最新5.1相交线(导学案)汇编

合集下载

5.1.1 相交线(导学案)七年级数学下册同步备课系列(人教版)

5.1.1 相交线(导学案)七年级数学下册同步备课系列(人教版)

学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.1.1 相交线 导学案一、学习目标:1.理解两条直线相交的特征及邻补角与对顶角的概念.2.掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计算及解决简单的实际问题.重点:邻补角、对顶角的概念,对顶角的性质与应用. 难点:理解对顶角相等的性质.二、学习过程:情境引入你能在身边找出一些相交线的实例吗?(请画出下图中一组相交线)自学导航思考:观察剪刀工作过程,你能发现它的角有什么变化?如果把剪刀的构造看做两条相交的直线,你们想想它是一种怎样的几何结构?请画出抽象得出的几何图形.【归纳】___________________________________________________________ ___________________________________________________________________ 上图的几何描述为:________________________________. 合作探究探究:任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.作图_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________形成概念1.邻补角的概念:______________________________________________________________________________________________________________________________________ 图中还有哪些角也是邻补角呢?________________________________ 2.对顶角的概念:______________________________________________________________________________________________________________________________________ 图中还有哪些角也是邻补角呢?________________________________思考:上图中,∠1与∠3在数量上又有什么关系呢?___________. 请补全下列说理过程:∵ ∠1与∠2互补,∠3与∠2互补 (_________________) ∴ ∠1=∠3 (_________________)【归纳】对顶角的性质:__________________________. 考点解析考点1:邻补角的定义及性质★例1. 下列图形中,∠1与∠2互为邻补角的是( )_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【迁移应用】1.下列说法中正确的是( ) A.一个角的邻补角只有B.一个角的邻补角必定大于这个角C.相等的两个角不可能是邻补角D.一个角的邻补角可能是锐角、钝角或直角 2.如图,直线a ,b 相交.(1)∠1+∠2=_____°;∠3+∠4=____°. (2)∠4的邻补角是_________. (3)图中的邻补角共有_____对.3. 已知∠B 与∠A 互为邻补角,且∠B=2∠A,那么∠A=_____°.考点2:对顶角的定义及性质★★例2. 下列图形中,∠1和∠2互为对顶角的是( )【迁移应用】1.如图,直线 AB ,CD 相交于点O ,则∠1的对顶角是( ) A.∠2 B.∠3 C.∠4 D.∠3和∠4_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.如图,直线AB ,CD 相交于点O ,若∠AOD 减小30°则∠BOC ( ) A.增大30° B.增大150° C.不变 D.减小30°3.如图是一个对顶角量角器,用它测量角的原理是_____________.4.如图是一把剪刀,若∠AOB+∠COD=82°,则∠BOD=________.5.如图,直线AB ,CD 相交于点O ,∠AOC=(2x-10)°,∠BOD=(x+25)°,则x=_______.考点3:运用邻补角、对顶角的性质进行角度的计算★★★例3.【方程思想】如图,直线AB ,CD 相交于点O ,∠AOC = 80°,OE 把∠BOD 分成两部分,且∠BOE :∠DOE=2:3,求∠AOE 的度数._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【迁移应用】1.如图,直线AB 与CD 相交于点O ,OA 平分∠COE,若∠DOE=70°,则∠BOD 的度数是( )A.75°B.65°C.55°D.105°2.如图,三条直线相交于一点,则 ∠1+∠2+ ∠3 =_____°.3.如图直线AB ,CD 相交于点O ,OA 平分∠EOC.若∠EOA:∠EOD=1:3,求∠BOD 的度数.考点4:利用邻补角与对顶角的性质解决实际问题★★★例4.【一题多解】如图是一块弯折的屏风,假设其背面不可到达,要测量其在地面上形成的∠AOB 的度数,你有什么方法?_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【迁移应用】【跨学科】将一根玻璃棒放入盛有水的烧杯中,一头露出水面,一头浸入水中,我们可发现浸入水中的部分“变弯了”.它真的变弯了吗? 其实没有,这只是光的折射现象,即光从空气射入水中,光线的传播方向发生改变如图,一束光AO 射入水中,在水中的传播路径为OB ,∠1与∠2是对顶角吗?如果不是对顶角,你能比较它们的大小吗?考点5:邻补角在折叠问题中的应用★★★★例5.【整体思想】如图,将五边形纸片ABCDE折叠,折痕为AF ,点D,E 分别落在点D′,E′处.已知∠AFC=76°,求∠CFD′的度数.【迁移应用】1. 如图,把一张长方形的纸片按如图所示的方式折叠后,B ,D 两点分别落在点B′,D ′处.若∠AOB ′=80°,则∠B′OG 的度数为_______.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.如图,将长方形纸片折叠,使点A 落在点A′处,BC 为折痕,BD 为∠A′BE 的平分线,则∠CBD 的度数为________.考点6:相交线中的探究题★★★★★例6. (1)观察图①,图中共有____对对顶角,_____对邻补角; (2)观察图②,图中共有_____对对顶角,_____对邻补角; (3)观察图③,图中共有_____对对顶角,_____对邻补角;(4)若有n 条直线相交于一点,则可形成________对对顶角,________对邻补角.【迁移应用】观察下列图形,阅读下面的相关文字并回答后面的问题:(1)5条直线相交,最多有几个交点? (2)6条直线相交,最多有几个交点? (3)猜想:n 条直线相交,最多有几个交点?。

5.1.1《相交线》 导学案

5.1.1《相交线》 导学案

5.1.1《相交线》 导学案【教学过程】一、情景引入:1、想象剪刀剪布过程,剪布时,握紧剪刀的把手,随着两个把手之间的夹角逐渐变小,剪刀的刀刃之间夹角也相应 。

2、如果把剪刀的结构看成两条相交的直线,这就关系到两条相交直线所成角的问题。

画出两条相交直线(直线AB 、CD 相较于点O )。

二、探究交流:问题1:请写出两条相交直线形成的小于平角的角有哪几个?问题2:将所得到的角任意两个角组成一对,请写出共能组成哪几对角?问题3:根据每对角的位置关系将它们分成两类,你会怎么分,理由是什么?三、认一认1.下列各图中∠1、∠2是邻补角吗?为什么?(1) (2) (3)两直线相交所形成的角分类 位置关系∠1和∠2 ∠2和∠4321ODC BA1211 222.下列各图中∠1、∠2是对顶角吗?为什么?四、探究交流:1.通过前面的学习,像∠1和∠2这样互为邻补角的两个角有怎样的数量关系?2.像∠1和∠3 这样互为对顶角的两个角有怎样的数量关系?用适当的方法验证你的猜想。

3.两条直线AB 、CD 相交于点0,当直线CD 绕点0转动时,转动过程中∠1和∠3的度数有无变化?数量关系呢?4.性质: 邻补角 ;对顶角 ; 五、判断下列说法是否正确,若不正确,请画图说明。

(1)两条直线相交,形成两组对顶角,四组邻补角。

( ) (2)邻补角一定互补,对顶角一定相等。

( ) (3)互补的角一定是邻补角,相等的角一定是对顶角。

( ) (4)有公共顶点且相等的两个角是对顶角。

( ) 归纳:12(2)(3)(4)21(1)12(5)1212六、例.如图,直线AB , CD 相交于点O , ∠1=40°,求∠2, ∠3, ∠4的度数.七、练习如图,直线AB 、CD 、EF 相交于O , (1)右图中∠AOC 的对顶角是 , ∠1邻补角是 。

(2)如图,直线AB 、CD 相交于O ,∠AOC=80°,∠1=30°,求∠2的度数。

相交线导学案(1)

相交线导学案(1)

15.1相交线--导学案(1)班级 姓名 学号 小组评价 学习目标1、理解邻补角和对顶角的概念,能从图中辨别邻补角和对顶角;2、掌握“对顶角相等的性质”,理解对顶角相等的推理过程,并能运用它解决一些简单的实际问题.活动一:问题引入1、知识回顾:①两个角的和是 ,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。

②同角或 的补角 。

2、在同一平面内,如果两条直线只有一个 ,那么这两条直线相交,这个公共点称为两条直线的 点。

如图所示,直线AB 与直线CD 于点O 。

3、请同学们指出小于平角的角有哪些? 活动二:合作探究1.任意画两条相交的直线,在形成的四个角中,问题1:两条相交直线.形成的小于平角的角有哪几个?问题2:将所得到的角两两相配共能组成几对角?(每两个角组成一对) 问题3:根据各对角不同的位置怎么将它们分类?问题4:以∠1和∠2为例分析各对角存在怎样的位置关系? 问题5:类似∠1和∠2,分析∠1和∠3存在怎样的位置关系?问题6:分别量一下各个角的度数,各类角的度数有什么关系?为什么?两直线相交所形成的角分类 位置关系 大小关系4321ODC BA∠1和∠2 ∠2和∠2、邻补角、对顶角概念:(1)邻补角:有一条( ),而且另一边( )的两个角叫做邻补角.(2)对顶角:如果两个角有一个( ), 而且一个角的两边分别是另一角两边的( ),那么这两个角叫对顶角.ODCB AOE DCBA 巩固概念练习:1.下列各图中∠1、∠2是邻补角吗?为什么?(1) (2) (3)2.下列各图中∠1、∠2是对顶角吗?为什么?3、总结:①两条直线相交所构成的四个角中,邻补角有 对。

对顶角有 对。

②对顶角形成的前提条件是两条直线相交。

4、对顶角性质:对顶角相等。

ba321活动三:巩固练习: 1.如图,直线a , b 相交, 若∠1+∠3=50°,则∠3= ,∠2= 。

若∠2是∠1的3倍,求∠3的度数。

5.1.1相交线 导学案

5.1.1相交线 导学案

第五章相交线与平行线5.1.1相交线一.导学1.导入课题:(1)观察课本图5.1-1观察并阅读有关内容体会说明:图中“剪刀”可以看作:__________线,画出示图为: __________________(2)那么,这样的两条直线位置和形成的角就是我们本节课所要研究的内容.2.学习目标:⑴能说出相交线,邻补角,对顶角的定义以及对顶角的性质.⑵能够灵活运用这几个定义和性质解决问题.3.学习重、难点:相交线的有关概念.4.自学指导:(1)自学内容:第2页至第3页练习前的内容.(2)自学时间:5分钟.(3)自学要求:①仔细阅读,认真看书;②动手比划,联系实际.(4)自学参考提纲:①如上题图中AB交CD于点O形成四个角,∠1和∠2有一条公共边_____,它们的另一边在_______________,具有这种关系的两个角,互为邻补角. 互为邻补角的还有:___________________________________________________∠1和∠3有一个_____________,并且∠1的两边分别是∠3的两边的_______________.具有这种位置关系的两个角,互为对顶角. 互为对顶角的还有_________________.②写出对顶角的性质:___________________.③用几何语言写出性质的推理或说理形式.④例题中求三个角的度数时,应用了哪些“原理”分别是:二、自学:同学们可结合自学指导进行自学.三、助学:(1)明了学情:(2)差异指导:四、强化:1. 邻补角,对顶角的定义以及对顶角的性质.2.练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角( )(2)邻补角是互补的两个角,互补的两个角是邻补角 ( )(3)对顶角相等,相等的两个角是对顶角 ( )五、评价:1.学生学习的自我评价:2.教师对学生的评价:(1)表现性评价;(2)纸笔评价:课堂评价检测3.教师的自我评价(教学反思)。

人教版七年级下册5.1.1《相交线》导学案

人教版七年级下册5.1.1《相交线》导学案

第五章相交线与平行线5.1 相交线5.1.1 相交线1.知道邻补角、对顶角的概念,并能在各种情形下进行识别.2.能推导并归纳对顶角的性质,会进行有关的计算和推理.3.通过证明“对顶角相等”这一性质,增强有条理地叙述推理过程的能力,感受数学的严谨.4.重点:对顶角的概念,对顶角的性质.*【旧知回顾】1.如果两个角的和等于180°,那么这两个角互补.(方法指导:要从位置关系和数量关系两个角度去认识邻补角和对顶角.)阅读教材“在图5.1-2中……”之前的内容,解决下列问题.如图,直线AB与CD相交于点O.1.(1)说说∠1和∠2的边之间的关系.OA和OB互为反向延长线,OC重合.*(2)测量∠1和∠2的度数,并说明它们的度数具有什么关系.图中还有具备上述关系的两个角吗?度数略,∠1+∠2=180°,即∠1和∠2互补.有,∠2和∠3,∠3和∠4,∠4和∠1.2.(1)说说∠1和∠3的边之间的关系.OA和OB互为反向延长线,OC和OD互为反向延长线.(2)测量∠1和∠3的度数,并说明它们的度数具有什么关系.图中还有具备上述关系的两个角吗?度数略,∠1=∠3.有,∠2和∠4.【归纳总结】(1)有一条公共边,并且另一边互为反向延长线的两个角互为邻补角.(2)如果两个角有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,那么这两个角互为对顶角.【预习自测】如图,∠1和∠2是对顶角的图形是(C)阅读教材“在图5.1-2中……”至“例1”,解决下列问题.1.与∠2互补的角有几个?它们之间具有什么关系?为什么?∠1和∠3,它们相等,同角的补角相等.2.请你补全下面的推理过程.因为∠1和∠2互补,∠3与∠2互补(邻补角的定义),所以∠1=∠3(同角的补角相等).3.∠2与∠4相等吗?请用符号语言表述出来.你有几种方法?理论依据是什么?法一:同上.法二:因为∠1=∠3,∠1+∠2=180°,∠4+∠3=180°,所以∠2=∠4,依据是等角的补角相等.【归纳总结】对顶角的性质:对顶角相等.【讨论】“相等的角是对顶角”这句话对吗?若不对,试举例说明.不对,如:角平分线分成的两个角.【预习自测】如图,a、b直线相交,∠1=36°,则∠2= 144°,∠3= 36°.动探究1:如图,∠1=15°,∠AOC=90°,点B、O、D在同一条直线上,则∠2的度数为105°.探究1图探究2图动探究2:如图,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为(A)A.62°B.118°C.72°D.59°动探究3:如图,直线AB、CD、EF相交于点O,指出∠AOC、∠EOD的对顶角,∠AOC的邻补角,并说出图中一共有几对对顶角?解:∠AOC的对顶角是∠BOD,∠EOD的对顶角是∠COF;∠AOC的邻补角是∠AOD,∠BOC.图中共有6对对顶角.[变式训练]在上面的图形中,∠AOE+∠BOD+∠COF= 180°.动探究4:如图,直线AB、CD交于点O,∠1比∠2的3倍少20°,求∠BOD和∠2的度数.解:设∠2=x,由题意可得∠1=3x-20°.又因为∠1+∠2=180°,所以∠1=180°-x,所以3x-20°=180°-x,解得x=50°.所以∠BOD=∠1=130°,∠2=50°.【方法归纳交流】应用方程思想,设其中一个角的度数是x,将其他的角用x表示出来,从而列方程求解.见《导学测评》P1。

相交线导学案

相交线导学案

相交线》导学案《5.1.1.了解对顶角的概念,会在图形中认识对顶角1.发展有条2.理解对顶角的性质,经历在数学活动中探索对顶角性质的过程,.理的思考与表达能力.【学习重点】对顶角的定义和性质.简便准确的利用几何语言表示角【学习难点】剪刀就构成了一个相交【学法指导】把剪刀的构造看做是两条相交的直线,两条相交线形成的角也在不断线的模型,从剪刀剪开布片过程中角的不断变化,这就引出了邻补角和对但是这些角之间存在不变的数量关系和位置关系,变化, .顶角【学习过程】一、学前准备 1.热身填空:. ,那么说这两个角互为补角(1)如果两个角的和是平角(或等于),简称互补;与∠β数学符号表示为:若∠α+∠β=180°,则∠α反过来,若∠α与∠β互补,则∠α+∠β= .°-α的补角是180我们得到:α1 图 .,α的余角是0°,则∠α与∠β互为 (2)若∠α+∠β=9 互为补角,∠1的余角是 .与(3)如图1中的∠3(4)余角与补角的性质:同角或等角的余角;同角或等角的补角.二、解读教材(一).对顶角和邻补角的概念提出问题:上图中AB与CD相交,形成了4个小于平角的角:∠1、∠2、∠3、∠4.如果任取其中2个角,它们之间存在怎样的位置关系和数量关系?(1)通过∠1与∠2的研究,说明邻补角的位置关系和数量关系;两条直线相交后所得的有一个公共顶点且有一条公共边的两个邻补角定义:.角 (2)找一找图中还有没有其他邻补角,如果有,是哪些角?. 说明邻补角与两个角互补的区别 (3)∠1和∠3是邻补角吗?为什么?. 对顶角定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角1和∠3(4)的研究,得到对顶角的位置关系通过∠.(5)找一找图中还有没有对顶角,如果有,是哪两个角?即时练习一:1.如图2所示,直线AB和CD相交于点O,OE是一条射线.(1)写出∠AOC的邻补角:;(2)写出∠COE的邻补角:;(3)写出∠BOC的邻补角:;(4)写出∠BOD的对顶角: .2.如图所示,∠1与∠2是对顶角的是()、对顶角和邻补角的性质 (二)任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.即时练习二:1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______. 2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______.3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,_____. =EOF则∠.①两个角有公共的顶点②一个角的两边是另一互为对顶角的两个角的特点:. 个角两边的反向延长线①两个角有一个公共顶点②两个角有一条公共互为邻补角的两个角的特点:.(补)③两个角在公共边两侧④两个角和为边(邻)难点透释)对顶角和邻补角都是指两个角之间的关系,即互为对顶角、互为邻补1(.角(2)对顶角相等,但相等的两个角却不一定是对顶角;邻补角是具有特殊位置关系且互补的两个角.三、课堂小结:总结邻补角和对顶角的特征、性质、相同点和不同点.四、作业必做1.若两个角互为邻补角,则它们的角平分线所夹的角为度.2.如图1,直线AB、CD相交于点O,若∠1=28°,?则∠2=_____.3.如图2,O为直线AB上一点,过O作一射线OC使∠AOC=3∠BOC,则∠BOC =_____.4.如图3,直线AB与CD相交于点O,若∠AOC+∠BOD=90°,则∠BOC=_____.)5.下列说法中,正确的是(.相等的角是对顶角A.有公共顶点的角是对顶角 B .不是对顶角的角不相等C.对顶角一定相等 D( ). 它们的交点个数是6.两条相交直线与另外一条直线在同一平面内,3或2或A.1 B.2 C.3或2 D.1°,求∠=70平分∠,OAEOC,并且∠EOC.如图,直线7AB、CD相交于点O.BOD的度数.的度数3,求∠12,c两两相交,∠4=120°,∠=∠b8.如图,直线a,2∠4,?求∠3°,∠两两相交,∠、9.如图所示,直线ab、c1=602、=3∠5的度数.选做:1.如图,AOE是一条直线,OB⊥AE,OC⊥OD,找出图中互补的角有多少对,分别是哪些?2.如图,直线AB、CD、EF相交于点O,∠AOE=30°,∠BOC是∠AOC的2倍多30°,求∠DOF的度数.答案:必做:1.90°2.152°3.45°4.135°5.C6.D7.∵OA平分∠EOC,11×70°=35=°,∠EOC=∴∠AOC22∴∠BOD=∠AOC=35°.8.∵∠3=180°-∠4=180°-120°=60°,∴∠2=∠3=60°,∴∠1=∠2=60°.9.∵∠2=∠1=60°,∴∠3=180°-∠1=120°.2∠4,又∵∠2=33∠2=90°,∴∠4=2∴∠5=180°-∠4=90°.选作:1.互补的角有4对,分别为∠4与与∠AOD ∠2与与∠AOD ∠与与∠1EOC 与与∠EOC ∠3 2x°+30°,AOC2.设∠=x°,则∠BOC==180°,∵∠AOC +∠BOC ,30+2x+=180x∴ 50解得x=,°,30AOE-∠=50°-°=20AOCEOC∴∠=∠. °20EOCDOF∴∠=∠=。

5.1.1相交线导学案人教版数学七年级下册

5.1.1相交线导学案人教版数学七年级下册

5.1.1 相交线导学案班级姓名编写:课型:新授课 NO:1 使用时间:一、目标导学(2分钟)1.经历实际操作,通过观察讨论等活动,能在具体的情境中认识对顶角、邻补角.表述对顶角、邻补角的概念、性质,并能利用它进行简单的推理和计算;2.通过对顶角性质的推理过程,提高推理和逻辑思维能力;3.通过变式图形的识图训练,提高识图能力【学习重点】邻补角、对顶角的概念,对顶角的性质与应用.【学习难点】理解对顶角相等的性质.二、读书探究(16分钟)认真阅读课本第1—2页练习以上部分,画出重点,然后完成以下部分。

探究一:探究邻补角的概念及有关性质(4分钟)如图,任意画两条相交的直线(直线AB与直线CD相交于点O),形成四个角,∠1和∠2有怎样的位置关系以及数量关系?1.什么是邻补角?图中一共有哪些邻补角?2.邻补角在数量上有什么关系?几何语言:【自学检测】(2分钟)1.下列图形中,∠1和∠2是邻补角的是()A.B.C.D.提示:判断两个角是不是邻补角,应满足两个条件:(1)有一条公共边;(2)另一边互为反向延长线。

即邻补角相邻且互补。

2.如图,直线AB,CD相交于点O,∠AOD=140°,则∠AOC的度数是()A.40°B.50°C.60°D.70°探究二:探究对顶角的概念以及性质(5分钟)如图,任意画两条相交的直线(直线AB与直线CD相交于点O),形成四个角,∠1和∠3有怎样的位置关系以及数量关系?1.什么是对顶角?图中一共有哪些对顶角?2.∠1 与∠3在数量上又有什么关系呢?证明过程:归纳:对顶角的性质:。

几何语言:【自学检测】(2分钟)3.在下面四个图形中,∠1与∠2是对顶角的是()A. B. C. D.提示:判断两个角是不是对顶角,应满足两个条件:(1)顶点相同(2)角的两边互为反向延长线4.如图,若∠1=35°,则∠2的度数是()A.35°B.40°C.45°D.145°【典型例题】(3分钟)如图,直线a、b相交,∠2=130°,求∠1、∠3、∠4的度数.三、点拨分享(12分钟)对读书探究部分进行提问、更正、点拨、归纳。

七年级数学下册5.1.1相交线导学案(新版)新人教版

七年级数学下册5.1.1相交线导学案(新版)新人教版

相交线课题5.1.1相交线导学目标1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力。

2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题。

教学重点邻补角与对顶角的概念、对顶角性质与应用教学难点理解对顶角相等的性质的探索。

教学过程教学环节教学任务教师活动学生活动预见性问题及策略复习问题1:什么叫互余的角及互补的角?问题2:在同一平面内,两条直线有几种位置关系?分别有几个公共点?教师提出问题巡视各小组交流,倾听其内容,注意规范学生的概念语言学生先独立思考再组内交流后分组报告学生回答的不完整及时补充纠正研习问题3:任意画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?问题4:请你说出邻补角和对顶角的概念?邻补角:对顶角:问题5:用量角器分别量一量各角的度数,发现各类角的度数有什么关系?为什么?问题6:学生根据观察和度量完成下表:问题7:如果改变AOC的大小,会改变它与其它角的位置关系和数量关系吗?问题8:请你概括出邻补角和对顶角有什么性质?教师巡视,深入各组帮助学困生完成问题教师指导学生使用量角器。

使用量角器测量后得出结论完成表格注意使学生能够区分补角与邻补角的区别结论:研习分组展现:问题9:判断下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角问题10:如图,直线a,b相交,ο401=∠,求4,3,2∠∠∠的度数。

问题11:已知,如图,οο80,35=∠=∠COFAOC,求:DOFAOD∠∠和的度数。

若有学生在展现此题后出现错误,教师可追问学生举出反例精习一、知识梳理:这节课我们一起学习了哪些问题?重点关注:对顶角的性质。

二、知识运用:训练1:如图,直线AB、CD、EF相交于点O,AOE∠的对顶角是,COF∠的邻补角是若AOC∠:AOE∠=2:3,ο130=∠EOD,则BOC∠=训练2:教材第8页2题;训练3:教材第9页7题。

七年级数学下册《5.1.1 相交线》导学案(新版)新人教版(2)

七年级数学下册《5.1.1 相交线》导学案(新版)新人教版(2)
选做题: 第2题
如图所示,直线a,b,c两两相交,∠1=2∠3,且∠2=65°,求∠4的度数。
时间____________________评价________ _______________
请归纳:对顶角的性质:
3、跟踪练习:
1.如图所示,∠1与∠2是对顶角的是( )
2.如图,直线AB、CD、EF相交于点O.
1)写出∠AOC的邻补角:;∠BOE的邻补角:;
2)写出∠DOA的对顶角:;∠EOC的对顶角:;
3)如果∠AOC=50°,求∠DOB,∠BOC的度数.
课堂学习流程
总结反思
一、前置学习展示交流5-10分钟:(对学群学)
2.同角的补角(等角的补角)有什么关系?
二、针对本节所学习教材内容,教师提出三个或以 上可操作,可测的大问题:
1.探究:任意画两条相交直线,形成四个角,它们两两之间有怎样的位置关系?
2.阅读课本P2,了解邻补角和对顶角的定义.举例说明什么是邻补角、对顶角.
3.探究:如图,直线AB,CD相 交,∠2=∠4吗?试说明理由.
1.若两个角互为邻补角,则它们的角平分线所夹的角为
2..如图,∠AOC=36°,∠DOE=90°,则∠BOE=_______.
3.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______
(一)学生提出的问题:
(2)注意事项:(师生总结,学生整理)
2、分层训练(20分钟)
(1)双基过关
(2)能力提升
如图,直线AB、C D相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=_____

相交线导学案

相交线导学案

OD CBAPa Ba5.1相交线--导学案(2)班级姓名小组小组评价【使用说明】先由学生自学课本,掌握基础知识及解题的基本方法、思路,然后独立完成导学案,用红笔标出困惑点;再根据自己的困惑点和本节重难点,通过学习小组的讨论交流与展示点评以及老师对重难点的点拨,对知识进行整理归纳和总结升华;最后完成学以致用,巩固本节课所学的知识,达到本节的学习目标。

【学习目标】1、理解垂线的定义,点到直线距离,掌握垂线的性质,会过一点画已知直线的垂线。

2、培养学生合作交流的方法和意识,以及数学在实际生活中的应用意识。

3、激情参与,全力以赴,主动发现,通过合作学习享受成功的快乐。

【重点】垂线的性质以及过一点画已知直线的垂线。

【难点】写出规范的推理过程和过一点画已知直线的垂线。

一、自主学习(一)、自主预习:1、自主探究:自学指导一:垂线的认识看课本P3完成下列题目(1)当两条直线相交所成的四个角中,有一个角是______时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的_______,它们的交点叫_______.垂直是_____的一种特殊情形。

(2)如图直线AB,CD互相垂直,记作:读作:用推理的过程表示垂线的定义:∵∠AOD=90°(已知)∴AB CD(垂线的定义)或∵AB⊥CD (已知)∴∠AOD= (垂线的定义)自学指导二:垂线的性质1(1)点与直线有_____种位置关系,分别是_______和________(2)探究过已知点画已知直线的垂线画法:让三角板的一条直角边与已知直线重合,沿直线移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则所画的直线为所求垂线。

(3)探究垂线的性质:○1经过直线a上一点P画a的垂线,可以画几条?PA 3A 2A 1OPC B O○2经过直线a 外一点B 画a 的垂线,可以画几条? 小结 (4) 注意:画一条线段或射线的垂线就是画它们所在直线的垂线。

练习:课本P5 1、2题思考:在灌溉时,要把河中的水引到农田P 处,如何挖水渠最短?看课本P5图。

5.1相交线(导学案)

5.1相交线(导学案)

第五章相交线与平行线第一课时:5.1.1 相交线【学习目标】了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、学前准备各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,二、探索思考探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义呢?.练习一:1.如图1所示,直线AB和CD相交于点O,OE是一条射线.(1)写出∠AOC的邻补角:____ _ ___ __;(2)写出∠COE的邻补角: __;(3)写出∠BOC的邻补角:____ _ ___ __;(4)写出∠BOD的对顶角:____ _.2.如图所示,∠1与∠2是对顶角的是()探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”:.练习二:1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.三、当堂反馈1.若两个角互为邻补角,则它们的角平分线所夹的角为度.2.如图所示,直线a,b,c两两相交,∠1=60°,∠2=23∠4,•求∠3、∠5的度数.3.如图所示,有一个破损的扇形零件,•利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?4.探索规律:(1)两条直线交于一点,有对对顶角;(2)三条直线交于一点,有对对顶角;(3)四条直线交于一点,有对对顶角;(4)n条直线交于一点,有对对顶角.四、学习反思本节课你有哪些收获?图1ba4321第1题FEODCBA第2题FEODCBA第3题第二课时:5.1.2 垂线【学习目标】1了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;2会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用. 【学习难点】垂线的画法以及对点到直线的距离的概念的理解. 【学习过程】 一、学前准备在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB 与CD 相交于点O ”. 我们如果把直线CD 绕点O 旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD 的大小都将发生变化.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图 用几何语言表示:方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______ 二、探索思考探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条; ⑵如图2,经过直线l 上一点A 画l 的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;(图1) (图2) (图3a ) (图3b )经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直. 练习一:1.如图所示,OA ⊥OB ,OC 是一条射线,若∠AOC=120°, 求∠BOC 度数2.如图所示,直线AB ⊥CD 于点O ,直线EF 经过点O , 若∠1=26°,求∠2的度数.3.如图所示,直线AB ,CD 相交于点O ,P 是CD 上一点. (1)过点P 画AB 的垂线PE ,垂足为E .(2)过点P 画CD 的垂线,与AB 相交于F 点. (3)比较线段PE ,PF ,PO 三者的大小关系探索二:仔细观察测量比较上题中点P 分别到直线AB 上三点E 、F 、O 的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是 ,垂线段是一条 ,点到直线的距离是一个数量,不能说“垂线段”是距离. 练习二:1.在下列语句中,正确的是( ).A .在同一平面内,一条直线只有一条垂线B .在同一平面内,过直线上一点的直线只有一条C .在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D .在同一平面内,垂线段就是点到直线的距离 2.如图所示,AC ⊥BC ,CD ⊥AB 于D ,AC=5cm ,BC=12cm ,AB=13cm ,则点B 到AC 的距离是________,点A 到BC 的距离是_______,点C 到AB•的距离是_______,•AC>CD•的依据是_________. 三、当堂反馈1.如图所示AB ,CD 相交于点O ,EO ⊥AB 于O ,FO ⊥CD 于O ,∠EOD 与∠FOB 的大小关系是( )A .∠EOD 比∠FOB 大 B .∠EOD 比∠FOB 小C .∠EOD 与∠FOB 相等 D .∠EOD 与∠FOB 大小关系不确定 2.如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,C ,D 是分别位于公路AB 两侧的加油站.设汽车行驶到公路AB 上点M 的位置时,距离加油站C 最近;行驶到点N 的位置时,距离加油站D 最近,请在图中的公路上分别画出点M ,N 的位置并说明理由.3.如图,AOB 为直线,∠AOD :∠DOB=3:1,OD 平分∠COB . (1)求∠AOC 的度数;(2)判断AB 与OC 的位置关系.四、学习反思本节课你有哪些收获?O D CBAl A lBlB第三课时:5.1.3 同位角、内错角、同旁内角【学习目标】1使学生理解三线八角的意义,并能从复杂图形中识别它们;2通过三线八角的特点的分析,培养学生抽象概括问题的能力.【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角. 【学习难点】能准确在各种变式的图形中找出这三类角. 【学习过程】 一、学前准备在前面我们学习了两条直线相交于一点,得到四个角,即“两线四角”,这四个角里面,有 对对顶角,有 对邻补角.如果是一条直线分别与两条直线相交,结果又会怎样呢? 二、探索思考探索:如图,直线c 分别与直线a 、b 相交(也可以说两条直线a 、b 被第三条直线c 所截),得到8个角,通常称为“三线八角”,那么这8个角之间有哪些关系呢?1.如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角.(图1) (图2) (图3)2.如图2所示,∠1与∠2是___ _角,是直线______和直线_______•被直线_______所截而形成的,∠1与∠3是___ __角,是直线________和直线______•被直线________所截而形成的.3.如图3所示,∠B 同旁内角有哪些?三、当堂反馈1.如图,(1)直线AD 、BC 被直线AC 所截,找出图中由AD 、BC 被直线AC 所截而成的内错角是_________和__________(2)∠3和∠4是直线_________和_________被_________所截,构成内错角.2.已知∠1与∠2是同旁内角,且∠1=60°,则∠2为( )A. 60°B. 120°C. 60°或120°D.无法确定 3.如图,判断正误①∠1和∠4是同位角;( ) ②∠1和∠5是同位角;( ) ③∠2和∠7是内错角;( ) ④∠1和∠4是同旁内角;( )4.如图,直线DE 、BC 被直线AB 所截. ⑴∠1与∠2、∠1与∠3、∠1与∠4各是什么角?⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?四、学习反思本节课你有哪些收获?ab c 341E 2B C D A 341E 2BC D A。

5.1.1相交线导学案

5.1.1相交线导学案

相交线学案【学习课型】新授课【学习目标】1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

3、通过辨别对顶角与邻补角,培养识图的能力。

【重难点预测】重点:邻补角、对顶角的概念及性质;难点:在较复杂的图形中准确辨认对顶角和邻补角。

一、课前预习案1、知识回顾:①两个角的和是 ,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。

②同角或 的补角 。

2、下列各图中∠1、∠2是邻补角吗?为什么?(1) (2) (3)3、下列各图中∠1、∠2是对顶角吗?为什么?(1) (2) (3)二、课内探究案探究点一:邻补角、对顶角①两条直线相交所构成的四个角中,邻补角有 对。

对顶角有 对。

②对顶角形成的前提条件....是 。

问题1:如图:(1)∠1的对顶角是( )A 、∠BOCB 、∠BOE 和∠AOFC 、∠AOED 、∠AOD(2)∠1的邻补角是( )A 、∠AOFB 、∠BOE 和∠AOFC 、∠BOCD 、∠BOC 和∠AOF探究点二:邻补角、对顶角的性质1、邻补角的性质:邻补角 。

如图:A OB 1 D CF E 1 2∵∠1与∠2互为邻补角∴∠1+∠2=2、对顶角的性质:对顶角的性质是由邻补角的性质推导出来的,想一想,完成推理过程。

如图:证明:∵∠1+∠2 = ,∠2+∠3 = (邻补角定义)∴∠1=1800-,∠3=1800- (等式性质)∴∠1=∠3 (等量代换) 由上面推理可知,对顶角。

问题2:如图,已知直线a、b相交。

∠1=40°,求∠2、∠3、∠4的度数。

解:∵∠1+∠2=1800( ) ∴∠2=1800 -∠1=∴∠3=∠1= ,∠4=∠2= ( )三、课堂小结本节课你有哪些收获?你还有哪些疑惑?预习时的疑难解决了吗?四、当堂检测(1)如下图,直线AB、CD交于点O,OE为射线,那么( )A)∠AOC和∠BOE是对顶角B)∠COE和∠AOD是对顶角;C)∠BOC和∠AOD是对顶角;D)∠AOE和∠DOE是对顶角。

新人教版七年数学下导学案(5.1.1 相交线)

新人教版七年数学下导学案(5.1.1 相交线)

班 姓名 成绩: 优 良 差【学习目标】了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、学前准备各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.二、探索思考探索一:完成课本P 2页的探究,填在课本上.你能归纳出“邻补角”的定义吗? . “对顶角”的定义呢? . 练习一:1.如图1所示,直线AB 和CD 相交于点O ,OE 是一条射线.(1)写出∠AOC 的邻补角:____ _ ___ __;(2)写出∠COE 的邻补角: __;(3)写出∠BOC 的邻补角:____ _ ___ __;(4)写出∠BOD 的对顶角:____ _. 2.如图所示,∠1与∠2是对顶角的是( )探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”: . 练习二:1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.三、当堂反馈 1.如图所示,∠1和∠2是对顶角的图形有( ) 图1b a 4321第1题 F E O D C A 第2题 F E O D C B A 第3题A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

5.1相交线(导学案)

5.1相交线(导学案)

5.1.1 相交线(导学案)【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

3.通过辨别对顶角与邻补角,培养识图的能力。

【学习重点】邻补角和对顶角的概念及对顶角相等的性质。

【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。

【自主学习】1.阅读课本P1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯?,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时,随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征?【合作探究】1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?例如:(1)∠AOC和∠BOC有一条公共边.....OC,它们的另一边互为,称这两个角互为。

用量角器量一量这两个角的度数,会发现它们的数量关系是(2)∠AOC和∠BOD (有或没有)公共边,但∠AOC的两边分别是∠BOD 两边的,称这两个角互为。

用量角器量一量这两个角的度数,会发现它们的数量关系是。

3.用语言概括邻补角、对顶角概念._O_D _C_B _A的两个角叫邻补角。

的两个角叫对顶角。

4.探究对顶角性质.在图1中,∠AOC 的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等...... 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 【巩固运用】1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.2.练习:完成课本P 3练习. 【反思总结】本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决) 【达标测评】1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

5.1.1相交线的导学案

5.1.1相交线的导学案

4321CDAB5.1.1相交线的导学案学习目标:1.了解邻补角、对顶角的概念2.能找出图形中的一个角的邻补角和对顶角,3.理解对顶角的性质,并能运用它解决问题。

重点:邻补角、对顶角的概念。

难点:理解对顶角相等的性质。

一、 复习旧知1.图中各角,哪些互为余角?2.图中各角,哪些互为补角? 二、新课讲解 1.观察思考请同学们观察张开的剪刀,画出相应的几何图形.如果两条直线只有 ,就说这两条直线相交. 该公共点叫做两直线的 .直线AB 、CD 相交于点O. 2.邻补角的概念问题1: ∠1 与∠2、∠2与∠3 、∠3与∠4、∠4与∠1有什么共同特点?A 什么是邻补角?3.对顶角的概念问题2: ∠1 与∠3、∠2与∠4 有什么共同特点?什么是对顶角?6.针对练习初步练习1. 下列各图中∠1、∠2是对顶角吗?为什么?初步练习2. 下列各图中∠1、∠2是邻补角吗?为什么?7.对顶角的性质思考:紧握这把剪刀的把手去剪纸,在此过程中,剪刀的张角发生了改变,而在改变过程中∠1 与∠3, ∠2与∠4在数量上又有什么关系呢?大胆猜测: 怎样验证猜想呢? 几何推导证明:结论: 应用格式:三、例题讲解例1 如图,直线a,b 相交,∠1=35°,求 ∠2,∠3,∠4的度数.针对练习12121212看图,回答下列问题:1.若∠2+∠4= 290º ,则∠1,∠2,∠3,∠4的度数分别为2.若∠4是∠1的 4倍,则∠1,∠2,∠3,∠4的度数分别为3.若∠ 1: ∠2 = 2: 8,则∠1,∠2,∠3,∠4的度数分别为4.四、课堂小结五、作业布置见精准作业六、板书设计。

人教版七年级下数学:5.1《相交线》导学案

人教版七年级下数学:5.1《相交线》导学案

《相交线》导学案教学目标1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.重点、难点重点:邻补角、对顶角的概念,对顶角性质与应用.难点:理解对顶角相等的性质的探索.教学过程一、读一读,看一看教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片,阅读其中的文字.师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.二、观察剪刀剪布的过程,引入两条相交直线所成的角教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?学生观察、思想、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.三、认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?(1)O DCB A学生思考并在小组内交流,全班交流.当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:∠AOC 和∠BOC 有一条公共边OC,它们的另一边互为反向延长线.∠AOC 和∠BOD 有公共的顶点O,而是∠AOC 的两边分别是∠BOD 两边的反向延长线.2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.3.学生根据观察和度量完成下表:教师再提问:如果改变∠AOC 的大小, 会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念. (1)师生共同定义邻补角、对顶角.有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角. (2)初步应用.练习1:下列说法,你同意吗?如果错误,如何订正.①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.②邻补角可看成是平角被过它顶点的一条射线分成的两个角. ③邻补角是互补的两个角,互补的两个角也是邻补角?5.对顶角性质.(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.(2)教师把说理过程,规范地板书:在图1中,∠AOC 的邻补角是∠BOC 和∠AOD,所以∠AOC 与∠BOC 互补,∠AOC 与∠AOD 互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.教师板书对顶角性质:对顶角相等.强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象. 四、巩固运用1.例:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.ba4321教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程. 2.练习:(1)课本P5练习.(2)补充:判断下列图中是否存在对顶角.21212121五、作业1.课本P9.1,2,P10.7,8.2.选用课时作业设计. 课时作业设计 一、判断题:1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( ) 二、填空题:1.如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.F E OD CBA FEOD C B A(1) (2)2.如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________. 三、解答题:1.如图,直线AB 、CD 相交于点O.(1)若∠AOC+∠BOD=100°,求各角的度数.(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数.O D CBA2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?。

5.1.1相交线1第1课时导学案人教版七年级数学下册

5.1.1相交线1第1课时导学案人教版七年级数学下册

5.1.1 相交线一、学习目标1、经历观察、推理、交流等过程,了解邻补角和对顶角的概念,2、掌握邻补角、对顶角的性质;二、问题导学(阅读教科书第 23 页,请解答下列问题)一、复习回顾 1.有公共点的两条直线叫做 ,公共点称为 . 2.如果两个角的和为180°,则称这两个角 ,即若∠1+∠2=180°,则∠1与∠2 ,反之亦然. 3.同角(或等角)的补角 ,即若∠1+∠2=180°,∠1+∠3=180°,则∠1 ∠2.二、新知探究 探究点1:邻补角与对顶角的概念归纳:有一条公共边,而且另一边互为反向延长线的两个角叫做互为________。

如图中的______和_______如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫做互为_________。

如图中的_________和__________例1 下列各图中,∠1与∠2是对顶角的是( )探究点2:邻补角与对顶角的性质问题1:互为邻补角的两个角和是多少度?问题2:你能否利用问题1中的结论推导出互为对顶角的两个角之间具有相等关系?已知:直线AB 与CD 相交于O 点(如图),试说明:∠1=∠3, ∠2=∠4.解:要点归纳:(2)邻补角、对顶角的性质:互为邻补角的两个角 ,互为对顶角的两个角 .三、合作探究例2 (教材P3例1变式)如图,直线a ,b 相交于点O .(1)若∠1+∠3= 60º ,则∠1,∠2,∠3,∠4各个角的度数分别为__________________;(2)若∠2是∠1的 3倍,则∠1,∠2,∠3,∠4各个角的度数分别为________________________;(3)若∠1:∠2 = 2: 7 ,则∠1,∠2,∠3,∠4各个角的度数分别为__________________.四、能力提升例3 如图,直线AB 、CD ,EF 相交于点O ,∠1=40°,∠BOC =110°,求∠2的度数.五、课堂小结六、当堂检测1.下列各图中, ∠1 ,∠2是对顶角吗?2.下列各图中, ∠1 ,∠2是邻补角吗?3.找出图中∠AOE 的邻补角及对顶角,若没有请画出.4.如图,直线AB ,CD ,EF 相交于点O .(1)写出∠AOC, ∠BOE 的邻补角;(2)写出∠DOA, ∠EOC 的对顶角;(3)如果∠AOC =50°,求∠BOD ,∠COB 的度数.5.如图,直线AB,CD 相交于点O , ∠EOC=70°,OA 平分∠EOC ,求∠BOD 的度数. 两直线相交 所形成的角 分类 位置关系 大小关系∠1和∠2 ,∠2和∠___ ∠__和∠__,∠__和∠__ ∠1和∠3, ∠__和∠__1A CB D O23 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.1 相交线(导学案)
【学习目标】
1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

3.通过辨别对顶角与邻补角,培养识图的能力。

【学习重点】邻补角和对顶角的概念及对顶角相等的性质。

【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。

【自主学习】
1.阅读课本P
1
图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?
培养哪些良好习
惯?
,
2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时,
随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变
化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀
刃之间的角又发生什么了变化? .
3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交
直线所成的角的问题, 阅读课本P
2
内容,探讨两条相交线所成的角有哪些?各有
什么特征?
【合作探究】
1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?
各对角的位置关系如何?根据不同的位置怎么将它们分类?
例如:
(1)∠AOC和∠BOC有一条公共边
.....OC,它们的另一边互为,称这两个角互为。

用量角器量一量这两个角的度数,会发现它们的数量关系是
(2)∠AOC和∠BOD (有或没有)公共边,但∠AOC的两边分别是∠BOD 两边的,称这两个角互为。

用量角器量一量这两个角的度数,会发现它们的数量关系是。

_O
_D _C_B _A
3.用语言概括邻补角、对顶角概念.
的两个角叫邻补角。

的两个角叫对顶角。

4.探究对顶角性质.
在图1中,∠AOC 的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等.....
. 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?
【巩固运用】
1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.
提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.
2.练习:完成课本P 3练习.
【反思总结】
本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决)
【达标测评】
1.如图所示,∠1和∠2是对顶角的图形有( ) b
a 4321
1
2
121221
A.1个
B.2个
C.3个
D.4个
2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

O F E
D C B A
3.如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB 的度数.
O E
D C B A
4.如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数
c
b a 34
1
2
5.若4条不同的直线相交于一点,图中共有几对对顶角?若n 条不同的直线相交于一点呢?。

相关文档
最新文档