2016年荆门市中考数学试题及答案解析版
湖北省荆门市中考数学试题及答案
荆门市初中毕业生学业水平及升学考试数 学 试 题 卷本试题卷共6页。
满分120分,考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,将准考证 条形码粘贴在答题卡上的指定位置,并认真核对条形码上的姓名、准考证号是否 正确。
2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需 改动,必须先用橡皮擦干净后,再选涂另一个答案标号。
答案写在试题卷上一律无 效。
3.填空题和解答题用0.5毫米黑色签字笔写在答题卡上每题对应的答题区域内。
答案写在试题卷上一律无效。
3.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题只有唯一正确答案,每小题3分,共36分) 1.-6的倒数是A .6B .-6C .61D .-612.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为A .0.8×107-米 B .8×107-米C .8×108-米D .8×109-米3.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的 俯视图为A. B.C.D.4.下列运算正确的是A .8a ÷2a =4aB .325)(a a a -=--C .523)(a a a =-⋅D .b a 35+机密★启用前人数5.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名 学生参赛成绩统计如图所示. 对于这10名学生的参赛成 绩,下列说法中错误..的是 A .众数是90B .中位数是90C .平均数是90D .极差是156.若反比例函数y =xk的图象过点(-2, 1)则一次函数k kx y -=的图象过 A .第一、二、四象限 B .第一、三、四象限C .第二、三、四象限D .第一、二、三象限7.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ②AD=BC ③OA=OC ④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有 A .3种B .4种C .5种D .6种8.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是A .r l 2=B .r l 3=C .r l =D .r l 23=9.若关于x 的一元一次不等式组 有解,则m 的取值范围为A .32->mB .m ≤32 C .32>mD .m ≤ 32-10.在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为 A .(3,4)B .(-4,3)C .(-3,4)D .(4,-3)11.如图,在半径为1的⊙O 中,∠AOB =45°,则sin C 的值为A .22B .222- C .222+D .42 12.如右图所示,已知等腰梯形ABCD,AD ∥BC ,若动直 线l 垂直于BC ,且向右平移,设扫过的阴影部分的面 积为S ,BP 为x ,则S 关于x 的函数图象大致是02<-m x 2>+m x 45°OCyADl ss二、填空题(本大题共5小题,每小题3分,共15分) 13.分解因式:=-642x .14.若等腰三角形的一个内角为50°,则它的顶角为 .15.如图,在Rt ∆ABC 中,∠ACB =90°,D 是AB 的中点,过D 点作AB 的垂线 交AC 于点E ,BC =6,53sin =A , 则DE = .16.设1x ,2x 是方程020132=--x x 的两实数根,则=-+20132014231x x . 17.若抛物线c bx x y ++=2与x 轴只有一个交点,且过点)(n m A ,,)6(n m B ,+.则=n .三、解答题(本大题共7小题,共69分) 18.(本题满分8分)⑴计算:︒--++-60tan 3)1(8)5(201330π⑵化简求值:⋅+-÷++-2344922a a a a a 31+a ,其中25-=a19.(本题满分9分)如图,在∆ABC 中,AB =AC ,点DBAC ED是BC 的中点,点E 在AD 上. ⑴求证:BE =CE ;⑵若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为 F ,∠BAC =45°,原题设其它条件不变. 求证:∆AEF ≌∆BCF .20.(本题满分10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时: ⑴求三辆车全部同向而行的概率; ⑵求至少有两辆车向左转的概率;⑶由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时 段对车流量作了统计,发现汽车在此十字路口向右转的频率为52,向左转和直行的频 率均为103.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿 灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向 的绿灯亮的时间做出合理的调整.21.(本题满分10分)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627, tan β=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速 公路是否穿过风景区,请说明理由.E AFβα北北CA B22.(本题满分10分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出 了一个购买商品房的政策性方案.人均住房面积(平方米) 单价(万元/平方米)不超过30(平方米)0.3 超过30平方米不超过m (平方米)部分(45≤m ≤60) 0.5 超过m 平方米部分 0.7根据这个购房方案:⑴若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;⑵设该家庭购买商品房的人均面积为x 平方米,缴纳房款y 万元,请求出y 关于x 的 函数关系式;⑶若该家庭购买商品房的人均面积为50平方米,缴纳房款为y 万元,且 57<y ≤60 时, 求m 的取值范围.23.(本题满分10分)如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线, 交AD 于点F ,切点为E .⑴求证:OF ∥BE ;⑵设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围; ⑶延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P , 使∆EFO ∽∆EHG (E 、F 、O 与E 、H 、G 为对应点),如果存在,试求⑵中x 和y 的 值,如果不存在,请说明理由.24.(本题满分12分)已知关于x 的二次函数m m mx x y ++-=222的图象与关于x 的函数1+=kx y 的图象交于两点),(11y x A 、),(22y x B ;)(21x x <⑴当==m k ,10,1时,求AB 的长;C A ED C BOMF OMPEH (图1) (图2)⑵当m k ,1=为任何值时,猜想AB 的长是否不变?并证明你的猜想. ⑶当m =0,无论k 为何值时,猜想∆AOB 的形状. 证明你的猜想. (平面内两点间的距离公式212212)()(y y x x AB -+-=).荆门市初中毕业生学业水平及升学考试数学参考答案及评分标准一、 选择题(每小题3分,共36分) 1~6 DCBCCA 7~12 BACCBA 二、 填空题(每小题3分,共15分) 13、(x -8)•(x +8) 14、50°或80° 15、41516、 17、9 三、 解答题(本题包括7个小题,共69分) 18、(共8分)解:(1)原式=1+2-1-3×3 = -1 ………………………4' (2)原式=21+a 代入a 值得原式=55………………………4'19、证明:(1)∵AB =AC ,D 是BC 的中点∴∠BAE =∠EAC 在∆ABE 和∆ACE 中, ∵AB =AC , ∠BAE =∠EAC ,AE =AE ∴∆ABE ≌∆ACE∴BE =CE ………………………5' (2) ∵∠BAC =45°,BF ⊥AF∴∆ABF 为等腰直角三角形,∴AF =BF , 由(1)知AD ⊥BC ∴∠EAF =∠CBF在∆AEF 和∆BCF 中,AF =BF , ∠AFE =∠BFC =90°∠EAF =∠CBF ∴∆AEF ≌∆BCF ………………………4'20、根据题意,画出树形图直左右 左 直 直右 左 直 右右左 直 左左右 左 直 直右 左 直 右右 左 直 右左左 左 直 直右 左 直 右右左 直P (三车全部同向而行)=91………………………4' (2)P (至少两辆车向左转)=277………………………3'(3)由于汽车向右转、向左转、直行的概率分别为103,103,52,在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×3/10=27(秒),直行绿灯亮时间为90×3/10=27(秒) 右转绿灯亮的时间为90×2/5=36(秒) ………………………3'21、AB 不穿过风景区.如图,过C 作CD ⊥AB 与D ,AD =CD ·tan α;BD =CD ·tan β ………………………4' 由AD +DB =AB ,得CD ·tan α+CD ·tan β=AB ………………………2' CD =βαtan tan +AB =503150373.1627.1150==+(千米) ……………………3'∵CD =50>45 ∴高速公路AB 不穿过风景区. ………………………1'22、解:(1)三口之家应缴购房款为0.3×90+0.5×30=42(万元)…………………4' (2)①当0≤x ≤30时,y=0.3×3x=0.9x②当30<x ≤m 时,y=0.9×30+0.5×3×(x-30)=1.5x-18 ③当x >m 时,y=1.5m-18+0.7×3×(x-m)=2.1x-18-0.6m0.9x (0≤x ≤30)1.5x-18 ( 30<x ≤m ) (45≤m ≤60) ………3'2.1x -18-0.6m (x >m )(3) ①当50≤m ≤60时,y=1.5×50-18=57(舍)②当45≤m ﹤50时,y=2.1×50-0.6m-18=87-0.6m ∵57<87-0.6m ≤60 ∴45≤m <50综合①②得45≤m <50. ……………3'23、(1)证明:连接OEFE 、FA 是⊙O 的两条切线 ∴∠FA O =∠FEO =90° FO =FO ,OA =EO ∴Rt △FAO ≌Rt △FEO ∴∠AOF =∠EOF=21∠AOE ∴∠AOF =∠ABE∴OF ∥BE ………………4'(2)、过F 作FQ ⊥BC 于Q∴PQ =BP -BQ =x -yy=PF =EF +EP =FA +BP =x +y ∵在Rt △PFQ 中 ∴2FQ +22PF QP=∴222)()(2y x y x +=-+化简得xy 1=,(1<x <2) ………………3' (3)、存在这样的P 点∵∠EOF =∠AOF∴∠EHG =∠EOA =2∠EOF 当∠EFO =∠EHG =2∠EOF 时即∠EOF =30°时,Rt △EFO ∽Rt △EHG 此时Rt △AFO 中,y =AF =OA ·tan30°=33 31==y x ∴当33,3x ==y 时,△EFO ∽△EHG ………………3'24、解:(1)当m=0时,2x y =联立得012=--x x∴x 1+x 2=1 x 1·x 2=-1AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10同理,当k =1,m =1时,AB =10 ………………4'(2)猜想:当k =1,m 为任何值时,AB 的长不变,即AB =10 下面证明: 联立 y =x 2-2mx +m 2+my =x +1消y 整理得 x2-(2m +1)x +m 2+m -1=0∴x 1+x 2=2m+1 ,x 1·x 2= m2+m -1AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10, ………………4'(3)当m =0,k 为任意常数时,三角形AOB 为直角三角形,y =x 2y =x +1①当k=0时,则函数的图像为直线y=1, 则由y=x2y=1得A(-1,1),B(1,1)显然∆AOB为直角三角形②当k=1时,则一次函数为直线y=x+1,则由y=x2y=x+1x2-x-1=0x1+x2=1 x1·x2=-1AB=2AC=2| x2- x1|=2212124)(xxxx-+=10A(x1,y1) 、B(x2,y2)∴AB²=10OA²+OB²=x1²+ y1²+x2²+ y2²=10∴AB²=OA²+OB²(3)当k为任意实数,∆AOB仍为直角三角形联立y=x2y=kx+1得x2-kx-1=0x1+x2=k x1·x2= -1AB²=(x1-x2)²-+ (y1-y2)²=k4+5k ²+4OA ²+OB ²=x1²+ y1²+x2²+ y2²=k4+5k ²+4∴AB²=OA²+OB ²∴∆AOB为直角三角形……………4'。
2016年湖北省荆州市中考数学试卷及答案
A.3 B.4 C.6 D.8 二、填空题(每小题 3 分,共 24 分) 11.将二次三项式 x2+4x+5 化成(x+p)2+q 的形式应为 12.当 a=
﹣
. .
﹣1 时,代数式
的值是
13.若 12xm 1y2 与 3xyn+1 是同类项,点 P(m,n)在双曲线
上,则 a 的值为
.
14.若点 M(k﹣1,k+1)关于 y 轴的对称点在第四象限内,则一次函数 y=(k﹣1)x+k 的图象不 经过第 象限. 15.全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上 C 处测得塑像底部 B 处的俯角为 18°48′,测得塑像顶部 A 处的仰角为 45°,点 D 在观测点 C 正下方城墙底的地面上, 若 CD=10 米,则此塑像的高 AB 约为 米(参考数据:tan78°12′≈4.8) .
23.如图,A、F、B、C 是半圆 O 上的四个点,四边形 OABC 是平行四边形,∠ FAB=15°,连接 OF 交 AB 于点 E,过点 C 作 OF 的平行线交 AB 的延长线于点 D,延长 AF 交直线 CD 于点 H. (1)求证:CD 是半圆 O 的切线; (2)若 DH=6﹣3 ,求 EF 和半径 OA 的长.
2016 年湖北省荆州市中考数学试卷
一、选择题(每小题 3 分,共 30 分) 1.比 0 小 1 的有理数是( ) A.﹣1 B.1 C.0 D.2 2.下列运算正确的是( ) A.m6÷m2=m3B.3m2﹣2m2=m2C. (3m2)3=9m6D. m•2m2=m2 )
3.如图,AB∥ CD,射线 AE 交 CD 于点 F,若∠ 1=115°,则∠ 2 的度数是(
2016年湖北省荆州市中考数学试卷(有答案)
2016年湖北省荆州市中考数学试卷一、选择题(每小题3分,共30分)1.比0小1的有理数是()A.﹣1 B.1 C.0 D.22.下列运算正确的是()A.m6÷m2=m3B.3m2﹣2m2=m2C.(3m2)3=9m6D.m•2m2=m23.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A.55° B.65° C.75° D.85°4.我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是()A.7,6 B.6,5 C.5,6 D.6,65.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元6.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC 的余弦值是()A.2 B.C.D.8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.49.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.67410.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B 逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.将二次三项式x2+4x+5化成(x+p)2+q的形式应为.12.当a=﹣1时,代数式的值是.13.若12x m﹣1y2与3xy n+1是同类项,点P(m,n)在双曲线上,则a的值为.14.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.15.全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为米(参考数据:tan78°12′≈4.8).16.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.17.请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).18.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.三、解答题(本大题共7小题,共66分)19.计算:.20.为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:组别分数段频数(人)频率1 50≤x<60 30 0.12 60≤x<70 45 0.153 70≤x<80 60 n4 80≤x<90 m 0.45 90≤x<100 45 0.15请根据以图表信息,解答下列问题:(1)表中m=,n=;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.21.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.23.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB 于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.24.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.25.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?2016年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.比0小1的有理数是()A.﹣1 B.1 C.0 D.2【分析】直接利用有理数的加减运算得出答案.【解答】解:由题意可得:0﹣1=﹣1,故比0小1的有理数是:﹣1.故选:A.【点评】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.下列运算正确的是()A.m6÷m2=m3B.3m2﹣2m2=m2C.(3m2)3=9m6D.m•2m2=m2【分析】分别利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则、单项式乘以单项式运算法则分别分析得出答案.【解答】解:A、m6÷m2=m4,故此选项错误;B、3m2﹣2m2=m2,正确;C、(3m2)3=27m6,故此选项错误;D、m•2m2=m3,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的除法运算以及合并同类项、积的乘方运算、单项式乘以单项式等知识,熟练应用相关运算法则是解题关键.3.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A.55° B.65° C.75° D.85°【分析】根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.【解答】解:∵AB∥CD,∴∠1+∠F=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°,故选B.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.4.我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是()A.7,6 B.6,5 C.5,6 D.6,6【分析】根据众数定义确定众数;应用加权平均数计算这组数据的平均数.【解答】解:平均数为:=6,数据6出现了3次,最多,故众数为6,故选D.【点评】此题考查了加权平均数和众数的定义,属基础题,难度不大.5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷=200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.6.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°【分析】根据四边形的内角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案.【解答】解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选:C.【点评】本题考查了切线的性质,切线的性质得出=是解题关键,又利用了圆周角定理.7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC 的余弦值是()A.2 B.C.D.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1,故选A.【点评】本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选:B.【点评】本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.10.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B 逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3 B.4 C.6 D.8【分析】先根据S△ABO=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中点,求出点C 的坐标,点C的横纵坐标之积即为k值.【解答】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A′O′B,∴AO=A′0′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′0′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故选C..【点评】本题考查了反比例函数图象上点的坐标特征,解答本题的关键在于读懂题意,作出合适的辅助线,求出点C的坐标,然后根据点C的横纵坐标之积等于k值求解即可.二、填空题(每小题3分,共24分)11.将二次三项式x2+4x+5化成(x+p)2+q的形式应为(x+2)2+1.【分析】直接利用完全平方公式将原式进行配方得出答案.【解答】解:x2+4x+5=x2+4x+4+1=(x+2)2+1.故答案为:(x+2)2+1.【点评】此题主要考查了配方法的应用,正确应用完全平方公式是解题关键.12.当a=﹣1时,代数式的值是.【分析】根据已知条件先求出a+b和a﹣b的值,再把要求的式子进行化简,然后代值计算即可.【解答】解:∵a=﹣1,∴a+b=+1+﹣1=2,a﹣b=+1﹣+1=2,∴===;故答案为:.【点评】此题考查了分式的值,用到的知识点是完全平方公式、平方差公式和分式的化简,关键是对给出的式子进行化简.13.若12x m﹣1y2与3xy n+1是同类项,点P(m,n)在双曲线上,则a的值为3.【分析】先根据同类项的定义求出m、n的值,故可得出P点坐标,代入反比例函数的解析式即可得出结论.【解答】解:∵12x m﹣1y2与3xy n+1是同类项,∴m﹣1=1,n+1=2,解得m=2,n=1,∴P(2,1).∵点P(m,n)在双曲线上,∴a﹣1=2,解得a=3.故答案为:3.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第一象限.【分析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.【解答】解:∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限,故答案为:一.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.15.全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为58米(参考数据:tan78°12′≈4.8).【分析】直接利用锐角三角函数关系得出EC的长,进而得出AE的长,进而得出答案.【解答】解:如图所示:由题意可得:CE⊥AB于点E,BE=DC,∵∠ECB=18°48′,∴∠EBC=78°12′,则tan78°12′===4.8,解得:EC=48(m),∵∠AEC=45°,则AE=EC,且BE=DC=10m,∴此塑像的高AB约为:AE+EB=58(米).故答案为:58.【点评】此题主要考查了解直角三角形的应用,根据题意得出EC的长是解题关键.16.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为4πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.故答案为:4π.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17.请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).【分析】沿AB的中点E和BC的中点F剪开,然后拼接成平行四边形即可.【解答】解:如图所示.AE=BE,DE=EF,AD=CF.【点评】本题考查了图形的剪拼,操作性较强,灵活性较大,根据三角形的中位线定理想到从AB、BC的中点入手剪开是解题的关键.18.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为﹣1或2或1.【分析】直接利用抛物线与x轴相交,b2﹣4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.【点评】此题主要考查了抛物线与x轴的交点,正确得出关于a的方程是解题关键.三、解答题(本大题共7小题,共66分)19.计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案.【解答】解:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.20.为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:组别分数段频数(人)频率1 50≤x<60 30 0.12 60≤x<70 45 0.153 70≤x<80 60 n4 80≤x<90 m 0.45 90≤x<100 45 0.15请根据以图表信息,解答下列问题:(1)表中m=120,n=0.2;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.【分析】(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值;(2)根据(1)中的m的值,可以将补全频数分布直方图;(3)根据表格可以求得全体参赛选手成绩的中位数落在第几组;(4)根据表格中的数据可以求得这名选手恰好是获奖者的概率.【解答】解:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,故答案为:120,0.2;(2)补全的频数分布直方图如右图所示,(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x<90这一组;(4)由题意可得,,即这名选手恰好是获奖者的概率是0.55.【点评】本题考查频数分布直方图、频数分布表、中位数、概率公式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【分析】(1)利用得到系数法求解析式,列出方程组解答即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=6.4x+32.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元).【点评】此题主要考查了一次函数的应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.23.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB 于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.24.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,x2﹣3x+2=0,(x﹣1)(x﹣2)=0,x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.【点评】本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.25.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.【解答】解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.【点评】此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,特征线的理解,解本题的关键是用正方形的性质求出点D的坐标.。
荆门中考数学试题及答案
荆门中考数学试题及答案一、选择题(每题3分,共30分)1. 已知函数y=2x+3,当x=1时,y的值为:A. 5B. 4C. 3D. 22. 以下哪个选项是完全平方数?A. 16B. 18C. 20D. 223. 一个等腰三角形的两边长分别为3和5,那么第三边的长度为:A. 2B. 3C. 4D. 54. 计算下列有理数的乘积:(-2) × (-3) × 4:A. -24B. 24C. -12D. 125. 如果一个数的平方等于9,那么这个数可能是:B. -3C. 3或-3D. 以上都不是6. 一个圆的直径为10厘米,那么它的周长为:A. 31.4厘米B. 62.8厘米C. 15.7厘米D. 31.8厘米7. 以下哪个选项是不等式2x-3>5的解?A. x>4B. x<4C. x>1D. x<18. 一个长方体的长、宽、高分别为2、3、4,那么它的体积为:A. 24立方单位B. 12立方单位C. 8立方单位D. 6立方单位9. 已知一个角的补角是120°,那么这个角的度数为:A. 60°B. 30°C. 90°D. 120°10. 计算下列表达式的值:(3+2)^2 - 2^2:A. 9C. 7D. 5二、填空题(每题2分,共20分)11. 一个数的立方根是2,那么这个数是______。
12. 一个数除以-1/3等于它本身,这个数是______。
13. 一个三角形的内角和为______度。
14. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度为______。
15. 一个数的相反数是-5,那么这个数是______。
16. 一个圆的半径为5厘米,那么它的面积为______平方厘米。
17. 一个数的绝对值是7,这个数可能是______。
18. 一个长方体的体积是60立方厘米,长宽高比为2:3:5,那么它的高为______厘米。
湖北省荆门市中考数学试卷
湖北省荆门市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2016·葫芦岛) 4的相反数是()A . 4B . ﹣4C .D . -2. (2分)(2018·青岛模拟) 下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2017七下·寿光期中) 下列运算中,计算结果错误的是()A . x•x=x2B . a6÷a2=a4C . (ab)3=a3b3D . (﹣a3)2=﹣a54. (2分)(2018·湛江模拟) 2017年霞山财政收入突破180亿元,在湛江各县区中排名第一,将180亿用科学记数法表示为()A . 1.8×10B . 1.8×108C . 1.8×109D . 1.8×10105. (2分)(2012·玉林) 下列基本几何体中,三视图都相同图形的是()A . 圆柱B . 三棱柱C . 球D . 长方体6. (2分)(2018·苏州模拟) 如图,已知A,B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x 轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P 作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A .B .C .D .7. (2分)(2018·聊城) 已知不等式,其解集在数轴上表示正确的是()A .B .C .D .8. (2分)(2017·连云港模拟) 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A . 35°B . 45°C . 55°D . 65°9. (2分) (2019九上·济阳期末) 如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c 的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确个数有().A . 1个B . 2个C . 3个D . 4个10. (2分)一元二次方程2x2﹣5x﹣7=0的二次项系数、一次项系数、常数项分别是()A . 5;2;7B . 2;﹣5;﹣7C . 2;5;﹣7D . ﹣2;5;711. (2分) (2016八上·县月考) 如图,AB是⊙O的直径,∠C=,则∠ABD=()A .B .C .D .12. (2分)已知直线y=kx+b经过第一、二、四象限,那么直线y=bx+k一定不经过()A . 第一象限;B . 第二象限;C . 第三象限;D . 第四象限.二、填空题 (共6题;共6分)13. (1分) (2017七下·栾城期末) 因式分解:x﹣x3=________.14. (1分) (2019八下·绍兴期中) 五个数1,a,3,2,3有唯一的众数3,则a的值是________.15. (1分)在综合实践活动课上,小明用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OA=6cm,高SO=8cm,则这个圆锥漏斗的侧面积是________ cm2.(结果保留π)16. (1分)(2012·营口) 如图,直线y=﹣x+b与双曲线(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,连接OA、OB,若S△AOB=S△OBF+S△OAE,则b=________.17. (1分) (2019九上·栾城期中) 如图,已知△ABC中D为AC中点,AB=5,AC=7,∠AED=∠C,则BE=________.18. (1分) (2017七上·沂水期末) 如图是用棋子摆成的“T”字图案:从图案中可以看出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”字图案需要11枚棋子.则摆成第n个图案需要________枚棋子.三、解答题 (共8题;共93分)19. (5分) (2017七下·高阳期末) 计算:(1)(2)20. (10分) (2017七下·南昌期中) 如图,在正方形网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,请分别仅用一把无刻度的直尺画图:(1)过点A画一条AB的垂线;(2)过点C画一条AB的平行线.21. (11分) (2016九上·靖江期末) 甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?22. (16分)列方程解应用题(1)七(1)班组织去看“元旦”大型演出活动,已知一等座票每张24元,二等座票每张18元,如果全班50名学生购票共用去1026元,请问七(1)班购买一等座票和二等座票各多少张?(2)某体育用品商场销售A、B两种品牌的足球,已知每个A种品牌的售价比B种品牌足球的售价高20元,售出5个A种品牌足球与售出6个B种品牌足球的总售价相同.①求A、B两种品牌足球的售价;②“元旦”期间,该商场决定对这两种品牌足球均打8折销售,李老师在该商场购买了20个这两种品牌的足球,发现所需的总费用比打折前少420元,请问李老师在该商场购买A、B两种品牌的足球名多少?23. (10分)如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.24. (15分)根据等式性质.回答下列问题;(1)从ab=bc能否得到a=c.为什么?(2)从=能否得到a=c,为什么?(3)从ab=1能否得到a+1=+1,为什么?25. (15分) (2018八上·惠山期中) 如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.26. (11分)(2018·日照) 如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共93分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
荆门中考数学试题及答案
二00六年湖北省荆门市初中升学考试数学试卷(附评分标准)人教大纲版.总分120分,考试时间120分钟一选择题(本大题共10小题,每小题2分,满分20分)每小题只有一个正确答案,请将选出的答案代号填入题后的括号内.1.点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,则点B所表示的实数是( )(A)3. (B)-1. (C)5. (D)-1或3.2.当m<0时,2m的结果是( )(A)-1. (B)1. (C)m. (D)-m.3.2=a3b,用含a,b0.54,则下列表示正确的是( )(A)0.3ab. (B)3ab. (C)0.1ab2. (D)0.1a2b.4.园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是( )(A)24米2. (B)36米2. (C)48米2. (D)72米2.5.如图,直线AE∥CD,∠EBF=135°,∠BFD=60°,则∠D等于( )(A)75°. (B)45°. (C)30°. (D)15°.6.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是( )(A)a2-b2=(a+b)(a-b). (B)(a+b)2=a2+2ab+b2.(C)(a-b)2=a2-2ab+b2. (D)a2-b2=(a-b)2.7.某市按以下标准收取水费:用小不超过20吨,按每吨1.2元收费,超过20吨则超过部分按每吨1.5元收费.某家庭五月份的水费是平均每吨1.25元,那么这个家庭五月份应交水费( )(A)20元. (B)24元. (C)30元. (D)36元.8.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )(A)6环. (B)7环. (C)8环. (D)9环.9.在半径为1的圆中,135°的圆心角所对的弧长为( )(A)83π. (B)38π. (C)43π. (D)34π.10.已知函数y=-kx+4与y=kx的图象有两个不同的交点,且A(-12,y1)、B(-1,y2)、C(12,y3)在函数y=229kx-的图象上,则y1,y2,y3的大小关系是( )(A)y1<y2<y3. (B)y3<y2<y1. (C)y3<y1<y2. (D)y2<y3<y1.11.举世瞩目的长江三峡水利枢纽工程建成后,总装机容量为1820千瓦,年发电量为847亿千瓦时,将年发电量用科学记数法表示为______千瓦时.12.计算:(2 2xy -)2=________.13.化简:1312332---=________.14.若方程x2+(m2-1)x+m=0的两根互为相反数,则m=______.15.一个蓄水池储水20m3,用每分钟抽水0.5m3的水泵抽水,则蓄水池的余水量y(m3)与抽水时间t(分)之间的函数关系式是__________.16.如图,有一张面积为1的正方形纸片ABCD,M、N分别是AD,BC边的中点,将C点折叠至MN上,落在P点的位置,折痕为BQ,连结PQ,则PQ=______.17.在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫格点三角形.在如图5×5的方格中,作格点△ABC和△OAB相似(相似比不为1),则点C的坐标是____________.18.若(2-x)3=a0+a1x+a2x2+a3x3,则(a0+a2)2-(a1+a2)2的值为________.19.如图,是用火柴棒摆出的一系列三角形图案,按这种方案摆下去,当每边上摆2006根火柴棒时,共需要摆________根火柴棒.20.两圆半径分别为1和7,若它们的两条公切线互相垂直,则它们的圆心距为__________.三、解答题(本大题共8小题,满分70分)21.(6分)解不等式组:523(1),1317.22x xx x->+⎧⎪⎨-≤-⎪⎩①②22.(6分)为了增强学生的法制观念,学校举办了一次法制知识竞赛.现将全校500名参赛学生的竞赛成绩(得分取整数)进行随机抽样,并绘制出统计得到的频率分布表和频率分布直方图分组频数频率0≤m<20 0 020≤m<4040≤m<60 11 0.2260≤m<80 23 0.4680≤m≤100 12合计 1.00(1)补全频率分布表;(2)补全频率分布直方图,图中梯形ABCD的面积是______;(3)估计参赛学生中成绩及格(不低于60分)的人数有多少人?23.(8分)为了完善城市交通网络,为便市出行,市政府决定修建东宝山交通隧道.现要使工程提前3个月完成,需将原定工作效率提高12%,求原计划完成这项工程需用多少个月?24.(8分)[尝试]如图,把一个等腰直角△ABC沿斜边上的中线CD(裁剪线)剪一刀,把分割成的两部分拼成一个四边形A′BCD,如示意图(1).(以下有画图要求的,工具不限,不必写画法和证明)(1)猜一猜:四边形A′BCD一定是__________;(2)试一试:按上述的裁剪方法,请你拼一个与图(1)不同的四边形,并在图(2)中画出示意图.[探究]在等腰直角△ABC中,请你沿一条中位线(裁剪线)剪一刀,把分割成的两部分拼成一个特殊四边形.(1)想一想:你能拼得的特殊四边形分别是________________;(写出两种)(2)画一画:请分别在图(3)、图(4)中画出你拼得的这两个特殊四边形的示意图.[拓广]在等腰直角△ABC中,请你沿一条与中线、中位线不同的裁剪线剪一刀,把分割成的(1)变一变:你确定的裁剪线是________________,(写出一种)拼得的特殊四边形是______;(2)拼一拼:请在图(5)中画出你拼得的这个特殊四边形的示意图.25.(10分)某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)度写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?26.(10分)如图①,直线AM⊥AN,⊙O分别与AM、AN相切于B、C两点,连结OC、BC,则有∠ACB=∠OCB;(请思考:为什么?)如果测得AB=a,则可知⊙O的半径r=a.(请思考:为什么?)(1)将图①中直线AN向右平移,与⊙O相交于C1、C2两点,⊙O与AM的切点仍记为B,如图②.请你写出与平移前相应的结论,并将图②补充完整;判断此结论是否成立,且说明理由.(2)在图②中,若只测得AB=a,能否求出⊙O的半径r?若能求出,请你用a表示r;若不能求出,请补充一个条件(补充条件时不能添加辅助线,若补充线段请用b表示,若补充角请用α表示),并用a和补充的条件表示r.27.(10分)如图,某乡村小学有A、B两栋教室,B栋教室在A栋教室正南方向36米处,在A栋教室西南方向2米的C处有一辆拖拉机以每秒8米的速度沿北偏东60°的方向CF行驶,若拖拉机的噪声污染半径为100米,试问A、B两栋教室是否受到拖拉机噪声的影响?若有影响,影响的时间有多少秒?(3 1.7,各步计算结果精确到整数)28.(12分)在平面直角坐标系中,已知A(0,2),B(4,0),设P、Q分别是线段AB、OB上的动点,它们同时出发,点P以每秒3个单位的速度从点A向点B运动,点Q以每秒1个单位的速度从点B向点O 运动.设运动时间为t(秒).(1)用含t的代数式表示点P的坐标;(2)当t为何值时,△OPQ为直角三角形?(3)在什么条件下,以Rt△OPQ的三个顶点能确定一条对称轴平行于y轴的抛物线?选择一种情况,求出所确定的抛物线的解析式.荆门市二00六年初中升学考试数学试题参考答案及评分说明一、选择题题号 1 2 3 4 5 6 7 8 9 10选项 B A A B D A C C D B11.8.47×101012.424xy13.2 14.-1 15.y=20-0.5t(0≤t≤40) 16.3317.(4,0)或(3,2)18.1 19.6039063 20.62或82或10说明:17题答对1个给2分,答对2个给3分;20题每答对1个给1分.三、解答题21.解:解不等式①,得x>52;解不等式②,得x≤4. …………………………………………4分在数轴上表示其解集,如图:∴不等式的解集是52<x≤4. ………………………………6分22. 解:(1)各格依次为4,0.08,0.24,50;………………………………2分(2)补全直方图如图所示,3分梯形的面积为0.68; …………………………………………4分(3)122350+×500=350,(或(0.22+0.46)×500=350)估计及格人数有350人.………………6分23.解:设原计划完成这项工程需用x个月.依题意得11112%3x x x-=-g. ………………4分化简,得312%3x=-.解得x=28.答:原计划完成这项工程需用28个月.………………………………………………………8分24.解:[尝试]①平行四边形;1分②如图(1)所示.3分[探究]①平行四边形、矩形或者等腰梯形,(答其中两个即可)……………………………4分②如图(2)、(3)、(4)、(5)所示.(画其中两个即可)…………………………………………6分[拓广]①直角梯形,将斜边上的呣绕斜边中点旋转任意角度所得的直线;或者将平行于BC边(直角边)的中位线平移与AC交于点D,使AD:DC2:1的直线;或者将平行于AB边(斜边)的中位线平移与AC交于点D,使AD:DC2:1的直线. ……………………………………7分说明:裁剪线只答一种即可.其它叙述方式只要表达正确都应给分.②如图(6)、(7)、(8)所示.(画其中一个即可)………………………………………………8分25.解:(1)由题意,设y =kx +b ,图象过点(70,5),(90,3),∴570,390.k b k b =+⎧⎨=+⎩解得1,1012.k b ⎧=-⎪⎨⎪=⎩∴y =110-x +12.…………………………………………3分(2)由题意,得w =y (x -40)-z =y (x -40)-(10y +42.5)=(110-x +12)(x -10)-10(110-x +12)-42.5 =-0.1x 2+17x -642.5=110-(x -85)2+80. 当85元时,年获利的最大值为80万元. ……………………………………………………6分 (3)令w =57.5,得-0.1x 2+17x -642.5=57.2. 整理,得x 2-170x +7000=0. 解得x 1=70,x 2=100.由图象可知,要使年获利不低于57.5万元,销售单价应在70元到100元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又使年获利不低于57.5万元,销售单价应定为70元.………………………………10分 26.解:(1)图②中相应结论为∠AC 1B =∠OC 1B 和∠AC 2B =∠OC 2B .………………………2分 先证∠AC 1B =∠OC 1B .连接OB 、OC 1, ∵AM 与⊙O 相切于B ,∴OB ⊥AM .∵AN ⊥AM ,∴OB ∥AN .∴∠AC 1B =∠OBC 1.∵OB =OC 1,∴∠OBC 1=∠OC 1B , ∴∠AC 1B =∠OC 1B .同理可证∠AC 2B =∠OC 2B .……4分 (2)若只测得AB =a ,不能求出⊙O 的半径r .……………………………………………………5分 补充条件:另测得AC 1=b .……………………………………………………………………6分 作OD ⊥C 1C 2,则C 1D =C 2D . 由AB 2=AC1•AC 2,得AC 2=2a b .则C 1C 2=AC 2-AC 1=2a b-b =22a b b -. ∴C 1D =12C 1C 2=222a b b -.故r =OB =AD =AC 1+C 1D =b +222a b b -=222a b b+.…………………………………………10分说明:1.①若补充条件:另测得AC 2=b ,则r =222a b b+.②若补充条件:另测得C 1C 2=b ,则r =224a b +.③若补充条件:另测得BC 1=b ,则r =22222()b b a b a --.④若补充条件:另测得∠ABC 1=α,则r =2sin cos a αα.2.以上答案供参考,若有其他答案,只要正确,都应给分.27.解:过点作直线AB 的垂线,垂足为D .………………………………………………………1分 设拖拉机行驶路线CF 与AD 交于点E .∵AC 2,∠ACD =45°,∴CD =AD 22=300.DE =CD •tan30°=3003∴BE =300-36-170=94.……………………………………………4分 过点B 作BH ⊥CF ,垂足为H ,则∠EBH =30°. ∴BH =BE •cos30°=943∵80<100,∴B 栋教室受到拖拉机噪声影响.…………6分 以点B 为圆心,100为半径作弧,交CF 于M 、N 两点,则MN 2210080-×60=120. B 栋教室受噪声影响的时间为:120÷8=15(秒).……………………………………………8分作AH ′⊥CF ,H ′为垂足,则∠EAH ′=30°.又AE =36+94=130,∴AH ′=AE •cos30°=1303=111. ∵111>100,∴A 栋教室不受拖拉机噪声影响.……………………………………………10分 28.解:(1)作PM ⊥y 轴,PN ⊥x 轴.∵OA =3,OB =4,∴AB =5.∵PM ∥x 轴,∴PM AP OB AB =.∴345PM t =.∴PM =125t .…………2分∵PN ∥y 轴,∴PN PB OA AB =.∴5335PN t -=.∴PN =3-95t . ∴点P 的坐标为(125t ,3-95t ). ……………………………………4分(2)①当∠POQ =90°时,t =0,△OPQ 就是△OAB ,为直角三角形.………………………………5分 ②当∠OPQ =90°时,△OPN ∽△PQN ,∴PN 2=ON •NQ .(3-95t )2=125t (4-t -125t ). 化简,得19t 2-34t +15=0.解得t =1或t =1519.……………………………………………………6分 ③当∠OQP =90°时,N 、Q 重合.∴4-t =125t ,∴t =2017.………………………………………7分综上所述,当t =0,t =1,t =1519,t =2017时,△OPQ 为直角三角形.………………………………8分(3)当t =1或t =1519时,即∠OPQ =90°时,以Rt △OPQ 的三个顶点可以确定一条对称轴平行于y 轴的抛物线.当t =1时,点P 、Q 、O 三点的坐标分别为P (125,65),Q (3,0),O(0,0).设抛物线的解析式为y =a (x -3)(x -0),即y =a (x 2-3x ).将P (125,65)代入上式,得a =-56.∴y =-56(x 2-3x ).即y =-56x 2+52x .……………………………………………………………………………12分说明:若选择t =1519时,点P 、Q 、O 三点的坐标分别是P (3619,3019),Q (6119,0),O (0,0).求得抛物线的解析式为y =-1930x 2+6130x ,相应给分.。
湖北省荆门市中考数学真题
2016 年湖北省荆门市中考数学试卷
参考答案与试题解析
一、选择题(本题共 12 小题,每小题 3 分,共 36 分,每小题给出 4 个选项,有且只有一 个答案是正确的) 1.(2016·湖北荆门)2 的绝对值是( )
A.2 B.﹣2C. D.﹣
【考点】绝对值.
【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据 绝 对值定义去掉这个绝对值的符号. 【解答】解:∵2>0, ∴|2|=2. 故选:A.
=m2﹣9m+m﹣9+8m,
=m2﹣9,
=(m+3)(m﹣3).
故答案为:(m+3)(m﹣3).
14.(2016·湖北荆门)为了改善办学条件,学校购置了笔记本电脑和台式电脑共 100 台,已 知笔记本电脑的台数比台式电脑的台数的 还少 5 台,则购置的笔记本电脑有 16 台.
【考点】一元一次方程的应用. 【分析】设购置的笔记本电脑有 x 台,则购置的台式电脑为台.根据笔记本电脑的台数比台 式电脑的台数的 还少 5 台,可列出关于 x 的一元一次方程,解方程即可得出结论. 【解答】解:设购置的笔记本电脑有 x 台,则购置的台式电脑为台,
3
9.(2016·湖北荆门)已知 3 是关于 x 的方程 x2﹣(m+1)x+2m=0 的一个实数根,并且这个方 程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A.7 B.10 C.11 D.10 或 11 【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形 的性质. 【分析】把 x=3 代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可. 【解答】解:把 x=3 代入方程得 9﹣3(m+1)+2m=0, 解得 m=6, 则原方程为 x2﹣7x+12=0, 解得 x1=3,x2=4, 因为这个方程的两个根恰好是等腰△ABC 的两条边长, ①当△ABC 的腰为 4,底边为 3 时,则△ABC 的周长为 4+4+3=11; ②当△ABC 的腰为 3,底边为 4 时,则△ABC 的周长为 3+3+4=10. 综上所述,该△ABC 的周长为 10 或 11. 故选:D.
2016年湖北省荆州市中考数学试题-(解析版)
2016年荆州中考数学试题一、选择题(每小题3分,共30分)1.比0小1的有理数是()A.﹣1 B.1 C.0 D.2[答案]A[解析]试题分析:直接利用有理数的加减运算得出答案.由题意可得:0﹣1=﹣1,故比0小1的有理数是:﹣1.考点:有理数的加减运算2.以下运算正确的是()A.m6÷m2=m3B.3m2﹣2m2=m2C.(3m2)3=9m6D. m•2m2=m2[答案]B考点:(1)、同底数幂的除法运算;(2)、合并同类项;(3)、积的乘方运算;(4)、单项式乘以单项式3.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A.55° B.65° C.75° D.85°[答案]B[解析]试题分析:根据两直线平行,同旁角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.∵AB∥CD,∴∠1+∠F=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°考点:平行线的性质4.我市气象部门测得某周七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是()A.7,6 B.6,5 C.5,6 D.6,6[答案]D[解析]试题分析:根据众数定义确定众数;应用加权平均数计算这组数据的平均数.平均数为: =6,数据6出现了3次,最多,故众数为6考点:(1)、加权平均数;(2)、众数5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元[答案]C考点:一元一次方程的应用6.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°[答案]C[解析]试题分析:根据四边形的角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案.如图,由四边形的角和定理,得:∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得:∠AOC=∠BOC=50°.由圆周角定理,得:∠ADC=∠AOC=25°考点:(1)、切线的性质;(2)、圆周角定理7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.[答案]D考点:勾股定理8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE 的长为()A.1 B.2 C.3 D.4[答案]A[解析]试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成以下图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674[答案]B点:图形的变化问题10.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3 B.4 C.6 D.8[答案]C考点:反比例函数图象上点的坐标特征二、填空题(每小题3分,共24分)11.将二次三项式x2+4x+5化成(x+p)2+q的形式应为.[答案](x+2)2+1[解析]试题分析:直接利用完全平方公式将原式进行配方得出答案.x2+4x+5=x2+4x+4+1=(x+2)2+1.考点:配方法的应用12.当a=﹣1时,代数式的值是.[答案][解析]试题分析:根据已知条件先求出a+b和a﹣b的值,再把要求的式子进行化简,然后代值计算即可.∵a=﹣1,∴a+b=+1+﹣1=2,a﹣b=+1﹣+1=2,∴===;考点:(1)、完全平方公式;(2)、平方差公式;(3)、分式的化简13.若12x m﹣1y2与3xy n+1是同类项,点P(m,n)在双曲线上,则a的值为.[答案]3[解析]试题分析:先根据同类项的定义求出m、n的值,故可得出P点坐标,代入反比例函数的解析式即可得出结论.∵12x m﹣1y2与3xy n+1是同类项,∴m﹣1=1,n+1=2,解得m=2,n=1,∴P(2,1).∵点P(m,n)在双曲线上,∴a﹣1=2,解得a=3.考点:反比例函数图象上点的坐标特点14.若点M(k﹣1,k+1)关于y轴的对称点在第四象限,则一次函数y=(k﹣1)x+k的图象不经过第象限.[答案]一15.全球最大的关公塑像矗立在荆州古城东门外.如图,三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB 约为米(参考数据:tan78°12′≈4.8).[答案]58[解析]试题分析:直接利用锐角三角函数关系得出EC的长,进而得出AE的长,进而得出答案.如下图:由题意可得:CE⊥AB于点E,BE=DC,∵∠ECB=18°48′,∴∠EBC=78°12′,则tan78°12′===4.8,解得:EC=48(m),∵∠AEC=45°,则AE=EC,且BE=DC=10m,∴此塑像的高AB约为:AE+EB=58(米).考点:解直角三角形的应用16.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.[答案]4π考点:三视图17.请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).[答案]答案见解析[解析]试题分析:沿AB的中点E和BC的中点F剪开,然后拼接成平行四边形即可.如下图.AE=BE,DE=EF,AD=CF.考点:图形的剪拼18.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.[答案]﹣1或2或1考点:抛物线与x轴的交点三、解答题(本大题共7小题,共66分)19.计算:.[答案]5[解析]试题分析:直接利用绝对值的性质以与特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案.试题解析:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.考点:实数的运算20.为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如以下图表:组别分数段频数(人)频率1 50≤x<60 30 0.12 60≤x<70 45 0.153 70≤x<80 60 n80≤x<4m 0.49090≤x<545 0.15100请根据以图表信息,解答以下问题:(1)表中m=,n=;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.[答案](1)、m=120;n=0.2;(2)、答案见解析;(3)、第一组;(4)、0.55考点:(1)、频数分布直方图;(2)、频数分布表;(3)、中位数;(4)、概率公式21.如图,将一直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F 为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.[答案]△A′DE是等腰三角形;证明过程见解析.考点:(1)、平移的性质;(2)、菱形的性质;(3)、全等三角形的判定和性质;(4)、直角三角形斜边中线定理22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如下图的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.[答案](1)、y=6.4x+32;(2)、137元.考点:一次函数的应用23.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.[答案](1)、证明过程见解析;(2)、EF=2-3;OA=2.[解析]试题分析:(1)、连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)、根据平行线的考点:(1)、切线的判定;(2)、平行四边形的性质;(3)、直角三角形的性质;(4)、等边三角形的判定和性质24.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.[答案](1)、k≥﹣1且k≠1且k≠2;(2)、x=0、1、2、3;(3)、不成立;理由见解析.[解析]试题分析:(1)、先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)、先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可;(3)、根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.试题解析:(1)、∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k), x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2, m2﹣4=1, m2=5, m=±,∴|m|≤2不成立.考点:一元二次方程的根与系数的关系25.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?[答案](1)、x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)、y=(x﹣2)2+3;(3)、或[解析]试题分析:(1)、根据特征线直接求出点D的特征线;(2)、由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(3)、分平行于x轴和y轴两种情况,由折叠的性质计算即可.试题解析:(1)、∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;∴MN==,∴抛物线需要向下平移的距离=3﹣=.当点A′在平行于x轴的D点的特征线时,考点(1)、折叠的性质;(2)、正方形的性质;(3)、特征线的理解。
湖北省荆门市 2016年中考数学真题试卷附解析
【考点】勾股定理;等腰三角形的性质.
【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.
【解答】解:∵AB=AC,AD是∠BAC的平分线,
∴AD⊥BC,BD=CD,
∵AB=5,AD=3,
∴BD= =4,
∴BC=2BD=8,
故选C.
5.(2016·湖北荆门)在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是( )
∴∠D=∠CAB=60°,
∴∠DCA=60°,
∴∠ACF=30°,
可得∠AFC=90°,
∵AB=8cm,∴AC=4cm,
∴FC=4cos30°=2 (cm).
故答案为:2 .
17.(2016·湖北荆门)如图,已知点A(1,2)是反比例函数y= 图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).
【分析】把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.
【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,
解得m=6,
则原方程为x2﹣7x+12=0,
解得x1=3,x2=4,
因为这个方程的两个根恰好是等腰△ABC的两条边长,
故答案为:16.
15.(2016·湖北荆门)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是 .
【考点】列表法与树状图法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年湖北省荆门市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,有且只有一个答案是正确的)1.2的绝对值是()A.2 B.﹣2 C.D.﹣2.下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2D.(a﹣3)2=a2﹣93.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣14.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.105.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等7.化简的结果是()A.B.C.x+1 D.x﹣18.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.9.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或1110.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=711.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF12.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.12cm B.6cm C.3cm D.2cm二、填空题(本题共5小题,每小题3分,共15分)13.分解因式:(m+1)(m﹣9)+8m=.14.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台.15.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是.16.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.17.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是.三、解答题(本题共7小题,共69分)18.(1)计算:|1﹣|+3tan30°﹣()0﹣(﹣)﹣1.(2)解不等式组.19.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.20.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 c 0.2请根据上述统计图表,解答下列问题:(1)在表中,a=,b=,c=;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?21.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?22.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB 交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.23.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D 两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?24.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.2016年湖北省荆门市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,有且只有一个答案是正确的)1.2的绝对值是()A.2 B.﹣2 C.D.﹣【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵2>0,∴|2|=2.故选:A.2.下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2D.(a﹣3)2=a2﹣9【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等余平方和减积的二倍,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、差的平方等余平方和减积的二倍,故D错误;故选:B.3.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件进而得出x﹣1≥0,求出答案.【解答】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.4.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.5.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴点B(a,b)所在的象限是第四象限.故选D.6.由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,主视图的面积是4;从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积为3;从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,俯视图的面积是4,左视图面积最小,故B正确;故选:B.7.化简的结果是()A.B.C.x+1 D.x﹣1【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故选A8.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是A;故选:A.9.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或11【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.【分析】把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为x2﹣7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选:D.10.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7【考点】二次函数的性质;解一元二次方程-因式分解法.【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣=3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.11.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【考点】矩形的性质;全等三角形的判定.【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选(B)12.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.12cm B.6cm C.3cm D.2cm【考点】圆锥的计算.【分析】圆的半径为2,那么过圆心向AC引垂线,利用相应的三角函数可得AC的一半的长度,进而求得AC的长度,利用弧长公式可求得弧BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.【解答】解:作OD⊥AC于点D,连接OA,∴∠OAD=45°,AC=2AD,∴AC=2(OA×cos45°)=12cm,∴=6π∴圆锥的底面圆的半径=6π÷(2π)=3cm.故选C.二、填空题(本题共5小题,每小题3分,共15分)13.分解因式:(m+1)(m﹣9)+8m=(m+3)(m﹣3).【考点】因式分解-运用公式法.【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m﹣9)+8m,=m2﹣9m+m﹣9+8m,=m2﹣9,=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).14.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有16台.【考点】一元一次方程的应用.【分析】设购置的笔记本电脑有x台,则购置的台式电脑为台.根据笔记本电脑的台数比台式电脑的台数的还少5台,可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为台,依题意得:x=﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.15.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到一男一女的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为P(一男一女)=,故答案为:.16.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=2cm.【考点】旋转的性质.【分析】利用旋转的性质得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90°,再利用直角三角形的性质得出FC的长.【解答】解:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=2(cm).故答案为:2.17.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).三、解答题(本题共7小题,共69分)18.(1)计算:|1﹣|+3tan30°﹣()0﹣(﹣)﹣1.(2)解不等式组.【考点】解一元一次不等式组;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)首先去掉绝对值符号,计算乘方,代入特殊角的三角函数值,然后进行加减计算即可;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:(1)原式=﹣1+3×﹣1﹣(﹣3)=﹣1++3=2;(2)解①得x>﹣,解②得x≤0,则不等式组的解集是﹣<x≤0.19.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【考点】旋转的性质.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS 得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.20.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 c 0.2请根据上述统计图表,解答下列问题:(1)在表中,a=0.1,b=0.3,c=18;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;加权平均数.【分析】(1)根据表格中的数据可以求得抽查的学生数,从而可以求得a、b、c的值;(2)根据(1)中c的值,可以将频数分布直方图补充完整;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩;(4)根据表格中的数据可以求得“优秀”等次的学生数.【解答】解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.21.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?【考点】解直角三角形的应用-坡度坡角问题.【分析】过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.【解答】解:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x.在Rt△BCD中,∵∠B=30°,∴BC===2x,∵小军的行走速度为米/秒.若小明与小军同时到达山顶C处,∴=,解得a=1米/秒.答:小明的行走速度是1米/秒.22.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB 交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.【考点】切线的判定;角平分线的性质.【分析】(1)证明:连接CO,证得∠OCA=∠CAE,由平行线的判定得到OC∥FD,再证得OC⊥CE,即可证得结论;(2)证明:连接BC,由圆周角定理得到∠BCA=90°,再证得△ABC∽△ACE,根据相似三角形的性质即可证得结论.【解答】(1)证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC∥FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:连接BC,在Rt△ACE中,AC===,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴=,∴,∴AB=5,∴AO=2.5,即⊙O的半径为2.5.23.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D 两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30﹣x吨,B城运往C乡的化肥为34﹣x吨,B城运往D乡的化肥为40﹣(34﹣x)吨,从而可得出W与x大的函数关系.(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写出方案即可;(3)根据题意得到W=x+12540,所以当a=200时,y最小=﹣60x+12540,此时x=30时y最=10740元.于是得到结论.小【解答】解:(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D 城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D 城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D 城36台,(3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540,=10740元.所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小此时的方案为:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D 城36台.24.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG 与△AGB相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.【解答】解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∵EF∥x轴,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∵EG∥x轴,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,∴E点坐标为(0,),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.2016年7月12日。