高中数学“函数的单调性”单元教学设计

合集下载

函数的单调性教学设计

函数的单调性教学设计

“函数的单调性”教学设计(高中数学必修1第2.1.3节)【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明.函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性起着承前启后的作用。

一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。

教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。

高中数学函数的单调性教学设计

高中数学函数的单调性教学设计

高中数学函数的单调性教学设计一、教学任务及对象1、教学任务本节课的教学任务是围绕高中数学中函数的单调性展开,使学生能够理解并掌握函数单调性的概念、判定方法及其在实际问题中的应用。

具体包括:单调性的定义、单调递增和单调递减的判定、单调区间的确定,以及单调性在函数图像绘制、最值求解和不等式证明等方面的应用。

2、教学对象教学对象为高中二年级的学生,他们在之前的学习中已经掌握了函数的基本概念、图像及其基本性质,具备了一定的数学思维能力和逻辑推理能力。

在此基础上,通过本节课的学习,学生将进一步完善对函数性质的认识,为后续学习导数、极限等概念打下坚实基础。

二、教学目标1、知识与技能(1)理解函数单调性的定义,能够准确区分单调递增和单调递减的函数。

(2)掌握利用定义法、图像法和符号法判断函数单调性的方法,并能够熟练运用。

(3)学会求解函数的单调区间,并能将其应用于实际问题中。

(4)掌握单调性在求解函数最值、证明不等式等中的应用,提高解题能力。

2、过程与方法(1)通过分析实例,引导学生自主探究函数单调性的概念,培养学生的观察力和思考能力。

(2)运用数形结合的方法,使学生能够将抽象的数学概念与具体的图像相结合,提高直观想象能力。

(3)通过小组合作、讨论交流,培养学生合作解决问题的能力,拓展解题思路。

(4)设计具有梯度的问题,引导学生由浅入深地掌握函数单调性的相关知识,提高学生的逻辑推理能力。

3、情感,态度与价值观(1)激发学生对数学学习的兴趣,培养积极主动探究数学问题的态度。

(2)通过解决实际问题,使学生认识到数学知识在实际生活中的应用价值,增强学生的社会责任感。

(3)引导学生树立正确的价值观,认识到数学学习不仅仅是追求分数,更重要的是培养思维能力和解决问题的能力。

(4)鼓励学生勇于面对困难和挑战,培养坚持不懈、克服困难的意志品质。

(5)在小组合作过程中,培养学生相互尊重、团结协作的精神,提高人际沟通能力。

三、教学策略1、以退为进在本节课的教学中,采用“以退为进”的策略,即在教学过程中有意识地从已知的简单概念或问题出发,逐步引导学生深入探讨,从而掌握更复杂的概念。

函数单调性教学设计

函数单调性教学设计

函数的单调性教学设计一、教学内容解析1.教材内容及地位《函数单调性》是高中数学新教材必修一第三章第二节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力. 因此,它是高中数学核心知识之一,是函数教学的战略要地。

2.教学重点函数单调性的概念,判断和证明简单函数的单调性。

3.教学难点归纳抽象函数单调性的定义以及根据定义证明函数的单调性.二、学生学情分析1.从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。

2.从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

3.从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心理是学生学好本节课的情感基础。

但是如何运用数学符号将自然语言的描述提升为形式化的定义,学生接受起来比较困难?在教学中要多引导,让学生真正的理解函数单调性的定义。

三、课堂教学目标1.知识目标:理解函数单调性的相关概念。

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。

高中数学(函数的单调性)教案 新人教版必修1 教案

高中数学(函数的单调性)教案 新人教版必修1 教案

函数的单调性【教学目标】1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】一、创设情境,引入课题课前布置任务:(1) 由于某种原因,2008年奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2) 通过查阅历史资料研究奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?预案:(1)函数在整个定义域内 y随x的增大而增大;函数在整个定义域内 y随x的增大而减小.(2)函数在上 y随x的增大而增大,在上y随x的增大而减小.(3)函数在上 y随x的增大而减小,在上y随x的增大而减小.引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在为增函数?预案:(1) 在给定区间内取两个数,例如1和2,因为12<22,所以在为增函数.(2) 仿(1),取很多组验证均满足,所以在为增函数.(3) 任取,因为,即,所以在为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念判断题:①.②若函数.③若函数在区间和(2,3)上均为增函数,则函数在区间(1,3)上为增函数.④因为函数在区间上都是减函数,所以在上是减函数.通过判断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数.思考:如何说明一个函数在某个区间上不是单调函数?〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展例证明函数在上是增函数.1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取, 设元求差变形,断号∴∴即∴函数在上是增函数.定论2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.练习:证明函数在上是增函数.问题:要证明函数在区间上是增函数,除了用定义来证,如果可以证得对任意的,且有可以吗?引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在上是增函数.〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、特殊到一般、感性到理性.(2) 证明方法和步骤:设元、作差、变形、断号、定论.(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本第60页习题2.3 第4,5,6题.课后探究:(1) 证明:函数在区间上是增函数的充要条件是对任意的,且有.(2) 研究函数的单调性,并结合描点法画出函数的草图.《函数的单调性》教学设计说明一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据.对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.二、教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学方法和教学手段的选择本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.。

函数的单调性教学设计 高中数学教案数学教案数学教案学案

函数的单调性教学设计  高中数学教案数学教案数学教案学案

函数的单调性教学目标:1.知识目标:理解函数单调性的概念;2.能力目标:〔1〕.能由函数图象判断某些函数的单调性;〔2〕.通过模仿学会证明函数单调性的方法;〔3〕.培养学生观察、比拟、分析的能力;掌握数形结合的方法.3.德育目标:熟悉从感性认识到理性认识,从抽象到具体的研究问题的方法。

教学重点:函数单调性的概念与判断教学难点:利用概念证明或判断函数的单调性教学用具:多媒体、实物投影仪教学过程:一.问题情境:日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从从阶梯教室后向前走,逐步下降。

1.观察以下图表,体会图形上升或下降的变化在实际生活中作用:洞庭湖沿不同观测站1954年洪水过程图春兰股份线性图在哪些时段内气温是升高的?2.很多函数也具有类似性质。

如〔电脑给出图象〕:y=3x+2 y=1x(x>0)这就是我们要研究的函数的重要性质之一:函数的单调性〔电脑给出课题〕二.学生活动问题1:观察以下函数的图象,指出函数从左向右是怎样变化的?函数y=x2、y=x3的图象〔电脑给出〕y yO O x这些说明某些函数在定义域内的某些区间上图象呈现上升趋势,在某些区间上呈现下降趋势。

问题2:你能用数学语言刻画“图象呈上升或下降的趋势〞吗?三.建构数学:问题3:如何用数学语言来准确地表述这种y值随着x的值增大而增大〔减小〕呢?进而抽象出单调性的定义〔电脑给出〕:一般地,设函数y=f(x)的定义域为A,区间I⊆A如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1 )<f(x2 ),那么就说y=f(x)在区间I上是增函数。

I称为y=f(x)的单调增区间。

如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1 )>f(x2 ),那么就说在这个区间I上是减函数。

I称为y=f(x)的单调减区间。

如果函数y=f(x)在区间I上是单调增函数或是单调减函数,那么就说函数y=f(x)在区间I上具有单调性.问题4:由函数单调性定义,你发现哪些特点?(1)自变量属于定义域(2)自变量的任意性(3)x1、x2的大小与f(x1 )、f(x2)的大小要对应.为了让学生更直观地看出单调函数定义的内涵,用电脑演示动画。

教学设计2:3.2.1 第1课时 函数的单调性

教学设计2:3.2.1 第1课时  函数的单调性

主要师生活动教师引导:我们知道函数是描述事物变化规律的数学模型,这样我们可以通过研究函数的性质获得对客观世界中事物变化规律的认识.那么什么是函数性质呢?总体而言,函数性质就是“变化中的不变性,变化中的规律性”.研究函数性质,就是要学会在运动变化中发现规律.请大家回顾初中学习过的一次函数、二次函数、反比例函数,我们通过什么来研究它们的性质呢?师生活动:学生回答,师生共同得到结论:通过图象研究函数性质.问题1:请看下面的函数图象,从中能发现什么变化中的规律?师生活动:教师利用PPT展示例子,学生观察图象并回答问题.学生的回答可能涉及很多方面(如升降变化,对称性,最高点或最低点等),教师引导学生关注图象从左到右升降变化的特点.追问:函数图象所反映的这些特点就是函数的性质.你能回顾一下初中的知识,用定性的方法描述前两个图象从左到右的升降变化吗?即y随x的增大是如何变化的?-∞+∞上,y随x 预设:第一个图象从左到右是上升的,即在(,)-∞-及(0.21),两个区间上,从左的增大而增大;第二个函数在(,1)明,要让学生明确,应该是区间(,0]-∞上的所有数对1x ,2x .预设反例:如图象所示函数,我们可以找到<a b 、()()>f a f b ,但很明显函数在区间[,]a b 上并不单调递减.追问4:“所有”又该如何说明?既然“所有”不易操作,可以用什么量词来代替“所有”呢?你能严格的表达出来吗?师生活动:教师引导学生说出用“任意”代替“所有”,帮助学生体会用“任意”处理“无限”的思想.预设:任取1x ,2x ,只要12<x x ,就有12()()>f x f x .教师总结:我们借助数学符号语言,给出了一个与“无限”相关的变化规律的定量描述,即任取1x ,2x ,把“无穷”问题转化为了可操作的有限过程,这就是数学抽象的力量.追问5:你能说出为什么12()()>f x f x 吗?教师引导:要对两个函数值比大小,实质上是不等式的代数证明,具体证明方法我们稍后会说明.追问6:对于函数2=y x ,你能模仿上述方法,给出“在区间[0,)+∞上,y 随x 的增大而增大”的符号语言刻画吗?设计意图:这个环节是本节课的重点,也是难点,其核心是通过从具体到抽象的过程,让学生学会用严格的符号语言刻画“在区间D 上,当x 增大时,相应的()f x 随之减小”.从图象到定性再到定量的不断精确化的过程中,通过问题串,设法引出“任意”,引导学生体会用“任意”刻画“无限”的力量.练习:请你模仿上述过程,用严格的符号语言刻画函数2=-y x 的单调性.2.单调性定义的抽象问题3:请你归纳以上两个函数单调性的刻画方法,给出函数()=y f x 在区间D 上单调性的符号表述.师生活动:先由学生独立完成并交流,再由教师给出严格的单调。

函数的单调性教学设计(完整版)

函数的单调性教学设计(完整版)

函数的单调性教学设计(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)函数的单调性教学设计石嘴山市第十四中学王玲一、大纲分析函数单调性是研究函数概念基础上学习的第一性质,依据普通高中《数学课程标准》和《数学教学大纲》,教学重点确立为:判断或证明函数单调性的方法步骤。

又因为教学对象是高一新生,准确进行逻辑推理比较困难,所以把函数单调性的定义,判断或证明函数单调性确立为教学难点。

二、教材分析1、教材的地位与作用本课是人民教育出版社高中数学第一册第二章第三节的内容。

函数的单调性是函数重要性质之一,应用非常广泛,在教材中起着承上启下的作用一方面,是初中相关内容的深化、提高,使学生对函数单调性从感性认识提高到理性认识;另一方面,通过对函数单调性的学习,可以利用函数单调性的定义判断某些函数的单调性及单调区间;比较两个数的大小;解方程或不等式;求函数的值域、最值等。

三、教学建议分析研究著名的“艾宾浩斯遗忘曲线”问题,充分调动学生积极性,营造亲切活跃的课堂氛围;渗透建模思想,培养学生应用数学的意识,通过实例使学生感受单调性的内涵,缩短心理距离,降低理解难度。

四、教学目标(1)知识目标:使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.(2)能力目标:通过对函数单调性定义的探究,渗透数形结合的数学思想和方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.(3)情感目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.五、教学重点、难点重点:函数单调性的定义;判断、证明函数的单调性.难点:归纳并抽象函数单调性的定义.六、学法、教法分析对学生来说,函数的单调性早已有所了解,然而没有给出过定义,只是从直观上接触过这一性质。

人教版高中数学必修一《1.3.1 函数的单调性》教学设计

人教版高中数学必修一《1.3.1 函数的单调性》教学设计

1.3.1函数的单调性教学设计一、教学内容分析:函数的单调性是学生在掌握了函数的概念、函数的表示方法等基础知识后,学习的函数的第一个性质,主要让学生掌握函数在其定义域内某区间上图像(上升或下降)的变化趋势,为进一步学习函数其它性质提供了方法依据。

如在研究函数的值域、最大值、最小值等性质中有着重要应用,而且在解决比较数的大小、解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。

同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。

所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。

二、教学目标设置:(1)知识与技能:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法及单调性的简单运用。

(2)过程与方法:引导学生通过观察、归纳、抽象、概括、自主构建单调增函数、减函数的概念;能运用函数单调性的定义解决一些简单的问题;让学生领会数学结合的数学思想方法,培养学生发现、分析、解决问题的能力。

(3)情感态度价值观:在函数单调性的学习过程中,使学生体验数学的应用价值,培养学生善于观察、勇于探索的良好学习习惯与学习态度。

(三)情感态度与价值观:创设情境引出课题,让学生充分认识到数学源于生活,又能应用于生活,进而激发学生自主学习和主动探究的学习兴趣;在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认知的提升;在概念应用阶段,通过对定义法证明单调性过程的具体分析,以及证明过程的严格板书,帮助学生掌握用定义证明函数单调性的方法和步骤,培养学生清晰地思维、严谨的数学推理能力;最后先由学生自己独立完成再进行小组合作交流,展示自己用单调性定义证明函数单调性的全过程,培养了学生运用所学知识解决实际问题的能力,增强了学生学好数学的信心.三、学生学情分析:学生在初中只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思一、教学内容本节课的教学内容选自人教A版高中数学必修1第三章函数的单调性。

具体包括:函数单调性的定义,单调增函数和单调减函数的性质,以及利用单调性解决实际问题。

二、教学目标1. 理解函数单调性的概念,掌握单调增函数和单调减函数的性质。

2. 能够运用函数单调性解决简单的实际问题。

3. 培养学生的逻辑思维能力和数学建模能力。

三、教学难点与重点1. 教学难点:函数单调性的证明和应用。

2. 教学重点:函数单调性的定义和性质。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、笔、计算器。

五、教学过程1. 实践情景引入:通过生活中常见的物价变化现象,引导学生思考函数的单调性。

2. 概念讲解:介绍函数单调性的定义,并通过示例进行讲解。

3. 性质探讨:引导学生探究单调增函数和单调减函数的性质,并通过示例进行验证。

4. 例题讲解:讲解利用函数单调性解决实际问题的例题,引导学生学会运用单调性分析问题。

5. 随堂练习:布置随堂练习题,让学生巩固所学知识。

六、板书设计1. 函数单调性的定义。

2. 单调增函数和单调减函数的性质。

3. 利用函数单调性解决实际问题的方法。

七、作业设计1. 题目:判断下列函数的单调性,并给出证明。

函数1:y = x^2函数2:y = x^2答案:函数1单调增,函数2单调减。

2. 题目:利用函数单调性解决实际问题。

问题:某商品原价为100元,商家进行两次折扣促销,第一次折扣为8折,第二次折扣为7折,求最终成交价。

答案:最终成交价为84元。

八、课后反思及拓展延伸1. 课后反思:本节课通过生活实例引入函数单调性,让学生能够更好地理解概念。

在讲解性质时,通过示例进行验证,增强了学生的理解。

在例题讲解环节,培养了学生的实际应用能力。

2. 拓展延伸:引导学生思考函数单调性在其他数学领域的应用,如微积分中的极值问题。

重点和难点解析一、函数单调性的定义函数单调性是函数性质的重要组成部分,它反映了函数值随着自变量变化的大致趋势。

高中数学《函数的单调性》教学设计 新人教A必修1

高中数学《函数的单调性》教学设计 新人教A必修1

《函数的单调性》教学设计一、设计理念:1、重视数学概念、公式的发生、发展过程,在概念的形成过程中培养学生发现问题、研究问题、解决问题的能力2、重视学生的学习过程,在教学中注重培养学生独立思考、相互交流、合作探究的能力3、重视诱思探究的教学理论在课堂教学中的渗透,在课堂教学中要体现“教师为主导、学生为主体”,教师启发诱导,学生自主探究,激发学生的学习兴趣、培养学生良好的思维习惯和思维品质二、设计思路:1、以函数的单调性的概念为主线,贯穿于整个教学过程中对函数单调性概念的深入而准确的认识往往是学生认知过程的难点。

因此在教学中突出对概念的分析一方面是为了分析函数单调性的定义,另一方面让学生掌握如何学会、弄懂一个概念的方法,也为今后对其他数学概念的学习有所帮助。

使用单调性的定义证明具体函数的单调性是教学中的又是一个难点。

使用单调性的定义证明具体函数的单调性是对单调性定义的深层理解,给出“作差、变形、定号”的具体步骤是非常必要的,一方面是有利于学生理解函数单调性的概念;另一方面有利于学生掌握证明方法、形成证明思路。

另外也为今后学习不等式证明中的作差法做一定的铺垫。

2、加强“数”与“形”的结合,由直观到抽象、由特殊到一般的数学思维能力的培养始终贯穿于函数单调性概念教学过程中函数单调性的研究方法很具有典型性,体现了对函数研究的一般方法。

在函数单调性的教学中要引导学生逐步学会“直观感受---定性描述---定量刻画---具体应用”的探究方法,这样一方面为了便于对单调性概念有更好地理解,同时也为今后学习函数的其他概念和性质提供一定的参考方法。

3、在单调性概念的教学与研究中要体现出单调性是函数的一个局部性质函数的单调性是研究“当自变量不断增大时,函数值随着增大还是减小”,即函数图像的升降性,与函数奇偶性不同,函数的奇偶性是研究“当自变量的值互为相反数时,函数值是否也互为相反数”,即函数图像的对称性。

函数的单调性与函数的极值是函数的局部性质,与函数的奇偶性、最大(或小)值有着本质的区别,后者是函数的整体性质,在教学中要体现出函数的单调区间是函数定义域上的一个子集(区间),关注的是函数在这个子集上的增减性。

函数单调性教学设计与反思

函数单调性教学设计与反思

函数单调性教学设计与反思一、引言函数单调性是高中数学中的一个重要概念,它描述了函数在定义域上的增减性质。

掌握了函数单调性的概念和判断方法,能够帮助学生更好地理解函数的变化规律和解决实际问题。

本文将介绍一个针对函数单调性的教学设计,并对教学实施进行反思和总结。

二、教学目标1. 知识目标:掌握函数单调性的概念和判断方法,了解单调递增和单调递减函数的特点。

2. 技能目标:能够判断给定函数在定义域上的单调性。

3. 情感目标:培养学生对数学的兴趣和思维能力,提高解决问题的能力。

三、教学内容1. 函数单调性的定义和判断方法2. 单调递增函数和单调递减函数的特点3. 解决实际问题中的函数单调性应用四、教学步骤1. 导入与激发兴趣(5分钟)通过举例子、提问等方式引导学生回顾函数的概念和性质,激发学生对函数单调性的兴趣。

2. 概念讲解与示例分析(15分钟)讲解函数单调性的定义和判断方法,并通过几个简单的示例进行分析和讨论。

3. 综合练习与答疑(15分钟)提供一些综合练习题,让学生在教师的指导下进行独立思考和解答,并对解题过程中出现的疑惑进行解答。

4. 实际问题应用(20分钟)提供一些与实际问题相关的函数单调性应用题,引导学生运用所学知识解决问题,并让学生展示解题过程和答案。

5. 总结与反思(10分钟)教师对本节课的教学进行总结和反思,引导学生回顾课上的内容,并提出问题让学生进行思考和总结。

六、教学反思通过本节课的教学实施,学生对函数单调性的概念和判断方法有了初步的了解。

但同时也发现了一些问题。

首先,有部分学生在判断函数单调性时容易出现混淆和错误,需要加强相关练习和巩固。

其次,教学过程中缺少足够的互动与讨论的机会,导致学生的思维能力和解决问题的能力得不到充分的发展。

针对这些问题,我计划在以后的教学中加强练习和巩固环节,提供更多的情景模拟和实际问题,同时注重学生的互动和思维能力的培养。

七、结语函数单调性是高中数学中的一个重要概念,对学生的数学思维能力和解决实际问题的能力有着重要的影响。

函数单调性优秀教案

函数单调性优秀教案

函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。

为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。

在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

他是高中数学中相当重要的一个基础知识点。

是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。

函数的基本性质(单元教学设计)高中数学人教A版2019必修第一册

函数的基本性质(单元教学设计)高中数学人教A版2019必修第一册

《函数的基本性质》单元教学设计一、内容和及其解析(一)内容函数的单调性;函数的最大值、最小值;函数的奇偶性.(二)内容解析1. 内容本质变化中的不变性是性质,变化中的规律性也是性质.函数是刻画客观世界中运动变化的重要数学模型,因此,我们可以通过研究函数的变化规律来把握客观世界中事物变化的规律.高中阶段研究的函数性质有:单调性、最大(小)值、奇偶性、周期性、函数的零点、增减的快慢等.本节研究函数的单调性、最大(小)值、奇偶性.单调性是函数最重要的性质,刻画了函数值y随自变量x增大而增大或减小的变化趋势,绝大多数函数都具有单调性.函数的最大(小)值与函数的单调性有着密切的联系.通常,知道了函数的单调性,就能较方便地确定函数的最大(小)值,因此,求解函数的最大(小)值一般需要先判断函数的单调性.函数的奇偶性是一种特殊的对称性.如果函数具有奇偶性就能将研究函数的“工作量”减半.函数的单调性是函数的局部性质,函数的奇偶性和最大(小)值都是函数的整体性质.函数的单调性、最大(小)值、奇偶性的定义,都是在分析函数图象特征的基础上,利用代数运算对其进行定量刻画,进而用严格的数学符号语言精确刻画函数的性质.2.蕴含的思想方法在函数性质概念形成的过程中,从图象特征到形式化定义,从形到数,蕴含着数形结合的思想.从几个特殊函数出发,归纳出共同特征,再概括形成函数的一般性质,这是特殊到一般的研究方法.利用定义证明具体函数性质的过程,最后形成标准化的求解步骤,蕴含着算法思想.3.知识的上下位关系函数的“集合——对应说”,并用抽象符号f(x)表示函数,为用严格的数学符号语言精确刻画函数的性质奠定了基础.函数的概念与性质这部分内容,先从一般性角度研究函数概念及其性质,使学生在宏观上了解函数的内容和方法,起到先行组织者的作用.为后续研究基本初等函数、数列、导数及其应用、概率的基本性质、随机变量等内容提供了依据.4. 育人价值在函数性质概念形成的过程中,从特殊到一般,从直观到抽象,有利于发展学生的数学抽象、直观想象的核心素养;在利用定义判断或证明具体函数性质的过程中,有利于发展学生逻辑推理、数学运算的核心素养.5.教学重点用符号语言表示函数的单调性、奇偶性,用定义法证明函数的单调性、用定义法判断函数的奇偶性.二、目标及其解析(一)目标1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.2.结合具体函数,了解奇偶性的概念和几何意义.(二)目标解析达成上述目标的标志是:1.在从图象直观到自然文字语言描述再到符号语言表达函数单调性的过程中,能感悟引入符号表示“12,x x D ∀∈”的作用和力量,把一个含有“无限”的问题转化为一种“有限”的方式进行表达.2.会用符号语言正确表达函数的单调性、最大(小)值,并能说出“任意”“都有”“存在”等关键词的含义,知道函数单调性和最大(小)值的现实意义.能说出判断函数单调性的基本步骤,会用函数单调性的定义证明函数的单调性.能说出求函数最大、最小值的基本步骤,会用函数最大值、最小值的定义求最值,能说明最值与单调性之间的关系.3.能类比单调性的定义的学习过程,用符号语言表达函数的奇偶性,并说明偶(奇)函数的定义与函数图象关于y 轴(原点)对称之间是等价的.知道判断函数奇偶性的基本步骤,会用函数奇偶性的定义判断函数的奇偶性.三、教学问题诊断分析1.问题诊断及破解方法(1)函数单调性的符号语言描述的构建.学生在初中学习一次函数、反比例函数、二次函数时已经会从图象的角度观察“从左到右图象上升”“从左到右图象下将”的变化趋势,并且会用文字语言“y 随x 的增大而增大或减小”描述这种变化规律,而本单元需要将自然语言转化为符号语言:12,x x D ∀∈,当12x x <,都有()()12f x f x <(或()()12f x f x >),则称函数()f x 在区间D 上的单调递增(或递减),这样的语言学习是学生第一次接触,对学生而言是一个很大的难点.破解方法:从某种意义上来讲,这也属于语言的学习,可以遵循“示范—模仿—熟练运用”的学习规律.在教学中,以初中学习过的具体函数为载体,老师示范如何完成图形语言——自然语言——符号语言的转化,进而用符号语言完整表达函数的单调性,再让学生模仿.在具体函数中熟练掌握符号语言的表达方式的基础上,再给出函数单调性严格的定义.最后,在用定义证明具体函数单调性的过程中,进一步让学生理解符号语言.(2)利用定义证明函数的单调性.学生刚开始证明函数单调性时,会出现不作差,直接写出函数值大小关系或者变形不充分就做判断的情况,这是因为学生对证明的每一步依据的“大前提”模糊导致的,经常出现依据函数单调性证明函数单调性的状况.破解方法:教学中先利用简单的具体函数的单调性证明问题,帮助学生理解代数变形的必要性,然后进一步梳理证明的步骤,总结变形的基本方法,逐步学会函数单调性的代数证明.(3)最大(小)值概念的理解.对于最大(小)值的概念,学生往往对条件“0x I ∃∈,使得()0f x M =”的必要性的理解会存在一些困难.破解方法:在教学中,可以给出丰富而典型的数学情境,给出正例和反例,让学生归纳最值的本质特征,体会“∀”和“∃”这两方面的条件缺一不可.也可以结合基本不等式求最值的问题进行解释.2.教学难点用符号语言表达函数的单调性、最大(小)值;利用定义证明函数的单调性.四、教学支持条件函数的性质指的是在变化过程中的不变性和规律性,所以要借助信息技术绘制函数图象,将静态的图象进行动态演示,展示函数值随自变量变化而变化的情况.五、课时分配本单元分3课时.第1课时,函数的单调性;第2课,函数的最大值、最小值;第3课时,函数的奇偶性.。

《函数的单调性(3)》教学设计

《函数的单调性(3)》教学设计

教学设计设计意图:让学生知道此节课要达到什么学习目标。

二复习引入 导函数是研究函数变化的通法。

一方面导函数的正负决定原函数的单调性,利用导函数正负判断函数单调性的一般步骤是:确定定义域,求导函数及其零点,列表,判断导函数正负,得原函数的单调性。

另一方面,导函数的绝对值的大小决定原函数变化的快慢:当导函数在某个区间绝对值较大时,函数变化得较快函数图像就比较“陡峭”, 反之绝对值较小, 函数变化得较慢 函数图像就比较“平缓”。

我们之前学的常见函数的导函数公式和函数四则运算求导法则,以及复合函数的求导法则,你还记得吗?今天我们用这些知识来研究任意一个函数的图象变化。

师生活动:让生单独回答。

设计意图:复习旧知,引入新知。

三探究新知(一)探究导函数的图象与原函数的图象的关系。

例1. 选择函数f(x)=(x 2−2x)e x 的大致图象( )问题1:函数的定义域是什么?奇偶性如何? A .B C . D .师生活动:引导分析研究函数定义域优先,根据解析式知:函数定义域是R, 且非奇非偶函数,排不出选项;问题2:函数的解析式还可以给我们什么信息?师生活动:引导生令f(x)=0得x 等于2和0,两个零点,所以它与x 轴交点个数两个,于是排除C 和D 选项;问题3:再看A 和B 的区别是什么?怎么确定选项?师生活动:引导生得到:函数在(−∞,0)的单调性不同,所以需求导函数判断单调性。

再根据导函数 f′(x)=(x 2−2)e x 的部分因式(x 2−2)这个二次函数的图象得导函数正负,从而得到原函数的单调性。

选择A.设计意图:循序渐进探究原函数的图象与函数的哪些性质有关系,学会用数形结合判断导函数各个因式的正负。

例2 已知函数y =f(x)的导函数 f′(x)的图象如图所示,则该函数的图象可能是( )问题1:导函数的函数值的正负确定吗?A CB D导函数的正负,得原函数单调性。

一定要学会利用导函数的图象或者某部分因式的函数图象判断导函数正负,四最后不要忘了小结回答,检验是否做到了不重不漏。

《函数的单调性》的教学设计

《函数的单调性》的教学设计

《§3 函数的单调性》教学设计一、教学背景分析1、学习任务分析内容:函数的单调性。

地位与作用:《函数的单调性》是《高中数学北师大版》(必修1)第二章第3节的内容。

它既是在学生学过函数概念等知识后的延续和拓展,又是后面研究指数函数、对数函数、三角函数等各类函数的单调性的基础,在整个高中数学中起着承上启下的作用。

研究函数单调性的过程体现了数学的数形结合和归纳转化的思想方法,反映了从特殊到一般的数学归纳思维形式,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。

函数的单调性是函数的四个基本性质之一,在比较几个数的大小、对函数作定性分析(求函数的值域、最值,求函数解析式的参数范围、绘函数图象)以及与不等式等其它知识的综合应用上都有广泛的应用;同时在这一节中利用函数图象来研究函数性质的数形结合的思想将贯穿于我们整个高中数学教学。

2、学生情况分析从知识储备方面,首先,学生已经学习了函数的基本概念,及初中所学的一次函数与二次函数为本节课的进一步学习准备好了必要的知识基础;另外,由于学生初学,因此在课堂上需要多给学生思考及动手操作的时间,适当的时候也需要老师加以引导。

二、教学目标的确定1、教学目标:知识与技能:理解函数单调性的概念,掌握证明函数单调性的方法和步骤。

过程与方法:通过观察图像,归纳,概括出函数的单调性等概念,能用数学单调性解决简单问题,使学生领会数形结合的思想,培养学生观察、分析、归纳等思维能力。

渗透数形结合、特殊到一般等数学思想方法。

培养学生提出问题,分析问题以及数学表达的能力情感态度与价值观:通过对现实世界中蕴涵的一些数学模式进行思考,逐步认识数学的科学价值和应用价值,提高数学学习兴趣,树立学好数学的信心。

2、教学重、难点教学重点:(1)领会函数单调性概念,体验函数单调性的形式化过程,深刻理解函数单调性的本质,并明确单调性是一个局部概念;(2)函数单调性的概念的理解教学难点::判断和证明函数单调性三、教学方法与手段教学方法:采用“三主教学法”教师主导,学生主体,思维主线;充分调动学生学习的积极性和主动性渗透数学思索方程;启发探究相结合四、授课类型:新授课五、教学课时:一课时六、教学用具:计算机、投影仪、彩色粉笔七、教学过程的设计(一)、创设情境,引入新课【活动】:多媒体展示图片,让学生观看图片,引入新课,(二)、归纳探索,形成概念1、借助图象,直观感知回顾一次函数与二次函数图像特征,为本节课研究函数单调性做好准备。

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

函数单调性教学设计

函数单调性教学设计

《3.2.1 函数的单调性》教学设计内容:函数的单调性.内容解析:在客观世界的变化过程中,增减性是很重要的变化规律之一,而函数的单调性可以刻画这一变化规律.我们可以利用函数的单调性求解方程、不等式、函数的最值等问题。

所以,学习函数的单调性非常有必要.在前一课,学生刚学习了函数的概念,体会到高中阶段函数的概念与初中函数的概念的联系与区别,本节课在此基础上进一步研究函数的性质之一——函数的单调性,让学生经历从图象直观到自然语言再到符号语言的刻画过程,感受数学的符号语言的作用和数学的严谨性,体验概念形成过程,也为后面进一步学习函数的其他性质打下铺垫.学习函数的单调性,不仅可以让学生加深对函数基本性质的认识,而且可以让学生体会研究函数性质的过程与方法,培养学生的直观想象,数学抽象等数学素养,提升学生的思维水平.基于以上分析,确定本节课的教学重点:函数单调性的定义,单调性的判断以及证明.二、目标和目标解析教学目标:(1)借助函数图象,会用符号语言表达函数的单调性,理解单调性的作用和实际意义;(2)会用定义证明函数的单调性;(3)通过单调性概念教学,培养学生的抽象概括能力和逻辑思维能力.目标解析:达成目标(1)的标志是:能从函数图象观察求得函数的单调区间,能理解函数单调性定义中的“任意”“都有”等关键词的含义,明白函数的单调性能反映客观世界中事物的变化规律.达成目标(2)的标志是:能利用函数单调性的定义证明函数的单调性,掌握证明的步骤.达成目标(3)的标志是:让学生经历从具体到抽象、从特殊到一般的过程,学生能对函数单调性进行精确符号语言刻画,并能应用到实际的问题中去.三、教学问题诊断分析四、教学支持条件分析利用多媒体(几何画板)动画演示.五、教学过程设计(一)创设情境,引出课题引言:在前面的学习中,我们知道函数描述了客观世界中变量之间的一种对应关系,那我们可以通过研究函数的变化规律来把握客观世界中事物的变化规律.函数有怎样的变化规律呢?我们先来看个例子:老同学想来千岛湖游玩,那我们自然得清楚天气如何?所以,我作了一个10月1号24小时的气温变化图.思考:(1)你能结合天气预报给我的老同学一些建议吗?(2)如果把时间设为x,气温设为y,y是x的函数吗?这其实是函数的哪一种表示法?(3)如果y是x的函数,那么函数图像反映了哪些变化规律?从左至右,函数图象的变化趋势如何?生:半夜温度一直在下降,早晨6点后开始上升,到中午14点达到最大,下午开始下降.师:分析的不错哟!图象的这种“上升”与“下降”的变化规律就是我们今天所要研究的函数的一个重要性质——函数的单调性.设计意图:以生活实例为情景,激发学生的学习兴趣,使学生感受研究函数性质的必要性.问题2是为了培养学生的建立函数模型的意识,问题3是为了让学生直观感受图象的“上升”与“下降”,完成学生对单调性的一个直观认识,明确本节课学习的任务.(二)抽象特征,形成概念1.观察二次函数f(x)=x2 的图象思考:(1)从左至右,函数f(x)=x2 的图象是上升还是下降?生:图象在y轴左侧“下降”,在右侧“上升”.(2) 用文字语言如何描述函数的这种变化趋势呢?生:在区间(-∞,0)上,y随x的增大而减小;在区间(0,+∞)上,y随x的增大而增大.(3)如何用数学符号语言来刻画函数的这种变化趋势呢?师:在y轴左侧的图象上随便取两点A,B,任意改变A,B的位置,保持点A横坐标小于点B的横坐标,这两点的纵坐标有什么关系?生:点A的纵坐标始终大于点B的纵坐标.(6)f(x)=x2在x=0处是增还是减?函数在某一点,由于它的函数值是唯一确定的常数,因而没有增减性的变化,不存在单调性问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时框架
目标分析
在学习高中数学必修1函数的单调性时,理解函数的单调性,会判断和证明简单函数的单调性。培养从概念出发,进一步研究其性质的意识与能力,体会感悟数行结合、分类讨论的数学思想。由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。
在学习用导数的性质研究单调性时,会利用导数解决函数的单调性。通过利用导数研究单调性问题的过程,体会从特殊到一般、数形结合的研究法,通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。通过导数研究的单调性的基本步骤的形成和使用,使得学生认识到导数使得一些复杂的问题就变得有据可循,因而认识到导数的实用价值。
5.教科书从几个典型的函数实例出发,结合图像给出了用导数符号判定函数的的单调性的方法,比较直观,也容易理解接受,教学时可以利用信息技术给出更多的函数例子,以进一步丰富学生的感性认识。
6.在教学中,要注意引导学生自主构建解决问题的算法,发展学生的算法思想;同时,要注意从学生已有的知识出发,引导学生对两种方法比较,以增强对导数这一工具的意义的认识。
数形结合思想要贯穿于整个的单调性的教学中。
课时安排
必修1函数的单调性一个课时:函数单调性的概念
选修2–2函数的单调性一个课时:利用导数解决函数的的单调性
重难点分析
必修1函数的单调性的重点:函数单调性的概念,判断和证明简单函数的单调性。难点:函数的单调性概念的认知和应用定义证明单调性的代数推理论证。
选修2–2函数的单调性的重点:利用导数解决函数单调性问题。难点:“为什么会将导数与函数的单调性联系起来?”
教学建议和学法指导
1.在数学必修1函数单调性的教学中,以初中所教函数的内容为教学的基础。
2.在数学必修1函数单调性的教学中给学生规范的单调性证明格式。注重学习和掌握规范的书写格式。
3.通过实例进行具体分析,进而动手操作、观察归纳、演练巩固,由具体到抽象,逐步实现对概念理解的深化和对思维的提高。
4.学生在数学必修1中已经学习了函数单调性的定义,并理解用定义判定简单函数的单调性的基本思路,在教学中,可以引导学生认识到单调性解决的是随着自变量x的增加,y是增加的还是减少的问题,而导数刻画的是因变量y相对于自变量x的变化快慢问题,实际上,导数是比单调性更加精确地反映函数的变化趋势的一个量,这样会让问题提出得更自然些,拉近学生与要研究的问题的距离,也有利于学生思维主动性的发挥和教学难点的克服。
高中数学“函数的单调性”单元教学设计
设计意图说明
函数的单调性是函数众多性质中的重要性质之一。函数的单调性是函数的概念和图像知识的延续,它和奇偶性合称为函数的简单性质Байду номын сангаас函数的单调性是研究指数函数、对数函数和幂函数及其他函数单调性的理论基础,在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需要用到函数的单调性。另外求极值和最值都是以单调性作为基础,所以研究透彻单调性再求极值和最值就变得很容易了。
相关文档
最新文档