第3章受弯构件正截面承载力计算
03受弯构件正截面承载力计算
0.4
著,受压区应力图形逐渐呈曲线分
Mcr
xn=xn/h0
布。
0 0.1 0.2 0.3 0.4 0.5
15
3.2 梁的受弯性能
第三章 钢筋混凝土受弯构件正截面承载力
带裂缝工作阶段(Ⅱ阶段) ◆ 荷载继续增加,钢筋拉应力、挠度 变形不断增大,裂缝宽度也不断开展, 但中和轴位置没有显著变化。
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
3.2 梁的受弯性能
fu f
18
第三章 钢筋混凝土受弯构件正截面承载力
屈服阶段(Ⅲ阶段)
◆ 由于混凝土受压具有很长的下
降段,因此梁的变形可持续较长,
但有一个最大弯矩Mu。
◆ 超过Mu后,承载力将有所降低,
直至压区混凝土压酥。Mu称为极
增大,混凝土受压的塑性特征表现的更为充分。
◆ 同时,受压区高度xn的减少使得钢筋拉力 T 与混凝土压力C
之间的力臂有所增大,截面弯矩也略有增加。
◆ 由于在该阶段钢筋的拉应变和 受压区混凝土的压应变都发展很
快,截面曲率f 和梁的挠度变形f 也迅速增大,曲率f 和梁的挠度变
形f的曲线斜率变得非常平缓,这 种现象可以称为“截面屈服”。
限弯矩,此时的受压边缘混凝土
的压应变称为极限压应变ecu,对
应截面受力状态为“Ⅲa状态”。
M/Mu
1.0
Mu
◆ ecu约在0.003 ~ 0.005范围,超过
0.8 My
0.6
该应变值,压区混凝土即开始压
0.4
第三章 钢筋混凝土受弯构件正截面承载力
h0
分布筋
第三章 钢筋混凝土受弯构件正截面承载力计算
第三章钢筋混凝土受弯构件正截面承载力计算受弯构件(bendingmember)是指截面上通常有弯矩和剪力共同作用而轴力可以忽视不计的构件。
钢筋混凝土受弯构件的主要形式是板(Slab)和梁(beam),它们是组成工程结构的基本构件,在桥梁工程中应用很广。
在荷载作用下,受弯构件的截面将承受弯矩M和V的作用。
因此设计受弯构件时,一般应满意下列两方面的要求:(1)由于弯矩M的作用,构件可能沿弯矩最大的截面发生破坏,当受弯构件沿弯矩最大的截面发生破坏时,破坏截面与构件轴线垂直,称为正截面破坏。
故需进行正截面承载力计算。
(2)由于弯矩M和剪力V的共同作用,构件可能沿剪力最大或弯矩和努力都较大的截面破坏,破坏截面与构件的轴线斜交,称为沿斜截面破坏,故需进行斜截面承载力计算。
为了保证梁正截面具有足够的承载力,在设计时除了适当的选用材料和截面尺寸外,必需在梁的受拉区配置足够数量的纵向钢筋,以承受因弯矩作用而产生的拉力;为了防止梁的斜截面破坏,必需在梁中设置肯定数量的箍筋和弯起钢筋,以承受由于剪力作用而产生的拉力。
第一节受弯构件的截面形式与构造一、钢筋混凝土板的构造板是在两个方向上(长、宽)尺度很大,而在另一方向上(厚度)尺寸相对较小的构件。
钢筋混凝土板可分为整体现浇板和预制板。
在施工场地现场搭支架、立模板、配置钢筋,然后就地浇筑混凝土的板称为整体现浇板。
通常这种板的截面宽度较大,在计算中常取单位宽度的矩形截面进行计算。
预制板是在预制厂和施工场地现场预先制好的板,板宽度一般掌握在Inl左右,由于施工条件好,预制板不仅能采纳矩形实心板,还能采纳矩形空心板,以减轻板的自重。
板的厚度h由截面上的最大弯矩和板的刚度要求打算,但是为了保证施工质量及耐久性的要求,《大路桥规》规定了各种板的最小厚度;行车道板厚度不小于IOOmm人行道板厚度,就地浇注的混凝土板不宜小于80mm,预制不宜小于60mm。
空心板桥的顶板和底板厚度,均不宜小于80mm。
受弯构件的正截面承载力计算资料
槽形板
二、截面尺寸 高跨比h/l0=1/8~1/12
矩形截面梁高宽比h/b=2.0~3.5 T形截面梁高宽比h/b=2.5~4.0。(b为梁肋) b=120、150、180、200、220、250、300、…(mm),
250以上的级差为50mm。 h=250、300、350、……、750、800、900、
4.3.1 正截面承载力计算的基本假定
(1) 截面的应变沿截面高度保持线性分布-简称平截面假定
ec
f e ec es
y xc h0 xx
f xc
h0
(2) 不考虑混凝土的抗拉强度
y
es
M xc
C
Tc T
(3) 混凝土的压应力-压应变之间的关系为:
σ
fc
上升段
c
f
c
[1
(1
e e0
M0
C 超筋梁ρ>ρmax
My B
Mu
适筋梁 ρmin<ρ<ρmax
A少筋梁ρ>ρmax
0
f0
超筋破坏形态
> b
特点:受压区混凝土先压碎,纵向受拉钢筋 不屈服。
钢筋破坏之前仍处于弹性工作阶段,裂缝开 展不宽,延伸不高,梁的挠度不大。破坏带 有突然性,没有明显的破坏预兆,属于脆性 破坏类型。
M0
a
≥30
纵向受拉钢筋的配筋百分率
截面上所有纵向受拉钢筋的合力点到受拉边缘的竖向距离
为a,则到受压边缘的距离为h0=h-a,称为截面有效高度。
d=10~32mm(常用) 单排 a= c+d/2=25+20/2=35mm 双排 a= c+d+e/2=25+20+30/2=60mm
钢筋混凝土结构设计原理 -第三章 受弯构件正截面承载力计算
1.3 钢筋的构造
混凝土保护层c(Concrete cover)
定义:钢筋边缘到构件截面的最短距离 作用:1.保证钢筋和混凝土之间的粘结
2.避免钢筋的过早锈蚀 规范给出了各种环境条件下的最小混凝土保护层厚度c(P496, 附表1-8)。
1.3 钢筋的构造
板的配筋:由于受力性能不同,现浇和预制的配筋不同。
梁的配筋
纵向受力钢筋(主钢筋)、弯起钢筋或斜钢筋、箍筋、架立筋、水平纵向钢筋
1)钢筋骨架的形式
架立钢筋
箍筋
弯起钢筋
纵向钢筋
绑扎钢筋骨架
架立钢筋
斜筋
弯起钢筋
斜筋
纵向钢筋
焊接钢筋骨架示意图
2)钢筋种类
(1)主钢筋:承受弯矩引起的拉力,置于梁的受拉区。有时在受压区也配 置一定数量的纵向受力钢筋,协助混凝土承担压应力。
数量由正截面承载力计算确定,并满足构造要求 作用:协助混凝土抗拉和抗压,提高梁的抗弯能力。 直径: d12~ d32mm,≤d40mm
排列总原则:由下至上,下粗上细,对称布置
最小混凝土保护层厚度:应不小于钢筋的公称直径,且应符合规范要求 钢筋净距:
a) 绑扎钢筋
b) 焊接钢 筋
架立筋
箍筋 主钢筋
≥≥40mm
主钢筋
c
≥ (三层及三层以下)
c
净距
≥ (三层以上)
目录
1.受弯构件的截面形式和构造 2.受弯构件正截面受力全过程及破坏形态 3.受弯构件正截面承载力计算的基本假定 4.单筋矩形截面正截面承载力计算 5.双筋矩形截面正截面承载力计算 6.T形截面受弯构件
受剪破坏:M,V作用,沿剪压区段内的某个斜截面(与梁的纵轴线 或板的中面斜交的面)发生破坏
第3章-受弯构件的正截面受弯承载力全篇
(1) 适筋梁 图3-4 试验梁
(2) 适筋梁正截面受弯的三个阶段
图3-5 M0 — Φ0图
M0 — Φ0 关系曲线上有两个转折点C和y,受弯全过 程可划分为三个阶段 — 未裂阶段、裂缝阶段、破坏阶段。
(2) 适筋梁正截面受弯的三个阶段
1)第Ⅰ阶段:未裂阶段(混凝土开裂前) 由于弯矩很小,混凝土处于弹性工作阶段,应力与应变 成正比,混凝土应力分布图形为三角形。 当受拉区混凝土达到极限拉应变值,截面处于即将开裂 状态,称为第Ⅰ阶段末,用 I a 表示。 第Ⅰ阶段特点: ①混凝土没有开裂;②受压区混凝土的 应力图形是直线,受拉区混凝土的应力图形在第Ⅰ阶段前期 是直线,后期是曲线;③弯矩与截面曲率是直线关系。 I a 阶段可作为受弯构件抗裂度的计算依据。
3)第Ⅲ阶段:破坏阶段(钢筋屈服至截面破坏) 第Ⅲ阶段受力特点:①纵向受拉钢筋屈服,拉力保 持为常值;受拉区大部分混凝土已退出工作;②由于受 压区混凝土合压力作用点外移使内力臂增大,故弯矩还 略有增加;③受压区边缘混凝土压应变达到其极限压应 变实验值ε0cu时,混凝土被压碎,截面破坏;④弯矩一 曲率关系为接近水平的曲线。
3)第Ⅲ阶段:破坏阶段(钢筋屈服至截面破坏) 纵向受拉钢筋屈服后,正截面就进入第Ⅲ阶段工作。 钢筋屈服,中和轴上移,受压区高度进一步减小。弯 矩增大至极限值M0u时,称为第Ⅲ阶段末,用Ⅲa表示。此 时,混凝土的极限压应变达到ε0cu,标志截面已破坏。 第Ⅲ阶段是截面的破坏阶段,破坏始于纵向受拉钢筋 屈服,终结于受压区混凝土压碎。
3.3.2 受压区混凝土压应力合力及其作用点
根据板的跨度L来估算h:单跨简支板 h ≥ L/35;多 跨连续板 h ≥ L/40;悬臂板 h ≥ L/12。
另外尚应满足表3-1的现浇板的最小厚度要求。
第三章 钢筋混凝土受弯构件正截面承载力计算
第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第一节钢筋砼受弯构件的构造一、钢筋砼板的构造二、钢筋砼梁的构造一、钢筋砼板(reinforced concreteslabs)的构造1、钢筋砼板的分类:整体现浇板、预制装配式板。
2、截面形式小跨径一般为实心矩形截面。
跨径较大时常做成空心板。
如图所示。
3、板的厚度:根据跨径(span)内最大弯矩和构造要求确定,其最小厚度应有所限制:行车道板一般不小于100mm;人行道板不宜小于60mm(预制板)和80mm(现浇筑整体板)。
4、板的钢筋由主钢筋(即受力钢筋)和分布钢筋组成如图。
钢筋混凝土板桥构造图(1)主筋布置:布置在板的受拉区。
直径:行车道板:不小于10mm;人行道板:不小于8mm。
间距:间距不应大于200mm。
主钢筋间横向净距和层与层之间的竖向净距,当钢筋为三层及以下时,不应小于30mm,并不小于钢筋直径;当钢筋为三层以上时,不应小于40mm,并不小于钢筋直径的1.25倍。
净保护层:保护层厚度应符合下表规定。
序号构件类别环境条件ⅠⅡⅢ、Ⅳ1 基础、桩基承台⑴基坑底面有垫层或侧面有模板(受力钢筋)⑵基坑底面无垫层或侧面无模板465756852 墩台身、挡土结构、涵洞、梁、板、拱圈、拱上建筑(受力主筋)34453 人行道构件、栏杆(受力主筋)22534 箍筋22535 缘石、中央分隔带、护栏等行车道构件34456 收缩、温度、分布、防裂等表层钢筋15225梁构件,在不同环境条件下,保护层厚度值注:请点击<按扭Ⅰ,Ⅱ,Ⅲ&Ⅳ>,以查看不同保护层厚度值(2)分布钢筋(distribution steel bars):垂直于板内主钢筋方向上布置的构造钢筋称为分布钢筋作用:A、将板面上荷载更均匀地传递给主钢筋B、固定主钢筋的位置C、抵抗温度应力和混凝土收缩应力(shrinkage stress)布置:A、在所有主钢筋的弯折处,均应设置分布钢筋B、与主筋垂直C、设在主筋的内侧数量:截面面积不小于板截面面积的0.1%。
第三章-钢筋混凝土受弯构件正截面承载力计算
§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;
钢筋混凝土受弯构件正截面承载力计算
板厚度较大时如水闸,钢筋直径可用12~25mm,Ⅱ级钢筋; ◆ 受力钢筋间距一般在70~250mm之间;要便于混凝土浇捣。 ◆ 垂直于受力钢筋的方向应布置分布钢筋,以便将荷载均匀地传
递给受力钢筋,并便于在施工中固定受力钢筋的位置,同时也 可抵抗温度和收缩等产生的应力,每米不少于3根。
◆ 同时不应小于0.2%
◆ 对于现浇板和基础底板沿每个方向受拉钢筋的最小配筋 率不应小于0.15%。
板常用配筋率: 矩形截面 0.6 %~0.8 %
梁常用配筋率: 0.6%~1.5%
T形截面配筋率: 0.9%~1.8%
第三章 钢筋混凝土受弯构件正截面承载力计算
三、截面配筋计算步骤:
已知材料强度、截面尺寸,M 求 AS ?
结性能,钢筋的混凝土保护层厚度c一般不小于 25mm;
并符合附录四附表4—1的规定。 截面有效高度 h0 h as
Ý¡ 30mm
1.5d cݡ cmin
d
混凝土保护层计算厚度as:
h0
钢筋一层布置时 as=c+d/2 ,
钢筋二层布置时 as=c+d+e/2, a
其中e为钢筋之间净距。
Ý¡ cmin 1.5d
⑴ 等效前后混凝土压应力的合力C大小相等; ⑵ 等效前后两图形中受压区合力C的作用点不变。 见图3-10
第三章 钢筋混凝土受弯构件正截面承载力计算
㈢ 相对受压区高度
混凝土相对受压区高度
正截面混凝土受压区高度x与h0的比值为大小受压区高度
即
x
h0
当截面内纵向受力钢筋达到屈服时,混凝土受压区最
受弯构件正截面承载力计算
b 净距30mm
钢筋直径d
净距25mm 钢筋直径d
h b
2 ~ 2.5
3.5(矩形截面) ~ 4.0(T形截面)
二、梁正截面受弯性能的试验分析
1、适筋粱的工作阶段(试验)
试验 梁
荷载分 配梁 P
外加荷 载
应变 计
位移
L/3
计
L/3
L
As
bh0
数据采集 系统
h0 h
As b
2. 受弯阶段正截面各阶段应力状态
nb
xnb h0
cu cu y
y
超筋破坏
xb 矩形应力图形的界限受压区高度
b 矩形应力图形的界限受压区相对高度
b
xb h0
1xb
h0
1 cu cu y
1
1
y
1
1 fy
cu
Es cu
界限受压区高度
fcu 50Mpa时:
b
1
0.8 fy
0.0033 Es
b即n nb
b即n nb
c c Ec
t t Ec
c xn sAs
s s Es
2. 基本公式及适用条件
压区混凝土等效矩形应力图形(极限状态下)
cu
xn=nh
xn=nh0
0
C
A
h0 h
s
Mu
s
sAs
b
xn=nh
0
Mu
1 fc
yc C
x=1xn
sAs
xn=nh
0
Mu
fc yc
C
sAs
引入参数1、1进行简 化
原则:C的大小和作用点 位置不变
1
混凝土结构基本原理----第三章:正截面受弯承载力计算
(1) 截面形状
梁、板常用பைடு நூலகம்形、T形、I字形、槽形、空心板和倒 L形梁等对称和不对称截面
(2) 梁、板的截面尺寸
1)矩形截面梁的高宽比h/b一般取2.0~3.5;T形截面梁 的h/b一般取2.5~4.0(此处b为梁肋宽)。矩形截面的宽度 或T形截面的肋宽b一般取为100、120、150、(180)、200、 (220)、250和300mm,300mm以下的级差为50mm;括 号中的数值仅用于木模。
3.1受弯构件的一般构造
与构件的计算轴线相垂直的截面称为正截面。
结构和构件要满足承载能力极限状态和正常使用极
限状态的要求。梁、板正截面受弯承载力计算就是从满
足承载能力极限状态出发的,即要求满足
M≤Mu
(4—1)
式中的M是受弯构件正截面的弯矩设计值,它是由结构上
的作用所产生的内力设计值;Mu是受弯构件正截面受弯承
第三章 正截面受弯承载力计算
其特点是:1)纵向受拉钢筋屈服, 拉力保持为常值;裂缝截面处,受拉区 大部分混凝土已退出工作,受压区混凝 土压应力曲线图形比较丰满,有上升段 曲线,也有下降段曲线;2)弯矩还略有 增加;3)受压区边缘混凝土压应变达到 其极限压应变实验值εcu时,混凝土被 压碎,截面破坏;4)弯矩—曲率关系为 接近水平的曲线。
M0=Mcr0时,在纯弯段抗拉能力最薄弱的某一截 面处,当受拉区边缘纤维的拉应变值到达混凝土极限 拉应变实验值εtu0时,将首先出现第一条裂缝,一旦 开裂,梁即由第I阶段转入为第Ⅱ阶段工作。
随着弯矩继续增大,受压区混凝土压应变与受拉钢 筋的拉应变的实测值都不断增长,当应变的量测标距较 大,跨越几条裂缝时,测得的应变沿截面高度的变化规 律仍能符合平截面假定,
第三章-钢筋混凝土受弯构件正截面承载力计算 (1)
服强度fy;
❖ 压区砼边缘应变随后达到极
限压应变ecu,砼发生纵向水
平裂缝压碎(Ⅲ状态),弯
矩为极限弯矩Mu。
❖ 阶段Ⅲ是正截面承载力计算
依据。
适筋梁正截面受弯三个受力阶段的主要特点
二.正截面破坏特征
钢筋混凝土构件的计算理论是建立在试验基础上的。 大量试验结果表明,受弯构件正截面的破坏特征取决于配筋 率、混凝土的强度等级、截面形式等因素。但以配筋率对构 建破坏特征的影响最为明显,在同截面、同跨度和同样材料 的梁,配筋率不同,其破坏形态也将发生本质的变化。
于最大骨料粒径的1.5倍。
四.梁内钢筋直径和间距
❖纵向受力钢筋尽可能排成一排,当根数较多时,也
可排成两排,但因钢筋重心向上移,内力臂有所减小。 在受力钢筋多于两排的特殊情况,第三排及以上各排 的钢筋水平方向的间距应比下面两排的间距增大一倍。 钢筋排成两排或两排以上时,应避免上下排钢筋互相 错位,否则将使混凝土浇筑困难。
内力特点:截面上通常有弯矩和剪力,轴力可以忽略不计。
常用截面式:
(a)
(b)
(c)
(d)
(e)
(f )
(g)
建筑工程受弯构件常用截面
(a)
(b)
(d)
(e)
(g)
(c) (f)
(h)
桥涵工程受弯构件常用截面
第三章 钢筋砼受弯构件正截面承载力计算
受弯构件的两种破坏形态:
由弯矩引起的破坏,破坏截面垂直于梁纵轴线,称 为正截面破坏,必须通过计算配置足够数量的纵向 钢筋来确保正截面的受弯承载力。
间距不能太稀,最大间距可取: 板厚h≤200mm时:250mm h>1500mm时:0.2h及400mm 200mm<h≤1500mm时:300mm
_第三章 受弯构件的正截面承载力计算(
二.截面尺寸
为统一模板尺寸、便于施工,通常采用梁
宽度b=120、150、180、200、220、 250mm, 250mm以上者以50mm为模数递增。 梁高度h=250、300、350、 400 、…800mm ,800mm以上者以100mm为 模数递增。
h
b
简支梁的高跨比h/l0一般为1/8 ~ 1/16。 矩形截面梁高宽比h/b=2.0~ 3.5,T形截面
B F 5 0 0 , H P B 3 0 0 、 B 4 0 0
H
R
H
R
截面尺寸确定
● 截面应有一定刚度,使正常使用阶段的验算能满足 挠度变形的要求。 ● 根据工程经验,常按高跨比h/l0 来估计截面高度: ● 简支梁可取h=(1/8 ~ 1/16)l 2~1/ 3. 5)h ; 0 ,b=(1/ ● 简支板可取h = (1/25 ~ 1/40) l0 。
(
)
2种破坏情况—超筋破坏
..\..\混凝土结构设计原理录像\超筋梁的破坏.wmv
配筋量过多: 受拉钢筋未达到屈服,受压砼先达到极限压应
变而被压坏。 承载力控制于砼压区,钢筋未能充分发挥作 用。 裂缝根数多、宽度细,挠度也比较小,砼压坏 前无明显预兆,属脆性破坏。
(三)第3种破坏情况——少筋破坏 ..\..\混凝土结构设计原理录像\少筋梁的破坏.wmv
M u 2 f bh 1 c 0 b
(1 0.5 b )
⒊承载力复核 如果 如果
M ≤ Mu M > Mu
安全 不安全
方法二、查表法 ⒈验算配筋率: 如果 ≥ min 则按步骤2. 进行。
< min 则按素混凝土梁计算Mu。
⒉由①式计算
第3章-受弯构件正截面承载力计算详解优选全文
防止钢筋锈蚀;保证混凝土对受力筋的锚固。 2)定义
构件最外层钢筋(包括箍筋、分布筋等构造筋)的 外缘至混凝土表面的最小距离c。
14
第三章 受弯构件正截面承载力计算
3)规定
①c不应小于钢筋的公称直径d或并筋的等效直径de; ②设计使用年限为50年的混凝土结构,c还应符合表3-2的规定; ③设计使用年限为100年的混凝土结构,c不应小于表3-2中数
12
第三章 受弯构件正截面承载力计算
(2)架立钢筋
1)作用
①形成钢筋骨架;
②承受混凝土收缩及温度变化产生的拉力。
2)要求
当梁上部无受压钢筋时,需配置2根;
当梁的跨度l0<4m时,直径不宜小于8mm;
当l0=4m~6m时,直径不应小于10mm;
当l0>6m时,直径不宜小于12mm。
13
第三章 受弯构件正截面承载力计算
纵向受力钢筋的最小间距
间距类型 钢筋类型 最小间距
水平净距
上部钢筋
下部钢筋
30mm和1.5d
25mm和d
垂直净距(层距) 25mm和d
注 1.当梁的下部钢筋配置多于二层时,两层以上钢筋水平方向的中距应比下面两层的 中距增大一倍;
2.d为钢筋的最大直径。
10
第三章 受弯构件正截面承载力计算
③梁的配筋密集区域,当受力钢筋单根配置导致混 凝土难以浇筑密实时,可采用两根或三根一起配置 的并筋形式。
值的1.5倍。 ④当有充分依据并采取一定的有效措施时,可适当减小混凝土
保护层的厚度。
表3-2 混凝土保护层厚度的最小厚度
环境类别
一 二a 二b 三a 三b
第3章受弯构件正截面详解
3.1 截面的形式和构造
(2)板
单向板 One-way Slab 悬臂板 Cantilever Slab 双向板 Two-way Slab 基础筏板 Raft Foundation Slab
两对边支撑的板应按单向板计算;四边支撑的板,当
长边与短边之比大于3,按单向板计算,否则按双向 板计算 混凝土板有两种。 现浇板:截面宽度大,可根据需要定,设计时可取单 位宽度(b=1000mm)进行计算。 预制板:宽度b=0.6~1.5m,可以做成矩形板和空心板
3.2 受弯构件正截面受弯性能
受力全过程的特点
M
Mu My
y
第Ⅰ阶段截面曲率或挠度增长速度 较慢,第Ⅱ阶段增长速度较前为快, 第Ⅲ阶段由于钢筋屈服,截面曲率 急剧增加 随着弯矩的增大,中和轴不断上移, 受压区高度逐渐缩小,混凝土压应 变增大,受拉钢筋的拉应变增大, 平均应变符合平截面假定。 第Ⅰ阶段钢筋应力增长速度较慢, 开裂前后钢筋应力发生突变,弯矩 达到屈服弯矩时钢筋屈服
3.3 受弯构件正截面承载力计算原理
3.3.3 受压区混凝土等效矩形应力图形
等效条件: 混凝土压应力合力大小不变; 混凝土压应力合力作用点位置不变。
3.3.3 等效矩形应力图系数
k1 f cbxc =1 f cbx x 2( xc yc ) 2(1 k2 ) xc
≤C50 C55 0.99 0.79 C60 0.98 0.78 C65 0.97 0.77 C70 0.96 0.76
2)板的钢筋
板分为周边支撑板(单向板、双向板)和悬臂板。 受力筋:HRB400、HRB500级 d=6、8、10、12mm 间距:70~200mm且≯250mm; ≯ 200mm(h≤150mm); ≯ 1.5h( h>150mm ) 分布钢筋: HRB335、HRB400级 d=6、8mm 间距: ≯ 250mm, 为构造筋,垂直于板内主筋,与 主筋焊接或绑扎在一起,形成钢筋骨架。 截面面积不 宜小于单位宽度上受力钢筋截面面积的 15%,配筋率不 宜小于0.15%
第3章受弯构件的正截面承载力计算
1)承载力计算基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y 、钢筋面积A s ,确定需用的计算参数α1、h 0、ξb 。
计算步骤:(1)验算bh A min s ρ≥,满足要求则进入下一步。
此处,%)/4520.0max(y t min f f ,=ρ (2)求受压区高度x ,由s y c 1A f bx f =α得到bf αA f x c 1s y =(3)验算受压区高度x ,此时x 可能出现如下两种情况: 若0b h ξx ≤,则转入(4)—①) 若0b h ξx >,则转入(4)—②) (4)确定受弯承载力M u①由)2(0c 1xh bx f M -≤α,求出受弯受弯承载力M u 。
②求受弯承载力M u 。
取0b h ξx =。
得到)5.01(b b 20c 1u ξξα-=bh f M2) 配筋计算基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y ,确定需用的计算参数α1、h 0、ξb ; 荷载效应M 。
计算步骤:(1) 求受压区高度x ,由)2(0c 1xh bx f M -≤α得到bf Mh h x c 12002--α= (2) 验算受压区高度0b h ξx <,如满足要求则进入下一步. (3) 求受拉钢筋面积A s ,由s y c 1A f bx f =α,得到yc 1s f bxf A α=(4) 验算bh A min s ρ≥,当bh A min s ρ<时取bh A min s ρ=此处%)/4520.0max(y t min f f ,=ρ1)承载力计算基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y 、f ’y 、钢筋面积A ’s 、A s ,确定需用的计算参数α1、h 0、ξb 。
计算步骤:(1)求受压区高度x , 由'y s y c 1-s A f A f bx f ‘=α得b f αA f xc 1s y =(2)验算受压区高度x ,此时x 可能出现如下三种情况:若'2s a x <,则转入①; 若0'≤≤2h x a b s ξ,则转入②若0>h x b ξ,则转入③ (3)确定受弯承载力M u①'2s a x <,由)-('0s s y u a h A f M =求得受弯承载力M u②0'≤≤2h x a b s ξ,由)-()2-('0''01s s y c u a h A f x h bx f M +=α求得受弯承载力M u ③0>h x b ξ,求得受弯承载力M u ,取0h x b ξ=得)-()0.5-1('0''b 201s s y b c u a h A f bh f M +=ξξα2)配筋计算(1)已知M ,求A ’s 、A s基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y ,确定需用的计算参数α1、h 0、ξb ;荷载效应M 。
混凝土结构设计原理PPT课件第3章 受弯构件正截面承载力计算
3.5.3计算方法 1)截面计算
情况1:已知截面尺寸、材料的强度类别,弯 矩计算值,求 As和As 。
(1)假设 as和as ,求得h0 has。
(2)验算是否需要双筋截面。
M M ufcb d02 hb(1.5b)
(3)补充条件xbh0 ,求得 As和As 。
(4)分别选择受压及受拉钢筋的直径和根数,进 行截面布置。
第三章
受弯构件正截面承载力计算
受弯构件的主要破坏形态:
3.1受弯构件的截面形式与构造 3.1.1截面的形式和尺寸
板
受压区
现浇板宽度 比较大,计算 时可取单位宽 度的矩形截面 计算。
b 整体式板
受拉钢筋
钢筋混凝土简支板的标准跨径不宜大于13m,连 续板桥的标准跨径不宜大于25m,预应力连续板桥 的标准跨径不宜大于30m。
As
M fsd(h0 as)
(4)当 xbh0且 x2as时,由基本公式求 A s 。
(5)选择钢筋的直径和根数,布置截面钢筋。
2)截面复核 (1)检查钢筋布置是否符合要求。 (2)按双筋截面求受压区高度x。
(3)当 xbh0且 x2as时,由下式求受拉钢筋面积。
As
M fsd(h0 as)
箍筋直径不小于8mm或受压钢筋直径的1/4倍。
受压钢筋的应力 由图可得:
cu 0.0033
x c xc as s
a s
cs uxcx cas (1a xc s)(10.8 xas)
A s
As
s
0.00(1303.8as) x
取 x 2as
C0bx0bxc 0bch0 yc 2x12xc 12ch0
x = βxc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Flexure Strength of RC Beams
基本概念
• 1. 受弯构件:主要是指各种类型的梁与板, 土木工程中应用最为广泛。
• 2. 正截面:与构件计算轴线相垂直的截面为 正截面。
• 3. 承载力计算公式:
•
M ≤Mu ,
• M 受弯构件正截面弯矩设计值,
一、板的一板构造要求
1.板的厚度:与的板的跨度及荷载有关,应满足截面最 大弯矩及刚度要求,《公路桥规》规定最小厚度:行人 板不宜小于80mm(现浇整体)和60mm(预制),空 心板的顶板和底板不宜小于80mm. 2.板的宽度:由实际情况决定。 3.钢筋配置:
板内钢筋有两种:受力钢筋和分布钢筋。 受力钢筋:承担弯矩,通过强度计算确定。
2.正常使用极限状态计算 变形验算(挠度验算),抗裂验算(裂缝宽度计算)
3.1.2 受弯构件的钢筋构造
1.受弯按配筋形式不同分为单筋受弯构件和双筋 受弯构件 单筋受弯构件:只在受拉区配受力钢筋。 双筋受弯构件:受拉区和受压区均配置受力钢筋。
2.配筋率 As %.......( 4 2)
bh0
4.板的受力筋保护层厚度:受力筋外边缘至混凝
土外表面的厚度,用c表示(cover) 。 作用:保护钢筋不生锈;保证钢筋与混凝土之间
的粘结力。 保护层厚度与环境类别和混凝土的强度等级有关,
查附表1-7。
二、梁的一般构造
1.截面尺寸:为方便施工截面尺寸应统一规格。 现浇矩形截面宽b(mm),120、150、180、200、220、 250、+50(h ≤ 800)或+100(h > 800).截面宽度:
应变ecu ,构件达到极限
承载力,此时截面上的弯 矩即为抗弯承载力Mu, 也称为第三阶段末“Ⅲa”。 第三阶段末为抗弯承载力 计算的依据。
M/Mu
1.0 Mu 0.8 My
Ⅱa Ⅲ
0.6 Ⅱ
0.4
Mcr
Ⅰa Ⅰ
0
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
Ⅲa
f
fu f
M/Mu
用下述公式表示 As %
bh0
3.混凝土保护层厚度:
纵向受力钢筋的外表面到截面边缘的垂直距离 。用c表示(cover) 。
为保证RC结构的耐久性、防火性以及钢筋与 混凝土的粘结性能,钢筋的混凝土保护层厚度 一般不小于 30mm;
• 保护层厚度与环境类别和混凝土的强度等级有 关,查附表1-7,环境类别见附表。
• Mu 受弯构件正截面受弯承载力设计值
3.1 受弯构件截面形式与构造
3.1.1 截面形式
• 结构中常用的梁、板是典型的受弯构件。
受弯构件需进行承载力极限状态和正常使用极限状 态的计算。 1.承载力极限状态计算
受弯构件有两个内力(弯矩和剪力),所以应进行 抗弯强度计算和抗剪强度计算,抗弯计算又称正截面 抗弯强度计算,抗剪计算又称斜截面抗剪强度计算。
1.0 Mu 0.8 My
Ⅱa Ⅲ
Ⅲa
0.6 Ⅱ
0.4
Mcr
Ⅰa Ⅰ
0
ey
es
裂缝开裂前--第一阶段, 界限Ia
钢筋屈服前--第二阶段, 界限IIa
梁破坏(混凝土压碎)-第三阶段,界限IIIa
二、钢筋混凝土受弯构件正截面破坏形式
直径:单向板,不宜小于10mm(车行)或8mm(人 行)。 间距:简支板的跨中,连续板的支点处,间距S 200mm,
在板的每m宽度内不少于三根。
分布钢筋 : 作用:将荷载传递到受力钢筋;固定受力钢筋;承
担由于混凝土收缩 及温度变化产生的内力。 直径:行车:直径不小于8,截面积不宜小于0.1%。 行人:直径不应小于6mm 间距:行车:应不大于200mm。 行人:不应大于200mm
◆为保证RC结构的耐久性、防火性以
及钢筋与混凝土的粘结性能,钢筋
的混凝土保护层(cover)厚度一般不
h0
小于 30mm;
◆为保证混凝土浇注的密实性
≥25mm
d
(consolidation),梁底部钢筋的净
as
c≥cmin 距(clear spacing)不小于25mm及钢
≥25mm
d
d c≥cmin
h/b=2~2.5,
2.梁内配筋:直径12~32
(1)纵向受力筋:承受弯矩
(2)弯起钢筋:承受弯矩和剪力
hபைடு நூலகம்
(3)架立筋:形成钢筋骨架,固定箍筋,
承担次弯矩。
(4)箍筋:承担剪力,固定纵筋。
(5)侧向构造钢筋:承担混凝土收缩、
b
温度变化产生的内力。
3.梁内受力钢筋的保护层厚度及净距
≥30mm 1.5d c≥cmin d
一、一般钢筋混凝土梁正截面工作的三个阶段
(2)第二阶段(带裂缝工作阶段)
荷载继续增加,钢筋的拉应力产生 突变,挠度变形不断增大,裂缝宽度 也随荷载的增加而不断开展,中和轴 上移。受压区混凝土产生塑性变形, 压区应力图形逐渐呈曲线分布。
当钢筋应力达到屈服强度时(es = ey),梁的受力性能将发生质的变化。
此时的受力状态称为第二阶段末 (Ⅱa)状态。
钢筋混凝土在正常使用情况下, 截面弯矩一般处于该阶段。所以在 正常使用情况下,钢筋混凝土是带 裂缝工作的。裂缝宽度和挠度变形 计算,要以该阶段的受力状态分析 为依据。
(3)屈服阶段(Ⅲ阶段)
荷载增加,钢筋应变增 加,应力不变,裂缝向上 发展,压区高度减小,中 和轴上移,压区混凝土应 力图形不断丰满,最终受 压边缘混凝土达到极限压
d
筋直径d,梁上部钢筋的净距不小于 30mm及1.5 d;
3.2 受弯构件正截面受力全过程和破坏形态
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
荷载增加,拉区混凝土产生塑性变 形,应力分布为曲线,压区仍为直 线,当受拉边缘的拉应变达到混凝
土极限拉应变时(et=etu),为截面
即将开裂的临界状态,称为第一阶 段末(Ⅰa),此时的弯矩值即为开 裂弯矩Mcr (cracking moment),第 一末为受弯构件抗裂度计算依据。
一、一般钢筋混凝土梁正截面工作的三个阶段