微专题二 自由组合定律的解题方法与攻加
自由组合定律问题的解题思路与方法
纯合子为:¼ , 杂合子为:¾
自由组合定律问题的解题思路与方法----拆分组合法
小结:综合题的解题思路
1、确定相对性状 2、确定显隐性关系 3、写出遗传图解(要将表现型转化成基因型) 4、先分析每一对相对性状,再利用乘法原理求解 乘法原理 :相互独立事件同时或相继出现的概率等于 各独立事件概率的乘积。
自由组合定律问题的解题思路与方法----拆分组合法
三、已知亲本的基因型,求子代中某基因型个体 所占的比例
例:AaBb×aaBb,子代中Aabb所占的比例是多少? 可分解为二个分离定律问题: Aa×aa→后代产生1/2(Aa);Bb×Bb→后代产生1/4(bb) 1/2(Aa)×1/4(bb)=1/8
A.1/8 B.3/8
C.1/16 D.3/16
自由组合定律问题的解题思路与方法----拆分组合法
四、已知亲本的基因型,求子代中某表现型个体 所占的比例
例:AaBb×aaBb,子代中双显性个体所占的比例是多少? 可分解为二个分离定律问题: Aa× aa→后代出现1/2(Aa);Bb× Bb→后代出现3/4B_ 则:1/2(Aa)× 3/4B_ =3/8
如:求AaBb自交后代出现aabb的概率。
先求Aa自交出现aa的概率再求Bb自交出现bb 的概率 (互不干扰,互为独立事件),再用乘法原理求解
自由组合定律问题的解题思路与方法----拆分组合法
*课堂检测: 落花生的厚壳对薄壳,紫种皮对红种皮为两对相对性 状,现有厚壳紫种皮与薄壳红种皮落花生杂交,F1全为 厚壳紫种皮。在F2中,能够稳定遗传的薄壳紫种皮落花 生为3966株,则能稳定遗传的厚壳红种皮落花生的株数 大约为: A.1322 B.1983 C.3966 C D.7932
自由组合定律题型归纳及答案
自由组合定律题型归纳及解题训练考点一:自由组合定律的解题思路及方法一、思路1、原理:分离定律是自由组合定律的基础。
2、思路:分解——重组分解:将自由组合定律问题转化为若干个分离定律问题。
在独立遗传的情况下,有几对基因就可分解为几个分离定律问题,如AaBb×Aabb可分解为两个分离定律:。
重组:按照数学上的乘法原理和加法原理根据题目要求的实际情况进行重组。
二、方法:乘法定理和加法定理(1)加法定理:当一个事件出现时,另一个事件就被排除,这样的两个事件为互斥事件。
这种互斥事件出现的概率是它们各自概率的和。
例1:肤色正常(A)对白化(a)是显性。
一对夫妇的基因型都是Aa,他们的孩子的基因型可是:AA、Aa、Aa、aa,概率都是。
一个孩子是AA,就不可能同时又是其他。
所以一个孩子表现型正常的概率是。
(2)乘法定理:当一个事件的发生不影响另一事件的发生时,这样的两个独立事件同时或相继出现的概率是它们各自出现概率的乘积。
例2: 生男孩和生女孩的概率都分别是1/2,由于第一胎不论生男还是生女都不会影响第二胎所生孩子的性别,因此属于两个独立事件。
第一胎生女孩的概率是1/2,第二胎生女孩的概率也是,那么两胎都生女孩的概率是。
考点二:自由组合和定律的题型一、配子类型的问题1、求配子种类数例3 AaBbCc产生的配子种类数Aa Bb Cc↓↓↓2 × 2 × 2 = 8种规律:某一基因型的个体所产生配子种类数等于2n(n为等位基因的对数)2、求配子间结合方式例4 AaBbCc与AaBbCC杂交过程中,配子间的结合方式有多少种?先求AaBbCc、AaBbCC各自产生多少种配子。
AaBbCc→种配子、AaBbCC→种配子。
再求两亲本配子间的结合方式。
由于两性配子间的结合是随机的,因而AaBbCc与AaBbCC配子之间有种结合方式。
规律:基因型不同的个体杂交,配子间结合方式种类数等于各亲本产生配子种类数的乘积。
微心题二 自由组合定律的解题方法与攻略共21页文档
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生Байду номын сангаас
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
新人教版 必修2 自由组合定律的解题思路及方法 课件 (共62张 )
A.AaBb×AaBB
B.AaBb×Aabb
C.AABb×aaBb
D.AaBb×aaBb
【解析】 紫茎缺刻叶亲本(A_B_)与绿茎缺刻叶亲本(aaB_) 杂交,在子代中,紫茎∶绿茎=(321+101)∶(310+107)≈1∶1, 说明双亲的相关基因组成为 Aa×aa;在子代中,缺刻叶∶马铃 薯叶=(321+310)∶(101+107)≈3∶1,说明双亲的相关基因组 成为 Bb×Bb。综上分析,亲本的基因型是 AaBb×aaBb,A、B、 C 三项均错误,D 项正确。
(2020·三湘名校联考)番茄紫茎对绿茎是显性性状(用 A、
a 表示),缺刻叶对马铃薯叶是显性性状(用 B、b 表示)。让紫茎
缺刻叶亲本与绿茎缺刻叶亲本杂交,子代植株数是紫茎缺刻叶
321,紫茎马铃薯叶 101,绿茎缺刻叶 310,绿茎ห้องสมุดไป่ตู้铃薯叶 107。
若这两对等位基因自由组合,则两亲本的基因型是( D )
(2)分解组合法 根据子代表型比例拆分为分离定律的分离比,确定每一对相 对性状的亲本基因型,再组合。例如: 9 ∶ 3 ∶ 3 ∶ 1 → (3∶1)(3∶1)→(Aa×Aa)(Bb×Bb) →AaBb×AaBb 1 ∶ 1 ∶ 1 ∶ 1 → (1∶1)(1∶1)→(Aa×aa)(Bb×bb) →AaBb×aabb 或 Aabb×aaBb 3 ∶ 3 ∶ 1 ∶ 1 → (3∶1)(1∶1)→(Aa×Aa)(Bb×bb) 或 (Aa×aa)(Bb×Bb)→AaBb×Aabb 或 AaBb×aaBb
AaRr 的亲本自交,则子代有花瓣植株中,AaRr 所占比例约为 2/3×1/2=1/3,子代的所有植株中,纯合子所占比例约为 1/4,C 项正确;若基因型为 AaRr 与 Aarr 的亲本杂交,则子代是红色 花瓣(A_Rr)的植株所占比例为 3/4×1/2=3/8,D 项正确。
(超实用)自由组合定律解题技巧篇演示教学
自由组合定律解题技巧---- ^解组1>先确定此题是否遵循基因的自由组合规律。
2、金健:将所涉及的两对(或多对)基因或性状 分离开来,一对一对单独聶虑,用基因的分离规 律进行分析研究。
3、组合:将用分离规律分析的结果按一定方式 进行组合或相乘。
自由组合规律的带用解法1= 1=一、应用分离定律解决自由组合问题仁求配子种类数:⑴规律:勿种(n为等位基因对数)。
方法仁利用公式23 =8 种方法2:采用分支法⑵例:AaBbCCDd产生的配子种类数:1!AaCC Dd2X 2X 1X 2=8种练练• 1某个体的基因型为AaBbCC这些基因分别位于3对同源染色体上,问此个体产生的配子的类型有A种?• Av Aa B、AaBb C、aaBBFF D、aaBb )・3某个体的基因型为AaBbCCDdeeFf这些基因分别位于6对同源染色体上,问此个体产生的配子的类型有卫种?2. 求配子间结合方式数:(1)规律:等于各亲本产生配子种类数的乘积。
(2)举例:AaBbCc与AaBbCC杂交过程中,配子间结合方式有多少种?①先求AaBbCc、AaBbCC各自产生多少种配子。
AaBbCc—"► 8种配子9AaBbCC—T4种配②再求两亲本配子间结合方式。
由于两性配子间结合是随机的,因而AaBbCc与配子间有8X4=32种结合方式。
3. 求子代基因型的种类数:规律:等于亲本各对基因型单独相交所产生基因型种类数的积。
b c c所产子代的基因型数的计算。
举例:AaBbCcXAaEAa X Aa所产子代的基因型有3种,Bb X Bb所产子代的基因型有3种,CcXcc所产子代的基因型有2种,所产子代基因型种数为3X3 X2 = 18种。
4. 求子代个别基因型所占比例规律:等于该个别基因型中各对基因型出现概率的乘积。
举例:AaBbXAaB B相交产生的子代中基因型a a B B所占比例的计算。
因为A aXA a相交子代中a a基因型个体占1/4, bXB B相交子代中B B基因型个体占1/2, 所以a a B B基因型个体占所有子代的1/4XM/2R/8。
高中生物---自由组合定律题型归纳及解题训练
定律 自由 组合 定律
1∶1 9∶3∶3∶1 1∶1∶1∶1 (1:1) (1:1) 3∶3∶1∶1 (Aa×Aa) (Bb×Bb)
Aa×aa AaBb×AaBb AaBb×aabb 或 Aabb×aaBb
【针对性训练一】 1( A.5 种 2( )假定某一个体的遗传因子组成为 AaBbCcDdEEFf,此个体能产生配子的类型为 B.8 种 C.16 种 D.32 种
先 求 AaBbCc、 AaBbCC 各 自 产 生 多 少 种 配 子 。 AaBbCc→ 种配子。
再求两亲本配子间的结合方式。由于两性配子间的结合是随机的,因而 AaBbCc 与 AaBbCC 配 子之间有 种结合方式。
规律:基因型不同的个体杂交,配子间结合方式种类数等于各亲本产生配子种类数的乘积。 二、基因型和表现型的问题 1、求种类数 例5 AaBbCc 与 AaBBCc 杂交,求其后代的基因型数? 在右侧写出求其后代的表现型数的解题
)具有两对相对性状的纯合体杂交,在 F2 中能稳定遗传的个体数占总数的 B、1/8 C、1/2 D、1/4 玉米某两对基因 律遗传,现有子 如下:则双亲的
按照自由组合定 代基因型及比例 基因型是
ATTSs
D.TtSS×TtSs
)牵牛花中,叶子有普通叶和枫形叶两种,种子有黑色和白色两种。现用普通叶白色种子
思路先分解为三个分离定律: Aa×Aa→后代有 3 种基因型(1AA∶2Aa∶1aa) Bb×BB→后代有 2 种基因型(1BB∶1Bb) Cc×Cc→后代有 3 种基因型(1CC∶2Cc∶1cc) AaBbCc×AaBBCc,后代中有 3×2×3=18 种基因型。 2、求概率 例6 基因型为 AaBb 的个体(两对基因独立遗传)自交,
微专题二自由组合定律的解题方法和攻略
2.采用下列哪组方法,可以依次解决①~④中的遗传问题( ) ①鉴定一只白羊是否为纯种 ②在一对相对性状中区分显隐性 ③不断提高小麦抗病品种的纯合度 ④检验杂种F1的遗传因子 的组成 A.杂交、自交、测交、测交 B.测交、杂交、自交、测交 C.测交、测交、杂交、自交 D.杂交、杂交、杂交、测交
解析:鉴定生物是否为纯种,对于植物来说可以用自交、测交 的方法,其中自交是最简便的方法;对于动物来说,则只能用 测交方法。要区分一对相对性状的显隐性关系,可以让生物进 行杂交,有两种情况可以作出判断,若是两个相同性状的生物 个体杂交,后代中有另一个新的相对性状产生,则亲本的性状 为显性性状;若是不同性状的生物个体杂交,后代中只出现一 种性状,则此性状为显性性状。不断地自交可以明显提高生物 品种的纯合度。测交的重要意义是可以鉴定显性个体的遗传因 子的组成。
答案:B
[典例2] 在豚鼠中,黑色(C)对白色(c)、毛皮粗糙(R)对毛皮光滑 (r)是显性。能验证自由组合定律的最佳杂交组合是( ) A.黑光×白光→18黑光∶16白光 B.黑光×白粗→25黑粗 C.黑粗×白粗→15黑粗∶7黑光∶16白粗∶3白光 D.黑粗×白光→10黑粗∶9黑光∶8白粗∶11白光 解析 验证自由组合定律,就是论证杂种F1产生配子时,决定 同一性状的成对遗传因子彼此分离,决定不同性状的遗传因子 自由组合,检测四种不同遗传因子组成的配子,最佳方法为测 交。D项符合测交的概念和结果:黑粗(相当于F1的双显杂合 子)×白光(双隐性纯合子)→10黑粗∶9黑光∶8白粗∶11白光(四 种类型,比例接近1∶1∶1∶1)。 答案 D
对数
类型 结合种类 类数 类数
一对
2
4
3
2
两对 4
16 9 4
三对 8
自由组合定律
自由组合定律中有关规律及常用的解题方法解题技巧之一:一、解题思路:将自由组合问题转化为若干个分离定律问题:(即:单独处理、彼此相乘)在独立遗传的情况下,将多对性状,分解为单一的相对性状然后按基因的分离定律来单独分析,最后将各对相对性状的分析结果相乘,其理论依据是概率理论中的乘法定理。
乘法定理是指:如某一事件的发生,不影响另一事件发生,则这两个事件同时发生的概率等于它们单独发生的概率的乘积。
基因的自由组合定律涉及的多对基因各自独立遗传,因此依据概率理论中的乘法定理,对多对基因共同遗传的表现就是其中各对等基因单独遗传时所表现的乘积。
二、题型:(一)正推:1、已知亲本基因型,求产生的配子种类数、求配子的类型、求配子比例、求个别配子所占的比例。
例1:基因型为AaBbDd(各对基因独立遗传)的个体(1)产生配子的种类数:解题思路:分解:AaBbDd→Aa、Bb、Dd,单独处理:Aa→2种配子;Bb→2种配子;Dd→2种配子。
彼此相乘:AaBbDd→2×2×2=8种。
(2)配子的类型:解题思路:单独处理、彼此相乘——用分枝法书写迅速准确求出。
D——AB DBA d——AB dD——A b Dbd——A b dD——aB DB d——aB da D——ab Dbd——a b d(3)配子的类型及比例:解题思路:分解:AaBbDd→Aa、Bb、Dd,单独处理:Aa→(A:a)=(1:1);Bb→(B:b)=(1:1);Dd→(D:d)=(1:1)。
彼此相乘:AaBbCc→(A:a)×(B:b)×(D:d)=(1:1)×(1:1)×(1:1)。
ABD:Abd:AbD:aBD:abD:aBd:abd :Abd=1:1:1:1:1:1:1:1(4)其中ABD配子出现的概率:解题思路:分解:AaBbCc —→ Aa、Bb、Dd, 单独处理:Aa→1/2A,Bb→1/2B,Dd→1/2D, 彼此相乘:ABD→1/2×1/2×1/2=8。
人教版高中生物必修二 微专题二 自由组合定律的解题方法与攻略 遗传因子的发现课件
【归纳总结】
项目
基因突变
基因重组
主要是有丝分裂前的间期、减数
发生时间
一般是减数分裂Ⅰ
分裂前的间期
在一定外界或内部因素作用下, 减数分裂Ⅰ过程中,同源染色体
DNA分子中发生碱基的替换、增 的非姐妹染色单体交叉互换,或 发生原因
添或缺失,引起基因碱基序列的 非同源染色体上非等位基因的自
改变
由组合
适用范围
基因突变产生新基因,为基因重组提供组合的新基因,基因突变是基 因重组的基础
【易错提示】 (1)基因重组是通过生物的有性生殖体现的,无性生殖过程不发生基因重组。 (2)基因重组是在减数分裂过程中实现的,而受精作用不能实现基因重组。 微考点2 根据细胞分裂图像判断基因发生改变的原因
(1)如果是有丝分裂后期图像,两条子染色体上相应位置的两基因不同,则为基因突 变的结果,如图甲。 (2)如果是减数分裂Ⅱ后期图像,两条子染色体(同白或同黑)上相应位置的两基因不 同,则为基因突变的结果,如图乙。 (3)如果是减数分裂Ⅱ后期图像,两条子染色体(颜色不一致)上相应位置的两基因不 同,则为交叉互换(基因重组)的结果,如图丙。
解析 基因突变能产生新基因,新的基因型,基因重组能产生新的基因型,不能产 生新基因,A正确;有丝分裂可以发生基因突变,但不能发生基因重组,B错误;基 因决定性状,基因突变后生物的性状不一定会改变,如AA突变成Aa,另外密码子还 具有简并性,C错误;基因突变产生新基因,是变异产生的根本来源,D错误。 答案 A
解析 根据F2代性状分离比可判断小鼠体色基因的遗传遵循自由组合定律;若相 关 基 因 用 A/a 、 B/b 表 示 , F1(AaBb) 与 白 鼠 (aabb) 杂 交 , 后 代 中 AaBb(黑)∶Aabb(灰)∶aaBb(灰)∶aabb(白)=1∶1∶1∶1;F2灰鼠(A_bb、aaB_) 中纯合子占1/3;F2黑鼠(A_B_)有4种基因型。 答案 A
自由组合定律的解题方法人教版高中生物必修二教学课件
________、________。
自由组合定律的解题方法人教版高中 生物必 修二课 件
自由组合定律的解题方法人教版高中 生物必 修二课 件
(1)18种 4种 (2)1/32 1/16 (3)3/16 3/16
自由组合定律的解题方法人教版高中 生物必 修二课 件
自由组合定律的解题方法人教版高中 生物必 修二课 件
思考题
根据对F2统计结果,回答下列问题:
F2中能稳定遗传的个体占总数的__1_/_4____ F2中能稳定遗传的绿色圆粒占总数的__1_/_1_6___ F2绿色圆粒中,能稳定遗传的占___1_/_3___ F2中不同于F1表现型的个体占总数的__7_/_1_6___ F2中重组类型占总数的__3_/_8____
Y_rr yyR_
:3: 3
1 YYrr 2 Yyrr
1 yyRR 2 yyRr
yyrr
:1
自由组合定律的解题方法人教版高中 生物必 修二课 件
思考题
根据对F2统计结果,回答下列问题: F2中能稳定遗传的个体占总数的________ F2中能稳定遗传的绿色圆粒占总数的________ F2绿色圆粒中,能稳定遗传的占________ F2中不同于F1表现型的个体占总数的________ F2中重组类型占总数的________
自由组合定律的解题方法人教版高中 生物必 修二课 件
自由组合定律的解题方法人教版高中 生物必 修二课 件
例4、水稻的高秆(D)对矮秆(d)为显性,抗病
(R)对易染病(r)为显性。现有两株水稻作为亲
本进行杂交实验,产生的后代表型及其数量比
自由组合定律的解题技巧
3、根据子代表现型比例求亲代基因型
①具有两对相 则双亲都为双显杂合子
YyRr ×YyRr→子代表现型为9:3:3:1
②具有两对相对性状的亲本杂交,若子代表现型 比值为3:1,则双亲 有一对是杂合子,另一对是纯合子或至少有一个是显性纯合子 YyRR × Yyrr→子代表现型为3:1 YyRr × YyRR→子代表现型为3:1
22=4
42=16
32=9
(1:2:1)2
22=4
例:已知双亲基因型为YyRr ×YyRr,求子代表现型比例。
Rr × Rr → (RR、2Rr)
:
rr = 3:1
∴子代表现型比例为(3:1 )× (3:1) 1
=9:3:3:
两大遗传定律的区别和联系
遗传定 研究的 F1配子的种 F2基因型种类 F2表现型种 律 类及比例 及比例 类及比例 相对性 状 基因分 离定律 一对 两种 1:1 三种 1:2:1 两种 3:1
∴子代AaBb的概率=1/2×1/2 =1/4
5、用乘法定理求子代概率
②用乘法定理求子代表现型概率
例:已知双亲基因型为 AaBb×AABb, 求子代 双显性状(A—B—)的概率。 解:∵ Aa×AA →1(AA、Aa)
Bb×Bb→3/4(BB、Bb)
∴ 子 代 ( A—B— ) 的 概 率 =1×3/4 =3/4
⑶单独分析,比例相乘法
①先求亲本产生的雌雄配子,然后列表
②求出配子结合成子代的基因型(表现型)或只列 出所求基因型(表现型) ③求出结合方式=♀配子总数× ♂配子总数 ④求子代基因型概率=所求基因型数目/结合方式 ⑤求子代表现型概率=所求表现型数目/结合方式
例如:F1为(YyRr),求: ①F2中YyRr的概率。 ② F2中黄色皱粒出现的概率。
第1章 微专题二 自由组合定律的常规解题方法
一、运用分离定律解决自由组合问题 1.解题思路首先,将自由组合定律问题转化为若干个分离定律问题。
在独立遗传的情况下,有几对等位基因就可分解为几个分离定律,如AaBb ×Aabb 可分解为Aa ×Aa 、Bb ×bb ,然后按分离定律逐一分析。
最后,将获得的结果进行综合,得到正确答案。
2.常见题型分析 (1)配子类型及概率的问题 如AaBbCc 产生的配子有多少种? Aa Bb Cc ↓ ↓ ↓ 2 × 2 × 2 =8种又如AaBbCc 产生ABC 配子的概率为12×12×12=18。
(2)配子间结合方式的问题如AaBbCc 与AaBbCC 杂交过程中,配子间结合方式有多少种? ①先求AaBbCc 、AaBbCC 各自产生多少种配子: AaBbCc →8种配子;AaBbCC →4种配子。
②再求两亲本配子间结合方式。
由于两性配子间结合是随机的,因此配子间有8×4=32种结合方式。
(3)子代基因型种类及概率的问题如AaBbCc 与AaBBCc 杂交,其后代有多少种基因型? 先分解为三个分离定律,再用乘法原理组合。
⎭⎪⎬⎪⎫Aa ×Aa →后代有3种基因型(1AA ∶2Aa ∶1aa )Bb ×BB →后代有2种基因型(1BB ∶1Bb )Cc ×Cc →后代有3种基因型(1CC ∶2Cc ∶1cc )⇒后代有3×2×3=18种基因型 又如该双亲后代中,AaBBCC 出现的概率为12(Aa)×12(BB)×14(CC)=116。
(4)子代表现型种类及概率的问题如AaBbCc ×AabbCc ,其杂交后代可能有多少种表现型?⎭⎪⎬⎪⎫Aa ×Aa →后代有2种表现型Bb ×bb →后代有2种表现型Cc ×Cc →后代有2种表现型⇒后代有2×2×2=8种表现型又如该双亲后代中表现型A_bbcc 出现的概率为34(A_)×12(bb)×14(cc)=332。
1.2.2自由组合定律的解题规律及方法
乘法原理
解题步骤
步骤一:写出该题的相对性状 步骤二:判断显隐性关系
步骤三:写出每对相对性状亲子代的遗传图解 步骤四:分析每对相对性状的结果,然后运用乘法 原理解题。
拆分 法
一 “拆分法”求解自由组合定律计算问题
题型一
求配子类型及概率
举例:基因型为AaBAbaDBdb 的个体
第1章 第2节
自由组合定律的 解题规律及方法
回顾 自由组合定律
遗传因
控制不同性状的遗传因子的分
子间的
关系 离和组合是互不干扰的;在形成配
发生 时间
子时,决定同一性状的成对的遗传
因子彼此分离,决定不同性状的遗
传因子自由组合。实质
不是含不同遗传因子的雌雄配子自由组合
黄色 × 绿色
������ ������ 黄色
������ ������ ������������
黄色皱粒
������ × ������= ������
������ ������ ������������
绿色圆粒
������ × ������= ������
������ ������ ������������
绿色皱粒
������ × ������= ������
隐 y显yR_
yyRR
yyRr
比
3
例 ������
������������
1
������ ������������
2
������ ������������
二 “拆分法”推断亲本基因型问题
举例:豌豆种子的黄色(Y)对绿色(y)为显性,圆粒(R)
对皱粒(r)为显性,两对基因独立遗传。已知两
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题二自由组合定律的解题方法与攻略微考点1分离定律与自由组合定律的关系
[典例1](多选)下列关于孟德尔豌豆杂交实验的叙述,正确的是()
①孟德尔的两对相对性状的杂交实验中,F2中的性状分离比是9∶3∶3∶1,其中“9”为纯合子②孟德尔为了解释杂交实验中发现的问题,提出了“形成配子时,控制相同性状的成对的遗传因子分离后,控制不同性状的遗传因子再自由组合”的假说③孟德尔设计了测交实验验证自己的假说是否正确④孟德尔豌豆杂交实验成功的原因主要在选材、由简到繁、运用统计学原理分析实验结果、采用了“假说—演绎”的科学研究方法等⑤在孟德尔两对相对性状的杂交实验中,F2中纯合子所占的比例为1/4⑥在孟德尔两对相对性状的杂交实验中,F1的表型与亲本中黄色圆粒作为母本还是父本无关
A.③⑤
B.①②
C.④⑥
D.②③
答案AC
[对点练1]豌豆的高茎∶矮茎=A∶a,黄粒∶绿粒=B∶b,圆粒∶皱粒=D∶d,3对等位基因的遗传遵循自由组合定律。
让基因型为AAbbDD的豌豆与基因型为aaBBdd的豌豆杂交,F1自交后代的基因型和表型分别有()
A.27种,8种
B.9种,4种
C.3种,2种
D.8种,27种
答案 A
微考点2设计实验验证两对相对性状的遗传遵循自由组合定律
(1)自交法:让具有两对相对性状的纯合亲本杂交,得到F1,再让F1自交,观察并统计F2的表型种类及比例。
如果F2出现4种表型,且比例为9∶3∶3∶1,则说明这两对相对性状的遗传遵循自由组合定律。
(2)测交法:让具有两对相对性状的纯合亲本杂交,得到F1,再让F1与隐性个体测交,观察并统计测交后代的表型种类及比例。
如果测交后代出现4种表型,且比例为1∶1∶1∶1,则说明这两对相对性状的遗传遵循自由组合定律。
植物一般为雌雄同株,因此实验对象为植物时用自交法比较简便,可以省去寻找隐性纯合子和人工杂交的麻烦;动物一般为雌雄异体,因此实验对象为动物时用测交法比较简便,因为你找到的另一只双显性动物未必就是双杂合子。
欲验证n对等位基因的遗传遵循自由组合定律,采用自交法,预期结果为后代会出现(3∶1)n的性状分离比,采用测交法,预期结果为后代会出现(1∶1)n的性状分离比。
[典例2]在豚鼠中,黑色(C)对白色(c)、毛皮粗糙(R)对毛皮光滑(r)是显性。
能验证自由组合定律的最佳杂交组合是()
A.黑光×白光→18黑光∶16白光
B.黑光×白粗→25黑粗
C.黑粗×白粗→15黑粗∶7黑光∶16白粗∶3白光
D.黑粗×白光→10黑粗∶9黑光∶8白粗∶11白光
解析验证自由组合定律,就是论证杂种F1产生配子时,决定同一性状的成对遗传因子彼此分离,决定不同性状的遗传因子自由组合,检测四种不同遗传因子组成的配子,最佳方法为测交。
D项符合测交的概念和结果:黑粗(相当于F1的双
显杂合子)×白光(双隐性纯合子)→10黑粗∶9黑光∶8白粗∶11白光(四种类型,比例接近1∶1∶1∶1)。
答案 D
[对点练2](多选)已知某植物的抗病(A)和不抗病(a)、花粉长形(B)和花粉圆形(b)、高茎(D)和矮茎(d)三对性状能自由组合。
现有4株纯合的植株,其基因型分别为:①aaBBDD;②AABBDD;③aaBBdd;④AAbbDD。
下列相关叙述错误的是()
A.任意选择两植株杂交都能验证基因的分离定律
B.欲验证基因的自由组合定律可选用的杂交组合只有①和④、②和③
C.欲培育出基因型为aabbdd的植株,可选择③和④进行杂交
D.欲通过检测花粉验证基因的分离定律只能选择④和②杂交
解析因为任意选择两植株杂交都能产生含有等位基因的后代,所以能验证基因的分离定律,A正确;欲验证基因的自由组合定律,杂交后代至少含有两对等位基因,可选用的杂交组合有①和④、②和③、③和④,B错误;欲培育出基因型为aabbcc的植株,可选择③和④进行杂交,产生出AaBbDd,再让其自交即可产生出aabbdd的植株,C正确;欲通过检测花粉验证基因的分离定律,可选择④和任意植株杂交,都可产生Bb等位基因,D错误。
答案BD
微考点3两对等位基因控制的性状遗传中的异常分离比现象
在两对相对性状的杂交实验中,经常会发生分离比偏离的情况,如下表所示:“和”为16的由基因互作或致死导致的特殊分离比
[典例3]现用一对纯合灰鼠杂交,F1都是黑鼠,F1中的雌雄个体相互交配,F2体色表现为9黑∶6灰∶1白。
下列叙述正确的是()
A.小鼠体色遗传遵循基因自由组合定律
B.若F1与白鼠杂交,后代表现为2黑∶1灰∶1白
C.F2灰鼠中能稳定遗传的个体占1/2
D.F2黑鼠有两种基因型
解析根据F2代性状分离比可判断小鼠体色基因的遗传遵循自由组合定律;若相关基因用A/a、B/b表示,F1(AaBb)与白鼠(aabb)杂交,后代中AaBb(黑)∶Aabb(灰)∶aaBb(灰)∶aabb(白)=1∶1∶1∶1;F2灰鼠(A_bb、aaB_)中纯合子占1/3;F2黑鼠(A_B_)有4种基因型。
答案 A
[对点练3]黄色卷尾鼠彼此杂交,子代的表现型及比例为6/12黄色卷尾、2/12黄色正常尾、3/12鼠色卷尾、1/12鼠色正常尾。
上述遗传现象的主要原因可能是()
A.不遵循基因的自由组合定律
B.控制黄色性状的基因纯合致死
C.卷尾性状由显性基因控制
D.鼠色性状由隐性基因控制
答案 B
微考点4自由组合定律在遗传病分析中的应用
当两种遗传病之间具有“自由组合”关系时,各种患病情况概率如下:
(1)只患甲病的概率是m·(1-n);
(2)只患乙病的概率是n·(1-m);
(3)甲、乙两病同患的概率是m·n;
(4)甲、乙两病均不患的概率是(1-m)·(1-n);
(5)患病的概率:1-(1-m)·(1-n);
(6)只患一种病的概率:m·(1-n)+n·(1-m)。
[典例4]人类多指(T)对正常指(t)为显性,正常(A)对白化(a)为显性,决定不同性状的基因自由组合。
一个家庭中,父亲多指,母亲正常,他们有一个患白化病但手指正常的孩子,则下一个孩子只患一种病和患两种病的概率分别是?
提示据题推知:父亲的基因型为TtAa,母亲的基因型为ttAa。
用“分解法”:
故后代患一种病的概率为1
2×1
4
+1
2×
3
4
=1
2
,患两种病的概率为1
2×
1
4
=1
8。
[对点练4]一对正常夫妇,双方都有耳垂,结婚后生了一个白化且无耳垂的孩子,若这对夫妇再生一个孩子,为有耳垂但患白化病的概率是(两种遗传病独立遗传)()
A.3
8 B.
3
16
C.3
32 D.
5
16
解析假设控制白化病的基因用A/a表示,控制耳垂的基因用C/c表示。
由于正常夫妇结婚后生了一个白化(aa)且无耳垂(cc)的孩子,说明两人基因型为AaCc、AaCc。
则再生一个孩子为有耳垂但患白化病(aaC_)的概率是:3/16。
答案 B
[一题多变] (1)这对夫妇生一个男孩为有耳垂不白化的孩子的概率?
(2)这对夫妇生一个无耳垂白化的男孩的概率?
答案(1)9/16(2)1/32。