的过程中,总的能量数量是守恒的。
能量的表现方式一是物质自身的蓄能,如内能、动能、位能和焓、自由能等各种热力学能等,它们都是状态函数;二是以系统和环境间传递的方式表现出来,如热和功,它们均与变化所经历的过程有关,是过程函数。
热力学第II 定律揭示了热和功之间的转化规律。
能量不仅有数量多寡,而且有质量(品位)的高低之分。
从做功能力上看,功可以全部转化为热,而热只能部分变为功,热和功是两种不同品位的能量。
运用热力学第I 定律和第II 定律,研究化工过程中的能量变化,对化工过程的能量转化、传递、使用和损失情况进行分析,揭示能量消耗的大小、原因和部位,为改进工艺过程,提高能量的利用率指出方向和方法,这是过程热力学分析的核心内容。
本章学习要求本章要求学生掌握敞开系统的热力学第I 定律(即能量衡算方程)及其工程应用;热力学第II 定律三种定性表述方式和熵衡算方程,弄清一些基本概念,如系统与环境、环境状态、可逆的热功转换装置(即Carnot 循环)、理想功与损失功、有效能与无效能等,学会应用熵衡算方程、理想功与损失功的计算及有效能衡算方法对化工单元过程进行热力学分析,对能量的使用和消耗进行评价。
重点与难点6 热力学第I 定律及其工程应用6.1 封闭系统能量衡算方程系统在过程前后的能量变化E ∆应与系统在该过程中传递的热量Q 与功W 的代数和:21E E E Q W ∆=-=+(5-1)通常规定:系统吸热为正,放热为负;系统对环境作功,得功为负,式(5-1)即是热力学第I 定律的数学表达式。
6.2 敞开系统的热力学第I 定律22Si i i i j j j j i jW 11Q dE m (h gz u )m (h gz u )22dt dt dt ''δδ++-+++-=∑∑ (5-5)式(5-5)即为敞开系统的热力学第I 定律表达式,其中:i i i h U P V =+。
第六章-热力学第二定律PPT课件
力学中称为方向性问题。
.
2
3,第二类永动机是不可能实现的
4,热力学第二定律与第一定律 相互独立互相补充
二,热力学第二定律的克劳修斯表述
克劳修斯(Rudolf Clausius,1822-1888),德国物理学家,对热力
学理论有杰出的贡献,曾提出热力学第二定律的克劳修斯表述和熵
的概念,并得出孤立系统的熵增加原理。他还是气体动理论和热力
.
4
3,更简单的克劳修斯表述:热量不可能自发地从低温热源传向高温热源。
通过以上内容,我们来判断以下说法正确与否:
① 功可变成热,热不能变成功。(若 对,举一例说明)
② 功可完全变成热,热不能完全变成功。(若不对,举一反例)
③ 功不能完全变成热,热能完全变成功。
④ 功可完全变成热,但要在外界作用下,热能完全变成功。
2,两种表述将的都是热和功的问题,功不仅限于机械功的广义 功,每一种功热转换过程也可以作为热力学第二定律的表述。
热力学第二定律不是若干典型热学事例的堆积仓库,物理定律也 不能停留在具体的表面描述,真正的热力学定律应当是对物理本 质的描述,不同的表述应当有共同的物理本质,热力学第二定律 应该有更好的叙述。
第六章,热力学第二定律
问题的引入:
1,焦耳理论与卡诺热机理论的矛盾:同属能量转换, 有用功变热可以全部实现,为什么反过来就不能全部 实现,能量转换与守恒定律可没有这样的限制。
2,热机效率始终小于1并不全是技术原因
3,大量与热有关的自然过程仅靠热力学第一定律是不 足以解释的:1)热传递是不可逆的;2)电影散场后, 观众自发离开影院走向各方,却不能自发地重新聚集在 原来的电影院; 3)空气自由膨胀不能自发收缩等。
小结:上述三个不可逆过程,在推理过程中,很容易找到使系统 复原的方法,但这种情况并不多见,并且花费很多精力时间去寻 找系统复原的方法,很不经济。所以,我们必须借助其他方法。
热力学第二定律具体内容
热力学第二定律具体内容:热力学第二定律是热力学定律之一,是指热永远都只能由热处转到冷处.热力学第二定律是描述热量的传递方向的分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能.此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展.熵是一种不能转化为功的热能.熵的改变量等于热量的改变量除以绝对温度.高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高.物体有秩序时,熵值低;物体无序时,熵值便增高.现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加.克劳修斯表述不可能把热量从低温物体传到高温物体而不引起其他变化.开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响.开尔文表述还可以表述成:第二类永动机不可能造成.若要简捷热能不能完全转化为机械能,只能从高温物体传到低温物体。
热力学第二定律 课件
拓展二 热力学第一、第二定律的比较及两类永动机 的比较
1.一个放在水平地面上的物体,靠降低温度,能不 能把内能自发地转化为动能,使这个物体运动起来?
提示:不可能,机械能和内能的转化过程具有方向性, 内能转化成机械能是有条件的.
2.什么是第二类永动机?为什么第二类永动机不可 能造成?
提示:能够从单一热源吸收热量并把它全部用来做 功,而不引起其他变化的热机称为第二类永动机.第二类 永动机不可能制成的原因是因为机械能和内能转化过程 具有方向性,尽管机械能可以全部转化为内能,但内能却 不能全部转化为机械能,而不引起其他变化.
提示:不会降低室内的平均温度.若将一台正在工作 的电冰箱的门打开,尽管可以不断向室内释放冷气,但同 时冰箱的箱体向室内散热,就整个房间来说,由于外界通 过导线不断有能量输入,室内的温度会不断升高.
1.在热力学第二定律的表述中,“自发地”“不产 生其他影响”“单一热库”“不可能”的含义.
(1)“自发地”是指热量从高温物体“自发地”传给 低温物体的方向性.在传递过程中不会对其他物体产生 影响或借助其他物体提供能量等.
答案:B
热力学第二定律
知识点一 热力学第二定律的第一种表述
提炼知识 1.热力学第二定律: (1) 一 切 与 热 现 象 有 关 的 宏 观 自 然 过 程 都 是 不 可 逆 的.如物体间的传热,气体的膨胀、扩散……都有特定 的方向性. (2)反映宏观自然过程方向性的定律就是热力学第二 定律.
2.热力学第二定律的第一种表述,克劳修斯表述: 热量不能自发地从低温物体传到高温物体.
(2)“不产生其他影响”的含义是发生的热力学宏观 过程只在本系统内完成,对周围环境不产生热力学方面 的影响.如吸热、放热、做功等.
热力学第二定律
第六章热力学第二定律5-1 设每小时能造冰m克,则m克25℃的水变成-18℃的水要放出的热量为25m+80m+0.5×18m=114m有热平衡方程得4.18×114m=3600×2922∴ m=2.2×104克=22千克5-2试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的可逆卡诺循环的效率。
(提示:先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环过程。
如以T m和T n分别代表这任一可循环所经历的最高热源温度和最低热源温度。
试分析每一微小卡诺循环效率与的关系)证:(1)d当任意循环可逆时。
用图中封闭曲线R表示,而R可用图中一连串微笑的可逆卡诺循环来代替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。
考虑任一微小可逆卡诺循环,如图中阴影部分所示,系统从高温热源T i吸热Q i,向低温热源T i放热,对外做功,则效率任意可逆循环R的效率为A为循环R中对外作的总功(1)又,T m和T n是任意循环所经历的最高温热源和最低温热源的温度∴对任一微小可逆卡诺循,必有:T i≤T m,T i≥T n或或令表示热源T m和T n之间的可逆卡诺循环的效率,上式为将(2)式代入(1)式:或或(188完)即任意循环可逆时,其效率不大于它所机灵的最高温热源T m和最低温度热源T n 之间的可逆卡诺循环的效率。
(2)任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡诺循环的效率必小于可逆时的效率,即(3)对任一微小的不可逆卡诺循环,也有(4)将(3)式代入(4)式可得:即任意不可逆循环的效率必小于它所经历的最高温热源T m和最低温热源T n之间的可逆卡诺循环的效率。
《热力学第二定律》 讲义
《热力学第二定律》讲义在我们探索自然世界的奥秘中,热力学定律无疑是极其重要的基石。
而其中的热力学第二定律,更是具有深远的意义和广泛的应用。
首先,让我们来理解一下什么是热力学第二定律。
简单地说,它表明了在一个孤立系统中,热量不可能自发地从低温物体传递到高温物体,或者说,任何自发的过程总是朝着熵增加的方向进行。
这里的熵,可以理解为系统的混乱程度。
为了更直观地感受这个定律,我们可以想象一个热的物体和一个冷的物体相互接触。
按照我们的直觉,热量似乎应该从热的物体均匀地流向冷的物体,直到两者温度相同达到平衡。
但热力学第二定律告诉我们,这个过程是不可逆的。
也就是说,一旦两者温度相同,热量不会自发地从冷的物体回到热的物体,使冷的物体更冷,热的物体更热。
那为什么会有这样的定律呢?这其实与自然界的宏观趋势有关。
从微观角度来看,分子和原子在不停地运动和碰撞,而这种运动和碰撞是随机的。
在一个封闭的系统中,随着时间的推移,这种随机性会导致系统的熵增加,也就是混乱程度增加。
比如,把一堆整齐摆放的积木弄乱是很容易的,但要让这堆乱掉的积木重新恢复整齐的摆放,就需要外界的干预和做功。
同样的道理,一个房间如果不打扫,会越来越乱;一个城市如果没有管理和规划,也会变得越来越无序。
热力学第二定律在很多实际的领域都有着重要的应用。
在能源领域,它告诉我们能源的转化和利用是有一定限度的。
例如,在热机中,燃料燃烧产生的热能不可能完全转化为机械能,总会有一部分能量以废热的形式散失掉。
这也就限制了热机的效率,促使我们不断寻找更高效的能源利用方式。
在化学领域,热力学第二定律可以帮助我们判断化学反应的方向和限度。
如果一个反应会导致系统的熵增加,那么这个反应在一定条件下就有可能自发进行;反之,如果一个反应会导致系统的熵减少,那么这个反应就需要外界提供能量才能进行。
在生物学中,生命的存在似乎与热力学第二定律有所矛盾。
生命系统是高度有序的,从简单的细胞到复杂的生物体,都展现出了精妙的结构和功能。
第六章 热力学第二定律.ppt
热二律满足能量守恒的过程不一定都能进行! 过程的进行还有个方向性的问题。
§1.热力学第二定律
热力学第二定律的表述
热力学第二定律以否定的语言说出一条确定的规律.
1.开尔文(Kelvin)表述: 不可能从单一热源吸取热量,使之完全变为有
N
A
1 261023
0
1 2
N
A
1 261023
0
这种宏观状态虽原则上可出现,
但实际上不可能出现.
例.用铅字随机排版出一百万字小说的概率
1
106
106
1 106106
1 23.326106
1 22107
0
自然过程的方向性的定量描述:
T称为热力学温标 或开尔文温标
( ) 为普适函数,所以热力学温标与测温物质的性质无关。
用热力学温标所表示的温度写为xK,这里x为温度数值。
水的三相点的热力学温度规定为273.16 K 。
热力学温度的单位——开尔文(K)就是水三相点的热力
学温度的 1 。 273.16
热力学温标和理想气体温标中水的三相点温度值都定为 273.16K,可见在理想气体温标能确定的范围内,热力学 温标与理想气体温标的测得值相等。
A A
Q1 Q2 A
A A
Q1 Q2 A
若甲做正循环,乙做逆循环,则η不大于η´ 若甲做逆循环,乙做正循环,则η ´不大于η
即:所有工作于相同高温热源和相同的低温热源之间的一切可 逆热机,其效率都相等。
热力学第二定律知识点总结
热力学第二定律知识点总结热力学是研究能量转化和能量传递规律的学科,其中热力学第二定律是热力学的核心和基础。
热力学第二定律描述了自然界中热量如何传递的方向和限制。
本文将对热力学第二定律的几个重要知识点进行总结。
一、热力学第二定律的表述热力学第二定律有多种表述形式,其中最为常见的是克劳修斯表述和开尔文表述。
克劳修斯表述指出,不能将能量从低温物体传递到高温物体而不引起其他变化。
换句话说,热量只能从高温物体传递到低温物体,不可能自发地从低温物体移动到高温物体中。
开尔文表述则强调了热力学第二定律的实际应用,它指出热量不可能从自发流动的热源中完全转化为功,一定会有一部分热量转化为无用的热量,最终导致热能的不可逆损失。
二、熵的概念熵是描述热力学系统混乱程度或无序程度的物理量。
熵的增加表示系统的混乱度增加,而熵的减少则表示系统的混乱度减少。
根据热力学第二定律,孤立系统的熵总是会增加,不可能自发减少。
根据熵的定义,我们可以得出一个结论:任何自发过程都会伴随着熵的增加。
这也是为什么自发发生的过程是不可逆的原因之一。
熵的增加导致能量的不可逆转化,使得系统无法恢复到原来的状态。
三、热机效率和热泵效率热机效率是指热机从热源中吸收的热量与做功所消耗的热量之比。
根据热力学第二定律,热机效率的上限由克劳修斯表述给出,即热机效率不能超过1减去低温热源与高温热源的温度比之间的比值。
热泵效率是指热泵从低温热源中吸收的热量与提供给高温热源的热量之比。
热泵效率的上限同样由克劳修斯表述限制。
四、热力学不可逆性热力学第二定律揭示了热力学过程的不可逆性。
不可逆性的存在使得热流只能从高温物体传递到低温物体,而不能反向流动。
不可逆性还导致了热机效率和热泵效率的存在上限。
热力学第二定律的不可逆性在自然界广泛存在,如热传导、功的转化等过程都受到了不可逆性的约束。
能量的不可逆流动使得一部分能量转化为无用的热量,增加了能量损失。
五、热力学第二定律的应用热力学第二定律在工程和科学研究中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 后 答 案 网
6-14 用范德瓦耳斯气体模型,试求在焦耳测定气体内能实验中气体温度的变化.设气体定容摩尔热容量 CV 为常数,摩尔体积在气体膨胀前后分别为 V1,V2。
解:当 1 摩尔范氏气体由(T1,V1)变到(T2,V2),而 CV为常数时,由 9 题结果知其内能变化为:
证:由上题证明知,1 摩尔范氏气体节流膨胀前的焓为
h1=(cv+R)T1- + +u0' 节流膨胀后的气体可视为理想气体,起 1 摩尔的焓为
h2 =u2+p2v2=cvT2-cvT0+u0+RT2 =(cv+R)T2+u0'' 视二常数 u0'和 u0''相等,由气体节流气候焓不变,所以 h1-h2=(cv+R)(T2-T1)+ - =0 解之,气体节流前后温度的变化为
Tds = du+pdv = CvdT- dv 由熵增原理知,可逆绝热过程中系统的熵不变,有
CvdT+ dv = 0 或 + =0 已知 为常数,积分上式即得
课后答案网
6-11 接上题,证明范德瓦耳斯气体准静态绝热过程方程又可写为
证:有一摩尔范氏气体的状态方程得
课后答案网
第六章 热力学第二定律
6-1 设每小时能造冰 m 克,则 m 克 25℃的水变成 -18℃的水要放出的热量为
25m+80m+0.5×18m=114m
有热平衡方程得
4.18×114m=3600×2922
课 后 答 案 网
∴ m=2.2×104克=22千克
证:习题9已证得,一摩尔范氏气体有
视 V 为 T、P 的函数,有
所以,1 摩尔范氏气体在无穷小等压(`````=0)过程中,热力学第一定律可写为: dQ = CpdT = du+pdv = CvdT + dv+( - )dv
或 又 由 (p+ )(v-b) =RT 可得
课后答案网
(2)任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡
诺循环的效率必小于可逆时的效率,即
(3)
对任一微小的不可逆卡诺循环,也有
(4) 将(3)式代入(4)式可得:
即任意不可逆循环的效率必小于它所经历的最高温热源 Tm 和最低温热源 Tn 之间的可逆卡诺循环的效率。
课后答案网
对于本题模型的气体,当气体节流前的状态(温度、体积):
1. 由图中曲线上方的点表示时,气体节流膨胀后温度不变,不同的初始体积对应不同的转换温度。
2. 由图中曲线下方的曲线表示时,从(1)、(2)式知,气体节流膨胀后温度降低,对于氧气,显 然,常温下节流温度降低。
u2-u1=CV(T1-T1)+a ( - ) (1) 焦耳自由膨胀实验中,A=0,且气体向真空的膨胀过程极短暂,可认为气体来不及与外界热交换,Q=0 , 由热力学第一定律得 u2-u1=0 对于 1 摩尔范氏气体,由(1)式则得: T1-T1= ( - ) 6-15 利用上题公式,求 CO2 在焦耳实验中温度的变化。设 体的摩尔体积在膨胀前是 2.01·mol-1,在膨胀后为 4.01·mol-1。已知 CO2 的摩尔热容量为 3.38R,
代入上题结果
课 后 答 案 网
由于 R 是常量,所以上式可写作
6-12 证明:范德瓦耳斯气体进行准静态绝热过程时,气体对外做功为 设 Cv 为常数 证:习题 9 给出,对摩尔范氏气体有
CV(T1-T2)-a( - )
当范氏气体有状态(T1、v1)变到状态(T2、v2)。内能由 u1 变到 u2,而 Cv 为常数时,上式为
气体节流膨胀前后焓不变,所以,令上式中 h1-h2=0 即得 1 摩尔范氏气体节流膨胀后温度的变化,为
T2-T1= [( - )-( - )]
6-17 假设一摩尔气体在节流膨胀前可看作范德瓦尔斯气体,而在节流膨胀后可看作理想气体,气体的
课 后 答 案 网
定容摩尔热量为CV为常数。试用上述模型证明,气体节流前后温度变化为 ΔT=T2-T1= (RT - ) 试在 T1—v1 图上画出ΔT=0 的曲线(即转换温度曲线),并加以讨论。
综之,必 即任意循环的效率不可能大于它所经历的最高温热源和最低温热源之间的可逆卡诺循环的效率。 *6-8 若准静态卡循环中的工作物质不是理想气体而是服从状态方程 p(v-b)=RT。式证明这可逆卡诺循环的
效率公式任为
课后答案网
证:此物种的可逆卡诺循环如图。 等温膨胀过程中,该物质从高温热源 T1 吸热为
由图 试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的 可逆卡诺循环的效率。
(提示:先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环过程。如以 Tm 和 Tn 分别代表这任一
可循环所经历的最高热源温度和最低热源温度。试分析每一微小卡诺循环效率与
的关系)
证:(1)d 当任意循环可逆时。用图中封闭曲线 R 表示,而 R 可用图中一连串微笑的可逆卡诺循环来代 替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而 效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个 微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环 R。
下混合后达到新的平衡态,求系统从初态到终态熵的变化,并说明熵增加,设已知液体定压比热为常数 CP。 解:两种不同温度液体的混合,是不可逆过程,它的熵变可以用两个可逆过程熵变之和求得。设 T1>T2,
(也可设 T1<T2,结果与此无关),混合后平衡温度 T 满足下式
mCp(T1-T)=mCp(T-T1)
ΔT = T2-T1= (RT1 - ) (1)
令上式ΔT= 0,即 RT1 - = 0
或 T1= - ·
(2)
以 1 摩尔氧为例,由表 1-2,取 a=1.36atm·l2·mol-2
b=0.3818 l· mol-1 R=0.082rtm· l· mol-1·K-1,二式化为
T1=1024-
(3)
课 后 答 案 网
等温压缩过程中,该物质向低温热源放热为 (189完)
由第五章习题 13 知,该物质的绝热过程方程为
利用
可得其绝热方程的另一表达式子
由绝热线 23 及 14 得
两式相比得 ∴ 该物质卡诺循环的效率为
可见,工作于热源 T1 和 T2之间的可逆机的效率总为 1- ,与工作物质无关,这正是卡诺定理所指出的。
6-9
(1)利用(6.7)式证明,对一摩尔范德瓦耳斯气体有
课 后 答 案 网
课后答案网
(2)由(1) 证明: (3)设 Cv 为常数,证明上式可写
其中U0’=UO-cvto+a/vo
证: (1)对一摩尔物质,(6.7)式为 一摩尔范氏气体的物态方程为 代入上式即得
Ti≥Tn
或
课后答案网
或
令
表示热源 Tm 和 Tn 之间的可逆卡诺循环的效率,上式
为
将(2)式代入(1)式:
或
课 后 答 案 网
或
(188 完)
即任意循环可逆时,其效率不大于它所机灵的最高温热源 Tm 和最低温度热源 Tn 之间的可逆卡诺循环的效 率。
(2)视 u 为 T、v 的函数,由(1)得 积分上式
课 后 答 案 网
课后答案网
即得
(3)当Cv为常数
由(2)即得
其中 6-10 设有一摩尔范德瓦耳斯气体,证明其准静态绝热过程方程为
该气体的摩尔热容量 Cv 为常数 (提示:利用习题 9 的结果) 证:上题给出 由得
取各个不同的 V1 值,可得相应的 T1 值,列表如下:
用描点法作出(3)式的图线—氧的转换温度曲线如下
V1(I)
b
T1(K)
0
V1(I)
0.3
T1(K)
931
0.04 213 0.4 960
0.06 489 0.5 976
0.08 627 1 1009
0.1 710 10 1039
0.02 876 100 1041.7
得
pv=RT+pb- +则 1 摩尔 Nhomakorabea氏气体的焓为
h=u+pv=(cv+R)T- +b(p+ )+u0'=(cv+R(T- + +u0')
课后答案网
当 1 摩尔范氏气体由状态(T1、v1)变到状态(T2、v2)时,起焓变化为
h1-h2=(cv+R)(T2-v1)-( - )+( - )
3.由图中上方的点表示时,气体节流膨胀后温度升高(△T>0)
课 后 答 案 网
△T=0的曲线称为转换温度曲线
6—18 接上题,从上题作图来看,T0 = 具有什么意义?(称T0 为上转温度)。若已知氮气 a=1.35×100 atm6·mol-2, b= 39.6 cm6·mol-1, 氦气 a= 0.033×106 atm·cm6·mol-2, b = 23.4·mol-1,试求氮气
∴ T = (T1+T2) 温度为 T1 的液体准静态等压降温至 T,熵变为
温度为 T2 的液体准静态等压升温至 T 熵变为
由熵的可加性,总熵变为: △S=△S+△S=mCp(ln +ln )
=mCpln =mCpln 因 (T1-T2)2>0 即 T12-2T1T2+T22>0
T12+2T1T2+T22-4T1T2>0 由此得(T1+T2)2>4T1T2 所以,△S>0
考虑人一微小可逆卡诺循 (187 完)
环,如图中阴影部分所示,系统从高温热源 Ti 吸热 Qi,向低温热源 Ti 放热,对外做功,则效率
任意可逆循环 R 的效率为
A 为循环 R 中对外作的总功