2020学年新教材高中物理 科学思维系列(一)——卫星变轨及飞船对接问题 新人教版必修第二册
第五章 素养提升课五 天体运动中的三类典型问题-2025高三总复习 物理(新高考)
素养提升课五天体运动中的三类典型问题提升点一卫星变轨和飞船对接问题1.卫星发射过程的变轨原理高轨道人造卫星的发射要经过多次变轨方可到达预定轨道,如图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ。
(2)在圆轨道Ⅰ上A 点点火加速,由于速度变大,万有引力不足以提供卫星做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在椭圆轨道Ⅱ上B 点(远地点)再次点火加速进入圆轨道Ⅲ。
(4)变轨过程中三个运行参量的分析速度设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B点时的速率分别为v A 、v B 。
在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B 。
加速度因为在A 点,卫星只受到万有引力的作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同;同理,经过B 点加速度也相同。
周期设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行的周期分别为T 1、T 2、T 3,轨道半径(半长轴)分别为r 1、r 2、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3。
2.飞船对接问题宇宙飞船与空间站的“对接”实际上就是两个做匀速圆周运动的物体的追赶问题,本质仍然是卫星的变轨问题,要使宇宙飞船与空间站成功“对接”,必须让宇宙飞船在稍低轨道上加速,通过速度v 增大→所需向心力增大→做离心运动→轨道半径r 增大→升高轨道的系列变速,从而完成宇宙飞船与空间站的成功对接。
考向1卫星的变轨问题(多选)(2023·湖南长沙长郡中学模拟)2023年2月24日下午,“逐梦寰宇问苍穹——中国载人航天工程三十年成就展”开幕式在中国国家博物馆举行。
载人航天进行宇宙探索过程中,经常要对航天器进行变轨。
某次发射Z 卫星时,先将Z 卫星发射至近地圆轨道Ⅰ,Z 卫星到达轨道Ⅰ的A 点时实施变轨进入椭圆轨道Ⅱ,到达轨道Ⅱ的远地点B 时,再次实施变轨进入轨道半径为4R (R 为地球半径)的圆形轨道Ⅲ绕地球做圆周运动。
2020高考物理卫星变轨与航天器对接问题(解析版)
2020年高考物理备考微专题精准突破专题2.8 卫星变轨与航天器对接问题【专题诠释】人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论.1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.因在A点加速,则v A>v1,因在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同.同理,从轨道Ⅱ和轨道Ⅲ上经过B点时加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律a3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.【高考领航】【2019·江苏高考】1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动。
如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G。
则()A .v 1>v 2,v 1=GM r B .v 1>v 2,v 1> GM r C .v 1<v 2,v 1=GM r D .v 1<v 2,v 1> GM r【答案】 B 【解析】 卫星绕地球运动,由开普勒第二定律知,近地点的速度大于远地点的速度,即v 1>v 2。
高中物理卫星(航天器)的变轨及对接问题
(4)航天器和中心天体质量一定时:在同一轨道运行时航天器机械能不变,在
不同轨道上运行时航天器的机械能不同,轨道半径越大,机械能越大。
(1)卫星变轨原理
2
mv 4
Mm
G 2
L
L
卫星由高轨变低轨:
(卫星的回收)
v4
v3
2
mv
mv12
Mm
使卫星 v 2 减速到 v1 , 使 2
G 2
R
R
R
L
2
mv
C
图6
(3)卫星转移
例 3:(多选)如图为嫦娥三号登月轨迹示意图.图中 M 点为环地球
运行的近地点,N 点为环月球运行的近月点.a 为环月球运行的圆
轨道,b 为环月球运行的椭圆轨道,下列说法中正确的是(
)
A.嫦娥三号在环地球轨道上的运行速度大于 11.2 km/s
B.嫦娥三号在 M 点进入地月转移轨道时应点火加速
卫星(航天器)的变轨及对
接问题
卫星的变轨及变轨前、后各物理量的比较、对接问题
1.卫星发射及变轨过程概述
思考:卫星是如
何从低轨道进入
高轨道的?
(1)卫星变轨原理
V
m
F引 G
A
Mm
r2
v2
F向 m
r
在A点万有引力相同
F引
A点速度—内小外大(在A点看轨迹)
F引<F向
F引>F向
F引 F向
M
总结:
Mm
使卫星减速到 v 0 , 使 0 G 2
R
R
2
mv
Mm
使卫星减速到 v 3,使 3 G 2
L
L
【例1】
考点07卫星的变轨和对接问题(纯答案版)
[考点07] 卫星的变轨和对接问题[典例1]答案 C解析 飞船从轨道Ⅰ变轨到轨道Ⅱ需要加速,所以沿两轨道经过A 点时速度大小不相等,故A 错误;沿轨道Ⅱ从A 运动到对接点B 过程中,万有引力做负功,速度不断减小,故B错误;根据开普勒第三定律,有r 13T 12=(r 1+r 32)3T 22,解得T 2=T 1(r 1+r 32r 1)3,故C 正确;物体绕地球做匀速圆周运动,万有引力提供向心力,有GMm r 2=m 4π2T2r ,解得T =2πr 3GM ,由于飞船沿轨道Ⅰ运行的半径小于天和核心舱沿轨道Ⅲ运行的半径,因此飞船沿轨道Ⅰ运行的周期小于天和核心舱沿轨道Ⅲ运行的周期,故D 错误.[典例2]答案 D解析 当卫星在r 1=r 的圆轨道上运行时,有G m 地m r 2=m v 02r,解得在此圆轨道上运行时通过A 点的速度为v 0=Gm 地r ,所以发动机在A 点对卫星做的功为W 1=12m v 2-12m v 02=12m v 2-Gm 地m 2r ;当卫星在r 2=2r 的圆轨道上运行时,有G m 地m (2r )2=m v 0′22r ,解得在此圆轨道上运行时通过B 点的速度为v 0′=Gm 地2r,而根据卫星在椭圆轨道上时到地心的距离与速度的乘积为定值可知,在椭圆轨道上通过B 点时的速度为v 1=r 1r 2v =12v ,故发动机在B 点对卫星做的功为W 2=12m v 0′2-12m v 12=Gm 地m 4r -18m v 2,所以W 1-W 2=58m v 2-3Gm 地m 4r,D 正确. [典例3]答案 D解析 根据卫星变轨时,由低轨道进入高轨道需要点火加速,反之要减速,所以飞船先到空间站下方的圆周轨道上同方向运动,合适位置加速靠近即可,或者飞船先到空间站轨道上方圆周轨道上同方向运动,合适的位置减速即可,故选D.1.答案 B解析 飞船在轨道上正常运行时,有G Mm r 2=m v 2r.当飞船直接加速时,所需向心力增大,故飞船做离心运动,轨道半径增大,将导致不在同一轨道上,A 错误;飞船若先减速,它的轨道半径将减小,但运行速度增大,故在低轨道上飞船可接近空间站,当飞船运动到合适的位置再加速,回到原轨道,即可追上空间站,B 正确,D 错误;若飞船先加速,它的轨道半径将增大,但运行速度减小,再减速不会追上空间站,C 错误.2.答案 A解析 由高轨道进入低轨道需要点火减速,则由轨道Ⅰ进入轨道Ⅱ需在O 点减速,A 正确;根据开普勒第三定律有r 23T 22=a 33T 32,因轨道Ⅱ的半径大于轨道Ⅲ的半长轴,所以在轨道Ⅱ上运行的周期大于在轨道Ⅲ上运行的周期,B 错误;根据v =GM R可知,在轨道Ⅱ上运行的线速度小于火星的第一宇宙速度,C 错误;根据开普勒第二定律可知,近地点的线速度大于远地点的线速度,所以在轨道Ⅲ上,探测器运行到O 点的线速度小于运行到Q 点的线速度,D 错误.3.答案 BD解析 设卫星在轨道Ⅱ上运行的加速度大小为a 1,由GMm r 2=ma 得a =GM r 2,则a 1=R 2(3R )2a 0=19a 0,故A 错误;设卫星在轨道Ⅱ上运行的线速度大小为v 1,有a 1=v 123R ,解得v 1=13a 0R =3a 0R 3,故B 正确;根据开普勒第三定律有T 22T 12=(3R )3(2R )3,解得T 2T 1=364,故C 错误;设卫星在椭圆轨道远地点B 的线速度大小为v ,根据开普勒第二定律有v 0R =v ×3R ,解得v =13v 0,卫星从轨道Ⅰ变轨到轨道Ⅱ发动机需要做的功为W =12m v 12-12m v 2=ma 0R 6-m v 0218,故D 正确. 4.答案 C解析 根据开普勒第三定律a 3T2=k ,由题图可知飞船“天问一号”椭圆运动的半长轴大于地球公转半径,所以飞船“天问一号”椭圆运动的周期大于地球公转的周期,A 错误;在与火星会合前,飞船“天问一号”到太阳的距离小于火星公转半径,根据万有引力提供向心力有G Mm r2=ma ,可知飞船“天问一号”的向心加速度大于火星公转的向心加速度,B 错误;飞船“天问一号”在无动力飞向火星过程中,引力势能增大,动能减少,机械能守恒,C 正确;飞船“天问一号”要脱离地球的束缚,所以发射速度大于第二宇宙速度,D 错误.5.答案 C解析 轨道Ⅱ的半径大于椭圆轨道Ⅰ的半长轴,根据开普勒第三定律可知,在轨道Ⅱ上运行时的周期大于在轨道Ⅰ上运行时的周期,故A 错误;在轨道Ⅰ上的N 点和轨道Ⅱ上的N 点受到的万有引力相同,所以在两个轨道上经过N 点时的加速度相同,故B 错误;从轨道Ⅱ到月地转移轨道Ⅲ做离心运动,在N 点时嫦娥五号需要经过点火加速才能从轨道Ⅱ进入轨道Ⅲ返回,故C 正确;在月地转移轨道上飞行的过程中,始终在地球的引力范围内,不存在不受万有引力的瞬间,故D 错误.6.答案 AB解析 在轨道Ⅰ上,有:G Mm R 12=m v 12R 1,解得:v 1=GM R 1,则动能为E k1=12m v 12=GMm 2R 1,故A 正确;在轨道Ⅲ上,有:G Mm R 32=m v 32R 3,解得:v 3=GM R 3,则动能为E k3=12m v 32=GMm 2R 3,引力势能为E p =-GMm R 3,则机械能为E =E k3+E p =-GMm 2R 3,故B 正确;由G Mm R Q2=ma 得:a =GM R Q2,两个轨道上Q 点到地心的距离不变,故向心加速度的大小不变,故C 错误;卫星要从Ⅰ轨道变到Ⅱ轨道上,经过P 点时必须点火加速,即卫星在Ⅰ轨道上经过P 点时的速率小于在Ⅱ轨道上经过P 点时的速率,故D 错误.7.答案 AD解析 要使“嫦娥四号”从环月圆形轨道Ⅰ上的P 点实施变轨进入椭圆轨道Ⅱ,需制动减速做近心运动,A 正确;由开普勒第三定律知,沿轨道Ⅱ运行的周期小于沿轨道Ⅰ运行的周期,B 错误;万有引力使物体产生加速度,a =G Mm r 2m =G M r2,沿轨道Ⅱ运行时,在P 点的加速度小于在Q 点的加速度,C 错误;月球对“嫦娥四号”的万有引力指向月球,所以在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变,D 正确.8.答案 B解析 在椭圆轨道近月点变轨成为圆轨道,要实现变轨应给飞行器点火减速,减小所需的向心力,故点火后动能减小,故A 错误;设飞行器在近月轨道Ⅲ绕月球运行一周所需的时间为T 3,则mg 0=m 4π2T 23R ,解得T 3=2πR g 0,根据几何关系可知,轨道Ⅲ的半长轴a =2.5R ,根据开普勒第三定律a 3T2=k 以及飞行器在轨道Ⅲ上的运行周期,可求出飞行器在轨道Ⅲ上的运行周期,故B 正确,D 错误;只有万有引力作用情况下,飞行器在轨道Ⅲ上通过B 点的加速度与在轨道Ⅲ上通过B 点的加速度相等,故C 错误.9.答案 (1)-3mgR 7 (2)3mgR 7解析 (1)卫星在轨道Ⅰ和轨道Ⅲ做圆周运动,应满足: G Mm R 2=m v 12R ,故E k1=12m v 12=GMm 2R =12mgR G Mm (7R )2=m v 227R ,故E k2=12m v 22=mgR 14 合力对卫星所做的总功W =E k2-E k1=mgR (114-12)=-3mgR 7(2)卫星在轨道Ⅰ上的势能E p1=-GMm R=-mgR 卫星在轨道Ⅲ上的势能E p2=-GMm 7R =-mgR 7则燃气对卫星所做的总功W ′=(E p2+ E k2)-(E p1+ E k1)=(-mgR 7+mgR 14)-(-mgR +12mgR )=3mgR 7. 10.答案 D解析 由轨道Ⅲ进入轨道Ⅲ需在O 点减速,由高轨道进入低轨道需要点火减速,故A 错误;根据周期公式T =2πr 3GM可知,轨道半径越大周期越大,所以在轨道Ⅲ的运行周期大于沿轨道Ⅲ的运行周期,故B 错误;根据v =GM r 可知,在轨道Ⅲ运行的线速度小于火星的第一宇宙速度,故C 错误;根据开普勒第二定律可知,在近地点的线速度大于远地点的线速度,所以在轨道Ⅲ上,探测器运行到O 点的线速度小于Q 点的线速度,故D 正确.11.答案 C解析 宇宙飞船天问一号椭圆轨道半长轴大于地球公转半径,由开普勒第三定律可知,宇宙飞船天问一号椭圆轨道的周期大于地球公转的周期,故A 项错误;宇宙飞船天问一号位于火星与地球之间,距太阳的距离小于火星距太阳的距离,由G Mm r 2=ma 解得a =GM r 2,宇宙飞船天问一号的向心加速度大于火星公转的向心加速度,故B 项错误;当天问一号飞向火星过程中,即在椭圆轨道上,万有引力做负功,引力势能增大,动能减小,机械能守恒,故C 项正确;宇宙飞船天问一号从地球上发射,需要脱离地球的吸引,绕太阳运动,即发射速度大于第二宇宙速度,故D 项错误.12.答案 B解析 由于天问一号需要到达火星,因此其最终会脱离地球的引力束缚,其发射速度应大于第二宇宙速度,A 错误;由题图可知,天问一号在“火星停泊段”运行的轨道半长轴大于它在“科学探测段”运行的轨道半长轴,则由开普勒第三定律有r 13r 23=T 12T 22,可知天问一号在“火星停泊段”运行的周期大于它在“科学探测段”运行的周期,B 正确;天问一号从“火星捕获段”进入轨道较低的“火星停泊段”,需要在近火点减速,选项C 错误;假设着陆巡视器从“离轨着陆段”至着陆火星过程机械能守恒,则随着着陆巡视器到火星表面的距离降低(重力势能减小),着陆巡视器的速度会越来越大(动能增大),到火星表面时速度达到最大,与实际情况不符(出于安全考虑,着陆巡视器着陆火星时,速度应很小),故假设不成立,选项D 错误.。
2020(春)物理 必修 第二册 人教版 (新教材)拓展课 突破卫星运行问题中的“三个难点”
拓展课 突破卫星运行问题中的“三个难点”拓展点一 卫星的变轨问题1.卫星变轨问题的处理卫星在运动中的“变轨”有两种情况:离心运动和近心运动。
当万有引力恰好提供卫星做圆周运动所需的向心力,即G Mmr 2=m v 2r 时,卫星做匀速圆周运动;当某时刻速度发生突变,所需的向心力也会发生突变,而突变瞬间万有引力不变。
(1)制动变轨:卫星的速率变小时,使得万有引力大于所需向心力,即G Mmr 2>m v 2r ,卫星做近心运动,轨道半径将变小。
(2)加速变轨:卫星的速率变大时,使得万有引力小于所需向心力,即G Mm r 2<m v 2r ,卫星做离心运动,轨道半径将变大。
2.变轨过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示。
(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B点(远地点)再次点火加速进入圆轨道Ⅲ。
3.变轨过程各物理量分析(1)两个不同轨道的“切点”处线速度v不相等,图中vⅢ>vⅡB,vⅡA>vⅠ。
(2)同一个椭圆轨道上近地点和远地点线速度大小不相等,从远地点到近地点线速度逐渐增大。
(3)两个不同圆轨道上的线速度v不相等,轨道半径越大,v越小,图中vⅠ>vⅢ。
(4)不同轨道上运行周期T不相等。
根据开普勒第三定律r3T2=k知,内侧轨道的周期小于外侧轨道的周期。
图中TⅠ<TⅡ<TⅢ。
(5)两个不同轨道的“切点”处加速度a 相同,图中a Ⅲ=a ⅡB ,a ⅡA =a Ⅰ。
[试题案例][例1] (多选)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3。
轨道1、2相切于Q 点,轨道2、3相切于P 点,如图所示。
当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D.卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度 解析 由G Mmr 2=m v 2r 得v =GM r ,因为r 3>r 1,所以v 3<v 1,A 错误;由G Mmr 2=mω2r 得ω=GMr 3,因为r 3>r 1,所以ω3<ω1,B 正确;卫星在轨道1上经Q 点时的加速度为地球引力产生的,在轨道2上经过Q 点时,也只有地球引力产生加速度,故应相等。
新教材高中物理科学思维系列(一)——卫星变轨及飞船对接问题新人教版必修第二册
新教材高中物理科学思维系列(一)——卫星变轨及飞船对接问题新人教版必修第二册1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示.(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A 点点火加速,速度变大,进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆轨道Ⅲ.2.卫星变轨问题分析方法(1)速度大小的分析方法. ①卫星做匀速圆周运动经过某一点时,其速度满足GMm r 2=mv 2r即v =GM r.以此为依据可分析卫星在两个不同圆轨道上的速度大小. ②卫星做椭圆运动经过近地点时,卫星做离心运动,万有引力小于所需向心力:GMm r 2<mv 2r .以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过近地点时的速度大小(即加速离心).③卫星做椭圆运动经过远地点时,卫星做近心运动,万有引力大于所需向心力:GMm r 2>mv 2r .以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过远地点时的速度大小(即减速近心).④卫星做椭圆运动从近地点到远地点时,根据开普勒第二定律,其速率越来越小.以此为依据可分析卫星在椭圆轨道的近地点和远地点的速度大小.(2)加速度大小的分析方法:无论卫星做圆周运动还是椭圆运动,只受万有引力时,卫星的加速度a n =F m =G M r2.3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.【典例】“嫦娥三号”探测器由“长征三号乙”运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察,“嫦娥三号”的飞行轨道示意图如图所示.假设“嫦娥三号”在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则以下说法正确的是( )A.若已知“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B.“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C.“嫦娥三号”在从远月点P向近月点Q运动的过程中,加速度变大D.“嫦娥三号”在环月段椭圆轨道上P点的速度大于Q点的速度【解析】根据“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量可以求出月球的质量,但是由于不知道月球的半径,故无法求出月球的密度,A错误;“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,轨道半径减小,故应让发动机点火使其减速,B错误;“嫦娥三号”在从远月点P向近月点Q运动的过程中所受万有引力逐渐增大,故加速度变大,C正确;“嫦娥三号”在环月段椭圆轨道上运动时离月球越近速度越大,故P点的速度小于Q 点的速度,D错误.【答案】 C变式训练 1 如图所示是“嫦娥三号”奔月过程中某阶段的运动示意图,“嫦娥三号”沿椭圆轨道Ⅰ运动到近月点P处变轨进入圆轨道Ⅱ,“嫦娥三号”在圆轨道Ⅱ上做圆周运动的轨道半径为r,周期为T,已知引力常量为G,下列说法正确的是( )A.由题中(含图中)信息可求得月球的质量B.由题中(含图中)信息可求得月球的第一宇宙速度C.“嫦娥三号”在P处变轨时必须点火加速D .“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时的加速度大于沿圆轨道Ⅱ运动到P 处时的加速度解析:万有引力提供向心力,G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2,故A 正确;万有引力提供向心力,G Mm ′R 2=m ′v 2R ,得v =GM R,由于不知道月球半径,所以不能求得月球的第一宇宙速度,故B 错误;椭圆轨道和圆轨道是不同的轨道,“嫦娥三号”在P 点不可能自主改变轨道,只有在减速后,才能进入圆轨道,故C 错误;“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时和沿圆轨道Ⅱ运动到P 处时,所受万有引力大小相等,所以加速度大小也相等,故D 错误.答案:A变式训练2(多选)如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆轨道上的Q点),到达远地点Q时再次变轨,进入同步卫星轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步卫星轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是( )A.在P点变轨时需要加速,Q点变轨时要减速B.在P点变轨时需要减速,Q点变轨时要加速C.T1<T2< T3D.v2>v1>v4>v3答案:CD变式训练3 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2 3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法不正确的是( )A.要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q点和椭圆轨道2的远地点P 分别点火加速一次B.由于卫星由圆轨道1送入圆轨道3点火加速两次,则卫星在圆轨道3上正常运行速度大于卫星在圆轨道1上正常运行速度C.卫星在椭圆轨道2上的近地点Q的速度一定大于7.9 km/s,而在远地点P的速度一定小于7.9 km/sD.卫星在椭圆轨道2上经过P点时的加速度一定等于它在圆轨道3上经过P点时的加速度解析:从轨道1变轨到轨道2需在Q 处点火加速,从轨道2变轨到轨道3需要在P 处点火加速,故A 说法正确;根据公式G Mm r 2=m v 2r 解得v =GM r,即轨道半径越大,速度越小,故卫星在轨道3上正常运行的速度小于在轨道1上正常运行的速度,B 说法错误;第一宇宙速度是近地圆轨道环绕速度,即7.9 km/s ,轨道2上卫星在Q 点做离心运动,则速度大于7.9 km /s ,在P 点需要点火加速,则速度小于在轨道3上的运行速度,而轨道3上的运行速度小于第一宇宙速度,C 说法正确;卫星在椭圆轨道2上经过P 点时和在圆轨道3上经过P 点时所受万有引力相同,故加速度相同,D 说法正确.故选B.答案:B变式训练4 (多选)如图所示a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .a 加速可能会追上bC .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 解析:因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,v =GM r ,可知v b =v c <v a ,故A 错误;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故B 正确;当c 加速时,c 受的万有引力F <m v 2c r c,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v 2b r b,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故C 错误;对a 卫星,当它的轨道半径缓慢减小时,由v =GM r 可知,v 逐渐增大,故D 正确.答案:BD。
高中物理精品课件:卫星发射、变轨和对接 双星模型
基础梳理 夯实必备知识
第一宇宙速度 v1= 7.9 km/s,是物体在地面附近绕地球做匀速圆周运 (环绕速度) 动的最大环绕速度,也是人造地球卫星的最小发射速度
第二宇宙速度 (逃逸速度) v2=11.2 km/s,是物体挣脱 地球 引力束缚的最小发射速度
第三宇宙速度 v3=16.7 km/s,是物体挣脱太阳 引力束缚的最小发射速度
v1=ωr1
④
v2=ωr2
⑤
由③④⑤式得v1+v2=ω(r1+r2)=ωl,速率之和可以估算.
质量之积和各自的自转角速度无法求解.故选B、C.
例8 (多选)2019年人类天文史上首张黑洞图片正式公布.在宇宙中当一颗恒星 靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过 程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被 吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”.天鹅座X-1就是 一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀 速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变, 则在这段时间内,下列说法正确的是
中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约
100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈.将两颗
中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利
用牛顿力学知识,可以估算出这一时刻两颗中子星
A.质量之积
√C.速率之和
√B.质量之和
D.各自的自转角速度
加速度小于地球表面的重力加速度,故 D 错误.
例3 宇航员在一星球上以速度v0竖直上抛一质量为m的物体,经2t后落 回手中,已知该星球半径为R,则该星球的第一宇宙速度的大小为
高中物理 卫星变轨问题PPT课件
即为地 与地球自 球半径 转周期相
同,即24h
即为地 可求得 球半径 T=85min
此处的 万有引 力与重 力之差
m(2π)2R G Mm m g
T
R2
在赤道上与 地球保持相
对静止
此处的 万有引力m源自( 2π)2 R TG
M R
m 2
离地高度近 似为0,与 地面有相对
运动
同步 卫星
可求得距
• 近地卫星:
• 人造地球卫星:
第6页/共42页
人造地球卫星
所有卫星的轨道圆心都在地心上
按轨道分类:极地卫星;赤道卫星;其他卫星
第7页/共42页
第8页/共42页
第9页/共42页
第10页/共42页
注意事项:区别赤道上随地球自转的物体、近地卫星与同步卫星:
半径R 周期T 向心力F
关系式
备注
赤道 上物 体
V
mA
F引
F引
G
Mm r2
F引<F向 F引>F向
F引 F向
F向
m
v2 r
M
在A点万有引力相同
A点速度—内小外大(在A点看轨迹)
第15页/共42页
卫星变轨原理
思考:人造卫星在低轨道上运行,要想让其在 高轨道上运行,应采取什么措施?
在低轨道上加速,使其沿椭
圆轨道运行,当行至椭圆轨
·
道的远点处时再次加速,即
1
P·
Q
B、在轨道3上的角速度
小于1上的角速度
C、在轨道2上经过Q点时
第26页/共42页
❖ 卫星变轨
【例题】如图所示,宇宙飞船B在低轨道飞行,为了给更高轨
道的空间站A输送物资,它可以采用喷气的方法改变速度,从
(新教材)2019-2020学年人教版物理必修第二册同步导学讲义:第7章万有引..
专题强化卫星变轨问题和双星问题[学习目标]1.会分析卫星的变轨问题,知道卫星变轨的原因和变轨前后卫星速度的变化.2.掌握双星运动的特点,会分析求解双星运动的周期和角速度.探究重点提升素养一、人造卫星的变轨问题1.变轨问题概述(1)稳定运行2卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即半=〃号.(2)变轨运行卫星变轨时,先是线速度大小。
发生变化导致需要的向心力发生变化,进而使轨道半径r发生变化.①当卫星减速时,卫星所需的向心力F时=wy减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.②当卫星加速时,卫星所需的向心力Fq三增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨.2.实例分析(1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图1甲所示).②若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.甲乙图1(2)卫星的发射、变轨问题如图2,发射卫星时,先将卫星发射至近地圆轨道1,在。
点点火加速做离心运动进入椭圆2轨道2,在P点点火加速,使其满足罕=忒7,进入圆轨道3做圆周运动.图2例❶(2019-通许县实验中学期末)如图3所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是()p图3A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q点时的速率大于它在轨道2上经过Q点时的速率D.卫星在轨道2上经过P点时的加速度小于它在轨道3上经过P点时的加速度答案B解析卫星在圆轨道上做勾速圆周运动时有:律"可得.项因为,1〈尸3,所以#1>。
2024高考物理一轮复习--天体运动专题--卫星的变轨问题、天体追及相遇问题
卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。
(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。
2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。
热点突破:卫星(航天器)的变轨及对接问题 ppt课件
B.“嫦娥三号”在距离月面高度100 km的
圆轨道Ⅰ上运动的周期一定大于在椭圆
轨道Ⅱ上运动
的周期
C.“嫦娥三号”在椭圆轨道Ⅱ上运动经过Q 点时的加速度一定大于经过P点时的加速度
点击放大
D.“嫦娥三号”在椭圆轨道Ⅱ上运动经过
Q点时的速度可能小于经过P点时的速度
23
@《创新设计》
转到解析 目录
本节内容结束
B.使飞船与空间实验室在同一轨道上运行,然后空间 实验室减速等待飞船实现对接
C.飞船先在比空间实验室半径小的轨道上加速,加速 后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室, 两者速度接近时实现对接
转到解析
5
@《创新设计》
目录
解析 若 A 要实施变轨与比它轨道更高的空间站 B 对接,则应做逐渐远离圆心的运动, 则万有引力必须小于 A 所需的向心力,所以应给 A 加速,增加其所需的向心力,故应沿 运行速度的反方向喷气,使得在短时间内 A 的速度增加。与 B 对接后轨道半径变大,根 据开普勒第三定律RT32=k 得,周期变大,故选项 B 正确。 答案 B
A.4次 B.6次 C.7次 D.8次
转到解析
19
@《创新设计》
目录
备选训练
1. (2017·沈阳质量监测)我国正在进行的探月工程是高新技术 领域的一项重大科技活动,在探月工程中飞行器成功变轨至关 重要。如图6所示,假设月球半径为R,月球表面的重力加速度 为g0,飞行器在距月球表面高度为3R的圆形轨道Ⅰ运动,到达 轨道的A点处点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再 次点火进入近月轨道Ⅲ绕月球做圆周运动,则( )
《7.4 宇宙航行专题:人造卫星变轨、对接问题》课件
---通讯卫星
人造地球卫星
导学探究
如图2所示,在观看卫星电视节目时,为什么卫星天线要朝着某一方向固定不动?
图2 答案 收看电视节目时,天线要对准卫星方向,卫星在地球上方“静止”不动,所以 天线对着卫星方向固定不动.
一、同步卫星
1、定义:
与地球的自转周期相同的卫星。 即与地面相对静止的卫星。
A.三者的周期关系为TA<TB<TC B.三者向心加速度大小关系为aA>aB>aC C.三者角速度的大小关系为ωA=ωC<ωB D.三者线速度的大小关
系为VA<VC<VB
提示: 典型的三个圆运动:随地圆周运动、近地圆周运动、同步圆
周运动,应从运动和力两个角度区别和联系三个圆周运动
下午10时17分8秒
5、定点:每颗卫星都定在世界卫星组织规定 的位置上
5、定点
1. 为 了 同 步 卫 星 之 间 不 互 相 干扰,大约3°左右才能放 置1颗,这样地球的同步卫 星只能有120颗。可见,空 间位置也是一种资源。
2. 同 步 卫 星 主 要 用 于 通 讯 。 要实现两极点外的全球通讯, 只需三颗同步卫星即可。
v GM GM
h
R
r Rh
r
3.072km/ s
≈3.0km/s
确定值
地球同步卫星特点
1、定周期: T = 24 h
2、定轨道:地球同步卫星在通过赤道的平面 上运行,
3、定高度:离开地面的高度h为定值,约为地 球轨道半径的6倍。 h = 36000千米
4、定速率:所有同步卫星环绕 地球的速度(V) 都相同。 V = 3千米/秒
三、极地轨道和倾斜轨道卫星
极地卫星
倾斜轨道卫星
最新高中物理天体运动热点难点重点卫星变轨问题深度解析
最新高中物理天体运动热点难点重点卫星变轨问题深度解析最新高中物理天体运动热点难点重点卫星变轨问题深度解析高中物理天体运动热点难点重点卫星变轨问题深度解析(包教会)卫星变轨问题引例:飞船发射及运行过程:先由运载火箭将飞船送入椭圆轨道,然后在椭圆轨道的远地点A实施变轨,进入预定圆轨道,如图所示,飞船变轨前后速度分别为v1、v2,变轨前后的运行周期分别为T1、T2,飞船变轨前后通过A点时的加速度分别为a1、a2,则下列说法正确的是A.T1<T2,v1<v2,a1<a2B.T1<T2,v1<v2,a1=a2C.T1>T2,v1>v2,a1<a2D.T1>T2,v1=v2,a1=a2解答:首先,同样是A点,到地心的距离相等,万有引力相等,由万有引力提供的向心力也相等,向心加速度相等。
如果对开普勒定律比较熟悉,从T的角度分析:由开普勒定律知道,同样的中心体,k=a^3/T^2为一常数。
从图中很容易知道,圆轨道的半径R大于椭圆轨道的半长轴a,这样可得圆轨道上运行的周期T2大于椭圆轨道的周期T1。
如果对离心运动规律比较熟悉,从v的角度分析:1、当合力[引力]不足以提供向心力(速度比维持圆轨道运动所需的速度大)时,物体偏离圆轨道向外运动,这一点可以说明椭圆轨道近地点天体的运动趋向。
2、当合力[引力]超过运动向心力(速度比维持圆轨道运动所需的速度小)时,物体偏离圆轨道向内运动,这一点可以说明椭圆轨道远地点天体的运动趋向。
对椭圆轨道,A点为远地点,由上述第2条不难判断,在椭圆轨道上A点的运行速度v1比圆轨道上时A点的速度v2小。
综上,正确选项为B。
注意:变轨的物理实质就是变速。
由低轨变向高轨是加速,由高轨变向低轨是减速。
其基本操作都是打开火箭发动机做功,但加速时做正功,减速时做负功。
一、人造卫星基本原理1、绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
2、轨道半径r确定后,与之对应的卫星线速度vGMGMr3、周期T2、向心加速度a也都是唯一确定2rrGM的。
高一物理万有引力课件【卫星变轨、卫星追及相遇、双星问题】(含动画)
B A
B
卫
星
的
A
追
及
与
相
遇
求从相距最近到再次相距最近的时间?
B
建立联系:
A
求从相距最近到再次相距最远的时间?
B
建立联系:
A
例2.如图所示,有A、B两颗卫星绕地心O做圆周运动,旋转方向相 同。A卫星的周期为T1,B卫星的周期为T2,在某一时刻两卫星 相距最近,引力常量为G,则至少经过多长时间相距最近?相距 最远?
人造卫星的发射过程要经过 多次变轨才能达到预定轨道
3
卫
星
向
2
高
1
轨
点近
地
点远 地
道
变
轨
从低轨道过渡到高轨道
是离心运动还是近心运
动?
P
Q
1
2
3
思考:
1、卫星在2轨道上的P点和Q点那个速度大? P点
v 2、卫星在1轨道上经过P点的速度 1和p 2轨道上经过P点的速度
v 是否2一p 样大?
v1p < v2p
高一物理必修二 7.4 宇宙航行(第二课时)
本节必备知识:
1.圆周运动的基本规律 2.离心运动、近心运动与向心力的关系 3.开普勒运动定律 4.万有引力与向心力的关系
本节学习重点:
1.卫星变轨问题Leabharlann 2.卫星追及与相遇问题 3.双星问题
复习回顾:
1.离心运动的原因: 提供的向心力 小于需要的向心力(填“大于”或“小于”)
2.卫星的追及与相遇:
从最近到最近:(ωA-ωB)t =2nπ(n=1,2,3,…) 从最近到最远:(ωA-ωB)t′=(2n-1)π(n=1,2,3…)
新教材高中物理第七章拓展课7卫星的变轨及对接问题课件新人教版必修第二册
素养·目标要求 1.知道卫星变轨的原因,会分析卫星变轨前后的物理量变化. 2.知道航天器的对接问题的处理方法.
拓展一 卫星的变轨问题
【导思】 仔细观察图片,请思考: (1)卫星在Ⅰ轨道上经过P点时,如何才能变轨到Ⅱ轨道上? (2)卫星在Ⅱ轨道上经过Q点时,如何才能变轨到Ⅲ轨道上? (3)如图所示,线速度v1、v2、v3、v4的大小关系是怎样的?
取地表重力加速度为g,地球半径为R.则下列说法中正确的是( )
A.神舟十五号应在比空间站轨道半径更小的圆轨道上加速后逐渐靠近空
间站,两者速度接近时才能实现对接
B.对接成功后,欲使空间站恢复到原轨道运行,只点火加速θt
D.组合体在对接轨道上绕地运行时距离地表的高度是
答案:C
例 4 2022年11月30日5时42分中国空间站与神舟十五号载人飞船成功对接,
形成三舱三船构型.7时33分神舟十五号3名航天员进入天和核心舱,与神
舟十四号乘组在太空会师.假设空间站从正常运行轨道降低一定高度后在
圆轨道绕地运行,准备迎接神舟十五号的到来,从二者速度接近到实现对
接用时为t,在这段时间内组合体(三舱三船,后同)绕地心转过的角度为θ,
(3)卫星变轨图示
(1)卫星在A点时受到的力与沿哪个轨道运动无关,即A点位置确定 后,卫星在A点所受的万有引力就确定了.
(2)卫星速度变大时做离心运动,速度变小时做向心运动.
【典例】
例 1 [2023·广东湛江统考一模]2022年11月30日,神舟十五号载人飞船与
“天和核心舱”完成对接,航天员费俊龙、邓清明、张陆进入“天和核心
C.在轨道Ⅰ上A点的加速度大于在轨道Ⅱ上A点的加速度
D.在轨道Ⅲ上B点的线速度大于在轨道Ⅱ上B点的线速度
2020年高考物理最新考点模拟试题: 卫星(航天器)的变轨及对接问题(解析版)
2020年高考物理最新考点模拟试题:卫星(航天器)的变轨及对接问题(解析版)一.选择题1.(6分)(2019陕西榆林四模)我国是少数几个掌握飞船对接技术的国家之一,为了实现神舟飞船与天宫号空间站顺利对接,具体操作应为()A.飞船与空间站在同一轨道上且沿相反方向做圆周运动接触后对接B.空间站在前、飞船在后且两者沿同一方向在同一轨道做圆周运动,在合适的位置飞船加速追上空间站后对接C.空间站在高轨道,飞船在低轨道且两者同向飞行,在合适的位置飞船加速追上空间站后对接D.飞船在前、空间站在后且两者在同一轨道同向飞行,在合适的位置飞船减速然后与空间站对接【参考答案】C【名师解析】飞船在轨道上高速运动,如果在同轨道上沿相反方向运动,则最终会撞击而不是成功对接,故A错误;两者在同轨道上,飞船加速后做离心运动,则飞船的轨道抬升,故不能采取同轨道加速对接,故B错误;飞船在低轨道加速做离心运动,在合适的位置,飞船追上空间站实现对接,故C正确;两者在同一轨道飞行时,飞船突然减速做近心运动,飞船的轨道高度要降低,故不可能与同轨道的空间站实现对接,故D错误。
2. (2019辽宁沈阳一模)“神舟十一号”飞船与“天宫二号”空间实验室自动交会对接前的示意图如图所示,圆形轨道I为“天宫二号”运行轨道,圆形轨道II为“神舟十一号”运行轨道。
此后“神舟十一号”要进行多次变轨,才能实现与“天宫二号”的交会对接,则:()A. “天宫二号”在轨道I的运行速率大于“神舟十一号”在轨道II上运行速率B. “神舟十一号”由轨道II变轨到轨道I需要减速C. “神舟十一号”为实现变轨需要向后喷出气体D. “神舟十一号”变轨后比变轨前机械能减少【参考答案】C【名师解析】由题可知,万有引力提供向心力,即,则,由于“天宫二号”的轨道半径大,可知其速率小,则A错误;“神舟十一号” 由轨道II变轨到轨道I需要加速做离心运动,要向后喷出气体,速度变大,发动机做正功,使其机械能增加,故选项C正确,BD错误。
2020年高考物理考点练习5.14卫星(航天器)的变轨及对接问题(原卷版)
2020年高考物理100考点最新模拟题千题精练(必修部分)第五部分万有引力定律和航天专题5.14卫星(航天器)的变轨及对接问题一.选择题1.(6分)(2019陕西榆林四模)我国是少数几个掌握飞船对接技术的国家之一,为了实现神舟飞船与天宫号空间站顺利对接,具体操作应为()A.飞船与空间站在同一轨道上且沿相反方向做圆周运动接触后对接B.空间站在前、飞船在后且两者沿同一方向在同一轨道做圆周运动,在合适的位置飞船加速追上空间站后对接C.空间站在高轨道,飞船在低轨道且两者同向飞行,在合适的位置飞船加速追上空间站后对接D.飞船在前、空间站在后且两者在同一轨道同向飞行,在合适的位置飞船减速然后与空间站对接2.(2019辽宁沈阳一模)“神舟十一号”飞船与“天宫二号”空间实验室自动交会对接前的示意图如图所示,圆形轨道I为“天宫二号”运行轨道,圆形轨道II为“神舟十一号”运行轨道。
此后“神舟十一号”要进行多次变轨,才能实现与“天宫二号”的交会对接,则:()A. “天宫二号”在轨道I的运行速率大于“神舟十一号”在轨道II上运行速率B. “神舟十一号”由轨道II变轨到轨道I需要减速C. “神舟十一号”为实现变轨需要向后喷出气体D. “神舟十一号”变轨后比变轨前机械能减少3.(2019湖北名校联盟三模)2018年12月9日2时28分高分五号卫星在太原卫星发射中心用长征四号丙运载火箭发射升空,卫星经过多次变轨后,在距地心为R的地球冋步轨道上凝望地球。
该卫星首次搭载了大气痕量气体差分吸收光谱仪、主要温室气体探测仪、大气多角度偏振探测仪等,是实现高光谱分辨率对地观测的标志。
高分五号卫星由半径为RA的圆轨道1经椭圆轨道2变轨到同步轨道3时的情况如图所示,已知高分五号卫星在轨道1上运行的周期为T1,已知地球半径R0<RA,引力常量为G,则下列说法正确的是()A.地球的平均密度为B.在轨道3上稳定运行时,卫星每天可两次经过地表上同一点的正上方C.卫星在从A点经轨道2运动到B点的时间为D.卫星由圆轨道1调整到同步轨道3上,只需要加速一次即可4.(2019·河北唐山联考)(多选)荷兰某研究所推出了2023年让志愿者登陆火星、建立人类聚居地的计划.登陆火星需经历如图所示的变轨过程,已知引力常量为G,则下列说法正确的是( )A.飞船在轨道上运动时,运行的周期TⅢ>TⅡ>TⅠB.飞船在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能C.飞船在P点从轨道Ⅱ变轨到轨道Ⅰ,需要在P点朝速度方向喷气D.若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度5.(2017·全国卷Ⅲ,14)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学思维系列(一)——卫星变轨及飞船对接问题
1.变轨原理及过程
人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示.
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.
(2)在A 点点火加速,速度变大,进入椭圆轨道Ⅱ.
(3)在B 点(远地点)再次点火加速进入圆轨道Ⅲ.
2.卫星变轨问题分析方法
(1)速度大小的分析方法. ①卫星做匀速圆周运动经过某一点时,其速度满足GMm r 2=mv 2r
即v =GM r
.以此为依据可分析卫星在两个不同圆轨道上的速度大小. ②卫星做椭圆运动经过近地点时,卫星做离心运动,万有引力小于所需向心力:GMm r 2<mv 2
r .以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过近地点时的速度大小(即加速离心).
③卫星做椭圆运动经过远地点时,卫星做近心运动,万有引力大于所需向心力:GMm r 2>mv 2
r .以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过远地点时的速度大小(即减速近心).
④卫星做椭圆运动从近地点到远地点时,根据开普勒第二定律,其速率越来越小.以此为依据可分析卫星在椭圆轨道的近地点和远地点的速度大小.
(2)加速度大小的分析方法:无论卫星做圆周运动还是椭圆运动,只受万有引力时,卫星的加速度a n =F m =G M r
2.
3.飞船对接问题
(1)低轨道飞船与高轨道空间站对接
如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道追上高轨道空间站与其完成对接.
(2)同一轨道飞船与空间站对接
如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.
【典例】“嫦娥三号”探测器由“长征三号乙”运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察,“嫦娥三号”的飞行轨道示意图如图所示.假设“嫦娥三号”在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则以下说法正确的是( )
A.若已知“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度
B.“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C.“嫦娥三号”在从远月点P向近月点Q运动的过程中,加速度变大
D.“嫦娥三号”在环月段椭圆轨道上P点的速度大于Q点的速度
【解析】根据“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量可以求出月球的质量,但是由于不知道月球的半径,故无法求出月球的密度,A错误;“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,轨道半径减小,故应让发动机点火使其减速,B错误;“嫦娥三号”在从远月点P向近月点Q运动的过程中所受万有引力逐渐增大,故加速度变大,C正确;“嫦娥三号”在环月段椭圆轨道上运动时离月球越近速度越大,故P点的速度小于Q 点的速度,D错误.
【答案】 C
变式训练 1 如图所示是“嫦娥三号”奔月过程中某阶段的运动示意图,“嫦娥三号”沿椭圆轨道Ⅰ运动到近月点P处变轨进入圆轨道Ⅱ,“嫦娥三号”在圆轨道Ⅱ上做圆周运动的轨道半径为r,周期为T,已知引力常量为G,下列说法正确的是( )
A.由题中(含图中)信息可求得月球的质量
B.由题中(含图中)信息可求得月球的第一宇宙速度
C.“嫦娥三号”在P处变轨时必须点火加速
D .“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时的加速度大于沿圆轨道Ⅱ运动到P 处时的加速度
解析:万有引力提供向心力,G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2
,故A 正确;万有引力提供向心力,G Mm ′R 2=m ′v 2R ,得v =GM R
,由于不知道月球半径,所以不能求得月球的第一宇宙速度,故B 错误;椭圆轨道和圆轨道是不同的轨道,“嫦娥三号”在P 点不可能自主改变轨道,只有在减速后,才能进入圆轨道,故C 错误;“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时和沿圆轨道Ⅱ运动到P 处时,所受万有引力大小相等,所以加速度大小也相等,故D 错误.
答案:A
变式训练2
(多选)如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆轨道上的Q点),到达远地点Q时再次变轨,进入同步卫星轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步卫星轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是( )
A.在P点变轨时需要加速,Q点变轨时要减速
B.在P点变轨时需要减速,Q点变轨时要加速
C.T1<T2< T3
D.v2>v1>v4>v3
答案:CD
变式训练3 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2 3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法不正确的是( )
A.要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q点和椭圆轨道2的远地点P 分别点火加速一次
B.由于卫星由圆轨道1送入圆轨道3点火加速两次,则卫星在圆轨道3上正常运行速度大于卫星在圆轨道1上正常运行速度
C.卫星在椭圆轨道2上的近地点Q的速度一定大于7.9 km/s,而在远地点P的速度一定小于7.9 km/s
D.卫星在椭圆轨道2上经过P点时的加速度一定等于它在圆轨道3上经过P点时的加速度
解析:从轨道1变轨到轨道2需在Q 处点火加速,从轨道2变轨到轨道3需要在P 处点
火加速,故A 说法正确;根据公式G Mm r 2=m v 2
r 解得v =GM r
,即轨道半径越大,速度越小,故卫星在轨道3上正常运行的速度小于在轨道1上正常运行的速度,B 说法错误;第一宇宙速度是近地圆轨道环绕速度,即7.9 km/s ,轨道2上卫星在Q 点做离心运动,则速度大于7.9 km /s ,在P 点需要点火加速,则速度小于在轨道3上的运行速度,而轨道3上的运行速度小于第一宇宙速度,C 说法正确;卫星在椭圆轨道2上经过P 点时和在圆轨道3上经过P 点时所受万有引力相同,故加速度相同,D 说法正确.故选B.
答案:B
变式训练4 (多选)如图所示a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )
A .b 、c 的线速度大小相等,且大于a 的线速度
B .a 加速可能会追上b
C .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的c
D .a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 解析:因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,v =GM r ,可知v b =v c <v a ,故A 错误;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,
a 就追上了
b ,故B 正确;当
c 加速时,c 受的万有引力F <m v 2
c r c
,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v 2
b r b
,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故C 错误;对a 卫星,当它的轨道半径缓慢减小时,由v =GM r
可知,v 逐渐增大,故D 正确.
答案:BD。