基本初等函数一思维导图

合集下载

740- 基本初等函数

740- 基本初等函数
变量间的 相互关系
用样本估计总体
简 单 随 机 抽 样
系 统 抽 样
分 层 抽 样
Байду номын сангаас
用样本 的频率 分布估 计总体
用样本 的数字 特征估 计总体 的数字 特征
线 性 回 归 分 析
《数学3》第3章“概率”的知识结构 图: 随机事件 频率
概率,概率的 意义和性质 应 用 概 率 解 决 实 际 问 题
化特 殊
一次函数 指数函数
类比
等差数列 等比数列
古典概型
几何概型
随机数与随机模拟
组织结构图
某校学生会的组织结构图: 学生会 生 活 部 学 习 部 宣 传 部 总经理 专家办公室 体 育 部 文 艺 部
某公司的组织结构图: 总工程师
咨 询 部
监 理 部
信 息 部
财 务 计 划 部
开 发 部
后 勤 部
编 辑 部
通过结构图理解数列:
函数列 推 广 函数 类比 数列 特 殊 化 类比 实数
§4.2 结构图
邹城二中 饶兴国
知识结构图
整数指数幂
《数学1》第2章“基本初等函数(Ⅰ)”
的知识结构图: 定义 指数 对数 运算性质
有理指数幂
无理指数幂
定义 指数函数 图象与性质 对数函数
定义 图象与性质
《数学3》第2章“统计”的知识结构 图: 收集数据 (随机抽样) 整理、分析数据 估计、判断

人教版高中数学必修一章节思维导图全套

人教版高中数学必修一章节思维导图全套
质》思维导图
《3.3 幂函数》思维导图
《4.1 指数的运算》思维导图
《4.2指数函数》思维导图
《4.3 对数的运算》思维导图
《4.4 对数函数》思维导图
《4.5 函数的应用(二)》思维导图
《5.1 任意角和弧度制》思维导图
《5.2 三角函数的概念》思维导图
《5.3 诱导公式》思维导图
《5.4 三角函数的图象与性质》思维导图
《5.5 三角恒等变换》思维导图
《5.6 函数 》思维导图
《5.7 三角函数的应用》思维导图
人教版高中数学必修一章节思维导图全套11集合的概念及特征思维导图12集合间的关系思维导图13集合的基本运算思维导图14充分必要条件思维导图15全称量词与存在量词思维导图21等式与不等式的性质思维导图22基本不等式思维导图23二次函数与一元二次方程不等式思维导图31函数的概念思维导图32函数的性质思维导图33幂函数思维导图41指数的运算思维导图42指数函数思维导图43对数的运算思维导图44对数函数思维导图45函数的应用二思维导图51任意角和弧度制思维导图52三角函数的概念思维导图53诱导公式思维导图54三角函数的图象与性质思维导图55三角恒等变换思维导图56函数思维导图57三角函数的应用思维导图
人教版高中数学必修一章节思维导图全套
《1.1集合的概念及特征》思维导图
《1.2 集合间的关系》思维导图
《1.3 集合的基本运算》思维导图
《1.4 充分、必要条件》思维导图
《1.5 全称量词与存在量词》思维导图
《2.1 等式与不等式的性质》思维导图
《2.2 基本不等式》思维导图
《2.3 二次函数与一元二次方程、不等式》思维导图

初中数学函数思维导图(合集)(11页)

初中数学函数思维导图(合集)(11页)

初中数学函数思维导图(合集)(11页)页码:1/11封面初中数学函数思维导图合集副思维导图助力数学学习,掌握函数知识作者:[你的名字]日期:[填写日期]页码:2/11目录1. 引言2. 函数概念3. 函数类型3.1 线性函数3.2 二次函数3.3 反比例函数3.4 幂函数3.5 指数函数3.6 对数函数4. 函数性质4.1 单调性4.2 奇偶性4.3 周期性4.4 极值5. 函数图像6. 函数应用7. 函数解题技巧8. 常见函数问题页码:3/11引言数学函数是初中数学中的重要内容,它不仅是高中数学的基础,也是解决实际问题的重要工具。

掌握函数知识,对于提高数学成绩和解决实际问题具有重要意义。

本思维导图合集旨在帮助初中生系统地学习和掌握函数知识,提高数学思维能力和解题技巧。

页码:4/11函数概念线性函数:一次函数,形式为y=ax+b,其中a和b是常数。

二次函数:二次函数,形式为y=ax^2+bx+c,其中a、b和c是常数。

反比例函数:形式为y=k/x,其中k是常数。

幂函数:形式为y=ax^n,其中a和n是常数。

指数函数:形式为y=a^x,其中a是常数。

对数函数:形式为y=logax,其中a是常数。

页码:5/11函数类型线性函数:一次函数,形式为y=ax+b,其中a和b是常数。

它是一条直线,斜率为a,截距为b。

二次函数:二次函数,形式为y=ax^2+bx+c,其中a、b和c是常数。

它的图像是一个抛物线,开口向上或向下,取决于a的正负。

反比例函数:形式为y=k/x,其中k是常数。

它的图像是一个双曲线,随着x的增大,y的值逐渐减小。

幂函数:形式为y=ax^n,其中a和n是常数。

它的图像可以是直线、抛物线、双曲线等,取决于n的值。

指数函数:形式为y=a^x,其中a是常数。

它的图像是一个递增或递减的曲线,取决于a的正负。

对数函数:形式为y=logax,其中a是常数。

它的图像是一个递增或递减的曲线,取决于a的正负。

常见函数(附思维导图)

常见函数(附思维导图)

2.2常见函数一、一次函数和常函数:思维导图:(一) 、一次函数 (二)、常函数 定义域:(- ∞,+ ∞) 定义域: (- ∞,+ ∞) 值 域:(- ∞,+ ∞) 正 k=0 反 值 域:{ b }解析式:y = kx + b ( k≠ 0 ) 解析式:y = b ( b 为常数)图 像:一条与x 轴、y 轴相交的直线 图 像:一条与x 轴平行或重合的直线b x x o x b=0b<0b=0 b>0b<0K > 0 k < 0单调性: k > 0 ,在(- ∞,+ ∞)↑ 单调性:在(- ∞,+ ∞)上不单调k < 0 ,在(- ∞,+ ∞)↓奇偶性:奇函数⇔=0b 奇偶性: 偶函数 非奇非偶⇔≠0b周期性: 非周期函数 周期性:周期函数,周期为任意非零实数反函数:在(- ∞,+ ∞)上有反函数 反函数:在(- ∞,+ ∞)上没有反函数反函数仍是一次函数例题:-- 二、二次函数1、定义域:(- ∞,+ ∞)2、值 域: ),44[,02+∞-∈>ab ac y a]44,(,02ab ac y a --∞∈<3、解析式:)0(2≠++=a c bx ax y 4、图 像:一条开口向上或向下的抛物线开口向下,开口向上;正负:增大,开口缩小绝对值:随着,00<>a a a a正半轴相交与负半轴相交与y c y c c,0,0><对称轴:ab x 2-=对称轴: ;)44,2(2ab ac ab --顶点: 轴交点个数图像与x ac b →-=∆42:与x 轴交点的个数。

两个交点,0>∆一个交点,0=∆无交点,0<∆5、单调性:↑+∞-↓--∞>),2[]2,(,0ab ab a↓+∞-↑--∞<),2[]2,(,0ab ab a6、奇偶性:偶函数⇔=0b 7、周期性:非周期函数8、反函数:在(- ∞,+ ∞)上无反函数,上及其子集上有反函数或在),2[]2,(+∞---∞ab ab例题:三、反比例函数和重要的分式函数(一)、反比例函数 (二)、分式函数bax dcx y ++= 定义域:(- ∞,0)∪(0,+ ∞) 定义域:),(),(+∞---∞aba b 值 域:(- ∞,0)∪(0,+ ∞) 值 域: ),(),(+∞-∞a c a c解析式:)0()(≠=k xk x f 解析式:)(a bx b ax d cx y -≠++=图 像:以x 轴、y 轴为渐进线的双曲线 图 像:以abx -=和a c y =为渐近线的双曲线y y0 x 0 xk > 0 k < 0单调性: k>0,(- ∞,0)↓,(0,+ ∞)↓ 单调性:在),(a b --∞和),(+∞-ab上 k<0,(- ∞,0)↑,(0,+ ∞)↑ 单调性相同 奇偶性:奇函数 奇偶性:非奇非偶 对称性:关于原点对称 对称性:关于点),(aca b -成中心对称周期性:非周期函数 周期性:非周期函数 反函数:在定义域上有反函数, 反函数:在定义域有反函数,反函数是其本身。

基本初等函数总结表格

基本初等函数总结表格

基本初等函数总结表格基本初等函数是数学中的重要概念,它们是解析函数的一种,具有简单的形式和基本的性质。

在学习数学的过程中,我们经常会接触到各种各样的基本初等函数,它们在数学建模、物理、化学等领域都有着重要的应用。

为了更好地理解和掌握基本初等函数,下面我们将对常见的基本初等函数进行总结,并制作成表格,以便大家更加直观地了解它们的特点和性质。

首先,我们来看一下常见的基本初等函数及其表达式、定义域和值域。

1. 线性函数。

表达式,y = kx + b。

定义域,(-∞, +∞)。

值域,(-∞, +∞)。

2. 幂函数。

表达式,y = ax^n (a ≠ 0, n为正整数)。

定义域,(-∞, +∞)。

值域,。

当n为奇数时,值域为(-∞, +∞)。

当n为偶数时,值域为[0, +∞)。

3. 指数函数。

表达式,y = a^x (a > 0, a ≠ 1)。

定义域,(-∞, +∞)。

值域,(0, +∞)。

4. 对数函数。

表达式,y = log_a(x) (a > 0, a ≠ 1)。

定义域,(0, +∞)。

值域,(-∞, +∞)。

5. 三角函数。

正弦函数,y = sinx。

余弦函数,y = cosx。

正切函数,y = tanx。

定义域,(-∞, +∞)。

值域,[-1, 1]通过以上表格,我们可以清晰地了解到各种基本初等函数的特点和性质。

线性函数具有直线图像,定义域和值域都是整个实数集;幂函数的图像呈现出不同的形状,其值域受到幂指数n的影响;指数函数和对数函数是互为反函数的函数对,其值域和定义域分别是正实数集和整个实数集;三角函数则是周期函数,其定义域是整个实数集,值域在[-1, 1]之间。

除了上述基本初等函数外,还有一些其他常见的基本初等函数,如双曲函数、反比例函数等,它们都有着各自独特的特点和性质。

通过学习和掌握这些基本初等函数,我们可以更好地理解数学知识,解决实际问题,甚至在日常生活中也能够运用到这些知识。

高一数学函数思想导图总结

高一数学函数思想导图总结

高一数学函数思想导图总结高一数学函数思想导图总结一、函数的基本概念1. 函数的定义:函数是一种特殊的关系,它把一个数集的每个元素都对应到另一个数集的唯一元素。

2. 自变量与因变量:自变量是已知的数值,在函数中起到输入的作用;因变量是待求的数值,在函数中起到输出的作用。

3. 函数的图像:函数的图像是自变量和因变量之间的对应关系在平面上的表示,可通过给定的函数表达式绘制出来。

二、函数的性质1. 定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。

2. 奇偶性:奇函数满足 f(-x) = -f(x),偶函数满足 f(-x) = f(x),可以通过函数的图像来判断其奇偶性。

3. 单调性:函数的单调性描述了函数图像上的任意两点之间的高低变化趋势,可以通过函数的导数来判断。

4. 周期性:周期函数满足 f(x+T) = f(x),其中 T 为正数,函数的图像在一定区间内重复出现。

三、基本函数1. 常数函数:f(x) = c,其中 c 为常数,函数图像平行于 x 轴。

2. 一次函数:f(x) = kx + b,其中 k 和 b 均为常数,函数图像是一条直线。

3. 二次函数:f(x) = ax^2 + bx + c,其中 a、b 和 c 为常数,函数图像是抛物线。

4. 绝对值函数:f(x) = |x|,函数图像在原点处有拐点。

5. 幂函数:f(x) = x^n,其中 n 为整数,函数图像的形状与 n的正负相关。

6. 指数函数:f(x) = a^x,其中 a 为正常数且不等于 1,函数图像在点 (0, 1) 处经过。

四、复合函数1. 复合函数的定义:将两个或多个函数相互结合,得到一个新函数,新函数的自变量是原函数的因变量。

2. 复合函数的运算:复合函数的运算按照从内到外的顺序进行,即先求内函数值再求外函数值。

3. 复合函数的性质:复合函数的定义域由内外函数的定义域决定,复合函数的周期取内外函数周期的最小公倍数。

高中数学思维导图(新课标)

高中数学思维导图(新课标)
c 0 c 为常数
'
f x 与 f x 0 的区别
vt S , at vt
'
0 0
第 二 部 分 映 射 、 函 数 、 导 数 、 定 积 分 与 微 积 分
导 数
导数概念
运动的平均速度 曲线的割线的斜率
'
0
k f
'
'
x
0
' '
; x
n
nx 1 x


A中元素在B中都有唯一的象;可一对一 (一一映射),也可多对一,但不可一对多 定义 函数的概念 表示 定义域
列表法 解析法 图象法 使解析式有意义及实际意义
第 二 部 分 映 射 、 函 数 、 导 数 、 定 积 分 与 微 积 分

三要素
区间 单调性 奇偶性 周期性 对称性
对应关系 值域
常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、 重要不等式、三角法、图象法、线性规划等
函数的 基本性质
函 数
函数常见的
最值
几种变换
基本初等函数 分段函数 复合函数 抽象函数 函数与方程 函数的应用
平移变换、对称变换 翻折变换、伸缩变换
三角函数 单调性:同增异减 赋值法,典型的函数 零点 建立函数模型 求根法、二分法、图象法;一元二次方程根的分布 退出 上一页
函数的平均变化率
函数的瞬时变化率 运动的瞬时速度 曲线的切线的斜率
第一部分 第二部分 第三部分 第四部分 第五部分 第六部分
集合与简易逻辑 映射、函数、导数、定积分与微积分 三角函数与平面向量 数列 不等式 立体几何与空间向量

人教版高中数学必修一章节思维导图全套

人教版高中数学必修一章节思维导图全套
《3.1 函数的概念》思维导图
《3.2 函数的性质》思维导图
《3.3 幂函数》思维导图
《4.1 指数的运算》思维导图
《4.2指数函数》思维导图
《4.3 对数的运算》思维导图
《4.4 对数函数》思维导图
《4.5 函数的应用(二)》思维导图
《5.1 任意角和弧度制》思维导图
《5.2 三角函数的概念》思维导图
人教版高中数学必修一章节思维导图全套
《1.1集合的概念及特征》思维导图
《1.2 集合间的关系》思维导图
《1.3 集合的基本运算》思维导图
《1.4 充分、必要条件》思维导图
《1.5 全称量词与存在量词》思维导图
《2.1 等式与不等式的性质元二次方程、不等式》思维导图
《5.3 诱导公式》思维导图
《5.4 三角函数的图象与性质》思维导图
《5.5 三角恒等变换》思维导图
《5.6 函数 》思维导图
《5.7 三角函数的应用》思维导图

初中数学分章节知识图解思维导图

初中数学分章节知识图解思维导图
字母指数和
意义
次数

最高项的次数
每个单项式
升降幂排列
一次函数与反比例函数
形如y=kx+b (k.b为常数,k≠0)
当b=0时,是 正比例函数
k>0
k<0
注意:过原点
一条直线
反比例函数
一次函数
解析式
性质
图象
应用
性质
图象
解析式
应用
k>0
k<0
图象在 二四象限
图象在 一三象限
双曲线
每一象限内
乘除
加减
乘方
公因式
同分母
异分母
分母不变 分子相加减
通分化成同分母
基本性质
运算
分式方程
最简公分母
子积为子母积为母
化除法为乘法
注:分子、 分母为多 项式时先 分解因式
同类项
合并 同类项
系数 相加 字母 不变
通分
约分
不改变 分式的值
应用
解法
因式分解
除法
乘法
加减
定义
性质
运算
加减
乘除
系数
次数
数字因数
对称点的坐标符号相反
旋转1800后与 另一图形重合
两图形全等
对称中心是对称点连线的中点
旋转1800后与 其自身重合
用坐标表示 旋转
要素
基本图形
方向
距离
要 素
图形的旋转
旋转中心
特 征
旋转角
对应点到旋转中心的距离相等
对应点与旋转中心所连线段的夹角=旋转角
旋转前.后的图形全等
旋转方向
基本图形
轴对称变换

基本初等函数及其图像

基本初等函数及其图像

g( x ) 的值域与 f ( u) 的定义域之交集是空集.
23
y arshx ln( x x 2 1 ).
D : ( , )
奇函数,
y arshx
在 (,) 内单调增加 .
17
反双曲余弦 y archx
y archx ln( x x 2 1 ).
y archx
D : [1, )
在 [1,) 内单调增加.
D {x | x R, x (2n 1) } 2
8

余割函数
1 y csc x sin x
y csc x
D {x | x R, x n }
9
5.反三角函数
反正弦函数 y arcsin x
y arcsin x
y A rc sin x
10
反余弦函数 y arccos x
y f (u) u,
y f ( u) ln u,
u g( x ) x x 2
u g( x ) sin x 1
22
思考题解答
(1) y f [ g( x )] x x2
1 x D { x | 0 x 1}, f ( D ) [0, ] 2 ( 2) 不能. g( x ) sin x 1 0
y arccos x
y A rccos x
11
反正切函数 y arctan x
y arctan x
y A rc tan x
12
反余切函数 y arccot x
y arccot x
y A rc cot x
常数函数、幂函数、指数函数、对数函数、三 角函数和反三角函数统称为基本初等函数.

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)
2 : 2 + 2 + 2 = 0.
点斜式:y-y0=k(x-x0)
注意:截距可正、
可负,也可为 0.
2 −1
注意各种形式的转化和运用范围.
x y
截距式: + =1
a b
两直线的交点
距离
一般式:Ax+By+C=0
两点间的距离公式|1 2 | = √(1 − 2 )2 + (1 − 2 )2 .
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1ቤተ መጻሕፍቲ ባይዱ
2+1 −1
− (+2)2 )
= (−1) (
1
2−1
+
错位相加法: = ( + )−1 → = ( + ) −
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
与 的关系
1 ,
= 1,
= {
− −1 , ≥ 2.
构造等差数列
an+1 p an
= · +1 转为③
qn q qn-1
⑤an + 1=pan+qn

2020年高考数学复习思维导图(人教版)02——函数

2020年高考数学复习思维导图(人教版)02——函数

基本不等式实际是对勾函数的特例,可以考虑利用对勾实际应用题考虑解析式有意义且考虑实际问题有意义
解析式表示的斜率、截距、距离等几何意义一般适用含有绝对值的函数
6种基本函数及其加减形式
形如f[g(x)]
确定函数的定义域.
将复合函数分解成基本初等函数y =f(u),u =g(x).分别确定这两个函数的单调区间.如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,对称轴是两个横坐标的中点
对称中心为函数对称两点的中点,可以利用中点坐标
如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有奇偶性的判断利用奇偶性求解析式公


难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档