双极型晶体管参数符号及其意义
两种极性的双极型三极管及其符号
中间部分称为基区,与之相连接的电极称为基极,用B或b表示(Base);一侧称为发射区,与之相连接的电极称为发射极,用E或e表示(Emitter);另一侧称为集电区,与之相连电极称为集电极,用C或c表示(Collector)。
E-B间的PN结称为发射结(Je);C-B间的PN结称为集电结(Jc)。
图2-1-1 两种极性的双极型三极管及其符号双极型三极管的符号在图2-1-1的下方给出,发射极的箭头代表发射极电流的实际方向。
从外表上看,NPN型三极管的两个N区(或PNP型三极管的两个P 区)是对称的,发射极和集电极可以互换。
实际上在制造时,由于发射区的掺杂浓度大,集电区掺杂浓度低,且集电结面积大,基区掺杂浓度低并要制造得很薄,其厚度一般在几个微米至几十个微米,所以发射极和集电极是不能互2.1.2 双极型半导体三极管的电流分配关系双极型半导体三极管在工作时一定要加上适当的直流偏置电压。
若在放大工作状态:发射结加正向电压,集电结加反向电压。
现以NPN型三极管的放大状态为例,来说明三极管内部的电流关系,见图2-1-2。
由图2-1-2可知对于NPN型三极管,集电极电流和基极电流是流入三极管,发射极电流是流出三极管,流进的电流等于流出的电流。
由以上分析可知,发射区掺杂浓度高,基区掺杂浓度低且很薄,是保证三极管能够实现电流放大的关键。
若两个PN结对接,相当基区很厚,将没有电流放大作用,基区从厚变薄,两个PN结演变为三极管,这是量变引起质变的又一个实例。
动画02-1在工艺上要求发射区搀杂浓度高,基区掺杂浓度低且要制作得很薄,集电区掺杂浓度低。
当发射结加正偏时,从发射区将有大量的电子向基区扩散,形成电子的扩散电流I EN,而从基区向发射区扩散的空穴电流I EP却很小,见图2-1-2,图中箭头为载流子的运动方向。
于是有I E= I EN+I EP 且有I EN>>I EP图2-1-2 双极型三极管的电流传输关系因基区掺杂浓度低,所以发射区扩散过来的载流子电子被复合的很少,只形成很小的基极电流I BN。
双极型晶体管参数符号及其意义
RL---负载电阻(外电路参数)
RG---信号源内阻
Rth---热阻
Ta---环境温度
Tc---管壳温度
Ts---结温
Tjm---最大允许结温
Tstg---贮存温度
td----延迟时间
tr---上升时间
ts---存贮时间
tf---下降时间
IB---基极直流电流或交流电流的平均值
Ic---集电极直流电流或交流电流的平均值
IE---发射极直流电流或交流电流的平均值
Icbo---基极接地,发射极对地开路,在规定的VCB反向电压条件下的集电极与基极之间的反向截止电流
Iceo---发射极接地,基极对地开路,在规定的反向电压VCE条件下,集电极与发射极之间的反向截止电流
IRM---反向峰值电流
IRR---晶闸管反向重复平均电流
IDR---晶闸管断态平均重复电流
IRRM---反向重复峰值电流
IRSM---反向不重复峰值电压电流(反向测试电流)。测试反向电参数时,给定的反向电流
Izk---稳压管膝点电流
VAGC---正向自动增益控制电压
Vn(p-p)---输入端等效噪声电压峰值
V n---噪声电压
Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容
Cjv---偏压结电容
Co---零偏压电容
Cjo---零偏压结电容
Cjo/Cjn---结电容变化
Cs---管壳电容或封装电容
Ct---总电容
CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比
双极型晶体管极限参数及举例
【例1】晶体管工作状态及放大状态下管型、电极的判别
一. 工作状态判别: [举例] 判别图示中晶体管的工作状态
[举例] 判别图示中晶体管的管型、电极并确定β值。
4.9mA
c
b
0.1mA
-5mA e
(a) NPN型
β=4.9/0.1=49
e 2mA
c - 3mA
b
3.5mA
b
-0.02mA
c 1.98mA
e
0.05mA
(b) PNP型
(c) NPN型
β=1.98/0.02=99 β=3/0.05=60
2.根据放大管的电极电位判别 规律:e 结电压为0.7V时为硅管,0.3V时为锗管; c 极电位最高、e 极电位最低,则为NPN管; c 极电位最低、e 极电位最高,则为PNP管;
iC I
CM
安全 工作
区
0
PCM =IC·UCE
P CM
最大电流ICM
击穿电压U(BR)CEO
U u (BR)CEO
CE
为了确保管子有效安全工作,使用时不应超 出这一工作区。
五. 温度对晶体管参数的影响
温度对晶体管的uBE、ICBO和β有不容忽视的影响。其 中,uBE 、ICBO随温度变化的规律与PN结相同,即 ▲ 温度每升高1℃, uBE减小(2 ~ 2.5)mV; ▲ 温度每升高10℃, ICBO增大一倍。
8V
3V
第二章双极型晶体三极管(BJT)
第二章双极型晶体三极管(BJT)
第二章双极型晶体三极管(BJT)(一)BJT结构与电路符号(二)晶体管的放大作用发射结正偏,集电结反偏,称为BJ
T的放大偏置。
即满足下列电压关系:NPN管:VCB﹥0,VBE﹥0或VC>VB>VEPNP管:V
CB﹤0,VBE﹤0或VC<VB<VE(三)放大偏置时的电流传输关系2iC与iB的关系
定义:共发射极直流电流放大系数:(四)放大偏置时BJT偏压与电流的关系1发射结正向电压VBE对各极电流的控制作用BJ T的正向控制作用2集电结反向电压VCB对各极电流的影响基区宽度调制效应(五)BJT的截止与饱和工作状态1截止状态:2饱和状态:注意:晶体管特性曲线只能用于直流/低频。
§2-2BJT静态特性曲线BJT静态特性曲线:是在伏安平面上作出的
反映晶体管各极直流电流电压关系的曲线。
BJT静态特性曲线用途:一晶体三极管的组态将晶体三极管视为双端口
器件,分析其三种典型接法,称为组态。
共基极接法(CB)共射接法(CE)共接接法(CC)
二共射输入特性曲线共射输入特性曲线是以输出电压VCE为参变量,输入口基极电流iB随发射结电压vBE变化的曲线:共射输入特性曲线的特点:§2-3BJT主要参数1直流放大系数2交流放大系数
例2-41iE与iC的关系:定义共基极直流电流放大系数:。
半导体技术参数-符号含义(精)
半导体技术参数 -符号含义来源:生利达成时间:2008-10-30一、半导体二极管参数符号及其意义CT---势垒电容Cj---结(极间电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数。
在测试电流下, 稳定电压的相对变化与环境温度的绝对变化之比 CTC---电容温度系数Cvn---标称电容IF---正向直流电流 (正向测试电流。
锗检波二极管在规定的正向电压 VF 下, 通过极间的电流; 硅整流管、硅堆在规定的使用条件下, 在正弦半波中允许连续通过的最大工作电流 (平均值 , 硅开关二极管在额定功率下允许通过的最大正向直流电流; 测稳压二极管正向电参数时给定的电流IF (AV ---正向平均电流IFM (IM ---正向峰值电流(正向最大电流。
在额定功率下,允许通过二极管的最大正向脉冲电流。
发光二极管极限电流。
IH---恒定电流、维持电流。
Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流Io---整流电流。
在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR (AV ---反向平均电流IR (In ---反向直流电流(反向漏电流。
在测反向特性时, 给定的反向电流;硅堆在正弦半波电阻性负载电路中, 加反向电压规定值时, 所通过的电流; 硅开关二极管两端加反向工作电压 VR 时所通过的电流;稳压二极管在反向电压下, 产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。
双发射极晶体管符号
双发射极晶体管符号的定义和原理是什么呢?双发射极晶体管(Bipolar Junction Transistor,简称BJT)是一种由三层半导体材料构成的电子器件。
它具有三个电极:发射极(Emitter)、基极(Base)和集电极(Collector)。
根据发射极的结构,BJT可以分为双NPN型和双PNP型两种。
在双发射极晶体管中,最重要的特性之一就是其符号表示。
符号表示了BJT的结构和工作原理,为电子工程师和技术人员提供了直观的了解和使用这一器件的方式。
BJT的符号可以从构成元件的器件层面进行解读。
典型的双发射极晶体管符号如下所示:E- -/| |\| |B C其中,E代表发射极(Emitter),B代表基极(Base),C代表集电极(Collector),这三个电极在晶体管的工作中起着重要的作用。
BJT的符号表示了电子流动的路径。
发射极上的电子注入到基极,并通过基极和集电极之间的pn结进行流动。
在NPN型的晶体管中,发射极和基极之间的结为PN结,而基极和集电极之间的结为NP结。
在PNP型的晶体管中,这两个结的方向正好相反。
除了符号中的基本元素之外,还有一些额外的标记用于表示晶体管的参数和特性。
箭头可以用来表示NPN或PNP型晶体管的当前流动方向,以及箭头所指的正极和负极。
在双发射极晶体管符号中,箭头通常指向基极,表示电流流从发射极到基极。
双发射极晶体管符号不仅仅是一种简单的图形表示,它还代表了晶体管的基本工作原理。
通过图形化的方式,我们可以更容易地理解BJT的运作机制。
另外,这种标识方式还有助于在电路图中对晶体管进行正确放置,并确保电子元件连接正确。
对于电子工程师和技术人员来说,对双发射极晶体管符号的理解至关重要。
它是他们设计和分析电路时必不可少的工具。
通过了解符号的结构和意义,他们可以更好地理解电路中的各个元素之间的关系,从而更好地进行电路设计和故障排除。
双发射极晶体管符号的理解还可以扩展到更高级的应用和领域。
第二章 双极型晶体三极管(BJT)2[1].3
β
≈ iC iB
(2-23)
(2-24)
(3)α 与 β 之间的关系 )
α α= (2-25) β = 1−α 1+ β
β
(2-26)
2.极间反向电流 ICBO 和 ICEO 极间反向电流 (1)集电结反向饱和电流 ICBO ) ICBO 是BJT在共基极应用时,发射极开路时集电结 在共基极应用时, 在共基极应用时 的反向饱和电流。 的反向饱和电流。 在室温下, 大小约为(1~ 在室温下,锗三极管的 ICBO 大小约为 ~2) µ A 低频管), ),甚至几百 µ A 高频管)到几十 µ A (低频管),甚至几百 µ A (高频管) 大功率低频管)。 )。硅三极管的 要小的多, (大功率低频管)。硅三极管的 ICBO 要小的多,仅 千分之几到十分之几 µ A ,大功率管一般也不超过 数量级。 数量级。
β(f)= βo
f 1+ j fβ
(2-31)
f 式(2-31)中,β o 为直流(或低频)电流放大系数;β 为共射 ) 为直流(或低频)电流放大系数; 表示共射电流放大系数由 β o 下降 电流放大系数的截止频率, 电流放大系数的截止频率, 下降3 1 时所对应的频率。 示出了BJT电流放大系数 示出了 电 dB( 2 倍)时所对应的频率。图2-7示出了 (
在晶体管电路中,由于电源电压往往加在 极和 极之间, 极和e极之间 在晶体管电路中,由于电源电压往往加在c极和 极之间, BVCEO 集电结不会击穿, BVCEO < BVCBO 而且 ,当电源电压小于 时,集电结不会击穿, BVCEO 常常用作为选取晶体管电源的限制。 所以 常常用作为选取晶体管电源的限制。在功率放大电路 将会用到这一参数。 中,将会用到这一参数。 BV 的限制下, I 在极限参数 Pc max、c max 、 CEO 的限制下,BJT的安全工作去 的安全工作去 如图2-8所示 为防止BJT在使用中损坏,必须使它工作在图 所示。 在使用中损坏, 如图 所示。为防止 在使用中损坏 必须使它工作在图28中的安全区,且b、e间的反向电压要小于BVCEO 。 中的安全区, 中的安全区 、 间的反向电压要小于
双极型晶体管————工作原理
三. 晶体管的放大作用
c
IC + △IC
I CN
△ ICN
△ IBN
RC
△U=RC△IC
_
ui
b +
IB+ △ IB
I
BN
15V
RB IE
△IEN
U CC
I
UBB
e
IE + △IE
4.4.2
晶体管伏安特性曲线及参数
晶体管有三个电极,通常用其中两个分别作输入、 输出端,第三个作公共端,这样可以构成输入和输出两
E
Wb
C
基 区
C结
Wb
2. 饱和区
条件: e结正偏,c结正偏(uCE<uBE即临界饱和线的左侧)。 特点: iC不受iB控制,表现为不同iB 的曲线在饱和区汇集。 由于c结正偏,不利于集电 区收集电子,同时造成基区复合 电流增大。因此:
4 3 2 1 0
iC/ m A u CE=u BE
临界饱和线
U BB
e
IE
由于 和 都是反映晶体管基区扩散与复合的比 例关系,只是选取的参考量不同,所以两者之间必有 内在联系。由 、 的定义可得
ICN ICN I EN I BN I EN ICN I EN I EN 1
ICN ICN I BN I EN I BN I CN I BN I BN 1
UCE ≥1
90
60 30 0 0.5 0.7 0.9 UCE > 0
止,iB为反向电流。若反向电 压超过某一值时,e结也会发 生反向击穿。
u BE/V
综上所述,晶体管是一种非线性导电器件,有三个工 作区,对应三种不同的工作状态:
双极结型晶体管基础知识
双极结型晶体管基础知识双极结型晶体管(Bipolar Junction Transistor—BJT)又称为半导体三极管,它是通过一定的工艺将两个PN结结合在一起的器件,有PNP和NPN两种组合结构。
双极结型晶体管,外部引出三个极:集电极,发射极和基极,集电极从集电区引出,发射极从发射区引出,基极从基区引出(基区在中间);BJT有放大作用,主要依靠它的发射极电流能够通过基区传输到达集电区而实现的,为了保证这一传输过程,一方面要满足内部条件,即要求发射区杂质浓度要远大于基区杂质浓度,同时基区厚度要很小,另一方面要满足外部条件,即发射结要正向偏置(加正向电压)、集电结要反偏置;BJT种类很多,按照频率分,有高频管,低频管,按照功率分,有小、中、大功率管,按照半导体材料分,有硅管和锗管等;其构成的放大电路形式有:共发射极、共基极和共集电极放大电路。
BJT与一般的晶体三极管有相似的结构、工作原理。
BJT由一片半导体上的两个pn结组成,可以分为PNP或NPN型两种结构,图1中给出了两种BJT的符号以及其三个输出端子的定义。
图1 NPN型和PNP型双极晶体管的符号为电力半导体器件,BJT大多采用NPN型结构。
BJT的三层两结结构并非由单纯的电路连接形成,而需较复杂的工艺制作过程。
大多数双极型功率晶体管是在重掺杂的N+硅衬底上,用外延生长法在N+上生长一层N-漂移层,然后在漂移层上扩散P基区,接着扩散N+发射区,因此称之为三重扩散。
基极与发射极在一个平面上做成叉指型以减少电流集中和提高器件电流处理能力。
三重扩散台面型NPN型BJT的结构剖面示意图如图2所示。
图中掺杂浓度高的N+区称为BJT的发射区,其作用是向基区注入载流子。
基区是一个厚度为几μm至几十μm之间的P型半导体薄层,它的任务是传送和控制载流子。
集电区则是收集载流子的N型半导体层,常在集电区中设置轻掺杂的N-区以提高器件的耐压能力。
不同类型半导体区的交界处则形成PN结,发射区与基区交界处的PN结称为发射结(J1),集电区与基区交界处的PN 结称为集电结(J2)。
双极型晶体管
iC
iB b c +
输
入 信
uBE
号
-
VBB
e VCC
共发射极放大电路
基极电流iB是由发射结间 负 电压uBE控制的。
载 u i u B E iB iC
在集电极回路中串接一个 负载电阻,就可以在负载 电阻两端得到相应的幅度 较大的变化电压。
第三节
iE e
c iC
-
输
u 入
BE
第四章
晶体管的结构和类型
双
极
晶体管的电流分配关系和放大作用
型
晶
晶体管的特性曲线
体
管
晶体管的主要参数
温度对晶体管参数的影响
第三节
双极型晶体管可简称为晶体管,或半导体三极管, 用BJT(Bipolar Junction Transistor)来表示。
晶体管
PNP型
硅晶体管 锗晶体管
晶体管类型
NPN型
3DG6
0 0.2 0.4 0.6 0.8 uBE(V)
c
特 3. 继续增大uCE,曲线右 点 移的距离很小。
μA
b iB
常用uCE=1V的一条曲线来 RW1 代表uCE>1V的所有输入特
性曲线
u +V BE -
VBB
e
PNP型锗晶体管和NPN型硅晶体管输入特性 第三节
iB(mA)
0.16 uCE=0V
-6V
iC(mA)
在输出特性的坐标系上画出
60
PCM iCuCE 的曲线,称为
50
集电极最大功率损耗线。
40 30
20
若温度升高会引起PCM值下降
10 0
中国晶体管型号组成部分的符号及其意义
P型.锗材料
W
稳压管
A
高频大功率管
C
N型.硅材料
C
参量管
(fa≥3兆赫,Pc≥1瓦)
D
P型.硅材料
Z
整流管
T
半导体闸流管
L
整流管
(可控整流器)
S
隧道管
Y
体效应器件
N
阻尼管
B
雪崩管
3
三极管ABiblioteka PnP型,锗材料U
光电器件
J
阶跃恢复管
B
NPN型,锗材料
K
开关管
CS
场效应管
C
PnP型,硅材料
X
低频小功率
BT
半导体特殊器件
D
NPN型,硅材料化合物材料
fa<3兆赫,Pc<1瓦
FH
复合管
E
G
高频小功率管
PIN
PIN管
fa≥3兆赫,Pc<1瓦
JG
激光器件
中国晶体管型号组成部分的符号及其意义
第一部分
第二部分
第三部分
第四部分
第五部分
用数字表示器
件的电极数目
用汉语拼音字母表示
器件的材料和极性
用汉语拼音字母表示器件的类型
用数字表示器件序号
用汉语拼音字母表示规格号
符号
意义
符号
意义
符号
意义
符号
意义
P
普通管
D
低频大功率管
2
二极管
A
N型,锗材料
V
微波管
fa<3兆赫,Pc≥1瓦
双极型晶体管
iC
iB b c +
输
入 信
uBE
号
-
VBB
e VCC
共发射极放大电路
基极电流iB是由发射结间 负 电压uBE控制的。
载 u i u B E iB iC
在集电极回路中串接一个 负载电阻,就可以在负载 电阻两端得到相应的幅度 较大的变化电压。
第三节
iE e
c iC
-输u 入 NhomakorabeaBE
0 0.2 0.4 0.6 0.8 uBE(V)
c
特 3. 继续增大uCE,曲线右 点 移的距离很小。
μA
b iB
常用uCE=1V的一条曲线来 RW1 代表uCE>1V的所有输入特
性曲线
u +V BE -
VBB
e
PNP型锗晶体管和NPN型硅晶体管输入特性 第三节
iB(mA)
0.16 uCE=0V
-6V
第三节
晶
电流放大系数
体
管
的
极间反向电流
主
要
参
极限参数
数
频率参数
(一)电流放大系数
1.共射直流电流放大系数
第三节
2.共射交流短路电流放大系数β
3.共基直流电流放大系数
和共基交流放大系数
1.共射直流电流放大系数
第三节
表示静态(无输入信号)时的电流放大系数。即集电极
电压UCE一定时,集电极电流和基极电流之间的关系。
+ V
uBE
-
V
+ -
--
RW2
VCC
iC(mA)
0.12 20℃
12
0.10
半导体器件符号及参数意义
一、三极管参数符号及其意义VCEO,基极开路,集电极-发射极反向击穿电压。
VCBO,发射极开路,集电极-基极反向击穿电压。
VEBO,J集电极开路,发射结反向击穿电压。
VDSO, 漏源击穿电压。
ICM,集电极最大允许电流。
IDSM,最大漏源电流。
PCM,集电极最大耗散功率。
PDM,漏极最大耗散功率。
IC,集电极电流。
ID,漏极电流。
hFE,共发射极静态放大倍数。
gm,低频跨导,场效应管栅极电压对漏极电流的控制能力。
fT,特征频率。
td,延迟时间。
tf,下降时间。
二、半导体二极管参数符号及其意义CT---势垒电容Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数。
在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容IF---正向直流电流(正向测试电流)。
锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流IF(AV)---正向平均电流IFM(IM)---正向峰值电流(正向最大电流)。
在额定功率下,允许通过二极管的最大正向脉冲电流。
发光二极管极限电流。
IH---恒定电流、维持电流。
Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流)Io---整流电流。
在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR(AV)---反向平均电流IR(In)---反向直流电流(反向漏电流)。
第三讲双极型晶体管
iB UCE=0V 10 1
uBE
对于一定的uBE ,当uCE增大到一定值后,集电结的电场已足够强,可以将发射区注入到基 区的绝大部分非平衡少子收集到集电区,因此即使再增大uCE , iC也不可能明显增大了。
1 一 般 :为 几 十 到 几 百
(五)BJT的结偏置电压与各极电流的关系
1、发射结正偏电压uBE对各极电流的作用——正向控制作用。 发射极电流实际上是正偏发射结的正向电流:
iE ISeuBE/UT;
u i BE
两者是指数关系。
E
iC iE;
iB
iE
1
uBE iC、 iB
uCB
iB
发射结
发射 区
集电结 基区
集电 区
E
B
C
uCB
iE
I euBE/UT S
uCB通过厄利效应对BJT电流的影响远不如uBE对电流的正向控制作用大,但它的存在使BJT的电流受控关系 复杂化,使之成为所谓的“双向受控元件”,由此带来分析的复杂化,并有可导致放大器因“内反馈”而
性能变坏。
(六)BJT的截止和饱和工作状态 c
与单个PN结的反向饱和电流一样。 IB = -ICBO, IC = ICBO ICBO的值很小,硅管小于1µA,锗管约10µA,受温度影响很 大。
(2)集电极反向穿透电流ICEO : 此电流从集电区穿越基区流至发射区,所以叫穿透电流。 ICEO= (1+)ICBO ( P30 ) ICBO和ICEO都是衡量BJT温度稳定性的重要参数,因ICEO大, 容易测量,所以常把ICEO作为判断管子质量的重要依据。
1[1].3双极型晶体管
iC f (uCE ) iB 常数
输出特性可以划分为三个区域,对应于三种 工作状态。
二、共发射极输出特性曲线
IC(mA ) 4
此区域满足 IC=IB称为 3 线性区(放 大区)。 2 1 3
6 9
当UCE大于一 定的数值时, IC只与IB有关, 100A IC=IB。
80A
60A
40A 20A IB=0 12 UCE(V)
例: =50, USC =12V,
RB =70k, RC =6k 当USB = -2V,2V,5V时,
IB
IC
C
B UBE E UCE
RC
晶体管的静态工作点Q位
于哪个区?
RB
USB
USC
USB =5V时: U SB U BE 5 0.7 IB 0.061mA RB 70 I B 50 0.061mA 3.05m I cmax
I C I B (1 ) I CBO I B I CEO I E (1 ) I B (1 ) I CBO (1 ) I B I CEO I B I E IC
式中:
I CEO (1 ) I CBO
称为穿透电流。因ICBO很小,在忽略其影响时,则有
(2) uCE变化对IC的影响很小。在特性曲线上表现 为,iB 一定而uCE 增大时,曲线略有上翘(iC 略有 增大)。这是因为uCE 增大,c结反向电压增大, 使c结展宽,所以有效基区宽度变窄,这样基区 中电子与空穴复合的机会减少,即iB要减小。而 要保持iB 不变,所以iC 将略有增大。这种现象称 为基区宽度调制效应,或简称基调效应。从另一 方面看,由于基调效应很微弱, uCE在很大范围 内变化时IC基本不变。因此,当IB 一定时,集电 极电流具有恒流特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双极型晶体管参数符号及其意义Cc---集电极电容Ccb---集电极与基极间电容Cce---发射极接地输出电容Ci---输入电容Cib---共基极输入电容Cie---共发射极输入电容Cies---共发射极短路输入电容Cieo---共发射极开路输入电容Cn---中和电容(外电路参数)Co---输出电容Cob---共基极输出电容。
在基极电路中,集电极与基极间输出电容Coe---共发射极输出电容Coeo---共发射极开路输出电容Cre---共发射极反馈电容Cic---集电结势垒电容CL---负载电容(外电路参数)Cp---并联电容(外电路参数)BVcbo---发射极开路,集电极与基极间击穿电压BVceo---基极开路,CE结击穿电压BVebo--- 集电极开路EB结击穿电压BVces---基极与发射极短路CE结击穿电压BV cer---基极与发射极串接一电阻,CE结击穿电压D---占空比fT---特征频率fmax---最高振荡频率。
当三极管功率增益等于1时的工作频率hFE---共发射极静态电流放大系数hIE---共发射极静态输入阻抗hOE---共发射极静态输出电导h RE---共发射极静态电压反馈系数hie---共发射极小信号短路输入阻抗hre---共发射极小信号开路电压反馈系数hfe---共发射极小信号短路电压放大系数hoe---共发射极小信号开路输出导纳IB---基极直流电流或交流电流的平均值Ic---集电极直流电流或交流电流的平均值IE---发射极直流电流或交流电流的平均值Icbo---基极接地,发射极对地开路,在规定的VCB反向电压条件下的集电极与基极之间的反向截止电流Iceo---发射极接地,基极对地开路,在规定的反向电压VCE条件下,集电极与发射极之间的反向截止电流Iebo---基极接地,集电极对地开路,在规定的反向电压VEB条件下,发射极与基极之间的反向截止电流Icer---基极与发射极间串联电阻R,集电极与发射极间的电压VCE为规定值时,集电极与发射极之间的反向截止电流Ices---发射极接地,基极对地短路,在规定的反向电压VCE条件下,集电极与发射极之间的反向截止电流Icex---发射极接地,基极与发射极间加指定偏压,在规定的反向偏压VCE下,集电极与发射极之间的反向截止电流ICM---集电极最大允许电流或交流电流的最大平均值。
IBM---在集电极允许耗散功率的范围内,能连续地通过基极的直流电流的最大值,或交流电流的最大平均值ICMP---集电极最大允许脉冲电流ISB---二次击穿电流IAGC---正向自动控制电流Pc---集电极耗散功率PCM---集电极最大允许耗散功率Pi---输入功率Po---输出功率Posc---振荡功率Pn---噪声功率Ptot---总耗散功率ESB---二次击穿能量rbb'---基区扩展电阻(基区本征电阻)rbb'Cc---基极-集电极时间常数,即基极扩展电阻与集电结电容量的乘积rie---发射极接地,交流输出短路时的输入电阻roe---发射极接地,在规定VCE、Ic或IE、频率条件下测定的交流输入短路时的输出电阻RE---外接发射极电阻(外电路参数)RB---外接基极电阻(外电路参数)Rc ---外接集电极电阻(外电路参数)RBE---外接基极-发射极间电阻(外电路参数)RL---负载电阻(外电路参数)RG---信号源内阻Rth---热阻Ta---环境温度Tc---管壳温度Ts---结温Tjm---最大允许结温Tstg---贮存温度td----延迟时间tr---上升时间ts---存贮时间tf---下降时间ton---开通时间toff---关断时间VCB---集电极-基极(直流)电压VCE---集电极-发射极(直流)电压VBE---基极发射极(直流)电压VCBO---基极接地,发射极对地开路,集电极与基极之间在指定条件下的最高耐压VEBO---基极接地,集电极对地开路,发射极与基极之间在指定条件下的最高耐压VCEO---发射极接地,基极对地开路,集电极与发射极之间在指定条件下的最高耐压VCER---发射极接地,基极与发射极间串接电阻R,集电极与发射极间在指定条件下的最高耐压VCES---发射极接地,基极对地短路,集电极与发射极之间在指定条件下的最高耐压VCEX---发射极接地,基极与发射极之间加规定的偏压,集电极与发射极之间在规定条件下的最高耐压Vp---穿通电压。
VSB---二次击穿电压VBB---基极(直流)电源电压(外电路参数)Vcc---集电极(直流)电源电压(外电路参数)VEE---发射极(直流)电源电压(外电路参数)VCE(sat)---发射极接地,规定Ic、IB条件下的集电极-发射极间饱和压降VBE(sat)---发射极接地,规定Ic、IB条件下,基极-发射极饱和压降(前向压降)VAGC---正向自动增益控制电压Vn(p-p)---输入端等效噪声电压峰值V n---噪声电压Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数。
在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容IF---正向直流电流(正向测试电流)。
锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流IF(AV)---正向平均电流IFM(IM)---正向峰值电流(正向最大电流)。
在额定功率下,允许通过二极管的最大正向脉冲电流。
发光二极管极限电流。
IH---恒定电流、维持电流。
Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流)Io---整流电流。
在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR(AV)---反向平均电流IR(In)---反向直流电流(反向漏电流)。
在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。
IRM---反向峰值电流IRR---晶闸管反向重复平均电流IDR---晶闸管断态平均重复电流IRRM---反向重复峰值电流IRSM---反向不重复峰值电流(反向浪涌电流)Irp---反向恢复电流Iz---稳定电压电流(反向测试电流)。
测试反向电参数时,给定的反向电流Izk---稳压管膝点电流IOM---最大正向(整流)电流。
在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流IZSM---稳压二极管浪涌电流IZM---最大稳压电流。
在最大耗散功率下稳压二极管允许通过的电流iF---正向总瞬时电流iR---反向总瞬时电流ir---反向恢复电流Iop---工作电流Is---稳流二极管稳定电流f---频率n---电容变化指数;电容比Q---优值(品质因素)δvz---稳压管电压漂移di/dt---通态电流临界上升率dv/dt---通态电压临界上升率PB---承受脉冲烧毁功率PFT(AV)---正向导通平均耗散功率PFTM---正向峰值耗散功率PFT---正向导通总瞬时耗散功率Pd---耗散功率PG---门极平均功率PGM---门极峰值功率PC---控制极平均功率或集电极耗散功率Pi---输入功率PK---最大开关功率PM---额定功率。
硅二极管结温不高于150度所能承受的最大功率PMP---最大漏过脉冲功率PMS---最大承受脉冲功率Po---输出功率PR---反向浪涌功率Ptot---总耗散功率Pomax---最大输出功率Psc---连续输出功率PSM---不重复浪涌功率PZM---最大耗散功率。
在给定使用条件下,稳压二极管允许承受的最大功率RF(r)---正向微分电阻。
在正向导通时,电流随电压指数的增加,呈现明显的非线性特性。
在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻RBB---双基极晶体管的基极间电阻RE---射频电阻RL---负载电阻Rs(rs)----串联电阻Rth----热阻R(th)ja----结到环境的热阻Rz(ru)---动态电阻R(th)jc---结到壳的热阻r δ---衰减电阻r(th)---瞬态电阻Ta---环境温度Tc---壳温td---延迟时间tf---下降时间tfr---正向恢复时间tg---电路换向关断时间tgt---门极控制极开通时间Tj---结温Tjm---最高结温ton---开通时间toff---关断时间tr---上升时间trr---反向恢复时间ts---存储时间tstg---温度补偿二极管的贮成温度a---温度系数λp---发光峰值波长△λ---光谱半宽度η---单结晶体管分压比或效率VB---反向峰值击穿电压Vc---整流输入电压VB2B1---基极间电压VBE10---发射极与第一基极反向电压VEB---饱和压降VFM---最大正向压降(正向峰值电压)VF---正向压降(正向直流电压)△VF---正向压降差VDRM---断态重复峰值电压VGT---门极触发电压VGD---门极不触发电压VGFM---门极正向峰值电压VGRM---门极反向峰值电压VF(AV)---正向平均电压Vo---交流输入电压VOM---最大输出平均电压Vop---工作电压Vn---中心电压Vp---峰点电压VR---反向工作电压(反向直流电压)。