(发展战略)中国风电发展状态与未来展望

合集下载

风电行业市场分析

风电行业市场分析

海上风电成为发展重点, 潜力巨大
全球风电市场持续增长, 中国成为领军力量
风电行业发展前景预测
技术进步:随着 风电技术的不断 进步,未来风电 将更加高效、可 靠,降低成本, 提高竞争力。
政策支持:各国政 府对可再生能源的 支持力度不断加大, 风电作为重要的可 再生能源,将获得 更多政策支持和发 展机遇。
风电行业市场分析
汇报人:XXX
目录
风电行业概述
风电行业竞争格局
01
02
风电行业市场分析
03
风电行业发展趋势与 前景
04
风电行业概述
风电行业定义
风电行业是指利用风能资源进行发电和供电的相关产业
风电行业包括风力发电机组制造、风电场开发、风电运维等多个领域
风电是一种清洁、可再生的能源,具有巨大的发展潜力
风电行业市场供给分析
风电设备制造商数量及产能
主要风电设备制造商的市场份 额
风电设备的进口情况及对市场 的影响
风电设备的价格走势及影响因 素
风电行业市场价格分析
风电机组价格:受 技术水平和规模效 应影响,呈现下降 趋势
风电场建设成本: 包括土地、设备、 安装等费用,呈现 逐年下降趋势
运维服务费用:随 着风电场规模扩大 和运维经验积累, 费用逐渐降低
风电运维服务提供商:主要企业有北京运达、上海电气等,这些企业在风电运维服 务方面具有较强的专业能力和经验。
风电行业投资主体竞争格局
国有大型能源企业:如国家能源集团、大唐集团等,拥有丰富的资源和资金优势,是 风电行业的主要投资者。
民营企业:如明阳智能、金风科技等,在技术创新、市场开拓等方面表现突出,逐 渐成为行业的重要力量。
国内风电设备制造企业主要集 中在中国沿海地区

我国风能的利用现状及发展

我国风能的利用现状及发展

中国风能的利用现状及发展摘要:随着化石能源的不断消耗,新能源的开发利用引起了世界各国的重视。

新能源具有污染少、储量大、永续性等特点。

我国新能源产业呈现强劲发展势头,其中,风电发展最为迅猛。

我国风能资源丰富,目前中国风电技术的开发利用取得了巨大进步。

但中国的风能资源开发利用仍然存在诸多问题,如风电的并网消纳难、电力市场不完善、相关配套法规不健全和风机制造技术基础薄弱等,这些制约因素严重阻碍了我国风电的可持续发展。

本文着重阐述了中国新能源风能的资源条件、我国风能发展现状及制约中国风能发展的因素并对我国风能发电的发展前景进行了展望。

能源是人类生存和发展的重要物质基础,是人类从事各种经济活动的原动力。

由于化石能源(如煤、石油、天然气等能源)自然储量的有限性以及人类对其需求的无限性,随着人类对化石燃料无节制的开采和利用,化石能源短缺的矛盾日益突出。

长期以来,我国以化石能源为主的能源构成形式加剧了对化石能源的依赖,据统计,2007 -2010年我国能源消耗总量不断上升,增长率分别为7. 8%、4. 0%、6. 3%、5. 9%;2011年能源消耗总量达34. 8亿t标准煤,比2010年增长7%。

能源消耗总量中,煤、石油、天然气这些化石能源在2007-2010年所占比例分别为93. 2%、92.3%、92.2%、91.4%,是能源消费的主要部分。

人均资源量少、资源消耗量大、能源供需矛盾尖锐以及利用效率低下、环境污染严重、能源结构不合理[2]已成为制约我国经济社会可持续发展的重要因素。

等温室气体的排同时,化石能源的使用也给环境带来了许多负面影响,CO2放导致全球气候变暖,并引发了气候的极端变化和一系列的自然灾害。

在这种情况下,人类必须另辟蹊径,积极寻求能够替代化石能源的新能源和可再生能源,逐步摆脱对传统化石能源的依赖。

以水能、太阳能、风能、地热能、海洋能、生物质能和核能等为代表的新能源又称非化石能源,不但取之不尽、用之不竭,而且低碳、清洁、环保,既有利于保障能源供给,又可极大地减少温室气体的排放。

国内外风力发电技术现状与展望(新能源)ppt

国内外风力发电技术现状与展望(新能源)ppt
*
海上风电机组的的研究与开发
发展海上风电是国际上风电发展的一个方向。世界上对海上风电的研究与开发始于20世纪90年代,经过十多年的发展,海上风电技术正日趋成熟,并开始进入大规模开发阶段。
*
GE3.6s 风力发电机 (公司名称: Gamesa Eòlica )
*
REpower 5MW风力发电机 (公司名称:REpower Systems AG)
*
华锐1.5MW风电机组
东汽1.5MW风电机组
上海电气1.25MW风电机组
国内兆瓦级风电机组
*
国内兆瓦级风电机组
南车时代1.65MW风电机组
海装2MW风电机组
*
国内兆瓦级风电机组
惠德1.0MW风电机组
明阳1.5MW风电机组
*
金风62/1200 风力发电机组 生产厂家:新疆金风科技股份有限公司
*
上海电气风电设备有限公司与德国Aerodyn公司联合设计具有自主知识产权的2MW风力发电机组; 哈尔滨哈飞威达风电设备有限公司和芬兰Winwind公司合资,生产1MW和3MW变桨变速并网型风力发电组; 东方汽轮机厂与德国REpower公司合作进行1.5兆瓦MD70和MD77型风力发电机组整机设计。同时,在“十五”期间,中国的风电场和并网风电得到迅速发展,如:内蒙古、新疆、辽宁、宁夏、上海等地风电场和风电设备的发展。其中内蒙古赤峰大唐、辉腾锡勒风电场发展成为规模最大风电场。
图1 古代风力机
*
以后又发展了一种水平轴风力机,它的风轮具有十根梁,其间用张线固定,每根梁上有一块小帆布。至今在江苏一带还可见到竹木帆布结构的风力机。这种风力机在农田灌溉和盐池提水方面仍起到重要作用。
*
中世纪风力机
到公元11世纪,在中东古代风力机应用很广泛。到13世纪,这种风力机传到了欧洲。到14世纪,荷兰率先改进了古代风力机,并广泛利用这种改进后的风力机为莱茵河三角洲的沼泽地和湖泊抽水。 中国宋朝是风力机的全盛时期,当时流行着垂直轴天津风车。

风力和光伏发电的现状以及发展趋势

风力和光伏发电的现状以及发展趋势

风力和光伏发电的现状以及发展趋势摘要:风能和天阳能都是可再生资源,且十分的环保,太阳能光伏发电和风力发电是以后的重要能源,必定为保护环境和能源结构的调整贡献力量。

本文对国内外的风力发电和天阳能光伏发电的现状、发展趋势以及国家的优惠政策做出讨论研究。

关键词:风力发电;太阳能发电;趋势引言随着人类社会的高速发展,人们的生活水平在不断提高,各种新技术、新能源不断地被发掘,随之而来的是对电能的消耗越来越大,陈旧的火力发电已经无法满足人们对电力的需求,且火力发电在发电的过程中严重的污染环境,发电的原材料还是不可再生资源,开发可再生性资源或者新能源用以代替火力发电,已经迫在眉睫。

人类社会面临着能源危机的挑战,开发新能源,建立健全新能源产业体系对人类社会的发展十分重要。

利用风能和太阳能进行发电,不仅不会污染环境,其还有具有资源可再生、地域分布广、储备能量大等特点,备受世界各国的关注。

了解风能和太阳能发电的发展现状和趋势,可以为我国风能和太阳能发电技术的研究提供一定的帮助。

1 风力发电的现状与发展趋势到目前为止,能源恐慌已经成为世界范围内问题,我国做为世界上最大的发展中国家具有当仁不让的责任,面对这些压力,我国把此类问题作为核心在“十二五”期间做了一次深刻的讨论和自我反省。

保护能源的可持续发展工作已经被提上日程,最终我们会将一个节能的、生态友好型社会展现给世界人民。

结合当前我国的经济发展模式以及产业结构,难度是有的,攻克它需要一段很长的时间,我们需要坚实的理论基础和核心技术作为支撑。

新兴产业的出现可以大量的缓解这一矛盾,以新能源、生物医药,新材料、环保材料、节能材料为主的生产企业得到了良好的发展,中央也对这一类型产业加大扶持力度,并提高能源可再生水平,优化产业结构,减少环境污染,降低资源消耗,努力在未来几十年内达到全球最高的新能源开发效率,尤其在风力发电方面。

地球表面的空气压力出现压力差时可以形成一定的风力,空气从高气压地区向低气压地区进行移动时,其产生的动能在太阳光的辐射下,可以转变成风能,风能可以用来发电。

我国风力发电开发现状及展望

我国风力发电开发现状及展望

三 、 电发展现 状 风
( 风 电装 机规模 快速增 长 _ 一)
自 18 年 5 山 东荣 成 建 成 我 国第一 个并 网型风 96 月
电的发 展 , 国风 我 电的实 际应用 取得 了长 足 的进 步 ,在 可再 生能 源的发 电
前景 的发 电技 术 。风 能发 电还具 有常 规能 源无 可 比拟 的
乎是不现实的, 但这些地区的风能往往非常丰富, 如果因
地制宜利 用其 风 能发 电 ,一方 面可 以大大 减少其 他能源
发 电 的费 用 , 进 电力普 及 , 推 同时也不 会给 当地的生态 环 境带 来污染 。
我 国风 力发 电开 发 现状 及 展 望
魏 显 菲
( 尔滨 商业 大学 哈
[ 摘
M A教 育 中心 , 黑 龙江 B
哈尔 滨
109 ) 50 0
要 】 近年来 , 国风 电开发 速度不断加快 , 电装机规模 快速增 长 , 电装机机 组不断发展。 由于基础相对薄 我 风 风 但
弱 , 电发展的过程 中面临着技术 落后 、 风 体制不顺畅 、 上网电价高等诸多困难。我 国应尽快提 高风 电技术和风 电设备标准 ,
煤炭 为主要 燃料 的火 电是 中 国电力 的主要 生产 形 式 , 煤 炭等 常规能 源 的紧 缺严 重影 响 着 电力 和经 济 的发 展 , 而 因煤 电导 致的环境 问题也 日益加剧 。 这种情 况下 , 在 寻求 新能源 以优化 电力 结构 已成 当务之 急 。风力发 电是 除水 力发 电之外 , 技术 最成熟 、 最具规 模开 发和 有商 业化发 展
省 大量淡水 资源 , 减少水 污染 。利 用海上 风力发 电 , 除了 具 有上述优 点外 ,对沿 海开 展海 水淡 化也起 到积极 的促

风力发电现状与发展趋势分析

风力发电现状与发展趋势分析

风力发电现状与发展趋势分析摘要: 我国地理环境复杂,拥有广阔的草原、戈壁和绵长的海岸线,它们都为国家风力资源生产产业发展创造了良好先决条件,总体来看国家风力发电现状与发展趋势一片大好。

本文研究介绍了我国风力发电产业的发展现状、技术管理方法以及项目经济效益,并对产业未来发展趋势进行了综合展望。

关键词: 风力发电; 发展现状; 技术管理方法; 项目经济效益; 未来发展趋势一、我国风力发电产业的基本发展现状风力发电主要由风产生动能来驱动风车叶片的旋转,使用速度增加装置来提高风车的旋转速度。

最后,风能通过电磁效应将所有的动能转换成电能。

我国现有风力技术相关的一个3 m / s的风可以发展,风力涡轮机,塔、发电机、能源储存装置, 尾翼调向器及其他的组件,主要是风力能源转换过程中被使用。

为了提高风力生产效率,风能储藏。

在过去的20年里,我国风电产业呈现出快速发展的趋势,但由于各种因素的制约,国内风电产业在技术应用和综合管理方面还处于初级发展阶段,还存在很多技术问题。

等待着解决。

以下是对我国风力发电产业发展现状的简单说明。

(1)丰富的风能资源我们国家拥有总国境长度超过20,000公里,海岸线长度超过18,000公里的广阔领土。

根据国立气象厅的相关调查数据,我国拥有丰富的风能资源。

其中陆地风力发电资源可利用的风力超过260gw,海洋风力能源资源比土地资源高3倍以上。

我国西部和西北部的风力能源资源是无限制的。

据统计,我国现在的平均风速在6m / s以上,占整个面积的1.2%,仅次于美国和俄罗斯,居世界第3位。

(2)风力发电产业快速发展。

我国风力发电产业蓬勃发展。

最早在2009年,我国的新风力发电项目和风力发电容量增加了世界第一位,开发速度,在过去10年里,每年平均20件以上的风力发电项目,正在各自的发电容量为100 mw以上的风力发电园区完成了。

根据我国的长期风力发电计划,预计到2020年风力发电容量至少达到1亿6千万kW。

海上风电发展现状及未来趋势分析和展望

海上风电发展现状及未来趋势分析和展望

海上风电发展现状及未来趋势分析和展望随着全球对可再生能源的需求不断增加,海上风电作为一种环保、可持续的能源解决方案,引起了广泛关注。

本文将就海上风电的发展现状进行分析,并展望未来的发展趋势。

首先,让我们来了解一下海上风电的发展现状。

海上风电是指在海洋上建设风力发电设施,利用海上的强风资源发电。

相比陆地上的风电项目,海上风电具有更高的风能资源和更稳定的风速,因此具备更大的发电潜力。

目前,世界各地的海上风电项目正在不断扩大。

根据国际能源署的数据,截至2021年底,全球共有37.5吉瓦(GW)的海上风电装机容量,占全球总风电装机容量的2.5%。

欧洲是全球海上风电的领先市场,占据了海上风电总装机容量的88%。

丹麦、英国、德国和荷兰等欧洲国家是海上风电的主要推动者。

此外,中国、韩国和美国等国家也在积极发展海上风电项目。

虽然海上风电发展进展迅速,但仍面临一些挑战。

首先,建设和维护海上风电设施需要巨大的投资和技术支持。

海上环境的复杂性和恶劣的天气条件增加了设备安装和维护的难度。

其次,海上风电设施与陆地之间的电网连接需要建设海底电缆,这增加了成本和技术难度。

此外,海上风电设施对海洋生态环境的影响也需要得到合理的评估和管理。

展望未来,海上风电有望继续快速发展。

首先,技术进步将推动海上风电设施的效能提高和成本降低。

风机的尺寸和功率将继续增加,同时材料和制造技术的进步将提高设备的可靠性和维护效率。

其次,政策支持将为海上风电的发展提供动力。

各国政府在可再生能源方面的政策引导和补贴措施将促进海上风电项目的推进。

第三,能源转型的趋势将进一步推动海上风电的发展。

替代化石燃料的需求增加和减少碳排放的目标将导致对风能资源的更大需求。

此外,海上风电在解决可再生能源波动性和间歇性挑战方面具有潜力。

通过将海上风电与其他可再生能源技术(如潮汐能、浪能)以及储能技术相结合,可以实现能源的平衡和稳定供应。

总的来说,海上风电作为可再生能源的重要组成部分,具有巨大的发展潜力。

中国风能资源利用现状与展望

中国风能资源利用现状与展望

• 3、建设公共技术服务平台 • 公共技术服务平台是能力建设的重要方面, 包括技术标准技术信息,技术数据设备仪器 计算软件, 技术咨询技术培训等可以由企业、 科研机构、高等院校包括国家重点实验室 和国家工程技术研究中心在内联合起来, 共 同对资源进行整合、共享、完善和提高通 过建立共享机制和管理程序逐步做到资源 有效利用并在此基础上建立风能公共技术 服务平台, 成立国家级的风能研发中心检测 中心认证中心信息中心和培训中心。
新疆各大风区技术开发量
• 新疆风能资源丰富区集中在9 大风区, 包括 达坂城风区, 阿拉山口风区、十三间房风区、 吐鲁番小草湖风区、额尔齐斯河河谷风区、 塔城老风口风区,三塘湖- 淖毛湖风区、哈密 东南部风区、罗布泊风区。这些风区的中 心区年平均风功率密度在200W/m2 以上, 有效风速小时数在5 500 h 以上。有效风速 小时数指3~25 m/s 各级风速出现的小时数 之和。它表征着风力发电机可能正常运行 的时间。新疆9 大风区包括了新疆年平均功 率密度在150 W/m2 以上的所有区域。
新疆各地风速分布状况
• 新疆的风能开发、建设始于80 年代初期
• 当时引进了20 kW、30 kW、55 kW 和100 kW 风机 各1台,1988 年100 kW风电并网试验运行。 • 1989 年利用丹麦政府赠款引进了13 台150 kW风机, 建立达坂城风电一场, 总装机容量达到2 050 kW, 单 机容量和总容量在当时均居全国第一。 • 1992 年到1995 年,相继引进了300 kW和500 kW风机 共33 台, 建成了国内第一座万kW级的达板城风力发 电厂。 • 1997 年利用两项丹麦政府贷款和国内“双加”风电 项目, 于当年完成了全部78 台600 kW风电机组的安 装。达坂城风区因其开发较早, 目前风区风电总装机 容量已达12.55 万kW, 占到了新疆主电网总装机容量 495.75万kW的2.53%。

中国风电产业发展报告(2023)

中国风电产业发展报告(2023)

中国风电产业发展报告(2023)近年来,中国风电产业发展迅猛,成为全球最大的风能发电国家。

截至2023年,中国已经取得了令人瞩目的成就,实现了从初创阶段到成熟阶段的跨越。

本文将对中国风电产业的发展进行全面分析和展望。

一、发展概况中国风电产业从1980年代开始起步,经过多年的努力,如今已经成为全球风电领域的领军者。

2023年,中国风电累计装机容量预计达到500GW以上,占到全球风电装机容量的40%。

同时,中国在风电研发、制造、安装及运营管理等方面都处于全球领先地位。

二、政策支持中国政府一直积极鼓励和支持风电产业的发展。

政策层面上,中国制定了一系列激励措施,包括提供土地资源、优惠的贷款利率和强制购电等政策,以吸引更多的投资者进入风电领域。

此外,政府还实施了严格的限电政策,以鼓励清洁能源的使用,风电因其高效、环保的特点受到青睐。

三、技术创新中国风电产业一直致力于技术创新和研发。

近年来,风力发电机组单位容量产能大幅提升,风机叶片制造技术水平不断提高,风电控制系统逐步实现智能化。

此外,中国在风电领域积累了丰富的运维和管理经验,并通过技术创新不断提高发电效率和风电系统的可靠性。

四、混合能源系统随着可再生能源的快速发展,中国开始积极探索混合能源系统的建设。

风电与太阳能、水力能等形成互补,提高了可再生能源的整体利用率。

在光伏和风电的联合开发中,中国已经建立了大规模的光伏-风电混合电站,解决了电力波动性等问题。

五、国际合作中国风电产业在国际间的合作也日益加强。

中国风电企业积极参与国内外市场开拓,拓展了海外业务,建立了一批海外风电项目。

同时,中国在风电技术方面的崛起也带动了与其他国家的合作,推动了全球风电技术的不断进步。

六、面临的挑战中国风电产业虽然取得了长足的发展,但仍然面临一些挑战。

首先,风电资源的分布不均匀,稳定的风力资源仍然集中在一些特定地区。

其次,风电上网电价补贴等问题也亟待解决。

最后,风电的技术研发和成本降低仍需要进一步努力。

风电行业现状及发展前景

风电行业现状及发展前景

风电行业现状及发展前景一、风电产业总体开展现状风能作为一种清洁的可再生动力,越来越遭到世界各国的注重,全球风力资源的储约53万亿千瓦时/年,实际上只需能开收回50%的风力资源就可满足全球的电力动力需求。

2020年底,全球风电总装机容量达1.99亿千瓦,发电量超越4099亿千瓦时,占世界电力总发电量的 1.92%。

目前,世界上有100多个国度末尾开展风电,欧盟、美国和中国风电市场现阶段左右着世界风电开展的大局。

目前风电累计装机位于前10名的国度区分是:美国,中国,德国,西班牙,印度,意大利,法国,英国,葡萄牙,丹麦。

2020年新增装机位于前10名的国度区分是:中国,美国,西班牙,德国,印度,意大利,法国,英国,加拿大,葡萄牙。

中国风能储量很大、散布面广,开发应用潜力庞大。

与目前风电五大国相比拟,我国的风电资源与美国接近,远远高于印度、德国、西班牙,属于风能资源较丰厚的国度。

〝十一五〞时期,中国的并网风电失掉迅速开展。

从2005年末尾,中国的风电总装机延续5年完成翻番。

2006年1月1日,«可再生动力法»正式公布实施。

尔后,国度又陆续出台了一系列配套政策法规,为风电产业的电网接入、电量收买、电价分摊和结算等方面提供了法律保证。

特别是2020年出台的«关于完善风力发电上网电价政策的通知»,规则依照四微风能资源区一致执行标杆上网电价,消弭了招标电价和审批电价的不确定性,增强了发电企业投资风电的决计。

截至2020年底,中国全年风力发电新增装机达1600万千瓦,累计装机容量到达4182.7万千瓦〔«可再生动力中临时规划»中2020年3000万千瓦的风电装机目的也在2020年提早完成〕。

未来风电开展趋向中国政府把鼎力开展新动力作为应对气候变化和推行节能减排的重要举措,并承诺到2020年非化石动力占一次动力消费比重到达15%左右,单位GDP碳排放强度从2005年的基础上降低40-45%。

(发展战略)风电发展状态和形势

(发展战略)风电发展状态和形势

2 风电发展现状与展望2.1 世界风电发展现状与展望发展可再生能源是人类应对能源危机和全球气候变暖双重挑战的必然选择。

目前,除水能之外的所有可再生能源中,风能最具有开发潜力和发展优势。

与太阳能、生物质量相比,风能具有资源丰富,经济环境效益明显、可大规模利用等特点,已成为世界各国发展可再生能源的首选。

风能的真正开发利用始于上世纪70年代,石油危机迫使美国、西欧等发达国家不得不寻找新能源以替代化石能源,投入大量的人力物力,用于研发风力发电机组及相关技术,80年代开始建立示范风电场、并网发电,成为电网新电源。

从80年代中期开始,世界风力发电技术取得了快速发展,风机设计和制造趋向成熟,产品进入商业化阶级,机组容量不断增大。

在20世纪的最后两年,全世界风力发电的装机容量开始快速增长。

特别是在欧洲,为实现减排温室气体的目标,对风电执行较高收购电价激励政策,促进了风电技术和产业的发展,风电成本继续下降。

由于海上风能资源比陆地丰富,海上风电场在欧洲已从可行性示范进入商业化示范阶段,风电机组技术继续向着增大单机容量的方向发展,并开始研制风轮直径超过100m的5MW机组。

图1 全球风电装机容量变化趋势新世纪开初的前十年,世界各国对发展可再生能源以应全国气候变化和能源枯竭的共识达到了新的水平,风力发电更是迎来了前所没有的发展机遇,全球风电产业空前繁荣,风力发电的装机容量保持令人惊叹的高速增长。

到2010年,全球有80多个国家在积极开发和利用风能资源,风电累计装机容量达到194GW,年平均增速接近30%(见图1)。

同时,对海上风能资源的开发和利用加速,截止2009年底,已有834台共2.11GW的风电机组在海上风电场投入运行,约占全球累计风电装机容量的1.3%。

世界风电发展区域格局在近十年来也发生了很大改变,2009年新增装机容量亚洲首次超过欧洲和美洲成为全球风电产业的重要新兴市场,欧洲等发达国家在风电产业中的统治地位逐渐被打破。

我国风能发展的现状和发展前景

我国风能发展的现状和发展前景

我国风能发展的现状和发展前景摘要:在世界性能源危机越发严重的今天,风能作为一种天然能源,已被各国应用在发电领域。

我国的风电事业起步较晚,但是近几年发展迅速,未来几年的前景也十分良好。

关键词:风能新能源风电事业自主创新一:21世纪人类理想的替代能源——风能1何为风能:风是一种自然现象。

由于不同地表(如海洋、森林、田野、山岳和沙漠等)在白天受太阳照射以及晚上吸放热的特性不同,对空气加热(或放热)的差异,造成了空气的流动,通常人们将垂直上下的流动称为“气流”,将水平流动称为“风”。

由于空气是有一定质量的,因而其流动时必然具有一定能量,这就是风能。

它可通过如下公式加以测算:E=1/2gρAV3(kg·m/s)式中:A——空气流动面积(m 2);V——风速(m/s);ρ——空气密度(kg/m 3);g——重力加速度(m/s2)。

上式如按kW计量只需乘以转换系数1102即可。

据理论测算,全球大气中总的能量是1017kW,而且是可再生的,据估计大约有3.5×1012kW的蕴藏风能可以被开发利用,这个价值至少比世界上可利用的水能大10倍〔1〕。

2.风能的特点风能作为一种天然能源,与其他能源尤其是矿物能源相比,它有如下几个特点:(1) 蕴藏量丰富。

大家都知道与常规能源相比,水能巨大,殊不知风能是全球水能的10倍多,我国仅陆地上就有风能资源大约1.6×109kW。

(2) 可以再生,永不枯竭。

风能是太阳能的变异,只要太阳和地球存在,就有风能,它取之不尽,用之不竭,是可再生的。

(3) 清洁无污染,随处都可开发利用。

煤、石油、天然气的大量消耗,核电站的广泛建设,均会给人类生活环境造成极大污染和破坏,危害人类健康,而风能开发就没有这样的弊病,而且风能开发利用越多,空气中的漂尘和降尘会越少。

另外,风能的开发也不存在开采和运输问题,无论何地(海边、平原或者山区)都可建立风电站,就地开发,就地利用。

风力发电技术的应用现状与展望

风力发电技术的应用现状与展望

风力发电技术的应用现状与展望摘要:改革开放以来,我国经济得到了快速的发展,而随着近年来能源消耗量的不断增加以及社会各界对环保问题重视程度的提高,如何提高太阳能、风能等新型环保型能源的利用率,减少煤炭、石油等化石能源的使用,成为当前的热门话题。介绍了我国风力发电的实际发展情况,分析了风力发电控制技术、电力电子变换器控制技术、谐波消除技术、风轮控制技术等技术。风电资源在应用的过程中体现出了广泛的优势,对其进行研究已经成为全世界共同的发展研究方向。关键词:风力发电系统;风力发电;技术控制;随着风电比例的不断上升,出于电网稳定运行考虑,我国对风电机组的并网性能也不断提出新的要求,包括低电压穿越、高电压穿越、惯量响应和一次调频等。

目前,低电压穿越已成为我国风电设备入网的强制性要求,对高电压穿越、惯量响应和一次调频能力的要求正在深入论证中,但还没有提出明确的技术指标及测试方法。

各个国家都根据自身电力系统的情况,提出有针对性的风电设备入网标准,部分国家的入网标准中对风电的高、低电压穿越和一次调频性能要求已经非常明确,开展更为广泛的技术交流,极大地提高了我国风电机组产业在电网接入技术领域的话语权。

1新时期新能源风力发电技术的应用价值1.1经济性价值明显人们对风能的使用可追溯至古时候,随着近年来人们对风能重视程度的提高,风能利用技术得到了快速的发展并在发电领域得到了较好的应用。目前在我国一些风能密度较大的地区,风力发电的成本已经接近于传统火力发电的成本,因而其经济性得到了显著的提高,并且随着风力发电能力的提高,其建设与运行成本还将进一步的降低。1.2建设周期短,独立性好相较于其他发电技术的应用,风力发电系统建设周期短,可在较短的时间内实现区域供电。随着风力发电技术的快速发展,风力发电系统的组建已经逐渐趋于标准化,一般风力发电站的建设可在较短时间内建设完成并投入使用。此外,在我国一些偏远山区,风力发电技术的应用可有效满足当地分散性的电力需求。1.3环保性好风能是一种可再生的清洁能源,通过加大风能利用技术的研发力度来提高风能的利用率,可以减少化石能源的使用量,进而改善传统能源使用造成的环境污染问题。2风力发电及其控制技术分析2.1风力发电控制技术风力发电主要借助的是风力,主要是由于风力以及地面距离相差相对来说比较大,可以在空中来完成整个风力发电的能量转换工作,使电机以及相关的设备都能够顺利运转,提升工作效率。在风力发电的过程中,使用永磁发电机时就有一定的优势,具体表现在运行效率更高,损耗问题更小,因此将其广泛应用在风力发电系统中,使之发挥作用。另外,发电机的制造还可以通过模块优化的方式来进行,这样就能够更好地控制在风力发电系统运行过程中所需要消耗的成本,在控制风力发电系统时可以采取矢量控制的方式,这种方法顺利地解决了交直轴电流之间存在的矛盾,也让整个系统功率控制效果更加简单和良好。2.2电力电子变换器控制技术电力电子变换器在风力发电系统中的应用实际上是十分广泛的,在大型风力发电系统中,由于能量的转换率本身比较高,在完成转换工作之后的传输效率同样比较高,同时又可以完善无功功率等方面的因素,让整体的使用性能更加良好。电力电子变换器在运行的过程中,由于自身的运行功率比较高,覆盖的功率范围比较大,也不需要消耗很多的成本。此外,使用PWM整流器用于风电发力系统中时,可以使系统的最大功率得到控制,而使用整流器时则可以让有功功率以及无功功率之间的阻碍被突破,让无功功率更加符合相关方面的实际运行要求。2.3谐波消除技术在风力发电系统的运行过程中,谐波的存在会导致整体的电能质量水平并不高,对于电的电压以及频率造成的影响也不容忽视,还会导致风力发电系统中无功功率以及有功功率之间的平衡性不协调。因此需要结合实际情况去消除其中存在的谐波问题,要更加重视谐波对于风能发电产生的重要影响,这会使整个系统设备出现热故障问题,导致运行受到了阻碍。而消除谐波的过程中,可以采取的技术方法是使用电力变流器和其他的电力设备来让谐波以及相位抵消,也可以通过调整电容器组来改变无功功率,从而使谐波对无功功率的影响得到控制。针对风电场的谐波问题进行消除和治理的过程中,主要是可以采取有源滤波器方式以及无源滤波的方式。其中有源滤波借是一种新型的,能够用于动态抑制谐波以及补偿无功的电力电子装置,有源滤波器在工作的过程中拥有良好的动态性能,其时间不足1ms,同时能够实现三项补偿谐波电流,谐波次数甚至可以高达50次。而无源滤波则主要是由滤波电容器和电抗器组合形成一种专业的LC滤波装置,包括调谐滤波器、高通滤波器等。将这个电路并联在风电场的电网中,就能够形成一个基本的无源滤波回路,在这种回路中,通过调整电抗器的电感量以及电容器的电容量参数,就可以通过谐振频率来滤除谐波的频率,让谐波电流大部分通过滤波回路,同时又不会影响电网中的其他的设备。2.4风轮控制技术首先是可以使用功率信号的反馈功能,让这种功能对风轮功率信号进行管控,如果风轮处于运行的状态,相应的功率以及实际条件的变化情况会保持一致,之后再去对功率的关系进行分析,绘制出最大功率的曲线图,在此之后再进行后续的操作时,需要对综合分析最大功率以及系统的输出功率,获取具体的差值之后,再对分轮进行桨距的调整,让风轮的运行功率得到最大化。2.5现代化控制技术风力发电系统中使用的现代化控制技术,包括智能控制技术、自适应控制技术以及鲁棒控制技术等,其中使用变结构控制技术时体现出更为良好的反应能力,在设计的过程中会更加简单,同时实现的难度并不大,如果是要解决一些多变量的问题,那么就可以使用鲁棒控制技术来体现出作用。而使用智能化控制技术时,就是能够达到模糊控制的目标。当前在风力发电系统的建设过程中,准确的风力发电机数学模型的建成概率相对来说比较小,因此在对风力发电机组进行控制的过程中,完全可以使用模糊控制方法,使其体现出相应的作用。3未来风力发电技术的发展方向3.1大容量风电系统随着社会对风力发电技术关注度的提高,近年来投入使用的风力发电系统规模越来越大,结构也越来越复杂。但是,现阶段我国在大容量风力发电系统的开发和应用方面还存在较多的不足,目前仍有许多技术难题未能有效攻克。同时,现代风力发电机组单机装机容量的不断加大,也导致风力发电系统结构设计以及控制系统的设计变得更加困难。未来,随着各种新材料的出现以及加工工艺的创新,大容量、高可靠性和高性能等要求都可以在风力发电系统中实现。3.2并网技术与最大风能捕获技术并网型风力发电系统主要包括风力发电并网技术与发电机转速控制技术两个层次的内容。通过全功率电力变换器进行系统控制,能够有效的保证风力发电系统的可靠性要求,并网开关可实现并网控制功能。在实际应用中,通常采用调节变桨距和发电机组功率转速的方式来尽可能的捕获风能,风力发电机组输出功率的调节需要综合考虑风力发电系统的经济性与可靠性,因此未来风力发电系统并网技术与风能捕获技术的创新优化也是未来风力发电技术的重要发展方向。3.3变桨距调节技术和变速运行技术的优化通过变桨距调节能够保证系统始终保持在最优设置下运行,因而可以实现较高的可靠性。当实际风速低于额定风速时,能够有效提高风能的利用率;当实际风速大于额定风速时,通过系统调节,保证输出功率的恒定。同时,变速运行能够在保证最大风能捕捉量的前提下显著提高系统运行的稳定性。因此,变桨距调节技术与变速运行技术未来还需要进一步的优化,以实现更好的效果。4结束语在风电发展方面,我国将继续落实陆上大型基地建设、陆上分散式并网开发和海上风电基地建设,并结合我国制造业转型升级的国家战略,积极推动整机设备和零部件出口。

中国风电发展现状与未来展望

中国风电发展现状与未来展望

中国风电发展现状与未来展望一、风能资源风能储量我国幅员辽阔,海岸线长,风能资源比较丰富;根据全国900多个气象站陆地上离地10m高度资料进行估算,全国平均风功率密度为100W/m2,风能资源总储量约亿kW,可开发和利用的陆地上风能储量有亿kW,近海可开发和利用的风能储量有亿kW,共计约10亿kW;如果陆上风电年上网电量按等效满负荷2000小时计,每年可提供5000亿千瓦时电量,海上风电年上网电量按等效满负荷2500小时计,每年可提供万亿千瓦时电量,合计万亿千瓦时电量;风能资源分布我国面积广大,地形条件复杂,风能资源状况及分布特点随地形、地理位置不同而有所不同;风能资源丰富的地区主要分布在东南沿海及附近岛屿以及北部地区;另外,内陆也有个别风能丰富点,海上风能资源也非常丰富;北部东北、华北、西北地区风能丰富带;北部东北、华北、西北地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200km宽的地带;三北地区风能资源丰富,风电场地形平坦,交通方便,没有破坏性风速,是我国连成一片的最大风能资源区,有利于大规模的开发风电场,但是当地电网容量较小,限制了风电的规模,而且距离负荷中心远,需要长距离输电;沿海及其岛屿地区风能丰富带;沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省/市沿海近10km宽的地带,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿,加上台湾海峡狭管效应的影响,东南沿海及其岛屿是我国风能最佳丰富区;沿海地区经济发达,沿海及其岛屿地区风能资源丰富,风电场接入系统方便,与水电具有较好的季节互补性;然而沿海岸的土地大部份已开发成水产养殖场或建成防护林带,可以安装风电机组的土地面积有限;内陆风能丰富点;在内陆一些地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区;海上风能丰富区;我国海上风能资源丰富,东部沿海水深2m到15m的海域面积辽阔,按照与陆上风能资源同样的方法估测,10m高度可利用的风能资源约是陆上的3倍,即7亿多kW,而且距离电力负荷中心很近;随着海上风电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源;二、风电的发展建设规模不断扩大,风电场管理逐步规范1986年建设山东荣成第一个示范风电场至今,经过近20多年的努力,风电场装机规模不断扩大截止2004年底,全国建成43个风电场,安装风电机组1292台,装机规模达到万kW,居世界第10位,亚洲第3位位于印度和日本之后;另外,有关部门组织编制有关风电前期、建设和运行规程,风电场管理逐步走向规范化;专业队伍和设备制造水平提高,具备大规模发展风电的条件经过多年的实践,培养了一批专业的风电设计、开发建设和运行管理队伍,大型风电机组的制造技术我国已基本掌握,主要零部件国内都能自己制造;其中,600kW及以下机组已有一定数量的整机厂,初步形成了整机试制和小批量生产;截止2004年底,本地化风电机组所占市场份额已经达到18%,设备制造水平不断提高,目前,我国已经具备了设计和制造750kW定桨距定转速机型的能力,相当于国际上二十世纪90年代中期的水平;与国外联合设计的1200千瓦和独立设计的1000千瓦变桨距变转速型样机于2005年安装,进行试验运行;风力发电成本逐步降低随着风电产业的形成和规模发展,通过引进技术,加速风电机组本地化进程以及加强风电场建设和运行管理,我国风电场建设和运行的成本逐步降低,初始投资从1994年的约12000元/kW降低到目前的约9000元/kW;同时风电的上网电价也从超过元/kWh降低到约元/kWh;2003年国务院电价改革方案规定风电暂不参与市场竞争,电量由电网企业按政府定价或招标价格优先购买;国家发展改革委从2003年开始推行风电特许权开发方式,通过招投标确定风电开发商和上网电价,并与电网公司签订规范的购电协议,保证风电电量全部上网,风电电价高出常规电源部分在全省范围内分摊,有利于吸引国内外各类投资者开发风电;2005年2月28日通过的中华人民共和国可再生能源法中规定了“可再生能源发电项目的上网电价,由国务院价格主管部门根据不同类型可再生能源发电的特点和不同地区的情况,按照有利于促进可再生能源开发利用和经济合理的原则确定”,“电网企业为收购可再生能源电量而支付的合理的接网费用以及其他合理的相关费用,可以计入电网企业输电成本,并从销售电价中回收;”和“电网企业依照本法第十九条规定确定的上网电价收购可再生能源电量所发生的费用,高于按照常规能源发电平均上网电价计算所发生费用之间的差额,附加在销售电价中分摊”,将风电特许权项目中的特殊之处已经用法律条文作为通用的规定,今后风电的发展应纳入法制的框架;三、存在问题资源需要进行第二轮风能资源普查,在现有气象台站的观测数据的基础上,按照近年来国际通用的规范进行资源总量评估,进而采用数值模拟技术编制高分辨率的风能资源分布图,评估风能资源技术可开发量;更重要的是应该利用GIS地理信息系统技术将电网、道路、场址可利用土地,环境影响、当地社会经济发展规划等因素综合考虑,进行经济可开发储量评估;风电设备生产本地化现有制造水平远落后于市场对技术的需求,国内定型风电机组的功率均为兆瓦级以下,最大750千瓦,而市场需要以兆瓦级为主流;国内风电机组制造企业面临着技术路线从定桨定速提升到变桨变速,单机功率从百千瓦级提升到兆瓦级的双重压力,技术路线跨度较大关;自主研发力量严重不足,由于国家和企业投入的资金较少,缺乏基础研究积累和人才,我国在风力发电机组的研发能力上还有待提高,总体来说还处于跟踪和引进国外的先进技术阶段;目前国内引进的许可证,有的是国外淘汰技术,有的图纸虽然先进,但受限于国内配套厂的技术、工艺、材料等原因,导致国产化的零部件质量、性能需要一定时间才能达到国际水平;购买生产许可证技术的国内厂商要支付昂贵的技术使用费,其机组性能价格比的优势在初期不明显;在研发风电机组过程中注重于产品本身,而对研发过程中需要配套的工作重视不够;由于试验和测试手段的不完备,有些零部件在实验室要做的工作必须总装后到风电场现场才能做;风电机组的测试和认证体系尚未建立;风电机组配套零部件的研发和产业化水平较低,这样增加了整机开发的难度和速度;特别是对于变桨变速型风机,国内相关零部件研发、制造方面处于起步阶段,如变桨距系统,低速永磁同步发电机,双馈式发电机、变速型齿轮箱,交直交变流器及电控系统,都需要进行科技攻关和研发;成本和上网电价比较高基本条件设定:根据目前国内风电场平均水平,设定基本条件为:风电场装机容量5万千瓦,年上网电量为等效满负荷2000小时,单位千瓦造价8000-10000元,折旧年限年,其他成本条件按经验选取;财务条件:工程总投资分别取4亿元8000元/千瓦、亿元9000元/千瓦和5亿元10000元/千瓦,流动资金150万元;项目资本金占20%,其余采用国内商业银行贷款,贷款期15年,年利率%;增值税税率为%,所得税税率为33%,资本金财务内部收益率10%;风电成本和上网电价水平测算:按以上条件及现行的风电场上网电价制度,以资本金财务内部收益率为10%为标准,当风电场年上网电量为等效满负荷2000小时,单位千瓦造价8000~10000元时,风电平均成本分别为~元/千瓦时,较为合理的上网电价范围是~元/千瓦时含增值税;成本在投产初期较高,主要是受还本付息的影响;当贷款还清后,平均度电成本降至很低;风电场造价对上网电价有明显的影响,当造价增加时,同等收益率下的上网电价大致按相同比率增加;我国幅员辽阔,各地风电场资源条件差别很大,甚至同一风电场址内资源分布也有较大差别;为了分析由风能资源引起的发电量变化对成本和平均上网电价影响,分别计算年等效满负荷小时数为1400、1600、1800、2200、2400、2600、2800、3000的情况下发电成本见表1,上网电价见表2;如果全国风电的平均水平是每千瓦投资9000元,以及资源状况按年上网电量为等效满负荷2000小时计算,则风电的上网电价约每千瓦时元,比于全国火电平均上网电价每千瓦时元高一倍;电网制约风电场接入电网后,在向电网提供清洁能源的同时,也会给电网的运行带来一些负面影响;随着风电场装机容量的增加,以及风电装机在某个地区电网中所占比例的增加,这些负面影响就可能成为风电并网的制约因素;风力发电会降低电网负荷预测精度,从而影响电网的调度和运行方式;影响电网的频率控制;影响电网的电压调整;影响电网的潮流分布;影响电网的电能质量;影响电网的故障水平和稳定性等;由于风力发电固有的间歇性和波动性,电网的可靠性可能降低,电网的运行成本也可能增加;为了克服风电给电网带来的电能质量和可靠性等问题,还会使电网公司增加必要的研究费用和设备投资;在大力发展风电的过程中,必须研究和解决风电并网可能带来的其他影响;四、政策建议1.加强风电前期工作;建立风电正常的前期工作经费渠道,每年安排一定的经费用于风电场风能资源测量、评估以及预可研设计等前期工作,满足年度开计划对风电场项目的需要;2.制定“可再生能源法”的实施细则,规定可操作的政府合理定价,按照每个项目的资源等条件,以及投资者的合理回报确定上网电价;同时也要规定可操作的全国分摊风电与火电价差的具体办法;3.加速风电机组本地化进程,通过技贸结合等方式,本着引进、消化、吸收和自主开发相结合的原则,逐步掌握兆瓦级大型风电机组的制造技术;引进国外智力开发具有自主知识产权的机组,开拓国际市场;4.建立风电制造业的国家级产品检测中心、质量保证控制体系以及认证制度,不断提高产品质量,降低成本,完善服务;5.制定适应风电发展的电网建设规划,研究风电对电网影响的解决措施;五、“十一五”和2020年风电规划我国电源结构70%是燃煤火电,而且负荷增长迅速,环境影响特别是减排二氧化碳的压力越来越大,风能是清洁的可再生能源,我国资源丰富,能够大规模开发,风电成本逐年下降,前景广阔;风电装机容量规划目标为2005年100万千瓦,2010年400~500万千瓦,2020年2000~3000万千瓦;2004年到2005年,“十五计划”后半段重点建设江苏如东和广东惠来两个特许权风电场示范项目,取得建设大规模风电场的经验,2005年底风力发电总体目标达100万千瓦;2006年到2010年;“十一五规划”期间全国新增风电装机容量约300万千瓦,平均每年新增60~80万千瓦,2010年底累计装机约400~500万千瓦;提供这样的市场空间主要目的是培育国内的风电设备制造能力,国家发展改革委于2005年7月下发文件,要求所有风电项目采用的机组本地化率达到70%,否则不予核准;此后又下发文件支持国内风电设备制造企业与电源建设企业合作,提供50万千瓦规模的风电市场保障,加快制造业发展;目前国家规划的主要项目有广东省沿海和近海示范项目31万千瓦;福建省沿海及岛屿22万千瓦;上海市12万千瓦;江苏省45万千瓦;山东省21万千瓦;吉林省33万千瓦;内蒙古50万千瓦;河北省32万千瓦;甘肃省26万千瓦;宁夏19万千瓦;新疆22万千瓦等;目前各省的地方政府和开发商均要求增加本省的风电规划容量;2020年规划目标是2000~3000万千瓦,风电在电源结构中将有一定的比例,届时约占全国总发电装机10亿千瓦容量的2~3%,总电量的1~%; 2020年以后随着化石燃料资源减少,成本增加,风电则具备市场竞争能力,会发展得更快;2030年以后水能资源大部分也将开发完,近海风电市场进入大规模开发时期;。

风力发电发展现状以及行业发展趋势研究

风力发电发展现状以及行业发展趋势研究

风力发电发展现状以及行业发展趋势研究一、本文概述随着全球能源结构的转型和环境保护的日益迫切,风力发电作为一种清洁、可再生的能源形式,正日益受到世界各国的重视。

风力发电利用风力驱动风力发电机组转动,将风能转化为电能,具有资源丰富、分布广泛、技术成熟、经济可行等优点,因此在全球能源领域占据了重要地位。

本文将对风力发电的发展现状进行深入剖析,探讨行业的发展趋势,以期为读者提供全面、准确的信息,为推动风力发电行业的持续健康发展提供参考。

本文将首先回顾风力发电的发展历程,分析当前全球及我国风力发电的装机规模、发电量、技术进步等方面的现状。

接着,文章将重点探讨风力发电行业的发展趋势,包括技术进步、成本控制、市场拓展、政策支持等方面的内容。

本文还将对风力发电行业的未来发展进行展望,分析行业可能面临的挑战和机遇,并提出相应的建议。

通过本文的研究,我们希望能够为相关企业和政府部门提供决策参考,推动风力发电行业的健康、可持续发展,为实现全球能源结构的优化和环境保护贡献力量。

二、风力发电发展现状近年来,随着全球能源结构的不断调整和环保意识的日益增强,风力发电作为一种清洁、可再生的能源形式,得到了广泛的关注和迅速的发展。

全球风力发电装机容量持续增长,多个国家和地区纷纷制定了一系列鼓励风电发展的政策和规划。

在技术方面,风力发电机组单机容量不断增大,叶片设计更加先进,塔筒结构更加稳固,风能利用效率显著提高。

同时,随着智能化、互联网技术的深入应用,风电场运营管理和维护也逐渐实现了智能化和远程化,提升了风电场的运行效率和可靠性。

在产业布局上,风力发电产业链不断完善,风机制造、风电设备、风电场开发、运营维护等各环节均得到了快速发展。

风电设备制造企业数量不断增加,产品种类更加齐全,技术水平持续提高。

风电场开发项目遍布全球,尤其是在风能资源丰富的地区,风电场建设规模不断扩大。

然而,风力发电也面临着一些挑战。

一是风电场建设和运营过程中可能对环境产生一定影响,需要加强环境保护和生态修复工作。

中国的风能资源与风力发电

中国的风能资源与风力发电

中国的风能资源与风力发电一、本文概述随着全球对可再生能源需求的日益增长,风能作为一种清洁、可再生的能源形式,正受到越来越多的关注和重视。

中国,作为世界上最大的发展中国家,其风能资源的丰富性和风力发电的潜力备受瞩目。

本文旨在全面概述中国的风能资源状况,以及风力发电的发展历程、现状和未来趋势。

我们将深入探讨中国风能资源的分布特点、开发利用现状,以及面临的挑战和机遇。

我们还将分析中国风力发电的技术进步、产业发展和政策支持,以及在全球风电市场中的地位和影响力。

通过对这些内容的系统梳理和深入分析,本文旨在为相关领域的研究人员、政策制定者、投资者和公众提供一个全面了解中国风能资源与风力发电的参考平台,为推动中国风电产业的持续健康发展提供有益的参考和启示。

二、中国风能资源概述中国,作为世界上人口最多、地理条件最为多样的国家之一,拥有着丰富的风能资源。

其风能资源的分布广泛且多样,从东北的平原到西北的高原,再到东南沿海的岛屿,几乎全国各地都有风力发电的潜力。

中国的风能资源主要集中在三个地区:北部地区、东部沿海地区和青藏高原。

北部地区,包括东北三省、内蒙古、甘肃、新疆等地,这里地势平坦,风力大且稳定,尤其是冬季,风力更是强劲,是风能发电的理想之地。

近年来,随着技术的不断进步和成本的降低,北部地区的风力发电发展迅猛,已成为中国风电的主力军。

东部沿海地区,包括江苏、浙江、福建、广东等地,这里海洋资源丰富,海岸线长,海上风力发电具有巨大的潜力。

尤其是近海风电,因其风力稳定、风速高、电力需求大等特点,正逐渐成为风电发展的新热点。

青藏高原,这里地势高峻,风力资源丰富,但由于地理位置偏远、基础设施落后等原因,风电开发相对较慢。

但随着国家对可再生能源的重视和投入,青藏高原的风电开发正在加速推进。

总体来说,中国的风能资源丰富,分布广泛,具有巨大的开发潜力。

未来,随着技术的不断进步和政策的持续支持,中国的风力发电将迎来更加广阔的发展空间。

我国风电装备前景展望

我国风电装备前景展望
合 理 的优 势 . 海 风 能 资 源 的 开 发 利 用 一 定 会 成 为 风 电竞 争 近
收 国外 先 进 技 术 的基 础 上 研 制 了 1 0 k 至 3 0 k 风 力 发 2 W 0 W 电 机 组 从 1 9 9 5年 至 2 0 0 3年 我 国 政 府相 继 出 台 了一 些 优 惠
地 带 .风 功 率 密 度 在 2 0W/ ~ 0 m 以 上 .有 的 可 达 o m23 0W[ 2
5 0 W/ 0 m 以上 . 开 发 利 用 的 风 能 储 量 约 2 1 5MW . 我 可 x 0 是
政 策 . 进 风 电产 业 的 发 展 , 后 通 过 技 术 引 进 和 技 术 合 作 促 先 研 制 了 6 0k 和 7 0k 风 力 发 电机 组 .并 逐 步使 产 业 本 0 W 5 W 地 化 率 达 到 9 %以上 从 2 0 0 0 3年 开 始 国 家 发 改 委 通 过 风 电 场 特 许 权 项 目 . 一 步 扶 持 和 鼓 励 风 电 产 业 的发 展 . 育 国 进 培 内风 电 市 场 . 快 了风 电场 建 设 。 国 19 年 风 电总 装 机 容 加 我 93
量 仅 1 .M ,9 8年 增 至 2 6M .0 1 达 到 3 8 4MW , 7 W 19 1 2 W 20 年 9. 7 20 0 3年 底 发 展 到 5 33 .0 6年 底 跃 升 至 2 5 .1 6 . MW 2 0 5 5 46 MW .
国 连 成一 片 的 最 大 陆 上 风 能 资 源 区 . 利 于 风 电 场 的 大 规 模 有
家 能 源 安 全 和 经 济 持 续 发 展 的 必 然 选 择 . 转 变 经 济 增 长 方 是 受 到 逐 步 重 视 。 国风 力 发 电 得 到 了较 好 发 展 。 浙 江 、 龙 我 在 黑
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国风电发展现状与未来展望一、风能资源1.1 风能储量我国幅员辽阔,海岸线长,风能资源比较丰富。

根据全国900 多个气象站陆地上离地10m 高度资料进行估算,全国平均风功率密度为100W/m2,风能资源总储量约32.26 亿kW,可开发和利用的陆地上风能储量有2.53 亿kW,近海可开发和利用的风能储量有7.5 亿kW,共计约10 亿kW。

如果陆上风电年上网电量按等效满负荷2000 小时计,每年可提供5000 亿千瓦时电量,海上风电年上网电量按等效满负荷2500 小时计,每年可提供1.8 万亿千瓦时电量,合计2.3 万亿千瓦时电量。

1.2 风能资源分布我国面积广大,地形条件复杂,风能资源状况及分布特点随地形、地理位置不同而有所不同。

风能资源丰富的地区主要分布在东南沿海及附近岛屿以及北部地区。

另外,内陆也有个别风能丰富点,海上风能资源也非常丰富。

北部(东北、华北、西北)地区风能丰富带。

北部(东北、华北、西北)地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200km 宽的地带。

三北地区风能资源丰富,风电场地形平坦,交通方便,没有破坏性风速,是我国连成一片的最大风能资源区,有利于大规模的开发风电场,但是当地电网容量较小,限制了风电的规模,而且距离负荷中心远,需要长距离输电。

沿海及其岛屿地区风能丰富带。

沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省/市沿海近10km 宽的地带,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿,加上台湾海峡狭管效应的影响,东南沿海及其岛屿是我国风能最佳丰富区。

沿海地区经济发达,沿海及其岛屿地区风能资源丰富,风电场接入系统方便,与水电具有较好的季节互补性。

然而沿海岸的土地大部份已开发成水产养殖场或建成防护林带,可以安装风电机组的土地面积有限。

内陆风能丰富点。

在内陆一些地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区。

海上风能丰富区。

我国海上风能资源丰富,东部沿海水深2m 到15m 的海域面积辽阔,按照与陆上风能资源同样的方法估测,10m 高度可利用的风能资源约是陆上的3 倍,即7 亿多kW,而且距离电力负荷中心很近。

随着海上风电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源。

二、风电的发展2.1 建设规模不断扩大,风电场管理逐步规范1986 年建设山东荣成第一个示范风电场至今,经过近20 多年的努力,风电场装机规模不断扩大截止2004 年底,全国建成43 个风电场,安装风电机组1292台,装机规模达到76.4 万kW,居世界第10 位,亚洲第3 位(位于印度和日本之后)。

另外,有关部门组织编制有关风电前期、建设和运行规程,风电场管理逐步走向规范化。

2.2 专业队伍和设备制造水平提高,具备大规模发展风电的条件经过多年的实践,培养了一批专业的风电设计、开发建设和运行管理队伍,大型风电机组的制造技术我国已基本掌握,主要零部件国内都能自己制造。

其中,600kW 及以下机组已有一定数量的整机厂,初步形成了整机试制和小批量生产。

截止2004 年底,本地化风电机组所占市场份额已经达到18%,设备制造水平不断提高,目前,我国已经具备了设计和制造750kW 定桨距定转速机型的能力,相当于国际上二十世纪90 年代中期的水平。

与国外联合设计的1200 千瓦和独立设计的1000 千瓦变桨距变转速型样机于2005 年安装,进行试验运行。

2.3 风力发电成本逐步降低随着风电产业的形成和规模发展,通过引进技术,加速风电机组本地化进程以及加强风电场建设和运行管理,我国风电场建设和运行的成本逐步降低,初始投资从1994 年的约12000 元/kW 降低到目前的约9000 元/kW。

同时风电的上网电价也从超过1.0 元/kW•h降低到约0.6 元/kW•h。

2.4 2003 年国务院电价改革方案规定风电暂不参与市场竞争,电量由电网企业按政府定价或招标价格优先购买。

国家发展改革委从2003 年开始推行风电特许权开发方式,通过招投标确定风电开发商和上网电价,并与电网公司签订规范的购电协议,保证风电电量全部上网,风电电价高出常规电源部分在全省范围内分摊,有利于吸引国内外各类投资者开发风电。

2.5 2005 年2 月28 日通过的《中华人民共和国可再生能源法》中规定了“可再生能源发电项目的上网电价,由国务院价格主管部门根据不同类型可再生能源发电的特点和不同地区的情况,按照有利于促进可再生能源开发利用和经济合理的原则确定”,“电网企业为收购可再生能源电量而支付的合理的接网费用以及其他合理的相关费用,可以计入电网企业输电成本,并从销售电价中回收。

”和“电网企业依照本法第十九条规定确定的上网电价收购可再生能源电量所发生的费用,高于按照常规能源发电平均上网电价计算所发生费用之间的差额,附加在销售电价中分摊”,将风电特许权项目中的特殊之处已经用法律条文作为通用的规定,今后风电的发展应纳入法制的框架。

三、存在问题3.1 资源需要进行第二轮风能资源普查,在现有气象台站的观测数据的基础上,按照近年来国际通用的规范进行资源总量评估,进而采用数值模拟技术编制高分辨率的风能资源分布图,评估风能资源技术可开发量。

更重要的是应该利用GIS(地理信息系统)技术将电网、道路、场址可利用土地,环境影响、当地社会经济发展规划等因素综合考虑,进行经济可开发储量评估。

3.2 风电设备生产本地化现有制造水平远落后于市场对技术的需求,国内定型风电机组的功率均为兆瓦级以下,最大750 千瓦,而市场需要以兆瓦级为主流。

国内风电机组制造企业面临着技术路线从定桨定速提升到变桨变速,单机功率从百千瓦级提升到兆瓦级的双重压力,技术路线跨度较大关。

自主研发力量严重不足,由于国家和企业投入的资金较少,缺乏基础研究积累和人才,我国在风力发电机组的研发能力上还有待提高,总体来说还处于跟踪和引进国外的先进技术阶段。

目前国内引进的许可证,有的是国外淘汰技术,有的图纸虽然先进,但受限于国内配套厂的技术、工艺、材料等原因,导致国产化的零部件质量、性能需要一定时间才能达到国际水平。

购买生产许可证技术的国内厂商要支付昂贵的技术使用费,其机组性能价格比的优势在初期不明显。

在研发风电机组过程中注重于产品本身,而对研发过程中需要配套的工作重视不够。

由于试验和测试手段的不完备,有些零部件在实验室要做的工作必须总装后到风电场现场才能做。

风电机组的测试和认证体系尚未建立。

风电机组配套零部件的研发和产业化水平较低,这样增加了整机开发的难度和速度。

特别是对于变桨变速型风机,国内相关零部件研发、制造方面处于起步阶段,如变桨距系统,低速永磁同步发电机,双馈式发电机、变速型齿轮箱,交直交变流器及电控系统,都需要进行科技攻关和研发。

3.3 成本和上网电价比较高基本条件设定:根据目前国内风电场平均水平,设定基本条件为:风电场装机容量5 万千瓦,年上网电量为等效满负荷2000 小时,单位千瓦造价8000-10000元,折旧年限12.5 年,其他成本条件按经验选取。

财务条件:工程总投资分别取4 亿元(8000 元/千瓦)、4.5 亿元(9000 元/千瓦)和5 亿元(10000 元/千瓦),流动资金150 万元。

项目资本金占20%,其余采用国内商业银行贷款,贷款期15 年,年利率6.12%。

增值税税率为8.5%,所得税税率为33%,资本金财务内部收益率10%。

风电成本和上网电价水平测算:按以上条件及现行的风电场上网电价制度,以资本金财务内部收益率为10%为标准,当风电场年上网电量为等效满负荷2000 小时,单位千瓦造价8000~10000 元时,风电平均成本分别为0.373~0.461 元/千瓦时,较为合理的上网电价范围是0.566~0.703 元/千瓦时(含增值税)。

成本在投产初期较高,主要是受还本付息的影响。

当贷款还清后,平均度电成本降至很低。

风电场造价对上网电价有明显的影响,当造价增加时,同等收益率下的上网电价大致按相同比率增加。

我国幅员辽阔,各地风电场资源条件差别很大,甚至同一风电场址内资源分布也有较大差别。

为了分析由风能资源引起的发电量变化对成本和平均上网电价影响,分别计算年等效满负荷小时数为1400、1600、1800、2200、2400、2600、2800、3000 的情况下发电成本见表1,上网电价见表2。

如果全国风电的平均水平是每千瓦投资9000 元,以及资源状况按年上网电量为等效满负荷2000 小时计算,则风电的上网电价约每千瓦时0.63 元,比于全国火电平均上网电价每千瓦时0.31 元高一倍。

3.4 电网制约风电场接入电网后,在向电网提供清洁能源的同时,也会给电网的运行带来一些负面影响。

随着风电场装机容量的增加,以及风电装机在某个地区电网中所占比例的增加,这些负面影响就可能成为风电并网的制约因素。

风力发电会降低电网负荷预测精度,从而影响电网的调度和运行方式;影响电网的频率控制;影响电网的电压调整;影响电网的潮流分布;影响电网的电能质量;影响电网的故障水平和稳定性等。

由于风力发电固有的间歇性和波动性,电网的可靠性可能降低,电网的运行成本也可能增加。

为了克服风电给电网带来的电能质量和可靠性等问题,还会使电网公司增加必要的研究费用和设备投资。

在大力发展风电的过程中,必须研究和解决风电并网可能带来的其他影响。

四、政策建议1. 加强风电前期工作。

建立风电正常的前期工作经费渠道,每年安排一定的经费用于风电场风能资源测量、评估以及预可研设计等前期工作,满足年度开计划对风电场项目的需要。

2. 制定“可再生能源法”的实施细则,规定可操作的政府合理定价,按照每个项目的资源等条件,以及投资者的合理回报确定上网电价。

同时也要规定可操作的全国分摊风电与火电价差的具体办法。

3. 加速风电机组本地化进程, 通过技贸结合等方式,本着引进、消化、吸收和自主开发相结合的原则,逐步掌握兆瓦级大型风电机组的制造技术。

引进国外智力开发具有自主知识产权的机组,开拓国际市场。

4. 建立风电制造业的国家级产品检测中心、质量保证控制体系以及认证制度,不断提高产品质量,降低成本,完善服务。

5. 制定适应风电发展的电网建设规划,研究风电对电网影响的解决措施。

五、“十一五”和2020 年风电规划我国电源结构70%是燃煤火电,而且负荷增长迅速,环境影响特别是减排二氧化碳的压力越来越大,风能是清洁的可再生能源,我国资源丰富,能够大规模开发,风电成本逐年下降,前景广阔。

风电装机容量规划目标为2005 年100 万千瓦,2010 年400~500 万千瓦,2020 年2000~3000 万千瓦。

相关文档
最新文档