盈亏问题讲义上课讲义

合集下载

盈亏问题讲义及练习

盈亏问题讲义及练习

盈亏问题解答公式:两次分配的结果差÷两次分配数差=人数或,由于参加分配的总人数不变,参加分配的物品总数不变,因此,可根据第一种分法的人数=第二种分法的人数第一种分法物品总数=第二种分法物品总数,列出方程来解。

1、一批树苗,如果每人种树苗8棵,则缺少3棵;如果每人种7棵,则有4棵没人种。

求参加种树的人数是多少?这批树苗共有多少棵?分析:每人种8棵,则缺少3棵,也就是少3棵。

每人种7棵,则有4棵没人种,也就是多4棵。

那么两次分配的结果差是3+4=7,两次分配的数差是8-7=1种树人数是:7÷1=7(人)树苗总数是:8×7-3=53(人)解法一:(3+4)÷(8-7)=7÷1=7(人)8×7-3=53(棵)答:参加种树的人数是7人,这批树苗共有53棵。

解法二:这道题种树人数不变,树苗总棵数不变,若设种树人数为X人,根据第一种分法的树苗总棵数=第二种分法的树苗总棵数,列方程解。

解:设种树人数为X人,列方程得8X-3=7X+48X-7X=4+3X=78×7-3=53(棵)答:(略)2、幼儿园老师把一堆苹果分给小朋友,如果每人分6个,则少10个,每人分4个,还少2个。

有多少小朋友?有多少个苹果?分析:两次分配都不足,则两次不足数量差就是两次分配的结果差,结果差÷分配差=人数解:(10-2)÷(6-4)=8÷2=4(人)6×4-10=14(个)答:有4个小朋友,有14个苹果。

3、学校安排新生住宿,若每间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍,求住宿的学生和宿舍各有多少?分析:每间住6人,多出34人,就是不足34张床位;每间住7人,多出4间宿舍,就是多出7×4=28张床位。

两次分配的结果差就是(34+28),结果差÷分配差=宿舍解:(34+28)÷(7-6)=62÷1=62(间)6×62+34=406(人)答:住宿的学生共406人,宿舍有62间。

四年级奥数盈亏问题讲义

四年级奥数盈亏问题讲义

四年级奥数-盈亏问题-讲义中小学1对1课外辅导专家龙文教育·教育是一项良心工程武汉龙文教育学科辅导讲义授课对象 授课教师 授课时间 授课题目 盈亏问题课 型使用教具教学目标1.了解盈亏问题的概念,明白其原理2.尽量用公式去解决盈亏问题 教学重点和难点重点:盈亏问题的概念及简算原理 难点:盈亏问题公式的理解参考教材教学流程及授课详案温故知新“老猴子给小猴子分梨。

每只小猴子分6个梨,就多出12个梨;每只小猴子分7个梨,就少11个梨。

有几只小猴子和多少个梨?”这道应用题是已知两种分配的方法,一次分配有余,一次分配不足,求参加分配的数量及被分配的总量。

这样的应用题,通常叫做盈亏问题(有余时称盈,不足时称亏)。

解盈亏问题,常常采用比较的方法。

一般地,在盈亏问题中:(盈数+亏数)÷两次差=参加分配的数知识讲解时 间 分配 及 备 注例1三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?分析比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。

第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块)每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。

共有砖:4×9+7=43(块)。

解:(7+2)÷(5-4)=9(人)4×9+7=43(块)或 5×9-2=43(块)答:共有少先队员9人,砖的总数是43块。

例2妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?分析题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了。

小学奥数-(盈亏问题)PPT

小学奥数-(盈亏问题)PPT
思路 分析
(余数+不足数) ÷两次每份数的差=总份数
解题 过程
(20+5) ÷(3 —2)=25(人)


生活老师给学生分宿舍,如果6人/间,则16人没有床 位,如果8人/间,则4人没有床位,有多少间宿舍?
例2:
思路分析:(较大不足数—较小不足数) ÷两次每份数的差=总份数
解题过程:(16 —4) ÷(8 —6)=6(间)
图片选择与处理
为图片添加必要的标注和说明文字,帮助观众更好地理解和记忆图片内容。
图片标注与说明
将多张图片进行排版和组合,形成具有逻辑关系和视觉冲击力的图表或画廊效果。
图片排版与组合
图片编辑与美化方法
选用通用的音频视频格式,确保课件能够在不同设备和平台上正常播放。
音频视频格式选择
对音频视频素材进行必要的剪辑、合并、添加字幕等处理,提高课件的观赏性和实用性。
02
教学内容设计
1
2
3
具体规定学生在教学后应掌握的知识点和技能点。
明确知识与技能目标
强调学生在学习过程中应掌握的方法和策略。
制定过程与方法目标
关注学生在学习过程中的情感变化和价值观形成。
确立情感态度与价值观目标
确定教学目标
分析学习者特征
分析学生年龄特点
了解学生的心理和生理发展阶段,以便因材施教。
教学课件概述 教学内容设计 多媒体元素运用 交互功能实现途径 界面布局与风格统一 评估反馈机制建立
contents
目录
01
教学课件概述
教学课件是根据教学大纲和教学目标,针对特定教学内容制作的多媒体教学资源。
定义
旨在辅助教师进行教学,提高教学效果,增强学生的学习兴趣和参与度。

著名机构五升六数学奥数讲义盈亏问题

著名机构五升六数学奥数讲义盈亏问题

盈亏问题学生姓名年级学科授课教师日期时段核心内容盈亏问题课型一对一/一对N教学目标1、认识盈亏问题的基本含义2、理解并掌握盈亏问题的三种类型及方法3、进行盈亏问题的实际应用重、难点盈亏问题的三种类型方法及其实际应用课首沟通和学生交谈沟通,了解学生是否接触过盈亏问题的相关知识;列举实例,引起学生好奇心,增强学生的求知欲以及解决问题的兴趣。

知识梳理1、盈亏问题的含义:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。

2、盈亏问题的三种类型:(1)直接计算型盈亏问题①一盈一亏,可用公式:(盈亏) 两次分得之差人数或单位数②两次盈余,可用公式:(大盈—小盈) 两次分得之差人数或单位数③两次亏(不足),可用公式:(大亏—小亏) 两次分得之差人数或单位数④一次亏(不足),另一次刚好分完,可用公式:亏÷两次分得之差人数或单位数⑤一次盈余,另一次刚好分完,可用公式:盈÷两次分得之差人数或单位数(2)条件转换型盈亏问题这类型的盈亏问题不能直接运用公式计算,首先需要将一定的条件转化,使之成为直接计算型的盈亏问题,再运用公式计算。

(3)关系互换型盈亏问题这种题型中会出现两种物品,一般两者之间还存在数量关系,如和差关系、倍数关系等,我们应该先利用数量关系将已知条件转化为一种物品的盈亏关系,再根据基本盈亏问题的解法计算。

导学一:直接计算型盈亏问题知识点讲解 1:一盈一亏计算公式:(盈亏) 两次分得之差人数或单位数例 1. 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?我爱展示1.王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?2.卓越学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?知识点讲解 2:两次盈余计算公式:(盈—盈) 两次分得之差人数或单位数例 1. 明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?我爱展示1.有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?2.老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?知识点讲解 3:两次亏(不足)计算公式:(亏—亏) 两次分得之差人数或单位数例 1. 卓越学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?我爱展示1. 幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?知识点讲解 4:一次亏(不足),另一次刚好分完计算公式:亏÷两次分得之差人数或单位数例 1. 卓越学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?我爱展示1. 卓越学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,卓越学校一共有多少个班?买来多少个足球?知识点讲解 5:一次盈余,另一次刚好分完计算公式:盈÷两次分得之差人数或单位数例 1. 一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?我爱展示1. 猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?导学二:条件转换型盈亏问题知识点讲解 1:这类型的盈亏问题不能直接运用公式计算,首先需要将一定的条件转化,使之成为直接计算型的盈亏问题,再运用公式计算。

(完整版)盈亏问题讲义

(完整版)盈亏问题讲义

盈亏问题小朋友分铅笔,每人分3支,则多6支,每人分5支则少8支。

有多少小朋友,有多少铅笔?任务:分东西,分什么:铅笔【总量】分给谁:小朋友【份数】多,余,盈是多余的意思少,亏是不足的意思。

在分物品或者安排其他工作时,经常会遇到多余或者不足的情况。

遇到这类题目,我们可以根据多余以及不足的数量找出解题的线索。

这类应用题通常叫做盈亏问题。

解答盈亏问题的关键是弄清盈、亏与两次分配差的关系。

盈亏问题的数量关系是:(1)“一盈一亏”:(盈+亏)÷两次分配差=份数【标准盈亏】“两盈”:(大盈-小盈)÷两次分配差=份数“两亏”:(大亏-小亏)÷两次分配差=份数(2)每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量1、标准盈亏问题(一盈一亏)例1、小朋友分糖果,每人3粒剩2粒,每人5粒少6粒,则共有糖果_________粒?思路点拨:列出已知条件:两个不变量两种分配方案先列对比图:每人3粒,多2粒;每人5粒,少6粒。

这属于“一盈一亏”问题。

由题意可知,小朋友的人数和糖果的粒数是不变的。

比较两种分配方案,结果相差2+6=8(粒),这是因为两种分配方案每人所分糖果相差5-3=2(粒)。

所以,小朋友的人数是8÷2=4(人),再求出糖果一共有多少粒。

(盈+亏)÷两次分配差=份数【标准盈亏】拓展:1)兔妈妈给兔子们分胡萝卜。

如果每只兔子分3个,则多17个,如果每只兔子分5个,还少13个。

问:有多少兔子?有多少胡萝卜?2)幼儿园老师给小朋友分果冻,如果每人分7个,则多15个果冻,如果每人分5个,则少3个果冻。

问:幼儿园有多少小朋友?有多少果冻?3)一些同学去划船,如果每条船坐4人,则有3个人没有位置。

如果每条船坐5人,则多出3个位置;一共有多少条船?一共有多少个同学?4)绿化队一次植树。

如果每人栽15棵树,则还剩下27棵没有人栽;如果每人栽18棵,就少3棵树苗。

三年级奥数之盈亏问题讲义

三年级奥数之盈亏问题讲义

奥数盈亏问题把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。

凡是研究盈和亏这一类算法的应用题就叫盈亏问题。

一般解法:(盈数+亏数)除以两次分配只能够每份的差=所分对象数,物品数可由其中一种分法的份数和盈亏数求出。

已知两个分配方案,一次分配有余,一次分配不足,求参加分配的人数及被分配的总量。

这样的问题通常叫做盈亏问题。

例1 一些小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。

问:有多少个小朋友?分多少粒糖?分析:由题目条件可以知道,小朋友的人数与糖的粒数是不变的。

比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒)。

相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒)。

每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为4×15+9=69(粒)。

解:(9+6)÷(5-4)=15(人),4×15+9=69(粒)。

答:有15个小朋友,分69粒糖。

例2 一些小朋友分糖果,若每人分3粒则剩2粒;若每人分5粒则少6粒。

问:有多少个小朋友?多少粒糖果?分析:本题与例1基本相同,例1中两次分配数之差是5-4=1(粒),本题中两次分配数之差是5-3=2(粒)。

例1中,两种分配方案的盈数与亏数之和为9+6=15(粒),本题中,两种分配方案的盈数与亏数之和为2+6=8(粒)。

仿照例1的解法即可。

解:(6+2)÷(4-2)=4(人),3×4+2=14(粒)。

答:有4个小朋友,14粒糖果。

由例1、例2看出,所谓盈亏问题,就是把一定数量的东西分给一定数量的人,由两种分配方案产生不同的盈亏数,反过来求出分配的总人数与被分配东西的总数量。

六年级下册奥数讲义-小学奥数盈亏问题专题讲解 人教版含答案

六年级下册奥数讲义-小学奥数盈亏问题专题讲解 人教版含答案

小学奥数盈亏问题专题讲解一、基本题型第一类:一盈一亏例1:阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就缺4块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还剩16块第二种分法:每人5块,还少4块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以不仅把那剩下的16块分完,还少4块,总数上,第二次比第一次多16+4=20块.换句话说:每人多分2块,就得多分20块,我们就可以算出有多少人了,20÷2=10人,那总饼干数就是:10×3+16=46或10×5-4=46第二类:二次都是盈例:阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就多4块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还剩16块第二种分法:每人5块,还多4块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以饼干由剩下16块变成只剩下4块,总数上,第二次比第一次多16-4=12块.换句话说:每人多分2块,就得多分12块,我们就可以算出有多少人了,12÷2=6人,那总饼干数就是:6×3+16=34或6×5+4=34第三类:二次都是亏例:阿姨给幼儿园小朋友分饼干.如果每人分3块,则少4块饼干;如果每人分5块,那么就少16块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还少4块第二种分法:每人5块,还少16块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以饼干由少4块变成了少16块,总数上,第二次比第一次多16-4=12块.换句话说:每人多分2块,就得多分12块,我们就可以算出有多少人了,12÷2=6人,那总饼干数就是:6×3-4=14或6×5-16=14二、变化题型语言上的变化例1:同学去划船,如果每只船坐4人,则少1只船;如果每只船坐6人,则多出4只船,问同学们共多少人?租了几只船?分析:讲解时,可先让学生练习以下这道题,引导学生在对比两道例题异与同,进行条件转换.(同学去划船,如果每只船坐4人,则多4人;如果每只船坐6人,则少24人,问同学们共多少人?租了几只船?) 例2:学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?分析:仔细观察,发现第一次分法与基本题型的分法不一样,有什么办法转换过来?由其中两人各擦4块、其余各擦5块则余12块,可知,若每人都擦5块,则余12-(5-4)×2=10块,而每人擦6块则正好.可见每人多擦一块可把余下的10块擦完.则擦玻璃人数是[12-(5-4)×2]÷(6-5)=10(人),玻璃的块数是6×10=60(块).三、特殊例题1.钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角.问小明带了多少钱?分析:关键在于条件的转换,要么都转换成钢笔,要么都转换成圆珠笔.解1:都转换成钢笔;买5支钢笔差15角,买8支钢笔差(12×8-6)90角,这是双亏:分差是(8-5)3支,总差是(90-15)75角,就是说多买3支,就多差75角;这样就可求出1支钢笔多少钱;继而求出小明带了多少钱.[(12×8-6)-15]÷(8-5)=75÷3=25(角)--钢笔的价钱25×5-15=125-15=110(角)=11(元)--小明带得钱数解2:都转换成圆珠笔;买5支圆珠笔多(12×5-15)45角,买8支圆珠笔多6角.[(12×5-15)-6]÷(8-5)=39÷3=13(角)--圆珠笔的价钱 13×8+6=104+6==110(角)=11(元)--小明带得钱数2.某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加 10个,问这批学生可能有多少人?解答:关键在于条件的理解,每个寝室安排8个人,要用33个寝室;因没说盈或亏,我们只能认为至少有:(33-1)×8+1=257(人);至多有:33×8=264(人);每个寝室少安排2个人,寝室就要增加10个,也没说盈或亏,我们也只能认为至少有:(33+10-1)×(8-2)+1=253(人);至多有:(33+10)×(8-2)=258(人);根据这两个条件可以得到人数在257与258之间.(至少取大数,至多取小数,)3.有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问第二组有多少人?解答:因分给第一组,那么每人4本,有剩余;每人5本,书不够.说明第一组的人数不到48÷4=12人,多于(48÷5=9…3)9个人,即10到11人;同理,第二组不到48÷3=16人,又多与48÷4=12人,即13到15人,因15-10=5(人);由此可知:第一组是10人,第二组是15人.4.“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球?分析:根据题意我们可知盒内的球的数量一定是2、3、5的倍数,假设1份球数是30个;原来各买一份要:30÷2+30÷3=15+10=25(元);现在要(30+30)÷5×2=24(元);即小明每买30+30=60个球,就可以少花1元钱,那么小明一共就买了4×60=240个球.。

小学数学5年级培优奥数讲义 第11讲-盈亏问题(教师版)

小学数学5年级培优奥数讲义 第11讲-盈亏问题(教师版)

第11讲盈亏问题教学目标了解盈亏问题是什么,能够分辨出是属于盈亏问题类型掌握盈亏问题的几种基本情况,以及基本的解题方法熟悉复杂的盈亏问题,能用方法巧妙转化为基本盈亏问题知识梳理一、基本方法盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.二、方法技巧注意1.条件转换2.关系互换典例分析考点一:直接计算型盈亏问题例1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块),每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人).共有砖:4×9+7=43(块)例2、明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4 元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【解析】“多8元”与“多4元”两者相差8-4=4(元),每个人要多出8-7=1(元),因此就知道,共有4÷1=4(人),蛋糕价钱是8×4-8=24(元)例3、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【解析】老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏总和是9-2=7(个),两次分配之差是11-10=1(个),由盈亏问题公式得,有小猴子:7÷1=7=(只),老猴子有7×10+9=79(个)桃子例4、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多少只?【解析】当大猴分5个,小猴分3个时,猴王可留10个.若大、小猴都分4个,猴王能留下20个.也就是盈亏问题说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下20-10=10个,所以大猴比小猴多10只考点二:条件关系转换型盈亏问题例1、一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是5-4=1(粒),由盈亏问题公式得,参与分糖的同学有:9÷1=9(人),有糖果9×5=45(粒)例2、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11-10=1(条) ,由盈亏问题公式得,有小猫:8÷1=8(只),猫妈妈有8×10+8=88(条)鱼例3、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】每辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人)考点三:复杂的盈亏问题例1、国庆节快到了,学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?【解析】这是一道有难度的盈亏问题,主要难在对第二个已知条件的理解上:如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完,这组条件中包含着两种摆花盆的情况——2人各摆4盆,其余的人各摆6盆.如果我们把它统一成一种情况,让每人都摆6盆,那么,就么还差6×2-2×4=4(盆).因此,原问题就转化为:如果每人各摆5盆花,还有3盆没人摆;如果每人摆6盆花,还缺4盆.问有多少少先队员,一共摆多少花盆?人数:(3+4)÷(6-5)=7 (人),盆数:5×7+3=38(盆)或6×7-4=38(盆)例2、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?【解析】由“其中两人分4个,其余每人分2个,则多出4个”转化为全家每人都分2个,这分4个的两人每人都拿出2个,共拿出4个,结果就多了4+4=8个;由“一人分6个,其余每人分4个,则缺少12个”转化为全家每人都分4个,分6个的人拿出2个,结果就缺12-2=10个,转变成了盈亏问题的一般类型,则:全家的人数:(8+10)÷(4-2)= 9(人),橘子的个数:2×9+8=26 (个)例3、堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?【解析】这里有两种肉,思考起来比较困难,能否化为一种肉的问题呢?仔细分析一下已知条件,买牛肉18千克差4元,而买猪肉20千克还多2元,说明牛肉贵一些.每千克贵8角,如果18千克牛肉换成18千克猪肉,就要少花8×18=144(角)=14元4角.这样就会多出14元4角-4元=10元4角.因此问题就可变为:“小李买猪肉18千克多余10元4角,买20千克多余2元,求猪肉单价和钱数.”虽然两次都是盈余,仍属盈亏问题,不过猪肉单价=两次钱的差÷两次千克量差.解:由已知条件知牛肉比猪肉贵,每千克贵8角.18千克牛肉比18千克猪肉贵8×18=144(角)=14元4角. 因此小李若买18千克猪肉就会多余14元4角-4元=10元4角.由已知小李买20干克猪肉多余2元,所以猪肉每千克价格为(104-20)÷(20-18)=84÷2=42(角)=4元2角. 所以牛肉每千克价格为:4元2角+8角=5元. 小李带的钱为:4.2×20+2=86(元)例4、四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了多少元钱?【解析】这笔钱买13千克芒果还差4元,若把这13千克芒果换成奶糖就会多出13×2=26元,所以这笔钱买13千克奶糖会多出26-4=22元.而这笔钱买15千克奶糖会多出2元,所以每千克奶糖的价格为:(22-2)÷(15-13)=10(元).辅导老师共带了10×15+2=152元实战演练➢课堂狙击1、有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【解析】由题意知:第一种方案:每人发5本多出70本;第二种方案:每人发7本多出10本;两种方案分配结果相差:70-10=60(本),这是因为两次分配中每人所发的本数相差:7-5=2(本),相差60本的学生有:60÷2=30(人).练习本有:30×5+70=220(本)或(30×7+10=220) 2、王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30 元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【解析】本题购物的两个方案,第一个方案:买7把差110元,第二个方案:买5把还多30元,从买7 把变成买5把,少买了7-5=2(把),而钱的差额为:110+30=140(元),即140元可以买2把小提琴,可见小提琴的单价是每把70元,王老师一共带了70×7-110=380(元)3、工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【解析】本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差100+20=120(元),即损1个花瓶不但得不到20元的运费,而且要付出120元.本例可假设250个花瓶都完好,这样可得运费20×250=5000元).这样比实际多得5000-4400=600(元),就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了(20×250-4400)÷(100+20)=5(个)4、幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个.如全部分给小班的小朋友,每人分到8个,则缺2个.已知大班比小班多3人,问:这筐苹果共有多少个?【解析】先把大班人数和小班人数转化为一样.大班减少3人,则苹果又收回3×5=15个苹果,人数一样,根据盈亏问题公式,小班人数为:(15+10+2)÷(8-5)=9人,苹果总数是8×9-2=70个.5、有一些糖,每人分5块则多10块,如果现有人数增加到原有人数的1.5倍,那么每人4块就少两块,这些糖共有多少块?【解析】第一次每人分5块,第二次每人分4块,可以认为原有的人每人拿出5-4=1块糖分给新增加的人,而新增加的人刚好是原来的一半,这样新增加的人每人可分到2块糖果,这些人每人还差4-2=2块,一共差了10+2=12块,所以新增加了12÷2=6人,原有6×2=12人.糖果数为:12×5+10=70 (块)6、卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多余10棵竹子,如果大熊猫数增加到3倍还少5只,那么每只大熊猫分2棵竹子还缺少8棵竹子,问有大熊猫多少只,竹子多少棵?【解析】使同学们感到困难的是条件“3倍还少5只大熊猫”.先要转化这一条件,假设还有10棵竹子,10÷2=5,就可以多有5个大熊猫,把“少5只大熊猫”这一条件暂时搁置一边,只考虑3倍大熊猫数,也相当于按原大熊猫数每只大熊猫给2×3=6(棵)竹子,每只大熊猫给5棵与给6棵,总数相差10+10+8=28(棵),所以原有大熊猫数28÷(6-5)=28 (只),竹子总数是5×28+10=150 (棵)7、小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱?【解析】因为“每千克牛肉比猪肉贵3元”,所以同样买10千克猪肉的话,就剩了3×10-6=24(元),这样化成普通的盈亏问题,猪肉的价钱是:(24-4)÷(12-10)=10(元),所以小明妈妈带的钱数是:12×10+4=124(元)8、小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校.小强家到学校的路程是多少米?【解析】迟到3分钟转化成米数:50×3=150(米),提前2分钟到校转化成米数:60×2=120(米),距离上课时间为:(150+120)÷(60-50)=27(分钟),家到学校的路程为:50×(27+3)=1500(米)➢课后反击1、某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【解析】由已知条件每间5人,少14个床位,每间7人,多4个床位.比较两次分配的方案,可以看出,由于第二种方案比第一种每间多7-5=2人,一共要多出14+4=18个床位,根据两种方案每间住的人数的差和床位差,可以求出宿舍间数,然后根据已知条件可求出住宿生人数. 解:(4+14)÷(7-5)=9(间),5×9+14=59(人)或7×9-4=59(人)2、秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或4×28+48=160(个)3、甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30 张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20=120(张)4、王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?【解析】因为桔子每人分3个多4个,而苹果是桔子的2倍,因此苹果每人分6个就多8个.又已知苹果每人分7个少5个,所以应有(8+5)÷(6-5)=13(人).苹果个数为13×7-5=86(个),桔子数为13×3+4=43(个) 答:有13个小朋友,86个苹果和43个桔子5、李明的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?【解析】(法1)“李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋”,这三袋洗衣粉多花8×3=24 (元),又因为花的钱总数一样多,所以在买碧浪洗衣粉的时候要把这些钱补上,而碧浪比雕牌每袋贵2元,所以要买碧浪洗衣粉袋数24÷2=12(件).这样李妈妈带的钱数是10×12=120(元).(法2)如果买雕牌与碧浪洗衣粉数量一样多,则买雕牌洗衣粉以后还剩3×8=24(元),根据普通的盈亏问题解法,买碧浪洗衣粉的数量是:24÷(10-8)=24÷2=12(件),所以李妈妈带的钱数是:12×10=120(元)6、王老师由家里到学校,如果每分钟骑车500米,上课就要迟到3分钟;如果每分钟骑车600米,就可以比上课时间提前2分钟到校.王老师家到学校的路程是多少米?【解析】迟到3分钟转化成米数:500×3=1500(米),提前两分钟到校转化成米数:600×2=1200(米)王老师家到学校需要(1500+1200)÷(60-50)=270(分钟),王老师家到学校的路程:500×(270+3)=136500(米)盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.1.条件转换2.关系互换这两种典型例题的常见类型以及复杂问题转化为基本盈亏问题.➢本节课我学到➢我需要努力的地方是重点回顾名师点拨学霸经验。

【精品】五年级奥数培优教程讲义第11讲-盈亏问题(学生版)

【精品】五年级奥数培优教程讲义第11讲-盈亏问题(学生版)

第11讲盈亏问题学习目标了解盈亏问题是什么,能够分辨出是属于盈亏问题类型掌握盈亏问题的几种基本情况,以及基本的解题方法熟悉复杂的盈亏问题,能用方法巧妙转化为基本盈亏问题知识梳理一、基本方法盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。

可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。

二、方法技巧注意1.条件转换 2.关系互换典例分析考点一:直接计算型盈亏问题例1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?例2、明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4 元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?例3、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?例4、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多少只?考点二:条件关系转换型盈亏问题例1、一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?例2、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?例3、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?考点三:复杂的盈亏问题例1、国庆节快到了,学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?例2、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?例3、堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?例4、四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了多少元钱?实战演练?课堂狙击1、有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?2、王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30 元,问儿童小提琴多少钱一把?王老师一共带了多少钱?3、工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?4、幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

(尖子生培优)专题20盈亏问题-三年级数学思维拓展培优讲义(通用版)

(尖子生培优)专题20盈亏问题-三年级数学思维拓展培优讲义(通用版)

(尖子生培优)专题20盈亏问题三班级数学思维拓展培优讲义(通用版)有的放矢1、人们在安排东西时,假如每份分的数量少一些,会消灭“物品有多余”的状况,这种状况称之为“盈”;反之,假如每份分的数量多一些,以至消灭“物品不足”的状况,那就称为“亏”,依据“一盈”、“一亏”的变化规律,我们可以求出物品的总数或物品所分的份数,这类数学问题一般称它为“盈亏问题”。

2、解“盈亏问题”的基本思想是“比较的思想”。

3、“盈亏问题”的基本公式是:(1)对象数=(盈+亏)÷两次安排差(2)总数=每份个数×对象数+盈数或总数=每份个数×对象数-亏数解题的时候,要特殊留意分析题意,弄清哪部分是“盈”,哪部分是“亏”,弄清数量对应变化关系,再列式计算。

此外,还要养成检验的习惯,保证解题正确。

力量巩固提升1.学校支配寝室,假如每间13人就正好住满,假如每间10人,还缺三间寝室,学校有几间寝室?2.新兴机械厂原方案30天生产一批机器,实际每天比原方案多生产80台,结果提前10天完成了任务.这批机器有多少台?3.一盒巧克力,分给15个小伴侣,假如每人1颗,还少2颗,那么这盒巧克力共有几颗?4.幼儿园分糖果,假如每人分4颗,则多出10颗,假如每人分6颗,则缺8颗。

幼儿园有小伴侣多少人?糖果共有多少颗?5.从家到学校,王老师假如每分行100米,就比规定时间迟到5分钟;假如每分行150米,就比规定时间提前5分钟到达.假如王老师要按时到达学校,那么他每分钟应行多少米?6.小胖步行回家,若按常速行走,平均每分钟走50米,由于今日家中有急事,他加快了速度,平均每分钟走60米,结果提前5分钟到家,今日小胖回家走了多少分钟?7.期望学校全体师生乘车去旅游,若每辆车坐36人,则有8人不能上车;若每辆车多坐4人,则恰好多出1辆车,一共有多少辆车?师生一共有多少人?8.一位农夫家里养了白猫、黑猫若干只,假如卖出2只黑猫,白猫和黑猫只数相等;假如卖出1只白猫,黑猫将比白猫多3只.问白猫、黑猫各多少只?9.参与美术活动小组的同学,安排若干支彩色笔,假如每人分4支,那么多12支:假如每人分8支.那么恰有1人没分到笔,问:有多少同学?多少支彩色笔?10.幼儿园王老师买了一些苹果分给小伴侣,若每人分2个,则多20个;若每人分3个,正好分完:若每人分4个,则少20个.聪慧的同学们,你知道幼儿园有多少个小伴侣吗?你知道王老师买了多少个苹果吗?11.一小和二小有同样多的同学参与某项竞赛.学校用汽车把同学运往赛场.一小用的汽车每车坐15人,二小用的汽车每车坐13人,结果是二小比一小多派1辆车.后来每校各增加一人参与竞赛,这样两校需要的汽车就一样多了.最终学校又打算每校增加一人参与竞赛,二小又比一小多派1辆车.问两校共有多少人参与竞赛?12.在一次古诗词竞赛中一共有5道题,答对一题得5分,不答或答错一题扣1分。

小学思维数学讲义:盈亏问题(一)-带详解

小学思维数学讲义:盈亏问题(一)-带详解

盈亏问题(一)1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”. 可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.模块一、利用盈亏公式直接计算(一)盈+亏型【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块). 【答案】9人,搬43块【巩固】 把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有 人。

【考点】盈亏问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 盈亏问题:(12+2)÷(3-2)=14人【答案】14人【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【答案】15位同学分69粒糖【巩固】 秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【考点】盈亏问题 【难度】1星 【题型】解答知识精讲教学目标【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或4×28+48=160(个).【答案】160个萝卜吃28天【巩固】幼儿园的老师给小朋友们发梨。

小学思维数学讲义:盈亏问题-带详解

小学思维数学讲义:盈亏问题-带详解

小学思维数学讲义:盈亏问题(一)-带详解(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--盈亏问题(一)1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.模块一、利用盈亏公式直接计算(一)盈+亏型【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人要搬的砖共有多少块【考点】盈亏问题 【难度】1星 【题型】解答【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块).【答案】9人,搬43块【巩固】 把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有 人。

【考点】盈亏问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 盈亏问题:(12+2)÷(3-2)=14人【答案】14人【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一教学目标知识精讲粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【答案】15位同学分69粒糖【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个计划吃多少天【考点】盈亏问题【难度】1星【题型】解答【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或 4×28+48=160(个).【答案】160个萝卜吃28天【巩固】幼儿园的老师给小朋友们发梨。

四年级奥数盈亏问题应用题专项讲义

四年级奥数盈亏问题应用题专项讲义

四年级奥数盈亏问题应用题专项讲义知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.一、精讲精练【例1】妈妈带了一些钱去逛超市,若要买3条10元钱一条的毛巾,则还剩5元钱。

妈妈带了多少钱?【例2】妈妈买来了一些苹果分给全家人,如果每人分6个,则多了12个,如果每人分7个,则多了6个,全家有几人?妈妈共买回来多少个苹果?【例3】孙悟空采到一堆桃子,平均分给花果山的小猴子吃。

每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完。

问:孙悟空采到多少个桃子?小猴子有多少只?【例4】老师买来了一些练习本分给同学,如果每人分5本,则多了14本;如果每人分7本,则多了2本,老师买来了多少本练习本?【例5】某校有若干个学生寄宿学校,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍。

问宿舍有多少间?寄宿学生有多少人?【例6】班主任给同学们分发写日记的稿纸。

如果每人分5张,则缺32张;如果每人分3张,则缺2张。

有多少名同学?班主任一共准备了多少张稿纸?【例7】同学们来到游乐园游玩,他们乘坐观光车。

如果每车坐6人,则多出6人;如果每车坐8人,则少2人。

一共多少辆观光车?共有多少名同学?【例8】到了午饭时间,老师给同学们分饼干,如果每人分6块,还有1人分9块就正好分完;如果其中两人各分5块,其余每人分7块饼干,也恰好分完所有饼干。

小学思维数学讲义:盈亏问题(二)-带详解

小学思维数学讲义:盈亏问题(二)-带详解

盈亏问题(二)1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”. 可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.利用条件关系转换解盈亏问题——转化分配单位数(接受分配的人数)【例 1】 小鸣用48元钱按零售价买了若干练习本。

如果按批发价购买,每本便宜2元,恰好多买4本。

问:零售价每本多少元?【考点】盈亏问题 【难度】3星 【题型】解答【关键词】华杯赛,初赛,第9题【解析】 见下图,以横线表示本数,纵线表示单价,因为黄色部分面积与绿色部分面积相等,所以黄色的宽是绿色高的2倍,设批发价为x 元(图中绿色长方形的高),则有:x ×(2x +4)=48,即x ×(x +2)=24=4×6=4×(4+2),所以,x =4(元),零售价为x +2=6(元)【答案】6元【例 2】 春节前夕,一富翁想丐帮帮众施舍一笔钱财,一开始他准备给每人100元,结果剩下350元,他决定每人多给20元。

这时从其它地方又闻讯赶来了5个乞丐,如果他们每个人拿到的钱和其它乞丐一样多,富翁还需要再增加550元。

原有( )名乞丐。

【考点】盈亏问题 【难度】3星 【题型】填空【关键词】走美杯,3年级,初赛【解析】 如果不来这五个乞丐,富翁能剩下120555050⨯-=元。

三年级数学专题讲义第十四讲 盈亏问题

三年级数学专题讲义第十四讲 盈亏问题

第十四讲盈亏问题盈亏问题是一类生活中很常见的问题.按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.解盈亏问题的窍门可以用下面的公式来概括:(盈+亏)÷两次分得之差=人数或单位数;(盈-盈)÷两次分得之差=人数或单位数;(亏-亏)÷两次分得之差=人数或单位数.上面的公式不能盲目套用,在真正掌握其内涵以后再运用公式解题将会使你面临盈亏问题时而游刃有余,不可盲目套用公式.〖经典例题〗例1、妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?分析:由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).计划吃的天数:56÷2=28(天),共有苹果:6×28-8=160(个)。

〖方法总结〗例1是盈亏问题的基本题目,属于“直接计算型”。

对于这类题目要多理解每一个算式的含义,不要死记公式。

象例1这类题目的条件被称作“标准条件”。

对“标准条件”要多加熟悉,对以后的学习会有很大帮助。

〖巩固练习〗练习1:阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就缺4块饼干.问有多少小朋友,有多少块饼干?练习2:秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔收获的萝卜有多少个?计划吃多少天?练习3:中关村一小合唱队的同学到会议室开会,若每条长椅上坐3人则多出9人,若每条长椅上坐4人则多出3人.问:合唱队有多少人?练习4:有一批香蕉要分给动物园的小猩猩,如果每只猩猩发10个,还差9个,每只猩猩发9个,还差2个,请问有多少小猩猩?多少个香蕉?练习5:老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵.问:参加栽树的有多少名同学?原有树苗多少棵?〖经典例题〗例2、学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?分析:每个房间住3人,则多出23人,每个房间住5人,就空出3个房间,这3个房间如果住满人应该是5×3=15(人).由此可见,每一个房间增加5-3=2(人).两次安排人数总共相差23+15=38(人),因此,房间总数是:38÷2=19(间),学生总数是:3×19+23=80(人)。

四年级数学奥数培优讲义-专题07盈亏问题(含解析)

四年级数学奥数培优讲义-专题07盈亏问题(含解析)

专题07盈亏问题1.果树队上山种果树,所需栽的苹果树苗是梨树苗的2倍,如果梨树苗每人栽3棵,还余下2棵;苹果树苗每人栽7棵,则少6棵。

问:果树专业队上山植树的有多少人?要栽多少棵苹果树和梨树?2.一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?3.智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?4.三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?5.同学们去划船,如果每只船坐4人,则少3只船;如果每只船坐6人,还有2人留在岸边。

共有几只船?划船的同学是多少人?6.学校给一批新入学的学生分配宿舍。

若每个房间住12人,则34人没有位置;若每个房间住14人,则空出4个房间。

求学生宿舍有多少间?住宿学生有多少人?7.“烛光”读书活动小组在学校图书馆借来的科技书是故事书的2倍,平均每人看6本科技书,则余12本;每人看故事书4本,则差3本,读书活动小组有几人?借来的科技书和故事书各多少本?8.儿童分玩具,每人6个则多12个;每人8个,有一人没有分到。

儿童有几个,玩具有几个?9.用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.10.学习里有铅笔若干支,奖给三好学生,若每人9支,缺15支;若每人7支缺7支。

三好学生有多少人?铅笔有多少支?11.实验小学进行团体操表演。

如果每行排8人,则多出7人;如果每行排14人,则有一排少5人。

问排成多少排?有多少学生?12.同学们去买蛋糕,如果每人出9 元,就多出了10元,每人出7 元,就多出了2元,那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?13.甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?14.有一些糖,每人分5块则多10块,如果现有人数增加到原有人数的1.5倍,那么每人4块就少两块,这些糖共有多少块?15.学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?16.用一根绳子测量井的深度,用绳子对折来量,井外余6米;用绳子一折四来量,井外余1米。

三年级上奥数精品讲义盈亏问题

三年级上奥数精品讲义盈亏问题

秋游(盈亏问题)知识图谱秋游知识精讲一.基本盈亏问题1.按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.2.解决盈亏问题的主要方法是“前后比较”.有些问题需要对条件进行一定转化后再进行计算.3.盈亏问题主要包括三类:(1)盈盈问题:前后两次剩余物品数量之差是解决问题的关键.()-÷=大盈小盈两次分得之差人数或单位数.(2)盈亏问题:一次剩余,一次缺少,相差的量是“盈”与“亏”的和.()+÷=盈亏两次分得之差人数或单位数.(3)亏亏问题:()大亏小亏两次分得之差人数或单位数.-÷=二.盈亏条件转化1.做盈亏问题时,需要分析什么是被分配的对象.遇到单位不一致时,把单位都按被分配的对象统一.2.如果分配时有特殊对象,可以先想办法把所有人的分配情况统一.当有个别“人”分配到的数量与其他“人”不同时,通过增加或减少个别“人”的分配数量,是他们与别“人”分得的数量相同.3.盈亏条件隐藏的问题:需要将条件转化为基本盈亏条件,在转化时一定要注意题中的条件究竟是“盈”还是“亏”.三点剖析本讲主要培养学生的实践应用能力,其次培养学生的观察推理能力.本讲内容是在基本应用题的基础上,进一步学习盈亏问题.从生活中常见的问题出发,让学生理解盈亏的含义,学习常见盈亏问题的解决方法.后续课程还会继续学习复杂盈亏问题.课堂引入例题1、终于等到了天气晴朗的周四,同学们期待的秋游,马上就要出发了~到达目的地——奥林匹克森林公园南园,一番游玩之后,在老师的组织下,开始了大家最喜爱的野餐活动.老师给同学们带来了一些水果和零食,把水果分给大家,每人分到3个水果,将剩下12个水果,如果再给大家每人多1个,就会差13个.聪明的你,知道到底有多少人吗?老师总共带了多少水果?例题2、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵.问:参加栽树的有多少名同学?原有树苗多少棵?基本盈亏例题1、(1)老师把一堆苹果分给小朋友,给每人分到的同样多.如果分给9个人,那么还剩下21个苹果;如果再来3个人,就只剩下12个苹果.这堆苹果一共有多少个?(2)裁缝做衣服,他已经做好了一些西服,现在要往上面缝扣子.如果每件西服缝3个扣子,还会剩下26个扣子;如果每件缝5个扣子,就只剩下4个扣子了.请问:裁缝一共有多少个扣子?他已经做好了几件西服?“分给9个人,剩下21个,再来3人,剩下12个”也就是说来的3个人分走了9个?例题2、(1)把一些桃子分给猴子们,每只猴子分到的一样多.如果分给5只猴子,那么还剩下12个桃子;如果再来2只猴子,就会缺4个桃子.每只猴子分到多少个桃子?(2)柯小南准备了一些棒棒糖分给班里的同学,如果给每个同学5根棒棒糖,那么最后缺少27根;如果给每个同学3根棒棒糖,那么最后剩下9根.请问:柯小南一共准备了多少根棒棒糖?(3)艾小莎准备拿一些钱买CD光盘,如果每张CD光盘的价格是30元,买完后还能剩下10元钱.结果CD的实际价格是40元一张,所以她还需回家再取50元才正好够.请问:艾小莎原来准备了多少钱?刚刚分配是都有剩余,现在一次有剩余,一次会不够,怎么解决呢?例题3、(1)护士给几名大夫准备手术刀,开始准备给每人4把,结果缺3把;后来每名大夫都要求再加3把,这样就会缺15把.那么一共有多少名大夫,多少把刀?(2)同学们去划船,如果每条船坐5人,就会缺少17个人才能坐满;如果每条船坐7人,就会缺少27个人才能坐满.那么一共有多少个同学?根据上面两题的经验,这题应该是“亏亏问题”.例题4、少先队员植树,如果每人挖5个坑,那么还有3个坑无人挖;如果其中2人各挖4个坑,其余每人挖6个坑,那么恰好将坑挖完.问:一共要挖几个坑?第二次分配似乎跟之前遇到的不一样哦~是不是需要改变一下呢?随练1、饲养员给猴子分桃.如果给每只猴子3个桃子,就会差5个桃子,如果每只猴子再多给1个桃子,就会差17个桃子.那么现在共有________个桃子.随练2、唐小虎把一些香蕉分给猴子们.如果每只猴子分5根香蕉,还剩下30根香蕉;如果每只猴子分8根香蕉,还剩下3根香蕉.那么共有________只猴子.随练3、唐小果要把一些玫瑰花插到花瓶里.如果每瓶插入7朵玫瑰花,就会多2朵;如果每瓶插入4朵,就会多20朵.那么,唐小果共有________个花瓶.简单盈亏条件的转化例题1、猪妈妈带着小猪们去野餐,如果每张餐布边上坐6只小猪,最后一张餐布边上就只坐2只小猪;如果每张餐布边上坐5只小猪,还有4只小猪没地方坐.那么共有多少只小猪?第一次分配,到底是盈还是亏呢?例题2、过年了,猴王给小猴们分糖.如果给每只小猴5块糖,就会剩下20块糖;如果给每只小猴8块糖,就会有8只小猴拿不到糖.请问:猴王一共准备了多少块糖?“8只小猴拿不到糖”就是指_____________.例题3、同学们早餐吃面包,每袋面包有10片.开始来了9个同学,老师给每人发了同样多片面包之后,还剩下半袋.后来又来了5个同学,老师发现还要再买两袋面包,才够给新来的同学每人发同样多的面包.问:老师开始准备了几袋面包?面包到底是片还是袋?例题4、鞭炮厂买回几盒火药制作礼花,每盒有10包火药.如果每个礼花用4包火药,就会少1盒;如果每个礼花用6包火药,就会少5盒.那么,鞭炮厂共买了________盒火药.这个就跟上题是一个意思啦~你会了吗?例题5、唐小果给小伙伴们分气球.如果每个小伙伴分4个气球,刚好分完所有气球;如果每个小伙伴分8个气球,就有4个小伙伴没有气球.那么,唐小果共有________个小伙伴.例题6、农民锄草,其中5人各锄4亩,余下的各锄3亩,这样分配最后余下26亩.如果其中3人每人各锄3亩,余下的人各锄5亩,最后余下3亩.锄草面积是多少亩?随练1、老师给同学们分苹果.如果每个同学分4个苹果,那么有6个苹果没人吃;如果每个同学分7个苹果,那么有3个人没苹果吃.那么,老师共有________个苹果.随练2、艾小莎准备了一些棒棒糖分给同学,每盒棒棒糖有10根.开始雁雁给25个同学每人分了同样多根棒棒糖,还剩下半盒.后来又来了5个同学,艾小莎发现还要再买1盒棒棒糖,才能正好给新来的同学每人分同样多的棒棒糖,那么艾小莎开始准备了________盒棒棒糖.易错纠改例题1、一次擦玻璃,如果有两人擦4块,其他人擦5块,则有12块没人擦;如果每人擦6块,则刚好擦完.那么共有多少人?多少块玻璃?第一次分配,是不是可以写成每人擦4块玻璃呢?如果按照每人擦4块玻璃,那最后剩下几块呢?这个好像求不出来呀……你能帮唐小虎和艾小莎计算一下吗?拓展1、老师给班里同学发棒棒糖,如果给每个同学多发4个,老师剩下的棒棒糖就变少60个,那么班里共有__________个同学.2、老师给同学们发作业本,每人发了同样多的作业本后,还剩下20本.后来给新来的2个同学也发了同样数目的作业本,就只剩下12本了.每个人发了__________本,剩下的作业本还能再发给__________个同学.3、老师给班里同学发积分卡.如果每个同学发5张积分卡,就会少4张积分卡;如果每个同学发7张积分卡,就会少24张积分卡.那么老师共准备了__________张积分卡.4、队长给战士们发子弹.如果发给每名战士4颗子弹,还剩下30颗子弹;如果发给每名战士10颗子弹,就会缺24颗子弹.那么一共有__________名战士.5、机关为新来的大学毕业生分配工作.每个部门安排3人,则多出13人;每个部门安排5人,则有1个部门没有毕业生.则部门有____________个,新来的大学毕业生有____________人.6、养殖场将一批鸡蛋装入包装盒,每盒装30枚,恰好全部装完.后来重新包装,使每个包装盒中装入36枚鸡蛋,最后也恰好全部装完,并节约了24个包装盒.这批鸡蛋有__________枚.7、学校租车春游,若每辆车坐21个学生,将有5个空位;若每辆车坐25个学生,便空出一辆车,学校共租了__________辆车.8、老师给同学们分西瓜.如果5个人吃1个西瓜,那么有4个人没西瓜吃;如果7个人吃1个西瓜,那么有2个瓜没人吃.那么,共有__________个同学.9、分析并口述题目的做题思路及方法.花店老板准备把一些玫瑰花放到花瓶里面.如果每瓶放入6朵玫瑰,那么剩下的玫瑰花正好还能装3瓶,如果每瓶中多放入2朵玫瑰,正好就会有3个瓶子是空的.一共有玫瑰花多少朵?。

小学数学盈亏问题五年级讲课上课PPT教学课件

小学数学盈亏问题五年级讲课上课PPT教学课件
关键:找盈数、找亏数
练2 小朋友分糖果, 若每人分4粒,则多9粒; 若每人分5粒,则少6粒。 问:有多少个小朋友?
关键:找盈数、找亏数
基本盈亏问题(笔记)
☆认识:①盈→有剩余; ②亏→不足(需要借);
☆核心:平均分东西,两种分配方案→比较找不同!
①(大盈-小盈)÷两次分配差=份数! ②(大亏-小亏)÷两次分配差=份数! ③(盈数+亏数)÷两次分配差=份数!
基本盈亏问题(笔记)
☆认识:①盈→有剩余; ②亏→不足(需要借);
☆核心:平均分东西,两种分配方案→比较找不同!
①(大盈-小盈)÷两次分配差=份数! ②(大亏-小亏)÷两次分配差=份数! ③(盈数+亏数)÷两次分配差=份数!
练1 数学兴趣小组的同学做数学题, 如果每人做6道,则多4道; 如果每人做8道,则少16道。 有同学几人?
☆技巧:①正好分完→盈0个!
练1 数学兴趣小组的同学做数学题, 如果每人做5道,则正好够做; 如果每人做8道,则少18道。 有同学几人?
关键:找盈数、找亏数
练2 小朋友分糖果, 若每人分3粒,则多16粒; 若每人分5粒,则正好分完。 问:有多少个小朋友?
关键:找盈数、找亏数
基本盈亏问题(笔记)
每份个数×份数+盈数(或减亏数)=总数
关键:找盈数、找亏数
基本盈亏问题(笔记)
☆认识:①盈→有剩余; ②亏→不足(需要借);
☆核心:平均分东西,两种分配方案→比较找不同!
①(大盈-小盈)÷两次分配差=份数!
练1 王老师给同学分发图画纸。 如果每人发5张,则多12张; 如果每人发2张,则多36张。 美术兴趣小组有多少名同学?
关键:找盈数、找亏数
关键:找盈数、找亏数

第五讲-盈亏问题【可编辑全文】

第五讲-盈亏问题【可编辑全文】

可编辑修改精选全文完整版第五讲盈亏问题知识精要:在日常生活中常有这样的问题,把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。

盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意1.条件转换 2.关系互换理解:比如说我给你们发stiker,每个人发5张,则还剩下10张,如果每个人发7张,就还差了10张。

请问我们四年级班共有多少人?其中一次发5张,一次发7张,两次分配的差是7-5=2,总差额:一次余下10张,一次还差10张,两次对比,我们可以得到第二次比第一次多发了20张stiker。

(这样理解:第一种情况下还余下10张,而第二种情况下不仅会把剩下的10张发完,而且还不够,还需要去一楼办公室拿10张回来才能保证每个人发7张stiker,所以第二种情况比第一种情况多需要发20张stiker。

)类型一、直接计算型盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729÷=(人).共+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919有砖:49743⨯+=(块).【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【例 2】(2007年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.【详解】当大猴分5个,小猴分3个时,猴王可留10个.若大、小猴都分4个,猴王能留下20个.也就是说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下201010-=【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【例 3】某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【巩固】少年宫美术部罗老师班上的一部分同学分画纸,如果每人分4张就多9张,如果每人分5张则少6张,问:有多少位同学分多少张画纸?类型二、条件关系转换型盈亏问题【例 4】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是÷=(只),猫妈妈有810888⨯+=(条)鱼.-=(条),由盈亏问题公式得,有小猫:81811101【巩固】少年宫文化学校幼小衔接基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【例 5】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【例 6】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盈亏问题讲义
盈亏问题
教学目标
1.特征: 1、分配的一种事物,两套分配方案。

2、每个个体分配的量相同。

3、有盈数或亏数。

4、两大不变量:总数和份数。

2. 方法:画线段图
3. 解题思路:两次分配的总数差÷每份差=份数
题型:
①一盈一亏:(盈+亏)÷(两次分配差)=份数。

②双盈:(大盈-小盈)÷(两次分配差)=份数。

③双亏:(大亏-小亏)÷(两次分配差)=份数。

④单亏或单盈:盈或(亏)÷(两次分配差)=份数。

例题精讲:
例1、老猴子给小猴子分梨。

每只小猴子分6个梨,就多出12个梨;每只小猴子分8个梨,就少4个梨。

有几只小猴子和多少个梨?
盈数是12 亏数是4
两大不变量份数是猴子总数是梨
练习1、三年级一班少先队员参加学校搬砖劳动。

如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖。

这个班少先队有几个人?要搬的砖共有多少块?
练习2、小朋友分苹果,如果每人分2个,就多余16个;如果每人分5个,就缺少14个。

小朋友有多少个?苹果有多少个?
总结:(盈数+亏数)÷两次分配差=份数
例2、妈妈买回一筐苹果,如果每天吃4个,要多出48个苹果;每天吃6个则还多8个,那么妈妈买回的苹果有多少个?计划吃多少天?
练习1、老师给小朋友们分糖,如果每人分5块糖还剩下17块,如果每人分7块还剩1块。

有多少个小朋友?老师有多少块糖?
练习2、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?
总结:(大盈-小盈)÷两次分配差=份数
例3、老师给美术活动小组的同学分发画纸。

如果每人分3张,则缺2张;如果每人分5张,则缺32张。

美术活动小组有多少名同学?一共有多少张图画纸?
练习1、学校将一批钢笔奖给三好学生,若每人奖8支就缺11支;若每人奖7支就缺7支。

问:这批钢笔有多少只?三好学生有多少人?
练习2、幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?
总结:(大亏-小亏)÷两次分配差=份数
例4、某校学生参加劳动,分成若干组,如果10人一组,正好分完,如果12人一组,差10人.参加劳动的有多少人?
总结:亏数÷两次分配差=份数
例5、学校有若干间宿舍,每间住12人,则有10人没房间,如果每间住14人,则刚好住完。

问学校有几间宿舍,多少名学生?
总结:盈数÷两次分配差=份数。

相关文档
最新文档