植物生理学实验
植物生理学实验测试
植物生理学实验测试植物生理学是研究植物生长和发育等生理过程的科学学科,通过实验测试可以揭示植物对外界环境因素的响应和适应机制。
本文将介绍几种常见的植物生理学实验测试方法,包括植物生长实验、叶绿素测定实验和逆境胁迫实验等。
一、植物生长实验植物生长实验是研究植物对不同环境条件下的生长反应的一种常见方法。
可以通过改变光照、温度、水分等环境因素来观察植物生长的变化。
在实验中,选取相同种子并进行处理,如将一组种子暴露在高温环境下,另一组放置在低温环境中,然后记录植物的生长情况,并进行数据统计和分析。
通过这种实验方法可以了解植物对温度的适应性以及不同温度对植物生长的影响。
二、叶绿素测定实验叶绿素是植物中起着关键作用的色素,其含量可以反映植物光合作用的强弱。
叶绿素测定实验可以通过测量植物叶片中叶绿素的含量来评估光合作用的效率。
实验中,首先需要采集新鲜叶片样品,并将其研磨得到绿色叶汁,然后通过光度计等仪器测定叶绿素的吸光度值,并根据标准曲线计算叶绿素的含量。
通过叶绿素测定实验可以评估植物对不同环境因素(如光照强度、养分浓度)的响应和适应能力。
三、逆境胁迫实验逆境胁迫实验是模拟植物在环境恶劣条件下的生理反应,如盐胁迫、干旱胁迫、冷热胁迫等。
通过逆境胁迫实验,可以研究植物在逆境条件下的生理适应和耐受机制。
实验中,可以使用不同浓度的盐水浇灌植物或让植物在干旱条件下生长,然后观察植物的生长情况、生理指标的变化,并与正常生长的植物进行比较分析。
逆境胁迫实验可以揭示植物对逆境的敏感性和胁迫响应机制,为育种和改良耐逆植物品种提供理论依据。
总结:植物生理学实验测试是研究植物生理过程的重要手段,通过不同的实验方法可以揭示植物对环境因素的响应和适应机制。
植物生长实验、叶绿素测定实验和逆境胁迫实验是常见的植物生理学实验方法,分别用于研究植物生长、光合作用和逆境胁迫的情况。
通过这些实验测试的结果,可以进一步了解植物的适应性和耐受能力,为培育适应不同环境的优良植物品种提供理论基础。
植物生理学实验
[思考题]
1 测定植物组织外渗电导率时,有时会发 现处理电导率比对照低的现象,试解释?
植物组织水势测定--小液流法
[原理]
在恒温恒压下,由植物组织与外界溶液组 成的体系的水势包含有植物组织的水势和 溶液的渗透势。
如果植物组织的水势低于外液的渗透势, 则植物组织吸水而使外液浓度变大;反之, 植物组织失水而使外液浓度变小;若二者 相等,则外液浓度不变,此时外界溶液的 渗透势等于植物组织的水势。
[思考题]
1.为什么常根据葡萄的颜色来判断葡萄的 质量好坏?
2.试想一下,在植物生长过程中影响花青 素形成的因素有哪些?
植物组织抗逆性鉴定 --外渗电导法
[原理]
质膜的选择透性因逆境伤害而明显改变或 丧失时,细胞内的物质(尤其是电解质)大 量外渗,从而引起组织浸泡液的电导率发 生变化,通过测定外渗液电导率的变化, 就可反映出质膜的伤害程度和所测材料抗 逆性的大小.
同一种溶液浓度不同,比重亦不同。
当两个不同浓度的溶液相遇时,稀的溶液 由于比重小而上浮,浓的溶液比重大而下 沉。当把浸过植物组织的溶液滴回到原浓 度的溶液中时,液滴会发生下降、上升或 基本不动几种情况。
如果液滴下降,说明浸泡液的渗透势高于 植物组织的水势;若液滴上升,说明浸泡 液的渗透势低于植物组织的水势;如果液 滴不动,则表示植物组织与浸泡液的水分 交换处于动态干衡中,浸泡液的渗透势等 于植物组织的水势。
实验一 植物的光合速率测定 ---改良半叶法
[原理]
• 植物叶片的主脉两侧对称部分叶面积基本 相等,其形态和生理功能也基本一致。
• 用物理或化学方法处理叶柄或茎的韧皮部, 保留木质部,以阻断叶片光合产物的外运, 同时保证正常水分供应。
植物生理学实验 实验报告
植物生理学实验实验报告植物生理学实验实验报告摘要:本实验旨在探究植物的生理反应和适应机制。
通过观察植物在不同环境条件下的生长和生理指标的变化,我们可以更好地理解植物的生理过程和适应策略。
本实验采用了盆栽植物的生长观察和测量方法,结合实验室中的设备和技术手段,得出了一系列有关植物生理学的结论。
1. 引言植物生理学是研究植物生长、发育和适应环境的科学,它涉及植物的生理过程、代谢调节、信号传导等方面。
通过实验研究,我们可以揭示植物在不同环境条件下的生理反应和适应机制,为植物的生产和保护提供理论依据。
2. 材料与方法本实验选取了常见的盆栽植物作为实验对象,包括绿萝、仙人掌和吊兰。
为了模拟不同环境条件,我们设置了三组实验组:阳光组、阴影组和干旱组。
每组实验设置五个重复,以保证实验结果的可靠性。
3. 结果与讨论3.1 生长观察在阳光组中,绿萝的叶片呈现出深绿色,茂密且向阳生长;仙人掌的刺变得更加粗壮,颜色也更加鲜艳;吊兰的叶片展开较大,叶色浅绿。
而在阴影组中,绿萝的叶片变得较为苍白,茂密度下降;仙人掌的刺变得细长,颜色较为暗淡;吊兰的叶片展开较小,叶色深绿。
在干旱组中,绿萝的叶片开始出现萎蔫现象;仙人掌的刺变得干瘪,颜色变得暗淡;吊兰的叶片开始卷曲,叶色变黄。
3.2 生理指标测量我们通过测量叶片的光合速率、蒸腾速率和叶绿素含量等指标,来进一步了解植物在不同环境条件下的生理变化。
在阳光组中,绿萝的光合速率较高,蒸腾速率也较高;仙人掌的光合速率较低,蒸腾速率也较低;吊兰的光合速率和蒸腾速率处于中等水平。
而在阴影组中,绿萝的光合速率和蒸腾速率下降明显;仙人掌的光合速率和蒸腾速率几乎停止;吊兰的光合速率和蒸腾速率也有所下降。
在干旱组中,绿萝的光合速率和蒸腾速率急剧下降;仙人掌的光合速率和蒸腾速率几乎停止;吊兰的光合速率和蒸腾速率也有所下降。
叶绿素含量的测量结果与光合速率和蒸腾速率的变化趋势一致。
4. 结论通过本实验的观察和测量,我们可以得出以下结论:1) 植物在阳光充足的环境下生长更加茂盛,叶片颜色更加鲜艳。
现代植物生理学实验指南
现代植物生理学实验指南植物生理学是一门重要的生物学科,研究植物在生长、发育、代谢和适应环境等方面的生理过程。
为了深入理解植物生理学,我们需要进行各种实验研究,这里为大家提供一份现代植物生理学实验指南,帮助大家系统了解植物生理学实验的基本方法和技巧。
实验一:光合作用实验光合作用是植物体内最重要的生理过程之一,我们可以通过测量植物的氧气释放量和二氧化碳吸收量来评估光合作用效率。
实验步骤如下:1. 将一片绿叶片放入水中,并用环状金属片夹住叶片。
2. 将装有水的容器倒置在金属片上,并使叶片完全浸入水中。
3. 在光亮条件下放置数小时,测量水中溶氧量的变化,记录并计算光合速率。
4. 重复操作若干次,得出稳定的结果。
实验二:水分利用实验水是植物生命的重要组成部分,其缺乏或过多都会对植物生长产生影响。
我们可以通过测量植物根系吸水能力和细胞渗透压来评估植物对水分的利用效率。
实验步骤如下:1. 准备两盆一模一样的植物,其中一盆为对照组,另一盆加盐水。
2. 分别测量两盆植物的根系吸水量和细胞渗透压,记录数据。
3. 将两盆植物进行比较,得出对盐水处理的植物的适应能力。
实验三:激素生理实验植物激素在影响植物生长、发育和适应环境方面发挥了重要作用,我们可以通过测量植物生长的速率和荷尔蒙水平来评估激素的作用。
实验步骤如下:1. 选择一些与生长相关的植物,如小麦或豌豆等。
2. 分别在一组处理中加入不同浓度的激素,另一组作为对照组。
3. 坚持一段时间,测量植物的生长速率和荷尔蒙水平,比较两组的差异。
以上是三个常见的植物生理学实验,希望这份实验指南能对学习植物生理学的同学们有所帮助。
在实验过程中,需要注意实验条件的一致性和数据的准确性,以确保实验的正确性和可靠性。
植物生理学的重要实验技术
植物生理学的重要实验技术植物生理学是研究植物内部各种生理过程的科学,通过实验技术的应用,可以深入研究植物的生理特性和调控机制。
本文将介绍几种重要的植物生理学实验技术,包括光合作用测定、光周期实验、蒸腾作用研究和植物生长素的测定。
一、光合作用测定光合作用是植物通过光能将二氧化碳和水转化为有机物质和氧气的过程。
光合作用的测定可以通过净光合速率的测定来进行。
测定方法可以使用荧光法或者气体交流法。
荧光法是通过测定叶片上的荧光信号的强度来计算净光合速率,而气体交流法是通过测定进出叶气体的浓度变化来计算净光合速率。
这些方法需要使用一些仪器设备,如荧光测定仪或气体交流测定系统。
二、光周期实验光周期是植物在一定时间内接受光照和黑暗的周期性变化。
光周期实验主要用于研究植物的花期控制、休眠期控制等生理过程。
常用的方法是通过控制植物所接受的光照时间和黑暗时间的比例来模拟不同的光周期条件。
可以使用光周期系列灯来实现对光周期的控制。
在实验过程中,可以观察植株的生长状况、花期的调控以及激素含量的变化等指标。
三、蒸腾作用研究蒸腾作用是植物体内水分的散失过程,是植物体内水分运输和植物生长发育的关键过程之一。
蒸腾作用研究常用的技术是测定植物叶片表面的水蒸气压,并结合气孔开闭情况来研究蒸腾作用的影响因素。
测定水蒸气压时通常使用水分压差传感器或者电子秤等设备,观察气孔开闭可以通过显微镜或者扫描电子显微镜等工具进行。
四、植物生长素的测定植物生长素是一类植物内源激素,调控着植物体内的生长和发育过程。
研究植物生长素的测定可以使用生物测定法、免疫测定法和色谱法等。
生物测定法使用生物体来测定生长素的活性,如使用阿片酸促进小麦胚芽的生长来测定生长素含量。
免疫测定法则是利用抗体和抗原之间的特异性结合来测定生长素含量。
色谱法是利用气相色谱或者液相色谱来分离和测定植物生长素的含量,通常需要先对样品进行提取和纯化。
结论植物生理学的实验技术是理解植物各种生理过程和调控机制的关键。
植物生理学实验报告
实验一植物组织水势的测定(小液流法)——2013.3.11 一、目的用小液流法(落滴法)测定植物组织的水势,由水势大致了解植物体内的水分状况二、原理水势表示水分的化学势,象电流由高电位处流向低电位处一样,谁从水势高处流向低处。
植物体细胞之间,组织之间以及植物体和环境间的水分移动方向都由水势插决定。
三、材料与设备植物材料:阔叶树叶片(大叶女贞)实验器具:细滴管一支;试管及指形管各五支(带塞);100mL烧杯一只;镊子、剪刀各一把;2mL、5mL移液管各一支;标签纸;钻孔器;木板试剂:1ml/L蔗糖溶液;甲烯蓝溶液四、操作步骤1.用短滴管吸取1,mol/L蔗糖液配制一系列浓度递增的蔗糖溶液(0.05,0.1,0.2,0.3,0.4mol/L)各10 ml,加入干燥刻度试管内,各管都加上塞子,充分混合,并编号。
用移液管从浓度各试管中吸取1ml注入第二指形管内,各管均加塞,并贴上标签。
2.用钻孔器(取相同部位)钻取同大小叶片。
每支指形管中放入10片,加塞,放置20~30分钟(期间摇动2~3次),到时间后,加入2~3滴甲烯蓝溶液于指形管中,使其溶液呈蓝色,以区别原来的颜色。
3.用细长滴管从各指形管中依次吸取着色的液体少许,然后伸入相同编号(原相同浓度)试管的中部,缓慢从细长滴管尖端横向放出一滴蓝色试验溶液,在无色透明背景上观察小液滴移动的方向。
如果有色液滴向上移动,说明细胞液中水分外流,试验比重比原来小;如果有色液向下移动,则说明细胞从溶液中吸收了水分,溶液变浓,比重变大;如果液滴不动,向外扩散则说明两者的浓度相等或接近,即植物组织的水势等于溶液的渗透势。
记录液滴不动的试管中蔗糖溶液的浓度,若找不到改浓度,取在下降上升转变时量浓度的均值。
五、作业1.记录小液流在试管内的移动方向2.按下列公式计算组长的水势:ψW(细胞水势)=ψs=-CRT式中:ψs——溶液的渗透势,以Mpa为单位R——气体常数,为0.008314Mpa*L/(mol*K)。
植物生理学实验报告
植物生理学实验报告摘要:本实验旨在通过一系列实验来研究植物的生理特性及其对外界环境的响应。
我们使用了单子叶植物蔗糖苦苣菜(Saccharum officinarum L.)作为研究对象,并分别对其光合作用、光反应及水分运输进行了分析。
通过实验结果,我们得出了一些重要结论,对于深入了解植物生理学及其应用具有重要的意义。
引言:植物生理学是研究植物如何在内外环境的调节下进行生长和发育的科学。
通过对植物的生理特性进行研究,我们可以更好地了解植物生活的基本规律。
因此,本实验旨在通过一系列实验来深入研究植物的生理学特性。
材料与方法:1. 实验材料:蔗糖苦苣菜植株、草状质量秤、光谱辐射计、叶绿素荧光仪、离心机等。
2. 实验步骤:- 实验一:光合作用a. 将蔗糖苦苣菜植株放置在恒温暗房内恢复一段时间。
b. 将光谱辐射计放在适当位置,记录光照强度和光质。
c. 将一片健康的叶片置于夹层式草状质量秤上,记录叶片重量。
d. 将叶片暴露在光源下,测量一定时间内的叶片重量。
e. 重复实验步骤c和d,以获得多组数据并进行统计分析。
- 实验二:光反应a. 将蔗糖苦苣菜叶片置于叶绿素荧光仪上,等待测量稳定。
b. 记录初始叶绿素荧光(F_o)值。
c. 迅速打开强光源,记录最大叶绿素荧光(F_m)值。
d. 计算有效光能利用率(Yield)和光化学淬灭(qP)等参数。
- 实验三:水分运输a. 随机选取两片蔗糖苦苣菜叶片,将其离枝并切割横截面。
b. 快速将一片叶片放置在自来水中,随即用另一片叶片封住叶脉。
c. 将样品放置在离心机上,启动离心机以模拟植物体内水分运输。
d. 一段时间后,观察叶片的水分状态,并记录数据。
结果与讨论:1. 实验一的结果显示,蔗糖苦苣菜的光合作用明显受到光照强度和光质的影响。
光照强度越高,光合速率越快。
同时,特定波长范围的光对光合作用的促进作用更为明显。
2. 实验二的结果表明,蔗糖苦苣菜的光反应能力非常高,有效光能利用率和光化学淬灭都表现出良好的性能。
植物生理学实验 实验报告
植物生理学实验实验报告
《植物生理学实验实验报告》
实验目的:
本实验旨在探究植物生长过程中的生理学特性,通过实验观察和数据分析,了
解植物对外界环境的适应能力。
实验材料:
本次实验所需材料包括小麦种子、培养皿、水、土壤、温度计、光照计、湿度
计等。
实验步骤:
1. 将小麦种子放置于培养皿中,分别在不同的条件下进行实验观察。
其中包括
不同的温度、光照和湿度条件。
2. 记录每组实验条件下小麦种子的发芽率、生长速度、叶片颜色等生理学特征。
3. 对实验数据进行统计分析,比较不同条件下植物生长的差异,分析植物对外
界环境的适应能力。
实验结果:
经过实验观察和数据分析,我们发现在不同的温度、光照和湿度条件下,小麦
种子的生长状况存在显著差异。
在适宜的温度和湿度条件下,小麦种子的发芽
率和生长速度较高,叶片颜色也更加翠绿。
而在极端的温度和湿度条件下,小
麦种子的生长受到抑制,甚至出现枯萎现象。
实验结论:
通过本次实验,我们深刻认识到植物对外界环境的适应能力,以及不同环境条
件对植物生长的影响。
这不仅有助于我们更好地了解植物生理学特性,也为农
业生产和植物保护提供了重要的理论依据。
总结:
植物生理学实验是深入了解植物生长过程和生理特性的重要手段,通过实验观察和数据分析,我们可以更加全面地了解植物对外界环境的适应能力,为植物生长和保护提供科学依据。
希望本次实验能够对植物生理学研究和相关领域的发展起到一定的推动作用。
植物生理实验题
植物生理实验题
植物生理实验题通常涉及对植物生长、发育和生理过程的实际操作和观察。
以下是一些可能的植物生理实验题目,供你参考:
光合作用实验:
设计一个实验,验证光合作用与光照强度之间的关系。
你可以考虑改变光照强度,测量植物的光合速率。
呼吸作用实验:
利用呼吸作用实验,研究温度对植物呼吸速率的影响。
你可以使用不同温度条件下的植物组织,比较它们的氧气摄取或二氧化碳释放。
水分运输实验:
通过设计一个实验,探究植物中水分的运输。
可以使用色素标记法,观察染色液在植物中的运输过程。
激素影响实验:
设计一个实验,研究植物生长激素对植物生长和发育的影响。
可以选择一种激素,如赤霉素、生长素等,通过添加或去除激素,观察植物的生理变化。
光周期实验:
通过改变光照的时间来研究植物的生物钟。
设计一个实验,调整日夜的长短,观察植物的开花、休眠等周期性生理过程。
渗透压实验:
利用渗透压实验,研究植物细胞在不同浓度溶液中的膨压和质壁关系。
可以使用不同浓度的蔗糖溶液,观察植物细胞的反应。
叶片光合效率实验:
通过测量不同叶片的光合效率,探究叶片的结构和功能之间的关系。
可以使用光合仪或测光仪进行实验。
温度对发芽的影响实验:
设计一个实验,研究不同温度条件下植物种子的发芽速率和发芽率。
观察温度对种子生理活性的影响。
这些实验题目可以涵盖植物生理学的多个方面,要求学生在实验设计、数据收集和分析方面有一定的能力。
希望这些题目能够激发你对植物生理学实验的兴趣。
植物生理学实验报告
植物生理学实验报告植物生理学实验报告引言:植物生理学是研究植物内部生理过程的科学,通过实验方法可以深入了解植物的生长发育、代谢、适应环境等方面。
本实验旨在探究植物对光照强度的响应机制,以及光合作用对植物生长的影响。
材料与方法:实验材料包括小麦种子、培养皿、土壤、水、光照强度计等。
首先,将小麦种子均匀撒在培养皿中,然后在不同的光照条件下进行培养。
实验分为三组,分别是高光照组、中光照组和低光照组。
每组设置三个重复样本。
在实验过程中,使用光照强度计测量不同组的光照强度,并根据需要调整光照灯的距离。
结果与讨论:实验结果显示,光照强度对小麦的生长发育有明显的影响。
在高光照组下,小麦的生长速度较快,茎秆高度和根系发达。
而在低光照组下,小麦的生长速度明显减缓,茎秆矮小,根系生长不良。
中光照组的小麦生长状况介于两者之间。
这种光照对植物生长的影响主要是由于光合作用的变化引起的。
光合作用是植物通过光能转化为化学能的过程,是植物生长发育的重要能量来源。
在高光照条件下,植物叶片能够充分接收到光能,从而促进光合作用的进行,提供足够的能量和养分供植物生长发育所需。
而在低光照条件下,植物叶片接收到的光能减少,光合作用能力减弱,因此植物生长速度减缓。
此外,实验还观察到了光照强度对小麦叶片颜色的影响。
在高光照组下,小麦叶片呈现出浓绿色,而在低光照组下,叶片颜色较为苍白。
这是因为光照强度的不同导致了叶绿素的合成和降解速率的变化,进而影响了叶片的颜色。
结论:通过本实验,我们得出了光照强度对植物生长发育的影响是显著的结论。
高光照能够促进植物的生长速度和光合作用的进行,而低光照则会导致植物生长减缓和叶片颜色苍白。
这对于植物生理学研究和植物栽培具有一定的指导意义。
然而,本实验还存在一些不足之处。
首先,实验中使用的小麦种子数量较少,样本量较小,因此实验结果的可靠性有待进一步验证。
其次,本实验只研究了光照强度对植物生长的影响,未涉及其他因素如温度、湿度等对植物生理的影响。
植物生理学综合实验
第九组 MJ与NO、H2O2的关系
第九组组要是两个实验,第一个是将茉莉酸甲酯和维生素C合用,维生素C是延 缓叶片衰老的,茉莉酸甲酯的促进叶片衰老的,两者的作用应该是相互抵消的。 第二个是将茉莉酸甲酯和过氧化氢在一起合用,两者都是促进细胞衰老的,当 一定合用是,衰老效果更加的明显,因为两者的作用相互叠加了。但是第一个 实验的实验现象在鉴定细胞活性的时候,结果却不是很明显,看了一下,叶片 时没什么问题的,导致这样的原因可能是染色环节上出错了,有可能是脱色时 间不够,也有也能是有光亮环境的时间过多,导致脱色效果不好等等。
第七小组
第八组
5×10-4mol/L MJ+300umol/L SNP
5×10-6 mol/L MJ+100umol/LHb
5×10-6mol/L MJ+1.0g/L ETH
5×10-4 mol/L MJ+75umol/L COCl2
第八小组
第九组
5×10-4mol/L MJ+1.0g/L Vc
植物生理综合实验 细胞死活与H2O2鉴定
学号 姓名
一 实验目的:
1.了解信号物质、激素对植物子叶的影响 2.掌握细胞死活与过氧化氢鉴定方法
二 实验原理:
植物受到一些物质处理时,会作出相应的反应。 产 生活性物质(信号物质)。一些细胞甚至会死亡。这些反 应可被检测。
三实验内容:
一、茉莉酸甲酯对黄瓜子叶的作用 二、一些物质对茉莉酸甲酯作用的影响
茉莉酸甲酯在植物生长和发育过程中是体现出类似 激素的作用,能够促进种子的萌发,植物的生长、开 花、还能促进叶片的衰老,块茎形成,果实成熟等。 从第一组的实验可以看出茉莉酸甲酯促进了叶片的衰 老,并且浓度越高,对细胞的衰老作用就越强。
植物生理学 实验
[实验目的]:观察植物组织在不同浓度溶液中细胞质壁分离的产生过程及其用于测定植物组织渗透势的方法。
[实验原理]:当植物组织细胞内的汁液与其周围某种溶液处于渗透平衡状态,植物细胞内的压力势为零时,细胞汁液的渗透势就等于该溶液的渗透势,这种渗透势相等的溶液称为等渗溶液。
该溶液的浓度称为等渗浓度。
当用一系列梯度浓度溶液观察细胞质壁分离时,细胞的等渗浓度将界于刚刚引起初始质壁分离的浓度和尚不能引起质壁分离的浓度之间的溶液浓度。
代入公式即可计算出其渗透势。
[器材与试剂]:实验仪器:显微镜,载玻片及盖玻片,镊子,刀片;实验试剂:100ml 浓度为1mol/L 蔗糖溶液:用蒸馏水配成0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50mol/L 的蔗糖溶液各50mL ;实验材料:洋葱鳞茎[实验步骤]:1.取带有色素的洋葱鳞茎,迅速投入各种浓度的蔗糖溶液中,使其完全浸入,约5—10min 。
2.从0.50mol/L 开始依次取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于低倍显微镜下观察,并记录质壁分离的相对程度。
3.在实验中确定一个引起半数以上细胞原生质刚刚从细胞壁的角隅上分离的浓度,和不引起质壁分离的最高浓度。
4.在找到上述浓度极限时,用新的溶液和新鲜的叶片重复进行几次,直到有把握确定为止。
在此条件下,细胞的渗透势与两个极限溶液浓度之平均值的渗透势相等。
将结果记录于表中。
测出引起质壁分离刚开始的蔗糖溶液最低浓度和不能引起质壁分离的最高浓度平均值之后,可按下列各式计算在常压下该组织细胞质液的渗透势。
-Φs=RTiC1式中:-Φs 为细胞渗透势;R 为气体常数=0.083×105L ·Pa/mol ·K ;T 为热力学温度,单位K ;i 为解离常数,蔗糖为1;C 1为等渗溶液的质量摩尔浓度,单位是mol/kg ;则-Φs==0.083×105×(273+t)×1×C由于实验用的蔗糖溶液浓度单位为mol/L ,因此需要按下式对其浓度进行修正。
植物生理学实验报告
植物生理学实验报告
植物是我们周围不可或缺的重要生物,它们通过各种生理过程实现
生长、发育和适应环境。
为了更深入地了解植物的生理特点,我们进
行了一系列植物生理学实验。
以下是我们的实验报告:
实验一:光合作用速率与光照强度的关系
在这个实验中,我们收集了不同光照强度下植物的光合作用速率数据。
结果显示,随着光照强度的增加,植物的光合作用速率呈现出增
加的趋势。
这表明光照强度对植物光合作用的影响十分显著,光合作
用速率与光照强度呈正相关关系。
实验二:水分蒸腾速率与相对湿度的关系
在这个实验中,我们测量了不同相对湿度下植物的水分蒸腾速率。
结果显示,随着相对湿度的增加,植物的水分蒸腾速率逐渐降低。
这
表明植物的水分蒸腾速率受相对湿度的影响,相对湿度与水分蒸腾速
率呈负相关关系。
实验三:温度对植物呼吸速率的影响
在这个实验中,我们调节了不同温度下植物的呼吸速率。
结果显示,随着温度的升高,植物的呼吸速率也随之增加。
这表明植物的呼吸速
率受温度影响,呼吸速率与温度呈正相关关系。
通过以上实验,我们对植物的光合作用、水分蒸腾和呼吸等生理过
程有了更深入的了解。
这些实验为我们研究植物的生长发育及环境适
应性提供了重要的参考依据。
希望我们的实验结果能对今后的植物生理学研究有所启发和帮助。
植物生理学实验 实验报告
植物生理学实验实验报告1. 实验目的本实验旨在探究植物生理学中的一些基本原理和现象,以加深我们对植物生长和发育过程的理解。
2. 实验材料和仪器本次实验所需材料和仪器如下: - 绿豆种子 - 培养皿 - 水 - 滤纸 - 测量器具(例如尺子、天平) - 盖玻片 - 显微镜3. 实验步骤步骤1:种子发芽观察1.将一定数量的绿豆种子放在湿润的滤纸上。
2.将滤纸与种子一起放置在培养皿中,确保种子表面接触到湿润的滤纸。
3.盖上培养皿的盖子,放置于适宜的温度和光照条件下。
4.每天观察和记录种子的发芽情况,包括发芽率、发芽速度等。
步骤2:光合作用测定1.挑选一片健康的绿豆叶片,用盖玻片将其完全覆盖,并在盖玻片上加上一些水以保持湿润。
2.将盖玻片放入显微镜下,并调节至合适的放大倍数。
3.使用显微镜观察绿豆叶片中叶绿素颗粒的分布和形态。
4.切换到一个较高的放大倍数,观察叶绿素颗粒的内部结构和细胞器。
5.观察叶片在光照和无光照条件下的变化,并记录光合作用的相关数据。
步骤3:影响植物生长的因素1.准备一组绿豆种子,并分为几个小组。
2.对每个小组进行不同的处理,例如给予不同的光照条件、水分条件或温度条件。
3.每天观察和记录每个小组绿豆的生长情况,包括根长、茎长、叶片数量等。
4.分析并比较不同处理组的生长数据,探究影响植物生长的因素。
步骤4:植物生长素的作用观察1.准备一些绿豆种子,分为两组。
2.对一组种子进行生长素处理,例如浸泡在含有生长素的溶液中一段时间。
3.将两组种子分别种植在培养皿中,提供相同的光照和水分条件。
4.每天观察和记录两组种子的生长情况,包括根长、茎长、叶片数量等。
5.比较两组种子的生长情况,探究植物生长素对植物生长的影响。
4. 实验结果和分析根据实验步骤中的记录数据,我们可以得出以下结论: - 种子的发芽率和速度受到温度和光照条件的影响。
- 光合作用是植物进行养分合成和能量转化的重要过程,叶绿素是光合作用的关键物质。
《植物生理学实验》
植物生理学实验引言植物生理学实验是研究植物生长和发育过程中的生理过程的一种科学方法。
通过对植物进行不同条件下的实验观察和分析,可以了解植物对外界环境的适应能力、生长调控机制等重要信息。
本文将介绍几个常见的植物生理学实验,包括光合作用实验、呼吸作用实验和植物生长调控实验。
实验一:光合作用实验实验目的研究光合作用在植物生理过程中的影响。
实验材料和仪器•适用于实验的植物样本•光照箱•光合作用测定仪器(如光合速率测定仪)实验步骤1.准备植物样本,并将其放置于光照箱中。
2.分别设置不同光照强度(如低光、中光、高光)的条件,并记录光照强度。
3.使用光合速率测定仪器,测定每个条件下的光合速率。
4.分析结果并得出结论。
实验结果和讨论根据实验结果,可以得出光照强度对光合作用速率的影响。
光照强度越高,光合作用速率越快,因为光合作用需要光能作为能量来源。
这个实验表明了光合作用对植物生长和发育的重要性,同时也可以用于评估植物对不同光照条件下的适应能力。
实验二:呼吸作用实验实验目的研究植物呼吸作用的过程和机制。
实验材料和仪器•成活的植物样本•呼吸速率测定仪器实验步骤1.准备植物样本并放置于呼吸速率测定仪器中。
2.记录植物在不同条件下的呼吸速率,如不同温度、不同光照等。
3.分析结果并得出结论。
实验结果和讨论通过呼吸速率的测定,可以了解到不同条件下植物呼吸的强度和速率。
温度对植物呼吸速率的影响比较显著,一般情况下,随着温度的升高,植物呼吸速率也会提高。
这个实验可以帮助我们理解植物的能量代谢过程,为植物生长和发育的调控机制提供重要信息。
实验三:植物生长调控实验实验目的研究不同条件对植物生长和发育的调控作用。
实验材料和仪器•可控环境设备(如生长箱)•不同生长因子的处理液(如植物激素)实验步骤1.准备植物样本,并将其种植在生长箱中。
2.设置不同生长条件,如温度、湿度、光照等,并记录相关参数。
3.分别加入不同处理液,如植物激素,观察植物生长和发育的变化。
植物生理学实验
营养胁迫条件下生物量积累的减少可能与 植物对营养元素的吸收和利用受限有关, 这会影响植物的生长和发育进程。
实验结论
实验结论1
光照条件对植物叶绿素含量 具有显著影响,适当增加光 照强度可以提高植物的光合 作用效率。
实验结论2
水分胁迫条件下,植物会通 过降低蒸腾速率来维持水分 平衡,因此在干旱地区种植 作物时应注意合理灌溉。
改进方向
优化实验设计,缩短实验周期;采用更加智能的环境调控系统,提高实
验效率;改进生理指标的测定方法,减少对植物组织的破坏,提高实验
的准确性。
05
CHAPTER
参考文献
参考文献
APA格式
主要用于社会科学和人文学科的参考文献引 用。
MLA格式
主要用于文学作品的参考文献引用。
Chicago格式
主要用于历史和传记作品的参考文献引用。
数据整理
对实验数据进行整理、分类和 归档,以便后续分析和处理。
结果分析
根据实验数据,进行统计分析 ,得出实验结论,并撰写实验
报告。
数据记录
准确记录
在实验过程中,应准确记录每个步骤 的操作和结果,包括使用的试剂、仪 器型号和规格、实验条件等。
及时记录
实验过程中应随时记录数据,避免遗 漏或错记,确保数据的真实性和完整 性。
水分、二氧化碳浓度等多种因素的影响。
输标02入题
植物适应性:植物通过调整自身生理生化过程,适应 不同的环境条件,如温度、光照、水分、土壤类型等。
01
03
植物激素的作用:植物激素如生长素、赤霉素、细胞 分裂素等对植物的生长发育具有调控作用,影响植物
的形态建成和生理生化过程。
04
植物生理学实验报告
一、实验名称植物生理学实验:植物蒸腾作用的观察与测定二、实验目的1. 观察植物蒸腾作用的现象。
2. 测定植物叶片的蒸腾速率。
3. 了解影响植物蒸腾作用的因素。
三、实验原理植物蒸腾作用是指植物体内水分通过叶片气孔以水蒸气形式散发到大气中的过程。
蒸腾作用是植物体内水分循环的重要环节,对植物的生长发育和生态环境具有重要意义。
实验中,通过观察植物叶片气孔的开闭情况,测定叶片的蒸腾速率,分析影响蒸腾作用的因素。
四、实验材料与仪器1. 实验材料:新鲜植物叶片、剪刀、蒸馏水、滤纸、玻璃片、温度计、秒表、透明塑料袋。
2. 实验仪器:分析天平、蒸馏水器、温度计、秒表、量筒、透明塑料袋。
五、实验步骤1. 将新鲜植物叶片用剪刀剪成约1cm²的小块,用蒸馏水洗净,晾干。
2. 将叶片放入透明塑料袋中,密封袋口。
3. 用温度计测量叶片和塑料袋内的温度,记录初始温度。
4. 将塑料袋置于室温下,每隔一定时间(如5分钟)观察叶片气孔的开闭情况,记录气孔开闭次数。
5. 将叶片从塑料袋中取出,用分析天平称量叶片质量,记录初始质量。
6. 将叶片放入蒸馏水中浸泡,使其充分吸水。
7. 将吸水后的叶片重新放入塑料袋中,密封袋口。
8. 将塑料袋置于室温下,每隔一定时间(如5分钟)观察叶片气孔的开闭情况,记录气孔开闭次数。
9. 将叶片从塑料袋中取出,用分析天平称量叶片质量,记录吸水后的质量。
10. 计算叶片的蒸腾速率。
六、实验结果与分析1. 观察叶片气孔的开闭情况,发现叶片在室温下蒸腾作用明显,气孔开放次数较多;在蒸馏水中浸泡后,气孔开放次数明显减少。
2. 通过实验数据计算,得到不同条件下叶片的蒸腾速率。
3. 分析影响植物蒸腾作用的因素,如温度、光照、水分等。
七、实验结论1. 植物蒸腾作用是植物体内水分循环的重要环节,对植物的生长发育和生态环境具有重要意义。
2. 温度、光照、水分等因素对植物蒸腾作用有显著影响。
3. 本实验通过观察植物叶片气孔的开闭情况和测定叶片的蒸腾速率,验证了植物蒸腾作用的存在。
《植物生理学实验》教学大纲全文
《植物生理学实验》教学大纲课程名称(中文/英文):植物生理学实验(Plant physiology experiments) 课程编号:1805102课程类别:专业方向选修教材名称:《植物生理学实验》实验教学大纲与指导学时学分: 学时 21 学分 1 实验学时 21应开实验学期:二~三 年级 四~五 学期先修课程:植物生理学适用专业:环境科学,生物技术一、课程性质及要求本课程为环境科学、生物技术专业本科生开设的专业教育选修课,是《植物生理学》理论课教学的补充。
本课程教学要求:通过实验操作,让学生深入认识、巩固和扩充植物生理学的基本概念、基本原理、重要生理代谢机制等理论知识,学习植物生理学基本的研究方法和实验技术,培养学生进行科学研究的基本技能,提高学生动手能力以及分析问题、解决问题的能力,养成严谨的科学态度。
二、内容简介《植物生理学》是植物学科方向的高级课程,《植物生理学》实验课是充实课堂理论知识,锻炼学生动手操作能力,培养学生实验基本技能的辅助课程。
该课程通过实践操作,使学生掌握组成植物体各部分的组织学特征及根、茎、叶等器官的细胞学特征,以及掌握植物生理中水分代谢、光合作用、抗性生理、有机物质转化等基本概念和操作技能,更加熟悉植物生理学基础知识,为学生学习后续课程及日后参加生产、科研等工作打下基础。
三、主要仪器设备:普通显微镜,水浴锅,可见分光光度计,托盘天平四、教学方法与基本要求1.必须在所有化学,生物化学等课程完成后才能开设本课程;2. 一般是在理论课教授完成后才进行实验课程的教学;3. 教学方法主要是学生自己操作,授课教师边讲解边示范。
五、考核方法实验报告作为平时成绩记录六、实验项目设置序号实验名称内容提要实验学时每组人数实验属性实验要求1 淀粉粒,石细胞,厚角组织的观察观察植物不同组织的细胞形态及结构 2 1 验证2 根尖形态与结构观察 观察根尖的形态与结构 2 1 验证3 茎的初生与次生结构观察 观察单、双子叶植物茎的初生与次生结构 2 1 验证4 叶表皮细胞,气孔与结构观察观察植物叶表皮细胞及气孔形态与叶横切面结构2 1 验证5 植物细胞原生质流动和质壁分离现象的观察观察植物细胞原生质流动,质壁分离的现象2 1 综合6 植物组织水势的测定 利用小液流法测定植物组织的水势 3 4 综合7 植物叶绿素的提取、分离、性质及吸收光谱利用有机溶剂提取新鲜植物叶片的叶绿素,观察叶绿素的荧光现象,掌握吸收光谱测定方法3 4 综合8 过氧化物酶及超氧化物歧化酶活性的测定掌握植物材料中过氧化物酶及超氧化物歧化酶活性测定原理与方法,比较各种植物材料中酶活性的变化2 4 综合9 油类种子萌发时脂肪酸含量的变化掌握油类种子里脂肪酸测定的方法,比较它们在萌发过程中含量的变化3 4 综合小计21。
植物生理学实验报告
植物⽣理学实验报告植物⽣理学实验报告实验⼀、植物组织⽔势测定(⼩液流法)⼀、实验原理⽔总是从⽔势⾼的系统流向⽔势低的系统。
将植物叶⽚分别与⼀系列不同浓度的蔗糖溶液接触,蔗糖溶液浓度从⼩到⼤,开始时,植物叶⽚⽔势低于蔗糖溶液,溶液中⽔分向叶⽚转移,蔗糖溶液浓缩,蔗糖溶液密度较原始浓度升⾼;蔗糖溶液⾼到⼀定浓度后,蔗糖溶液⽔势低于植物叶⽚,叶⽚⽔分向溶液中转移,蔗糖溶液稀释,密度较原始浓度降低。
如果植物组织的⽔势等于蔗糖溶液的⽔势,⽔分不发⽣净移动,外液浓度较原浓度不发⽣变化上述浸泡过植物组织、浓度发⽣改变的蔗糖溶液为⼄组。
原始浓度的蔗糖溶液为甲组。
将⼄组溶液染⾊后,取⼄组溶液⼀⼩滴(⼩液流),放⼊对应浓度的甲组溶液中,观察⼩液流因密度不同⽽下降、上升或不动的情况,记录与之相对应的甲组溶液的浓度。
⼆、材料与设备1.材料:植物叶⽚;2.仪器设备:试管、试管架、打孔器、尖头镊⼦、尖头针、移液管、⽑细滴管;3.试剂:1M蔗糖液、甲烯蓝粉。
三、实验步骤1.蔗糖溶液配制:l)取⼲燥洁净试管5⽀,贴标签标记,⽤1M蔗糖母液配制蔗糖溶液,浓度由⼩到⼤分别为0.1、0.25、0.5、0.75、1M,每个浓度均配8m1,放⼊对应标记的试管中,作为甲组(⼀定要混匀)2)另取⼲燥洁净的指形管5⽀,标明0.1、0.25、0.5、0.75、1M浓度的蔗糖溶液,分别从甲组取相应浓度蔗糖溶液1m1置于指形管,作为⼄组。
2.取样及测定1)选取⽣长⼀致的叶⽚,⽤打孔器钻取⼩圆⽚4-6⽚/管,将⼩圆⽚全部浸⼊⼄组指形管溶液中,摇动20分钟;2)⽤针尖蘸取少许甲烯蓝粉末,分别放⼊⼄组各指形管中,摇匀,可看见⼄组指形管中溶液颜⾊变蓝:3)⽤⽑细滴管吸取蓝⾊溶液,轻轻插⼊相应浓度的甲组溶液中部,⽤吸⽿球轻柔吹⽓,以帮助蓝⾊溶液从⽑细滴管中流出。
在流出的⼀瞬间观察并记录液滴的升降情况;4)若液滴下降,说明组织吸⽔使溶液变浓,⽐重变⼤;若液滴上升,说明组织失⽔使溶液变稀,⽐重变⼩;若液滴静置不动,说明此溶液的溶质势与叶圆⽚组织的⽔势相等,⽔分交换平衡,溶液⽐重不变,根据溶液的浓度可计算⽔势:若前⼀浓度溶液⼩液流下沉,⽽后⼀浓度溶液中上浮,则组织的⽔势值介于两蔗糖溶液⽔势之间,可取平均值计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
口试部分实验一多酚氧化酶(PPO)活性的测定实验原理:多酚氧化酶是植物体内普遍存在的一种非线粒体内的末端氧化酶。
他可以把酚类物质如单酚、邻苯二酚、邻苯三酚、对苯二酚等氧化为氧化为相应的醌类物质。
醌类物质对病原微生物起抑制作用或杀伤作用,具有一定的抗病能力。
因此,在感病的植物体中,PPO 活性都具有不同程度的提高,以抵抗病原体进一步侵染健康的植物组织。
此外,PPO对食品和饮料生产也会产生重大影响,它影响其品质,特别是在制作绿茶、红茶、烤烟和水果类饮料的过程中更为突出。
所以,准确测定PPO活性,具有重要的生理和现实意义。
多酚氧化酶是一种含铜的氧化酶,在有氧的条件下,能使酚氧化产生醌,PPO反应在3分钟内呈直线上升,其后反应速度变慢,因而在研究时,用分光光度在3分钟内于410纳米波长下测其吸光度,即可计算出PPO的活力和比活力。
思考题:1、粗酶液提取中丙酮和磷酸缓冲液的作用,提取液为什么要预冷:丙酮是有机溶剂,能提取PPO,磷酸缓冲液为了保持酶活性,预冷降低酶活。
2、为什么要先在37度下恒温,再加酶液:使酶和底物处于最适状态。
实验二硝酸还原酶(NR)活性的测定实验原理:硝酸还原酶是植物氮代谢中的关键酶,植物吸收的硝酸根,首先通过硝酸还原酶的催化,还原成亚硝酸根(NADPH+NO3-NR-NO2+NAD+H2O)。
亚硝酸根可用磺胺显色法测定,即在酸性条件下,亚硝酸根与对氨基苯磺酸发生重氮反应,生成的重氮化合物又与盐酸萘乙胺生成红色偶氮化合物,可在520纳米下比色测定。
思考题1、为什么标准液与样品液的测定要在同一条件下:亚硝酸的磺胺比色法显色速度受温度和酸度等因素影响。
2、NR活性测定时取材为什么要进行一段时间的光和作用:进行光合作用积累一定糖类,否则酶活偏低。
3、测量酶活是为什么要在暗处:光下光反应会将形成的亚硝酸根转变成铵根,影响结果。
4、如果实验材料酶活过低怎么办:可在取样的前几天,用50mmol/l硝酸钾加在培养液中,以诱导硝酸还原酶的生成。
5、为什么要严格控制时间:本实验要是酶在最适条件下测酶活,要严格控制时间。
磺胺、盐酸萘乙二胺和硝酸钾的作用:在酸性条件下,亚硝酸根与对氨基苯磺酸发生重氮反应,生成的重氮化合物又与盐酸萘乙胺生成红色偶氮化合物,硝酸钾作为酶促反应的底物,亚硝酸钠用于制作标准曲线的梯度亚硝酸浓度。
6、粗酶液提取中丙酮和磷酸缓冲液的作用:磷酸缓冲液为了保持酶活性。
实验三电导法测定植物细胞膜透性实验原理:植物组织在受到各种不利环境条件危害时,细胞膜的结构和功能首先受到伤害,细胞膜透性增加,其外渗液中的电解质的含量比正常组织的外渗液含量增加,组织受伤害越严重,电解质的含量增加的越多。
用电导仪测定外渗液电导值的变化,可反映出质膜受伤害的程度,也可反映植物的抗逆程度。
思考题:1、在处理材料时,为什么要用真空泵抽气:以抽出细胞间隙空气,缓慢放入空气中,水即渗入细胞间隙。
2、为什么要清洗电导电极和温度传感器以及其他玻璃器皿:由于电导值变化非常灵敏,稍有杂质就会产生很大误差,因此所用的玻璃器皿均需多次冲洗干净。
3、抗逆性强的植物材料外渗液中的电导率高还是低,为什么?电导值与抗性成反比。
实验四植物光合与呼吸速率的测定实验原理:由异原子组成的偶极距的气体分子,如CO2、CO、H2O、SO2、NO、NH3和CH4等,都有红外吸收带,其中CO2、H2O的吸收率最大,可用红外线分析法测定。
CO2的吸收峰分别在2.69、2.77、4.26、14.09um,其中只有4.26um的吸收带不与水的吸收带重叠,因此如果没有完善的滤光系统,水蒸气是主要的干扰因素,所以气路中要有强的吸水剂。
当该波长的红外光通过含有二氧化碳的气体时能量就因二氧化碳吸收而降低,降低的多少与二氧化碳浓度有关,并服从朗伯比尔定律。
开放式是以空气通过叶室前后二氧化碳浓度差计算二氧化碳的同化速率。
封闭式则是把叶片放在封闭系统中,根据气体的体积和二氧化碳含量下降的速率计算同化量。
思考题:1、如何得到二氧化碳—光和曲线、二氧化碳补偿点和饱和点: 2、两种气路在测量时有什么优缺点:3、干燥剂无水氯化钙的作用:水蒸气是主要的干扰因素,所以气路中要有强的吸水剂。
4、如何测量光强:用量子辐射照度仪。
实验五植物组织中超氧化物歧化酶(SOD)活性的测定实验原理:SOD是广泛存在动植物体内清除超氧阴离子自由基酶,以植物的抗衰老密切相关。
根据SOD在光下抑制氮蓝四唑(NBT)在光下的还原作用来确定酶活性的大小。
在有氧化物质存在的情况下,核黄素可被光还原,被还原的核黄素在有仰的条件下极易再氧化而产生超氧阴离子自由基,超氧阴离子自由基可将氮蓝四唑还原为蓝色化合物,蓝色化合物在560nm处有最大光吸收,而SOD可清除超氧阴离子自由基,从而抑制蓝色化合物的形成。
思考题:1、在SOD测定中为什么要设暗中和照光两个对照管:暗中的对照管是用来分光光度计调零的,照光的对照管是为了说明没有SOD清除,光下会产生大量超要阴离子自由基。
2、甲硫氨酸的作用:提供还原力3、核黄素为什么要现配:在有氧的条件下,核黄素可被还原。
4、酶液提取中磷酸缓冲液的作用,为什么冰下进行:磷酸缓冲液为了保持酶活性,预冷降低酶活。
实验六 TTC法测定跟根活力实验原理:氯化苯四氮唑(TTC)溶于水中为无色溶液,但还原后成为红色不溶于水的三苯基甲月替(TTF),植物根系中脱氢酶可引起TTC还原,此反应可因加入琥珀酸、延胡索酸、苹果酸等加强。
在幼跟中,脱氢酶活性的强弱与根系活力成正比,所以可用脱氢酶活性代表根活力。
思考题:1、反应中硫酸、乙酸乙酯、连二亚硫酸钠(Na2S2O4)、琥珀酸起什么作用:硫酸的作用:杀死根尖终止反应,琥珀酸的作用:加强TTC的还原反应;连二亚硫酸钠的作用:用于还原TTC,制作标准曲线,乙酸乙酯作为有机溶剂。
2、取材时为什么要去靠近根尖的部分:根尖生命活动旺盛,富含脱氢酶。
实验七植物营养和缺素培养实验原理:用植物必须的矿质元素按一定比例配成溶液来培养植物来培养植物,可使植物正确生长发育,如缺少某一必需元素,则会表现出特异缺素症。
思考题:1、影响PH的元素,为什么要调节PH,影响元素:N、P、Mg、Fe;植物生长需要一定适宜的PH。
2、为什么说无土培养是研究矿质元素的重要方法:成分确定,可人为操作缺少或加入某一元素,不受土地条件限制,便于实验室操作。
3、比较溶液培养与沙基培养的优缺点:4、经行溶液培养有时会失败,主要原因是什么:5、描述各种缺素的主要症状:缺氮:植株矮、弱小、老叶叶片发黄、浅绿色;缺磷:叶暗绿或紫红色,成熟迟缓,糖运输受阻。
缺钾:缺绿症,叶缘失绿以致坏死成焦枯状—镶金边叶,叶片折断状弯曲,有时叶片上也有失绿至坏死斑点。
叶尖与叶缘枯黄,整叶卷曲。
缺钙(幼叶):叶尖典型钩状,近顶端坏死,生长点凋萎,叶缺绿,皱缩,坏死,根系发育不良。
缺镁:叶间失绿(脉间缺绿),条带状叶,有坏死斑点,有时呈紫红色。
缺铁(幼叶):幼叶缺绿变黄(影响叶绿素的合成),甚至整植株成黄白色。
实验八植物组织培养和烟草叶细胞组织培养的形态发生和器官形成实验原理:植物细胞具有全能性,即每个植物细胞包含能产生完整植株的全部遗传基因。
植物组织在离体状态下给以一定条件,则已经分化并停止生长的细胞,又能脱分化形成没有组织结构的细胞团(愈伤组织)。
在一定条件下,这些组织又能再分化形成根和芽。
培养基中的生长素和细胞分裂素的比例决定了根和芽的分化。
思考题:1、组织培养过程中应注意什么:进接种室前,必须把手洗干净,操作前用酒精棉擦手,操作的物件要杀菌充分(灼烧和酒精);操作时双手动作幅度不要太大,防止外界菌尘进入超净工作台;双手不要交叉,双手不要触及超净工作台台面;不要把与实验无关的物品带入接种室,以免引起污染。
2、在三种培养基上组织的生长状况有什么不同:MS,没有变化;MS+BA0.5+NAA2:形成愈伤组织;MS+BA0.5+NAA0.1:分化出芽。
实验九叶绿体色素的提取、分离及理化性质和含量的测定实验原理:植物体叶绿体色素是吸收太阳光能的重要物质,一般由叶绿素a、叶绿素b、胡萝卜素、叶黄素组成。
色素提取:利用叶绿体色素易溶于有机溶剂而不易溶于水的特性,可用丙酮、乙醇等有机溶剂提取。
纸层析分离:当溶剂不断地从纸上流过时,由于混合物中各成分在两相(即流动相和固体相)间具有不同的分配系数,所以各色素的移动速度不同,因而把样品混合物分开。
荧光现象:叶绿素分子吸收光量子,由基态上升到激发态,激发态不稳定,有回到基态的趋势。
当由第一单线态回到基态时发射的光称为荧光。
取代反应:叶绿素中的镁离子可以被氢离子所取代而形成褐色的去镁叶绿素,去镁叶绿素遇铜离子则称为铜代叶绿素,铜代叶绿素很稳定,可用于标本制作。
皂化反应:叶绿素是复杂酯,可与碱起皂化反应而形成甲醇、叶绿醇和叶绿酸盐。
叶绿体色素含量的测定:混合物在某一波长下的总光密度等于各相应波长下光密度的总和(光密度的加和性)测定叶绿体色素提取液中叶绿素a、叶绿素b、胡萝卜素的含量,只需测定该提取液在3个特定波长下的光密度OD,并根据各色素的比吸光系数,求出其浓度。
思考题:1、用无水乙醇或无水丙酮提取干植物体色素往往效果不佳,为什么:因为叶绿素与植物体内的蛋白结合很紧密,需要水解离和分离叶绿素。
2、在研磨提取叶绿素时加入碳酸钙、石英砂的作用:研磨时石英砂可增加摩擦力,使研磨充分省时,加碳酸钙以中和细胞中的酸,防止镁离子被氢离子取代。
3、纸层析后的结果是什么:最上端是橙黄色(胡萝卜素)、其次是鲜绿色(叶黄素)、再次蓝绿色(叶绿素a)、最后是黄绿色(叶绿素b),符合分子量由低到高的排序。
4、观察到的荧光现象的结果是:透射光是绿色,因绿光不被吸收而透过;而反射光为血红色荧光。
5、取代反应的实验结果:加入醋酸呈褐色,因为氢取代镁离子所致,加入醋酸铜并加热成蓝绿色,因为铜离子取代氢离子所致。
6、皂化反应的结果:溶液逐渐分为两层,下层是稀的乙醇溶液,其中有皂化叶绿素a、和b 盐;上层是苯溶液,其中有黄色的胡萝卜素和叶黄素。
7、叶绿素a、b在蓝光区也有吸收峰,能否用于叶绿素a、b的定量分析:不能,因为类胡萝卜素在此也有吸收峰,会影响定量测定。
叶绿素a、b:640~660nm红光区&430~450nm 蓝紫光区;类胡萝卜素:400~500nm蓝紫光区。
实验十丙二醛(MDA)含量的测定实验原理:植物器官衰老在逆境下遭受伤害时往往发生膜质过氧化,MDA是膜质过氧化的最终分解产物,其含量可反映植物遭受逆境伤害的程度。
MDA在酸性和高温条件下,可与硫代巴比妥酸(TBA)反应生成红棕色的三甲川,其最大吸收波长在532nm,测定时可用直线回归法和双组分分光光度计法排除可溶性糖的干扰。