离散数学(一阶逻辑等值演算与推理)
离散数学第四章 一阶逻辑基本概念
(1) 非空个体域DI (2) 对每一个个体常项ai, a i DI, 称作ai在I中的解释 (3) 对每一个函数符号fi, 设其为m元的, 元函数, 称作fi在I中的解释
fi 是DI上的m
是一个n元
(4) 对每一个谓词符号Fi, 设其为n元的, Fi 谓词, 称作Fi在I中的解释
25
实例
例4.8 给定解释I 如下: (a) 个体域 D=N (b) a 2 (c) f ( x, y) x y, g ( x, y) xy (d) 谓词 F ( x, y) : x y 说明下列公式在 I 下的含义, 并讨论其真值 (1) xF(g(x,a),x) x(2x=x) 假命题 假命题
合式公式又称谓词公式, 简称公式
21
量词的辖域
定义4.5 在公式xA和xA中, 称x为指导变元, A为相应量 词的辖域. 在x和x的辖域中, x的所有出现称为约束出现, A中不是约束出现的其他变项称为自由出现 例4.6 公式 x(F(x,y)yG(x,y,z)) x的辖域:(F(x,y)yG(x,y,z)), 指导变元为x y的辖域:G(x,y,z), 指导变元为y x的两次出现均为约束出现 y的第一次出现为自由出现, 第二次出现为约束出现 z为自由出现.
离散数学第二章一阶逻辑知识点总结
离散数学第二章一阶逻辑知识点总结数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中能够独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 别含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一具等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分不取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y x(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特殊要求,用全总个体域量词顺序普通别能随便颠倒否定式的使用考虑:①没有别呼吸的人②别是所有的人都喜爱吃糖③别是所有的火车都比所有的汽车快以上命题应怎么符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项基本上有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数依然项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n 是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 惟独有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有浮现都称为约束浮现,A中别是约束浮现的其他变项均称为是自由浮现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次浮现均为约束浮现,y与z均为自由浮现.闭式: 别含自由浮现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2 代入得A=x(x>1x>2) 假命题咨询: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式别一定全部包含解释中的4部分.闭式在任何解释下基本上命题,注意别是闭式的公式在某些解释下也也许是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满脚式:至少有一具成真赋值几点讲明:永真式为可满脚式,但反之别真谓词公式的可满脚性(永真性,永假性)是别可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等基本上p q的换实例,x(F(x)G(x)) 等别是p q 的代换实例.定理重言式的代换实例基本上永真式,矛盾式的代换实例基本上矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B 为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n} xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由浮现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有别犯错误的人(2) 别是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并讲明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并讲明理由.前束范式定义设A为一具一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为别含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))别是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式别惟一求公式的前束范式的办法: 利用重要等值式、置换规则、换名规则、代替规则举行等值演算.换名规则: 将量词辖域中浮现的某个约束浮现的个体变项及对应的指导变项,改成其他辖域中未曾浮现过的个体变项符号,公式中其余部分别变,则所得公式与原来的公式等值.代替规则: 对某自由浮现的个体变项用与原公式中所有个体变项符号别同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果基本上前束范式,讲明前束范式别惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张) 两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为啥?)或x y(F(x)G(y)) (为啥?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为啥?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这个地方用代替规则 x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y别能颠倒。
离散数学 第5章 一阶逻辑等值演算与推理
例5.2 证明 (1) x(A(x)∨B(x)) <≠> xA(x)∨xB(x) (2) x(A(x)∧B(x)) <≠> xA(x)∧xB(x) 其中A(x),B(x)为含x自由出现的公式。
证明
只要证明在某个解释下两边的式子不等值。
取解释I:个体域为自然数集合N; (1)取F(x):x是奇数,代替A(x); 取G(x):x是偶数,代替B(x)。 则x(F(x)∨G(x))为真命题, 而xF(x)∨ xG(x)为假命题。 两边不等值。
1?xmxfx??xmxfx2?xfxgx??xfxgx3?x?yfxgyhxy??x?yfxgyhxy4?x?yfxgylxy??x?yfxgylxy1?xmxfx??xmxfx?xmxfx??xmxfx??xmxfx??xmxfx2?xfxgx??xfxgx?xfxgx??xfxgx??xfxgx??xfxgx3?x?yfxgyhxy??x?yfxgyhxy?x?yfxgyhxy??x?yfxgyhxy??x?yfxgyhxy??x?yfxgyhxy4?x?yfxgylxy??x?yfxgylxy?x?yfxgylxy??x?yfxgylxy??x?yfxgylxy??x?yfxgylxy??x?yfxgylxy一前束范式与命题公式的前束范式1
(3) ┐xy(F(x)∧G(y)→H(x,y)) xy(F(x)∧G(y)∧┐H(x,y)) ┐xy(F(x)∧G(y)→H(x,y)) x┐(∀y(F(x)∧G(y)→H(x,y))) xy┐(┐(F(x)∧G(y))∨H(x,y)) xy(F(x)∧G(y)∧┐H(x,y))
例5.4 给定解释I如下: (a)个体域 D={2,3} (b)D中特定元素: a 2 (c)D上的特定函数(x)为:f (2) 3,f (3) 2。 (d)D的特定谓词
离散数学-03-一阶逻辑
3.1.4 一阶逻辑公式与分类
解释和赋值的直观涵义
例 公式x(F(x)G(x)) 指定1 个体域:全总个体域, F(x): x是人, G(x): x是黄种人 真/假命题? 假命题 指定2 个体域:实数集, F(x): x>10, G(x): x>0 真/假命题? 真命题
21
3.1.4 一阶逻辑公式与分类
离散数学(第3版) 屈婉玲 耿素云 张立昂 编著 清华大学出版社出版
第3章 一阶逻辑
上海大学 谢江
1
第3章 一阶逻辑
• 3.1 一阶逻辑基本概念 • 3.2 一阶逻辑等值演算
2
3.1 一阶逻辑基本概念
• 3.1.1 命题逻辑的局限性 • 3.1.2 个体词、谓词与量词
– 个体常项、个体变项、个体域、全总个体域 – 谓词常项、谓词变项 – 全称量词、存在量词
n元谓词P(x1, x2,…, xn): 含n个个体变项的谓词, 是定义在 个体域上, 值域为{0,1}的n元函数 一元谓词: 表示事物的性质 多元谓词(n2): 表示事物之间的关系 0元谓词: 不含个体变项的谓词,即命题常项或命题变项 0元谓词是命题? 命题均可表示成0元谓词?
8
3.1.2 个体词、谓词与量词
• 3.1.3 一阶逻辑命题符号化
3
3.1 一阶逻辑基本概念(续)
• 3.1.4 一阶逻辑公式与分类
– 一阶语言L (字母表、项、原子公式、合式 公式) – 辖域和指导变元、约束出现和自由出现 – 闭式 – 一阶语言L 的解释 – 永真式、矛盾式、可满足式 – 代换实例
4
3.1.1 命题逻辑的局限性
11
3.1.3 一阶逻辑命题符号化
一阶逻辑命题符号化
离散数学 第四章 一阶逻辑基本概念
18
§4.1 一阶逻辑命题符号化
(3)没有人登上过木星。 令H(x):x登上过木星, M(x):x是人。命题符号化为 ┐x(M(x)∧H(x))。 命题真值为真。 (4)在美国留学的学生未必都是亚洲人。 令F(x):x是在美国留学的学生,G(x):x是亚洲人。符号化 ┐x(F(x)→G(x)) 命题真值为真。
个体词、谓词和量词,以期达到表达出个体与总体的内在 联系和数量关系。
4
§4.1 一阶逻辑命题符号化
一阶逻辑命题符号化的三个基本要素
个体词
谓词
量词
5
个体词及相关概念
个体词:指所研究对象中可以独立存在的具体的 或抽象的客体。
举例
命题:电子计算机是科学技术的工具。 个体词:电子计算机。 命题:他是三好学生。 个体词:他。
个体域为全总个体域
令 M(x):x是人 , F(x):x呼吸 , G(x):x用左手写字
能否将”凡人都呼吸”符号化为 (∀x) (M(x)∧F(x) ) ? 不可以。 (∀x) (M(x)∧F(x) )表示宇宙中的万物都是人并 且会呼吸 能否将”有的人用左手写字”符号化为 (x)( M(x)→G(x) ) ? 不可以。(x)( M(x)→G(x) ) 表示在宇宙万物中存在某个 个体x,”如果x是人则x会用左手写字”
6
个体词及相关概念
个体常项:表示具体或特定的客体的个体词,用小写字母 a, b, c,…表示。 个体变项:表示抽象或泛指的客体的个体词,用x, y, z,… 表示。 个体域(或称论域):指个体变项的取值范围。 可以是有穷集合,如{a, b, c}, {1, 2}。 可以是无穷集合,如N,Z,R,…。 全总个体域(universe)——宇宙间一切事物组成 。
《离散数学》一阶逻辑
关于存在量词的:
x(A(x)B)xA(x)B x(A(x)B)xA(x)B
x(A(x)B)xA(x)B
x(BA(x))BxA(x)
注意量词的变化
注意量词的变化
33
证明:设D={a1,a2,…,an}
(1)x(A(x)∨B) (A(a1)∨B) ∧(A(a2)∨B)∧… ∧(A(an)∨B) (A(a1)∧A(a2)∧…∧A(an)) ∨B xA(x)∨B
设D={a1,a2,…,an} xA(x)A(a1)A(a2)…A(an) xA(x)A(a1)A(a2)…A(an)
31
量词否定等值式
❖定理2.1 量词否定等值式
▪ xA(x) xA(x)
▪ xA(x) xA(x)
❖证明:设D={a1,a2,…,an}
▪
xA(x)
A(a(A1)(∨a1)∧AA(a(a2)2∨)∧……∨∧AA(a(na)n))
10
明确个体域
例2.(1) 凡人都要死的。( 2) 有人活百岁以上
❖ 考虑个体域D为人类集合
▪ F(x): x是要死的。 x F(x)
个体域不同,符号化不同
▪ G(x): x活百岁以上。 x G(x)
❖ 考虑个体域为全总个体域
▪ 对于所有个体而言,如果它是人,则它是要死的。引入新谓词 M(x): x是人。
(此点以后再讨论); ❖ 当个体域为有限集时,如果D={a1,a2,…an},由量词的意义可以看出,对于
任意的谓词A(x), 都有:
▪ xA(x) A(a1)∧A (a2) ∧…∧A (an); ▪ xA(x) A (a1)∨A (a2) ∨…∨A (an).
13
嵌套量词
❖多个量词同时出现时,不能随意颠倒他们的顺序。 ❖对任意的x,存在着y,使得 x+y=5.
第五章 一阶逻辑等值演算与推理
本章说明
本章的主要内容 –一阶逻辑等值式与基本等值式 –置换规则、换名规则、代替规则 –前束范式
–一阶逻辑推理理论
本章与其他各章的关系 –本章先行基础是前四章
–本章是集合论各章的先行基础
本章主要内容
5.1 一阶逻辑等值式与置换规则
5.2 一阶逻辑前束范式 5.3 一阶逻辑的推理理论 主要内容 作 业
一阶逻辑中的一些基本而重要等值式
代换实例
消去量词等值式
量词否定等值式 量词辖域收缩与扩张等值式 量词分配等值式
代换实例---命题公式的推广
由于命题逻辑中的重言式的代换实例都是一阶逻辑中的永 真式,因而第二章的16组等值式模式给出的代换实例都是 一阶逻辑的等值式的模式。 例如:
x(A(x)∧B(x))x A(x)∧ x B(x)
谓词演算蕴含式 xA(x)∨xB(x) x(A(x)∨B(x))
x(A(x)∧B(x)) x A(x)∧ x B(x)
多个量词间的次序排列等值式。
多个量词同时出现时,其顺序是至关重要的.
(1) xyA( x, y) yxA( x, y ) (2) xyA( x, y ) yxA( x, y )
等值式的定义
定义5.1 设A,B是一阶逻辑中任意两个公式,若 AB是永真 式,则பைடு நூலகம்A与B是等值的。 记做AB,称 AB 是等值式。
例如:
x(F(x) G(x)) x(F(x) G(x))
说 明
判断公式A与B是否等值,等价于判断公式AB是否 为永真式。 谓词逻辑中关于联结词的等值式与命题逻辑中相关 等值式类似。
一阶逻辑中的置换规则与命题逻辑中的置换规则形式 上完全相同,只是在这里A,B是一阶逻辑公式。 换名规则:设A为一公式,将A中某量词辖域中某约束变项的 所有出现及相应的指导变元改成该量词辖域中未曾出现过的 某个体变项符号,公式的其余部分不变,设所得公式为A', 则A'A。
离散数学PPT课件
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
离散数学-第1章
练习1解答
提示: 分清复合命题与简单命题 分清相容或与排斥或 分清必要与充分条件及充分必要条件
答案: (1) 是简单命题
(2) 是合取式
(3) 是析取式(相容或)(4) 是析取式(排斥或)
设 p: 交通阻塞,q: 他迟到
(5) pq,
(6) pq或qp
(7) qp 或pq, (8) qp或pq
假命题 真命题 不是命题 不是命题
不是命题 不是命题
命题,但真值现在不知道
5
命题分类
命题分类:简单命题(也称原子命题)与复合命题 简单命题符号化
用小写英文字母 p, q, r, …, pi, qi, ri (i1)表示简单命题
用“1”表示真,用“0”表示假 例如,令
p: 2是有理数,则 p 的真值为0,
p q p pq (pq) (pq)q
00 1 1
0
0
01 1 1
0
0
10 0 0
1
0
11 0 1
0
0
成假赋值:00,01,10,11; 无成真赋值
24
公式的类型
定义1.10 (1) 若A在它的任何赋值下均为真, 则称A为重言式或永真式; (2) 若A在它的任何赋值下均为假, 则称A为矛盾式或永假式; (3) 若A不是矛盾式, 则称A是可满足式.
30
练习3解答
(1) pr(qp)
pqr
qp (qp) pr(qp)
000
1
0
0
001
1
0
0
010
0
1
0
011
0
1
0
100
1
0
0
101
《离散数学》教学大纲
《离散数学》教学大纲(Discrete Mathematics)适用专业:电子信息类课程类别:学科基础课课程学时:48课程学分:3.0先修课程:高等数学、线性代数等一、课程简介离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支,是计算机科学中基础理论的核心课程,是计算机科学与技术的支撑学科。
它在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能与机器人、数据库、网络、计算机图形学、算法设计与分析、理论计算机科学基础等必不可少的先行课程。
通过离散数学的学习,不但可以掌握离散结构的描述工具和处理方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
二、教学目的与任务离散数学是一门培养学生缜密思维、严格推理,具有综合归纳分析能力的课程。
通过本课程的学习,使学生有一定的严格逻辑推理与抽象思维能力,掌握离散量的处理及运算技能,能够将离散数学应用到解决计算机技术中的实际问题中。
不仅能为学生奠定计算机科学的专业基础,并且能为将后续课程的学习及将来开发软、硬件技术及研究、应用提供有力的工具。
三、课程内容第1章命题逻辑的基本概念1.1命题与联结词1.2命题公式及其赋值第2章命题逻辑等值演算2.1等值式2.2析取范式与合取范式* 2.3联结词的完备集* 2.4可满足性问题与消解法第3章命题逻辑的推理理论3.1推理的形式结构3.2自然推理系统P3.3消解证明法第4章一阶逻辑基本概念4.1一阶逻辑命题符号化4.2一阶逻辑公式及其解释第5章一阶逻辑等值演算与推理5.1一阶逻辑等值式与置换规则5.2一阶逻辑前束范式* 5.3一阶逻辑的推理理论第6章集合代数6.1集合的基本概念6.2集合的运算6.3有穷集的计数6.4集合恒等式第7章二元关系7.1有序对与笛卡儿积7.2二元关系7.3关系的运算7.4关系的性质7.5关系的闭包7.6等价关系与划分7.7偏序关系第8章函数8.1函数的定义与性质8.2函数的复合与反函数* 8.3双射函数与集合的基数* 8.4一个电话系统的描述实例第14章图的基本概念14.1图14.2通路与回路14.3图的连通性14.4图的矩阵表示* 14.5图的运算第15章欧拉图与哈密顿图15.1欧拉图15.2哈密顿图15.3最短路问题、中国邮递员问题与货郎担问题第16章树16.1无向树及其性质16.2生成树16.3根树及其应用三、课程学时分配、教学内容与教学基本要求四、教学方法与教学手段说明该课程教学方式主要有:课堂教学、交互学习、课后作业。
离散数学第1讲
30
第一章 命题逻辑基本概念——第1讲
以上5种最基本、最常用、最重要的联结词可以组 成一个集合{,∨,∧ ,ר,},成为一个联 结词集,其运算的优先级为:,∨,∧,ר,, 对于同一级者,先出现者先运算。参见课本 第9页,基本复合命题的真值表。 例1.7:令p:北京比天津人口多。 q:2+2=4。 r:乌鸦是白色的。 求下列符合命题的真值: (1)((רp∧q)∨(p∧q))r (2)(q∨r)(pרr)
1) 这朵花多好看呀! 不是命题,感叹句 2) 请你关上门! 3) 全体立正!
不是命题,祈使句 不是命,祈使句
4) 明天是否开大会? 不是命题,疑问句
5) 你听懂了吗?
不是命题,疑问句
11
第一章 命题逻辑基本概念——第1讲
例:凡是悖论都不是命题。
1) 我正在说谎。
不是命题,悖论
由真推出假,又由假推出真的陈述句称为悖论, 都不是命题。
命题的分类
简单/原子命题:由不能再分解为更简单的 陈述句的陈述句构成。 如上例中的命题。 复合命题:由简单命题通过联结词联结而 成的陈述句。 如下例。
16
第一章 命题逻辑基本概念——第1讲
例:将下面这段陈述句中所出现的原子命题符号化,并指出 它们的真值,然后再写出这段陈述。 2 是有理数是不对的;2是偶素数;2或4是素数;如果2 是素数,则3也是素数;2是素数当且仅当3也是素数。 解:这段陈述句中出现5个原子命题,将它们分别符号化为: p: 是有理数; q:2是素数; r:2是偶数; 2 s:3是素数; t:4是素数。 将原子命题的符号代入上面陈述中: 非p; q并且r; 如果q,则s; q当且仅当s。(半形式 化的语言)。 形式语言:完全由符号所构成的语言。
离散数学结构 第5章 一阶逻辑等值演算与推理复习
第5章一阶逻辑等值演算与推理主要内容1. 等值式与基本的等值式①在有限个体域中消去量词等值式②量词否定等值式③量词辖域收缩与扩张等值式④量词分配等值式2. 基本规则①置换规则②换名规则③代替规则3. 前束范式4. 推理理论①推理的形式结构②推理正确③构造证明④新的推理规则全称量词消去规则,记为UI全称量词引入规则,记为UG存在量词消去规则,记为EI存在量词引入规则,记为EG学习要求1. 深刻理解重要的等值式,并能熟练地使用它们。
2. 熟练地使用置换规则、换名规则和代替规则。
3. 准确地求出给定公式的前束范式(形式可不唯一)。
4. 正确地使用UI、UG、EI、EG规则,特别地要注意它们之间的关系。
5. 对于给定的推理,正确地构造出它的证明。
5.1 一阶逻辑等值式与置换规则定义5.1设A,B是一阶逻辑中任意两个公式,若A B是永真式,则称A与B是等值的。
记做A B,称A B是等值式。
谓词逻辑中关于联结词的等值式与命题逻辑中相关等值式类似。
下面主要讨论关于量词的等值式。
一、基本等值式第一组代换实例由于命题逻辑中的重言式的代换实例都是一阶逻辑中的永真式,因而第二章的16组等值式给出的代换实例都是一阶逻辑的等值式的模式。
例如:xF(x)┐┐xF(x)x y(F(x,y)→G(x,y))┐┐x y(F(x,y)→G(x,y))等都是(2.1)式的代换实例。
又如:F(x)→G(y)┐F(x)∨G(y)x(F(x)→G(y))→zH(z)┐x(F(x)→G(y))∨zH(z))等都是(2.1)式的代换实例。
第二组消去量词等值式设个体域为有限域D={a1,a2,…,a n},则有(1)xA(x)A(a1)∧A(a2)∧…∧A(a n)(2)xA(x)A(a1)∨A(a2)∨…∨A(a n) (5.1)第三组量词否定等值式设A(x)是任意的含有自由出现个体变项x的公式,则(1)┐xA(x)x┐A(x)(2)┐xA(x)x┐A(x) (5.2)(5.2)式的直观解释是容易的。
离散数学一阶逻辑等值演算
在一阶逻辑中,推理系统还包括量词和谓词,量词 用于描述个体的数量,谓词则用于描述个体的性质 。
推理系统的构造
构造推理系统需要确定系统的 公理和推理规则。
公理的选择应确保系统的一致 性和完备性,即从公理推导出 的结论不与已知事实相矛盾, 并且所有需要的结论都能从公 理推导出来。
离散数学一阶逻辑等值演算的展望
形式化方法的普及和应用
随着计算机科学的不断发展,离散数学一阶逻辑等值演算的形式化方法将更加普及和应 用,成为解决复杂问题的关键工具之一。
人工智能与离散数学的深度融合
未来的人工智能系统将更加依赖于离散数学一阶逻辑等值演算的形式化方法,以实现更 加智能化的推理和决策。
新兴领域的应用拓展
离散数学一阶逻辑等值演算
目
CONTENCT
录
• 离散数学概述 • 一阶逻辑基础 • 等值演算 • 推理系统 • 应用实例 • 离散数学一阶逻辑等值演算的发展
趋势与展望
01
离散数学概述
定义与特点
定义
离散数学是研究离散对象(如集合、图、树、逻辑等)的数学分 支的总称。
特点
离散数学主要关注离散对象的结构、性质和关系,通常不涉及连 续的量或函数。
离散概率论是研究离散随机事件的数学分支,例如扔骰子、抽签等。一阶逻辑等值演算在离散概率论 中也有着重要的应用。
利用一阶逻辑等值演算,可以描述随机事件之间的关系和性质,例如计算事件的概率、推导事件的独 立性等。这些描述方法有助于深入理解随机事件和概率分布,为解决实际问题提供有力支持。
06
离散数学一阶逻辑等值演算的发展趋势与展望
离散数学 第二章:一阶逻辑
(2) xF(x) G(x, y);
(3) xyR(x, y) L(y, z) xH(x, y).
2.闭式
定义6. 设A为任一公式,若A中无自由出现的个体变项,则称A是 封闭的合式公式,简记闭式.
例: xF(x) G(x),xyF(x) G(x, y) 闭式, 但 xF(x) G(x, y),zyL(x, y, z) 不是闭式.
(1)所有的人都要死的. (2)有的人活百岁以上.
全称量词:一切,所有,任意. 用 表示.
1.量词
x:表示对个体域中的所有个
xF(x)体:表. 示个体域中的所有个体都具有性质F.
存在量词:存在着,有一个,至少有一个. 用 表示.
x:表示存在个体域里的个体.
xF ( x):表示存在着个体域中的个体具有性质F.
(2)xR(x) G(x), 其中 G(x): x是整数.
3) 同2).
例3. 将下面命题符号化. (1)对所有的x ,均有 x2-1=(x+1)(x-1). (2)存在x,使得 x+5=2.
要求: 1)个体域为自然数集合. 2)个体域为实数集合.
解:1) 不用引入特性谓词.
(1)xF(x), 其中 F(x): x2-1=(x+1)(x-1). 真命题
(3) xF(x) yF(y) L(x, y),
其中 F(x): x是自然数, L(x,y): y是 x的先驱数.
§2.2 一阶逻辑合式公式及解释
一、合式公式
1.字母表 定义1.字母表如下: (1)个体常项: a,b,c,… (2)个体变项: x,y,z,… (3)函数符号: f,g,h,… (4)谓词符号: F,G,H,…
一阶逻辑的等值演算
一阶逻辑的等值演算1.基本等值试↔是永真式,则称A与B等值,记定义1.1 设A,B是任意两个一阶逻辑公式,若A B≡,并称该记号为等值式。
为A B在一阶逻辑等值演算中,我们将应用如下两组基本等值式。
15组命题等值式:可以用第3讲所介绍的15组等值定律描述。
不过在这里,等值定律中变元取值为任何一阶逻辑公式。
显然,用一阶公式代入双重否定律,所得的两个一阶公式是等值的。
例如,证明:4组量词等值式:1)消去量词证明:2)量词否定证明:3)量词辖域收缩与扩张证明:4)量词分配证明:2.等值演算规则应用如下规则对公式进行变形,可以得到与原公式等值的公式。
1)置换规则:与命题逻辑的置换规则类似,一阶逻辑公式的任何子公式可以替换为任何与之等值的公式,替换后的公式与原公式是等值的。
2)改名规则:将公式中的指导变元及其在辖域中的约束出现统一改名为新的变元,即不在该辖域中出现的变元。
易知,改名后的公式与原公式是等值的。
例如3)代换规则:将公式中某自由变元的所有出现统一替换为某个新变元,即不在该公式中出现的变元,则所得公式与原公式是等值的。
注:这里代入规则比其它教材的代入规则简单得多,见方世昌所著《离散数学》第45页。
例2.1 第69页例5.1。
例2.2第72页例5.5。
3.前束范式定义3.1 前束范式。
定理3.2(前束范式存在定理)任何一阶逻辑公式都存在等值的前束范式。
例3.3 第73页例5.6.练习3.4在例5.7中填写每一步等值演算的依据。
例3.5 第74页例5.8.。
离散数学一阶逻辑.ppt
xA(x) A(a1)∧A(a2) ∧…∧A(an); xA(x) A(a1)∨A(a2) ∨…∨A(an).
多个量词同时出现时,不能随意颠倒他们的顺序。
15
例题
对任意的x,存在着y,使得 x+y=5.
H(x,y)表示x+y=5 可符号化成:x y H(x,y) 不可符号化成: y x H(x,y)
P37. 例题2.2、2.3、2.4、2.5
16
第二章 一阶逻辑
第2章 一阶逻辑
2.1 一阶逻辑基本概念 2.2 一阶逻辑合式公式及解释 2.3 一阶逻辑等值式
17
2.2 一阶逻辑公式及解释
合式公式(简称公式) 个体变项的自由出现和约束出现 解释与分类
18
一阶逻辑合式公式采用字母表
个体词:是可以独立存在的客体. 个体常项:用小写的英文字母
a,b,c,d…. 个体变项:用小写的英文字母
x,y,z…. 个体域:个体的取值范围. 全总个体域:指宇宙中的一切事物.
7
2.谓词的相关概念
谓词: 表示个体词性质或相互之间关系的词
谓词常项:F(a):a是人 谓词变项:F(x):x具有性质F
在解释N下,下面那些公式为
真命题;
真?那些公式为假?
(3) x+y=y+z
(1)xF(g(x,a),x);
真值不确定,不是命题.
(2)xy(F(f(x,a),y)→F(f(y,a) ,x));
(3)F(f(x,y),f(y,z))
30
公式的分类
设A为一公式(谓词公式) 如果A在任何解释下都是真的, 称A为 逻辑有效式(或永真式); 如果A在任何解释下都是假的, 称A为 矛盾式(或永假式); 若至少存在一个解释使A为真, 则称A 是可满足式(协调式).
离散数学数学教学大纲
离散数学数学教学大纲一、课程基本信息课程名称:离散数学课程类别:专业基础课学分:X总学时:X先修课程:高等数学、线性代数二、课程性质与目标离散数学是现代数学的一个重要分支,是计算机科学与技术专业的核心基础课程之一。
它所研究的对象是离散量的结构和相互关系,其内容涵盖了数理逻辑、集合论、代数结构、图论等多个领域。
通过本课程的学习,学生将掌握离散数学的基本概念、基本理论和基本方法,培养抽象思维能力、逻辑推理能力和解决实际问题的能力,为后续学习计算机专业课程如数据结构、算法设计与分析、数据库原理等打下坚实的数学基础。
三、课程内容与教学要求(一)数理逻辑1、命题逻辑命题与联结词:理解命题的概念,掌握常见的联结词(如“且”“或”“非”“蕴含”“等价”)的含义和真值表。
命题公式与赋值:掌握命题公式的定义和构造方法,能够计算命题公式在给定赋值下的真值。
命题逻辑的等值演算:熟悉常见的命题逻辑等值式,能够运用等值演算进行命题公式的化简和证明。
命题逻辑的推理理论:掌握推理的形式结构和推理规则,能够进行简单的命题逻辑推理。
2、一阶逻辑一阶逻辑基本概念:理解个体词、谓词、量词的概念,掌握一阶逻辑公式的定义和解释。
一阶逻辑等值演算与推理:熟悉一阶逻辑的等值式和推理规则,能够进行一阶逻辑的化简和推理。
(二)集合论1、集合的基本概念:掌握集合的定义、表示方法和集合之间的关系(如子集、真子集、相等)。
2、集合的运算:熟练掌握集合的交、并、补、差等运算,能够用文氏图表示集合运算的结果。
3、集合的基数:了解集合基数的概念,掌握有限集和无限集的区别。
4、幂集:掌握幂集的定义和计算方法。
(三)代数结构1、二元运算及其性质:理解二元运算的概念,熟悉常见的二元运算(如加法、乘法),掌握二元运算的性质(如封闭性、交换律、结合律、分配律等)。
2、代数系统:掌握代数系统的定义和构成要素,能够判断给定的系统是否为代数系统。
3、群:理解群的定义和性质,掌握群的判定方法,了解循环群和置换群的基本概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本等值式
第二组 (1) 消去量词等值式 设D ={a1, a2, … , an} ① xA(x) A(a1)∧A(a2)∧…∧A(an) ∧ ∧ ∧ ② xA(x) A(a1)∨A(a2)∨…∨A(an) ∨ ∨ ∨
例 设个体域 A={a,b}, 公式
(x)P(x) ∧(x)S(x)在A上消去量词后应为 上消去量词后应为: 在 上消去量词后应为 P(a)∧P(b)∧(S(a)∨S(b)) ∧ ∧ ∨
5
xA(x) xA(x)的证明 ① 的证明
对于任意给定的解释I, 使xA( x)为真, 为真, 对于任意给定的解释 ,若I使 为真 为假. 则I使xA(x)为假.则必有某一个 0∈D, 使 为假 则必有某一个x , A(x0) 是假命题,于是A(x0) 是真命题,即 是假命题,于是 是真命题, 下是真命题, 使 为真. xA(x)在I下是真命题,故I使xA(x)为真. 在 下是真命题 为真 为假, 使 为真. 若I使 使xA(x)为假,则I使xA(x)为真.即 为假 为真 对任意的x∈ , 是真命题. 对任意的 ∈D,有A(x)是真命题.也就是对 是真命题 任意的x∈ , 是假命题, 任意的 ∈D,A(x)是假命题,于是xA(x) 是假命题 于是 是假命题, 使 为假. 是假命题,故I使xA(x)为假. 为假
8
量词否定等值式( 量词否定等值式(续)
设个体域中的客体变元为a 设个体域中的客体变元为 1,a2,…,an,则
( A(a1) ∧∧ A(an )) A(a1 ) ∨∨ A(an )
xA(an )) A(a1 ) ∧∧ A(an )
16
约束变元的换名
约束变元的换名规则: 约束变元的换名规则: 1) 换名范围 量词中的指导变元和作用域中出 换名范围:量词中的指导变元和作用域中出 现的该变元.公式中其余部分不变 公式中其余部分不变. 现的该变元 公式中其余部分不变 2) 要换成作用域中没有出现的变元名称 要换成作用域中没有出现的变元名称.
第五章 一阶逻辑等值演算与推理
一阶逻辑等值式与基本的等值式 置换规则,换名规则, 置换规则,换名规则,代替规则 前束范式 自然推理系统N 自然推理系统 L及其推理规则
1
5.1 一阶逻辑等值式与置换规则
定义5.1 设A, B是两个谓词公式 如果 B 是两个谓词公式, 定义 是两个谓词公式 如果A 是永真式, 则称A与 等值 记作A 等值, 是永真式 则称 与B等值 记作 B, 并称 AB是等值式 是等值式. 由定义显然可以看出:公式A, 等值的充 由定义显然可以看出:公式 ,B等值的充 要条件是:对A,B的任意解释 ,A,B在I 要条件是: , 的任意解释I, , 在 的任意解释 下的真值相同. 下的真值相同. 因为对任意公式A, ,在解释I下 因为对任意公式 ,B,在解释 下,A,B就 , 就 是两个命题, 是两个命题,所以命题逻辑中给出的基本等 价式,在谓词逻辑中仍然成立. 价式,在谓词逻辑中仍然成立.
7
实例
(2) 不是所有的人都爱吃面包 是人, 解 令F(x):x是人,G(x):爱吃面包 : 是人 :爱吃面包. x(F(x)→G(x)) 或 x(F(x)∧ ∧G(x)) → ∧ x(F(x)→G(x)) → x(F(x)→G(x)) → x(F(x)∨G(x)) ∨ ∧G(x)) x(F(x)∧ ∧ 量词否定等值式 置换 置换
10
① x(A(x)∨B) xA(x)∨B的证明 ∨ ∨ 的证明
的一个解释. 设I是A(x)和B的一个解释.若x(A(x)∨B)在 是 和 的一个解释 ∨ 在 I下取 值,则在 下,对任意 ∈D,A(x)∨B 下取1值 则在I下 对任意x∈ , 下取 ∨ 都是真命题. 是真命题, 都是真命题.若B是真命题,则xA(x)∨B是 是真命题 ∨ 是 真命题; 是假命题, 真命题;若B是假命题,则必然是对每个 是假命题 x∈D,A(x)都是真命题,故xA(x)取1值. 都是真命题, xA(x)取1值 ∈D,A(x)都是真命题 所以 下取1值 所以xA(x)∨B在I下取 值. ∨ 在 下取 下取0值 则必有一个x 若x(A(x)∨B)在I下取 值,则必有一个 0∈D, ∨ 在 下取 , 下取0值 为假命题, 使A(x0) ∨B在I下取 值.故A(x0)为假命题, 在 下取 为假命题 并且B为假命题 所以 为假命题. 并且 为假命题.所以xA(x)取0值.从而 取 值 下取0值 xA(x)∨B在I下取 值. ∨ 在 下取
的一个解释. 设I是A(x)和B的一个解释.若x(A(x)∨B)在I 是 和 的一个解释 ∨ 在 下取1值 则在I下 存在x 下取 值,则在 下,存在 0 ∈D,A(x0)∨B是 , ∨ 是 真命题. 是真命题, 真命题.若B是真命题,则xA(x)∨B是真命 是真命题 ∨ 是真命 是假命题, 是真命题, 题;若B是假命题,则必然有 是假命题 则必然有A(x0) 是真命题, 下取1值 故xA(x)取1值.所以xA(x)∨B在I下取 值. 取 值 ∨ 在 下取 若x(A(x)∨B)在I下取 值,则在I下对任意的 ∨ 在 下取0值 则在 下对任意的 下取 x∈D,使A(x)∨B在I下取 值.故A(x)和B都 下取0值 ∈ , ∨ 在 下取 和 都 为假命题, 下取0值 为假命题,所以xA(x)∨B在I下取 值. ∨ 在 下取
2
基本等值式
命题逻辑中16组基本等值式的代换 第一组 命题逻辑中 组基本等值式的代换 实例 例如,xF(x) xF(x), 例如, →yG(y) xF(x)∨ ∨yG(y) 等 xF(x)→ → ∨ 判断下列公式的类型: 判断下列公式的类型: (1)xP(x) →(xyQ(x,y) → xP(x)) 永真式 ) (2)xP(x) →(xP(x) ∨ yG(y)) ) 永真式 (3) (P(x,y) →Q(x,y)) ∧ Q(x,y) ) 矛盾式
19
实例
设个体域D={a,b,c}, 消去下述公式中的量 例3 设个体域 词: (1) xy(F(x)→G(y)) (2) xyF(x,y) → 解 xy(F(x)→G(y)) → (y(F(a)→G(y)))∧(y(F(b)→G(y))) → ∧ → ∧(y(F(c)→G(y))) → ((F(a)→G(a))∨(F(a)→G(b))∨(F(a)→G(c))) → ∨ → ∨ → ∧((F(b)→G(a))∨(F(b)→G(b))∨(F(b)→G(c))) → ∨ → ∨ → ∧((F(c)→G(a))∨(F(c)→G(b))∨(F(c)→G(c))) → ∨ → ∨ →
11
基本等值式
关于存在量词的: 关于存在量词的: ① x(A(x)∨B) xA(x)∨B ∨ ∨ ② x(A(x)∧B) xA(x)∧B ∧ ∧ ③ x(A(x)→B) xA(x)→B → → →xA(x) ④ x(B→A(x)) B→ → →
12
① x(A(x)∨B) xA(x)∨B的证明 ∨ ∨ 的证明
例:
x(P(x) → R(x, y)) ∧ Q(x, y) z(P(z) → R(z, y)) ∧ Q(x, y) y(P( y) → R( y, y)) ∧ Q(x, y) z(P(z) → R(x, y)) ∧ Q(x, y)
17
自由变元的代替
自由变元代替的规则: 自由变元代替的规则: 1) 对该自由变元每一处进行代替 对该自由变元每一处进行代替. 2) 代替的变元与原公式中所有变元名称不能 相同. 相同
13
基本等值式
(4) 量词分配等值式 ∧xB(x) ① x(A(x)∧B(x)) xA(x)∧ ∧ ∧ ∨xB(x) ② x(A(x)∨B(x)) xA(x)∨ ∨ ∨ 注意: 注意:对∨,对∧无分配律
14
∧xB(x) ① x(A(x)∧B(x)) xA(x)∧ ∧ ∧
的一个解释. 设I是A(x)和B(x)的一个解释.若 是 和 的一个解释 ∧xB(x)在I下取 值,则在解释 下, 下取1值 则在解释I下 xA(x)∧ ∧ 在 下取 对任意x∈ , 都是真命题, 对任意 ∈D,A(x),B(x)都是真命题,所以 , 都是真命题 A(x)∧B(x)是真命题,即对任意 ∈D, 是真命题, ∧ 是真命题 即对任意x∈ , A(x)∧B(x)是真命题,所以x(A(x)∧B(x))在I 是真命题, ∧ 是真命题 所以 ∧ 在 下取1值 下取 值. ∧xB(x)在I下取 值,则xA(x)为 下取0值 若xA(x)∧ ∧ 在 下取 为 为假, 为假, 假,或xB(x)为假,若xA(x)为假,必有一 为假 为假 个x0∈D,使A(x0) 在I下取 值,所以A(x0) , 下取0值 所以 下取 为假命题, ∧B(x0)为假命题,所以x(A(x)∧B(x))在I下 为假命题 所以 ∧ 在下 为假, 取0值.若xB(x)为假,同理可证. 值 为假 同理可证.
4
基本等值式
(2) 量词否定等值式 xA(x) xA(x) ① xA(x) xA(x) ②
例
设论域为人, 来上课, 设论域为人,P(x): x来上课,P(x): x没来上课 来上课 没来上课 xP(x):所有人都来上课 所有人都来上课 xP(x):不是所有人都来上课 不是所有人都来上课 xP(x): 有人没来上课 xP(x):有人来上课 有人来上课 xP(x):没有人来上课 没有人来上课 xP(x): 所有人都没来上课
例:
x(P( y) ∧ R(x, y)) x(P(z) ∧ R(x, z))
18
实例
将公式化成等值的不含既有约束出现, 例2 将公式化成等值的不含既有约束出现, 又有自由出现的个体变项: 又有自由出现的个体变项 →yG(x,y,z)) x(F(x,y,z)→ → →yG(x,y,z)) 解 x(F(x,y,z)→ → →tG(x,t,z)) 换名规则 x(F(x,y,z)→ → xt(F(x,y,z)→G(x,t,z)) 辖域扩张等值式 → 或者 →yG(x,y,z)) x(F(x,y,z)→ → →yG(x,y,z)) 代替规则 x(F(x,u,z)→ → xy(F(x,u,z)→G(x,y,z)) 辖域扩张等值式 →