七年级数学下册二元一次方程组知识总结

合集下载

人教版七年级下册数学知识点归纳:第八章二元一次方程组

人教版七年级下册数学知识点归纳:第八章二元一次方程组

人教版七年级下册数学知识点归纳第八章 二元一次方程组8.1 二元一次方程组1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。

2.方程组:有几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

8.2 消元——解二元一次方程组二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

8.3 实际问题与二元一次方程组 实际应用:审题→设未知数→列方程组→解方程组→检验→作答。

关键:找等量关系常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题 顺流逆流公式: v v v =+顺静水 v v v =−逆静水8.4 三元一次方程组的解法三元一次方程组:方程组含有三个未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程组,像这样的方程组叫做三元一次方程组。

解三元一次方程组的基本思路:通过“代入”或“加减”进行消元。

把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。

七年级下册数学第七章知识点归纳

七年级下册数学第七章知识点归纳

(华师版)七年级下册数学第七章知识点归纳第七章二元一次方程组一、基本概念(一)二元一次方程组的有关概念1.二元一次方程的定义:都含有1个未知数,并且含有未知数的项的次数都是1,像这样的整式方程,叫做二元一次方程。

一般形式为:ax+by=c(a、b、c 为常数,且a、b 均不为0)结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。

例如:方程7y-3x=4、-3a+3=4-7b、2m+3n=0、1-s+t=2s 等都是二元一次方程。

而6x 2=-2y-6、4x+8y=-6z、m2=n 等都不是二元一次方程。

2.二元一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

例如:⎩⎨⎧-=+=-8532y x y x 、⎩⎨⎧=--=+12337b a b a 、⎩⎨⎧=-=+12n m n m 、⎩⎨⎧-=+=-1132t s t s 等都是二元一次方程组。

而⎩⎨⎧-=+=-8532z x y x 、⎩⎨⎧=--=+12337a a a a 、⎪⎩⎪⎨⎧=-=+121n m n m 等都不是二元一次方程组。

注意:(1)只要两个方程一共含有两个未知数,也是二元一次方程组。

如:⎩⎨⎧-==852y x 、⎩⎨⎧-==112t s 也是二元一次方程组。

3.二元一次方程和二元一次方程组的解(1)二元一次方程的解:能够使二元一次方程的左右两边都相等的两个未知数的值,叫做二元一次方程的解。

(2)二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

(即是两个方程的公共解)注意:写二元一次方程或二元一次方程组的解时要用“联立”符号“⎩⎨⎧”把方程中两个未知数的值连接起来写。

二元方程解的写法的标准形式是:⎩⎨⎧==b y a x ,(其中a、b 为常数)(二)二元一次方程组的解法1.解二元一次方程组的基本思想:“消元”,化二元一次方程组为一元一次方程来解。

浙教版七年级数学下册《专题02 二元一次方程组及其解法(知识点串讲)(解析版)》

浙教版七年级数学下册《专题02 二元一次方程组及其解法(知识点串讲)(解析版)》

浙教版七年级数学严选学习材料一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆专题02 二元一次方程组及其解法知识网络重难突破知识点一有关概念及应用1.二元一次方程含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解。

2.二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。

同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。

【典例1】(2019春•诸暨市期末)下列方程中,属于二元一次方程的是()A.x+xy=8B.y=x﹣1C.x+=2D.x2﹣2x+1=0【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解析】解:A、含有两个未知数,但是含有未知数的项的最高次数是2,故本选项错误;B、符合二元一次方程定义,是二元一次方程,故本选项正确;C、不是整式方程,故本选项错误;D、x含有一个未知数,不是二元一次方程,故本选项错误.故选:B.【点睛】此题考查二元一次方程定义,关键是根据二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.【变式训练】1.(2019春•余姚市校级月考)若方程x|a|﹣1+(a﹣2)y=3是二元一次方程,则a的值为﹣2.【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面确定a的取值.【解析】解:根据二元一次方程的定义,得|a|﹣1=1且a﹣2≠0,解得a=﹣2.故答案是:﹣2.【点睛】本题考查二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.(2019春•嘉兴期末)已知是二元一次方程mx+4y=2的一个解,则代数式m﹣2n的值为()A.﹣2B.2C.﹣1D.1【点拨】把x与y代入方程计算,即可求出所求.【解析】解:把代入方程得:﹣2m+4n=2,整理得:﹣2(m﹣2n)=2,即m﹣2n=﹣1,故选:C.【点睛】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.3.(2019春•余姚市期末)下列各组数中,是二元一次方程2x﹣3y=1的解的是()A.B.C.D.【点拨】把x、y的值代入方程,看看左边和右边是否相等即可.【解析】解:A、把代入方程2x﹣3y=1得:左边=﹣1,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;B、把代入方程2x﹣3y=1得:左边=1,右边=1,左边=右边,所以是方程2x﹣3y=1的解,故本选项符合题意;C、把代入方程2x﹣3y=1得:左边=﹣5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;D、把代入方程2x﹣3y=1得:左边=5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;故选:B.【点睛】本题考查了二元一次方程的解,能熟记方程的解的定义是解此题的关键.知识点二二元一次方程组的解法常用方法:代入消元法、加减消元法解方程组的基本思想是“消元”,也就是把解二元一次方程组转化为解一元一次方程,这种解方程组的方法称为代入消元法,简称代入法。

人教版七年级数学下册第8章二元一次方程组应用专题

人教版七年级数学下册第8章二元一次方程组应用专题

+b)(a-b)的值为__-__8_.
x=1, x=3, x=5, 3.方程 x+2y=7 的正整数解有_3__组,分别为__y_=__3_,____y_=__2_,____y_=__1____
知识点二 二元一次方程组的解法 2x-3y=5,①
4.用加减法解方程组3x-2y=7,② 下列解法不正确的是( D )
(1)每只A型球、B型球的质量分别是多少千克? (2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?
解:(1)设每只 A 型球、B 型球的质量分别是 x 千克,y 千克,根据题意可 得x3+ x+y=y=7,13, 解得xy==43,, 答:每只 A 型球的质量是 3 千克、B 型球的 质量是 4 千克
(1)x-y=1;
x=3, 解:y=2
x+3y=-1, (2)3x-2y=8; 解:xy==-2,1
x-3 1-y+4 2=0, (3)x-2 3-y-3 1=16.
x=4, 解:y=2
知识点三 二元一次方程组的应用
7.(2019·长春)《九章算术》是中国古代重要的数学著作,其中“盈
不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人
+b)(a-b)的值为__-__8_.
x=1, x=3, x=5, 3.方程 x+2y=7 的正整数解有_3__组,分别为__y_=__3_,____y_=__2_,____y_=__1____
知识点二 二元一次方程组的解法 2x-3y=5,①
4.用加减法解方程组3x-2y=7,② 下列解法不正确的是( D )
12.古运河是扬州的母亲河,为打造古运河风光带,现有一段长为 180 米 的河道整治任务由 A,B 两个工程队先后接力完成.A 工程队每天整治 12 米, B 工程队每天整治 8 米,共用时 20 天.

人教版数学七年级下册知识重点与单元测-第八章8-2二元一次方程(组)的解法Ⅰ-代入法(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-2二元一次方程(组)的解法Ⅰ-代入法(能力提升)

第八章二元一次方程(组)8.2 二元一次方程(组)的解法Ⅰ——代入法(能力提升)【要点梳理】知识点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组例1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313 xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.例2.对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320, 2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩【答案】解:232235297x yx yy-=⎧⎪⎨-++=⎪⎩①②将①代入②:2529 7y++=,得 y=4,将y=4代入①:2x-12=2得 x=7,∴原方程组的解是74 xy=⎧⎨=⎩.(2)45:4:3x yx y-=⎧⎨=⎩①②解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5-8k=558k=-∴542x k==-,1538y k==-,∴原方程组的解为52158 xy⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用例3.如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.例4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay=-8中建立关于a、b的方程组即可求出a、b的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13 ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.【答案】解:把代入cx﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【巩固练习】一、选择题1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入②B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. 若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( )A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ).A .13,23- B .2,1 C .-2,1 D .-1,0 4.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y a x y a +=⎧⎨-=⎩的解是二元一次方程3x-5y-30=0的一个解,那么a 的值是( ).A .3B .2C .7D .66.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.若方程组的解为,则点P (a ,b )在第 象限.9.方程组的解是 . 10.若532y x a b +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程 47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ . 12.关于,x y 的二元一次方程组1353x y m x y m +=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m 的值为 .三、解答题13.用代入法解方程组:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数:(1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩.你发现了什么规律?15.若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).16.甲、乙两位同学一起解方程组,甲正确地解得,乙仅因抄错了题中的c,解得,求原方程组中a、b、c的值.【答案与解析】一、选择题1. 【答案】C;2.【答案】A.【解析】把x=a,y=b代入方程组得:,将b=15a 代入5a-b=5,解得:,∴a+b=. 3. 【答案】A ;【解析】将12x =时,12y =-代入y kx b =+得1122k b -=+ ①,再由k 比b 大1得1k b -= ②,①②联立解得13k =,23b =-. 4. 【答案】B ;【解析】将24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩分别代入方程y =ax+b 得二元一次方程组:2441a b a b -+=⎧⎨+=⎩,解得1,32a b =-=. 5. 【答案】B ;【解析】由方程组可得,代入方程,即可求得. 6. 【答案】D.二、填空题7. 【答案】151x y =-+;8.【答案】四.【解析】将x=2,y=1代入方程组得:,解得:a=2,b=﹣3, 则P (2,﹣3)在第四象限.9.【答案】;【解析】解:解方程组, 由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.10.【答案】2, -1;【解析】由同类项的定义得方程组,解之便得答案.11.【答案】3, 1;【解析】由题意得:35471x y x y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,代入 2435ax y x by -=⎧⎨-=⎩,得关于a 、b 的方程组22465a b -=⎧⎨-=⎩,解得31a b =⎧⎨=⎩12. 【答案】12-2或; 【解析】解:解关于x,y 的方程组得21x y m =⎧⎨=--⎩,当x m =时,2m =;当y m =时,12m =-. 三、解答题13.【解析】解:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩①②将②代入①得,0.50.30.6 1.2y y +-=,得94y =, 将94y =代入①得,38x =-, 所以原方程组的解是3894x y ⎧=-⎪⎪⎨⎪=⎪⎩ .(2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩①② 把3x+2y 看作整体,直接将①代入②得,2(52)117x x +=+,解得3x =-, 将3x =-代入①得,2y =-所以原方程组的解是32x y =-⎧⎨=-⎩. 14.【解析】解:(1)无解;(2)唯一一组解;(3)无数组解.规律:当两个一次方程对应项系数不成比例时,方程组有唯一一组解,如(2);当两个一次方程对应项系数成比例时,方程组有无数组解,如(3);当两个一次方程对应项系数成比例,但比值不等于两个常数项对应的比时,方程组无解,如(1).15.【答案】解:将代入得,解得:.∵(a+b)2﹣(a+b)(a﹣b)=2b(a+b),∴当a=,b=时,原式=2b(a+b)=2×=6.16.【解析】解:把代入到原方程组中,得可求得c=﹣5,乙仅因抄错了c而求得,但它仍是方程ax+by=2的解,所以把代入到ax+by=2中得2a﹣6b=2,即a﹣3b=1.把a﹣3b=1与a﹣b=2组成一个二元一次方程组,解得.故a=,b=,c=﹣5.。

初一数学二元一次方程知识点总结

初一数学二元一次方程知识点总结

初一数学二元一次方程知识点总结一、二元一次方程的概念。

1. 定义。

- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

例如:x + y=5,其中x、y是未知数,方程中x的次数是1,y的次数也是1,并且整个方程是整式方程。

2. 二元一次方程的一般形式。

- 一般形式为ax + by=c(a、b、c是常数,a≠0,b≠0)。

例如2x - 3y = 8就是这种形式,这里a = 2,b=-3,c = 8。

二、二元一次方程组的概念。

1. 定义。

- 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

例如x + y=3 2x - y = 1就是一个二元一次方程组。

2. 二元一次方程组的解。

- 二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

例如对于方程组x + y=3 2x - y = 1,通过求解可得x=(4)/(3),y=(5)/(3),((4)/(3),(5)/(3))就是这个方程组的解,即把x=(4)/(3),y=(5)/(3)代入方程组中的两个方程都成立。

三、二元一次方程组的解法。

1. 代入消元法。

- 步骤:- 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来。

例如对于方程组x + y=3 2x - y = 1,由方程x + y=3可得x = 3 - y。

- 将变形后的式子代入另一个方程,消去一个未知数,得到一个一元一次方程。

把x = 3 - y代入2x - y = 1,得到2(3 - y)-y = 1。

- 解这个一元一次方程,求出一个未知数的值。

解2(3 - y)-y = 1,6-2y -y=1,- 3y=-5,y=(5)/(3)。

- 将求得的这个未知数的值代入变形后的式子,求出另一个未知数的值。

把y=(5)/(3)代入x = 3 - y,得x=(4)/(3)。

2. 加减消元法。

- 步骤:- 当方程组中两个方程的同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

人教版七年级数学下册知识点总结(第八章-二元一次方程组)

人教版七年级数学下册知识点总结(第八章-二元一次方程组)

第八章 二元一次方程组一、知识网络结构二、知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。

使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。

使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

数学七年级下册二元一次方程组性质

数学七年级下册二元一次方程组性质

数学七年级下册二元一次方程组性质数学七年级下册二元一次方程组性质导语:书是人类进步的阶梯,这句话说得真不错,我总是爱看书。

因为我从书本里明白了很多很多的道理。

下面是小编为大家整理的,数学知识,想要知更多的资讯,请多多留意CNFLA学习网!第一章二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。

②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。

2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。

使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。

注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。

二元一次方程组的解的讨论:a1x + b1y = c1 已知二元一次方程组a2x + b2y = c2①、②、③、当a1/a2 ≠ b1/b2 时,有唯一解; 当a1/a2 = b1/b2 ≠ c1/c2时,无解; 当a1/a2 = b1/b2 = c1/c2时,有无数解。

x + y = 4 2x + 2y = 8x + y = 4 x + y = 3 例如:对应方程组:①、②、③、 3x - 5y = 9 2x + 2y = 5例:判断下列方程组是否为二元一次方程组:a +b = 2 ②、x = 4 ③、3t + 2s = 5 ④、x = 11 ①、b +c = 3 y = 5 ts + 6 = 0 2x + 3y = 03、用含一个未知数的代数式表示另一个未知数:用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。

人教版数学七年级下册 二元一次方程组

人教版数学七年级下册 二元一次方程组
y = 3x + 4
2. 若 2x2m+3 + 3y3n-7 = 0 是关于 x、y 的二元一次方程,
8 则 m =___-_1__,n =___3___.
3. 加工某种产品需经两道工序,第一道工序每人每天 可完成 900 件,第二道工序每人每天可完成 1200 件. 现有 7 位工人参加这两道工序,应怎样安排人力,才 能使每天第一、第二道工序所完成的件数相等?请列 出符合题意的二元一次方程组.
一次方程,则 m+n =__0___.
| m |=1
|m-1|≠0 2n-1 = 1
m = -1
n=1
m+n =0
总结 (1) 未知数的系数不为 0;
(2) 含未知数的项的次数都是 1.
2. 若 x2m-1 + 5y3n-2m = 7 是关于 x、y 的二元一次方程, 则 m =__1__,n =__1__.
和 y),并且含有未知数的项的次数都是 1, 像这样
的方程叫做二元一次方程.
例1 判断下列方程是否为二元一次方程:
(1) 4 y 3z z 6 ; 是
(2)2 y 5 x; 3
不是
(3) x2 2 y 0;
不是
(4) x
3 y
1;
不是
(5)2 x2 2 x y 2 x2; 是 总结 判断要点:
的解是 ( C )
B. x = 3,
y=6
D. x = 4,
y=2
一般地,二元一次方程有无数个解,而二元一次方 程组只有一个解.
二元 一次 方程
①每个方程含有
_两_个未知数;
②含有未知数的 项的次数_都__是___1
使二元一次方程两 边的值_相__等_的两个 _未__知__数__的值

人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解

人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解

《二元一次方程组》全章复习与巩固(提高)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】【要点梳理】要点一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程; (3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组. 2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 要点诠释: (1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法. (2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解. 3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z )表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; (4)解这个方程组,求出未知数的值; (5)写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、二元一次方程组的相关概念1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩ B . 1332x y x y +=⎧⎨+=-⎩ C . 1334x y x y +=⎧⎨-=⎩ D . 1333x y x y +=⎧⎨+=⎩【思路点拨】逐一求每个选项中方程组的解,便得出正确答案 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C. 【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零),(1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c a b c ==,方程组有无数组解; (3)当1222a a ab ≠,方程组有唯一解. 举一反三:【高清课堂:二元一次方程组章节复习409413 例1(3)】 【变式1】若关于x 、y 的方程()12mm x y ++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14.类型二、二元一次方程组的解法2. (黄冈调考)解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【思路点拨】本题结构比较复杂,一般应先化简,再消元.仔细观察题目,不难发现,方程组中的每一个方程都含有(x -y ),因此可以把(x -y )看作一个整体,消去(x -y )可得到一个关于y 的一元一次方程.【答案与解析】解:由①×9得:6(x -y )+9y =45 ③ ②×4得:6(x -y )-10y =-12 ④ ③-④得:19y =57, 解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩.【总结升华】本题巧妙运用整体法求解方程组,显然比加减法或代入法要简单,在平时求方程组的解时,要善于发现方程组的特点,运用整体法求解会收到事半功倍的效果. 举一反三:【变式】(换元思想)解方程组16105610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩【答案】 解:设6x y m +=,10x yn -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩.∴ 119x y =-⎧⎨=⎩.3.(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c的值. 【思路点拨】把代入方程组第一个方程求出c 的值,将x 与y 的两对值代入第二个方程求出a 与b 的值,即可求出a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.举一反三:【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =,则=-b a .【答案】11.类型三、实际问题与二元一次方程组4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【思路点拨】初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x ,宽为y ,就可以列出一个关于x 、y 的二元一次方程组. 【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y +=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm【总结升华】有些题目的相等关系不是直接给我们的,这就需要我们仔细阅读题目,设法提炼出题目中隐含的相等关系.举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=. 答:图中阴影部分的面积为82.5.(龙岩)已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费. 【答案与解析】【总结升华】本题实际上是求二元一次方程组的正整数. 举一反三:【变式1】甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。

湘教版七年级数学下册 期末复习(一) 二元一次方程组 知识梳理

湘教版七年级数学下册 期末复习(一) 二元一次方程组  知识梳理

A.①×3+②×2
B.①×3-②×2
C.①×5+②×3
D.①×5-②×3
5.二元一次方程组2xx--2yy==-0,3的解为( C )
A.xy= =21
D.yx==1-2
6.若5a7xby+7和-6a2-4yb2x是同类项,则x,y的值分别是( B )
18.(8分)小明用代入消元法解二元一次方程组x2+x-y=y=-31,2.①② 第一步:将方程①变形,得y=2x-3.③ 第二步:把方程③代入方程①,得2x-(2x-3)=3. 第三步:整理,得3=3. 第四步:因为x可取一切有理数,所以原方程组有无数个解.
问题: (1)以上解法,造成错误的一步是 第二步; (2)请你给出用加减消元法解此二元一次方程组的正确过程. 解:①+②,得3x=-9. 解得x=-3. 把x=-3代入②,得y=-9. 所以方程组的解为xy= =- -39.,
数学
期末复习(一) 二元一次方程组
01 知识结构图
02 重难点突破
重难点1 二元一次方程组的解法 【例1】 解方程组:42xx- +3y=y=62.②,① 【解答】 解法一:②×2-①,得5y=10,解得y=2. 把y=2代入②,得x=2. 所以原方程组的解为yx==22.,
解法二:由②,得y=6-2x.③ 将③代入①,得4x-3(6-2x)=2,解得x=2. 将x=2代入③,得y=2. 所以原方程组的解为yx==22.,
19.(8分)已知甲、乙两辆汽车同时、同方向从同一地点出发行 驶.若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车 相遇,相遇时乙车走了1小时.求甲、乙两车的速度.
解:设甲、乙两车的速度分别是x千米/时和y千米/时.根据题 意,得
xx×=12+y,y×1=90×2.解得yx==6102.0, 答:甲、乙两车的速度分别是120千米/时、60千米/时.

(完整版)冀教版七年级数学下册知识点总结

(完整版)冀教版七年级数学下册知识点总结

二元一次方程组本章的重点是:二元一次方程组的解法——代入法,加减法以及列一次方程组解简单的应用问题本章的难点是:1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;2.正确地找出应用题中的相等关系,列出一次方程组.1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.相交线与平行线1、定义、命题、公理、定理2、余角、补交、对顶角3、判定两条直线平行的方法:方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等,两直线平行。

方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等,两直线平行。

方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补,两直线平行。

4、平行线的性质平行线具有性质:性质1 两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

性质2 两条平行线被第三条直线所截,内错角相等。

简单说成:两直线平行,内错角相等。

性质3 两条平行线被第三条直线所截,同旁内角互补。

简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

整式乘法本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.3.乘法公式的推导过程,能灵活运用乘法公式进行计算.4.熟练地运用运算律、运算法则进行运算,5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.三角形1 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

人教版数学七年级下册第8章二元一次方程组复习

人教版数学七年级下册第8章二元一次方程组复习
2.A、B两地相距36千米,甲从A地步行到B地, 乙从B地步行到A地,两人同时相向出发,4小时 后两人相遇,6小时后,甲剩余的路程是乙剩余 路程的2倍,求二人的速度?
练一练:
1. 某市现有42万人口,计划一年后城镇人口增 加0.8%,农村人口增加1.1%,这样全市人口将增 加1%,求这个市一年后预计的城镇人口和农村人 口是多少?
关于定义
1%,这样全市人口将增加1%,求这个市一年后预计的城镇人口和农村人口是多少?
二元一次方程是整式方程.
二元一次方程组里一共含有两个 ⒈ 使相同未知数的系数相同或相反(若不同 a .
二元一次方程组里一共含有两个未知数,而不是每个方程一定要含有两个未知数. 9、方程组 的解是
未知数,而不是每个方程一定要含有 就不是二元一次方程,因为
3、阅读小故事,列出满足题意的二元一次方程组:(杨损 问题)唐朝时,有一位懂数学的尚书叫杨损,他曾主持一场 考试,其中有一道题是:"有一天,几个盗贼正在商议怎样分 配偷来的布匹,贼首说,每人分六匹布,还剩下五匹布;每人 分七匹布还少了八匹布.这些话被躲在暗处的衙役听到 了,他飞快地跑回官府,报告了知府,但知府不知道有多少 盗贼,不知派多少人去抓捕他们.请问:有盗贼几人,布匹多 少?列出二元一次方程组,并根据问题的实际意义找出 问题的解。
x + y = -5的一个解.
关于解法
1、解二元一次方程组你有几种方法? 两种:代入法和加减法
2、代入法和加减法解方程组,“代入”与“加 减”的目的是什么?
消元:把二元一次方程转化为一元一次方程
3、解二元一次方程组的步骤是什么?
代入消元法的步骤
⒈将其中一个方程化为用含一个未知数的代数式表示另一个未知数的形式,如:y=ax+b的形式

2024年初中七年级数学下册同步讲义第18课 实际问题与二元一次方程组(学生版)

2024年初中七年级数学下册同步讲义第18课  实际问题与二元一次方程组(学生版)

第18课 实际问题与二元一次方程组课程标准1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型;2. 熟练掌握用方程组解决和差倍分,配套,工程等实际问题.3.熟悉行程、方案、数字等问题的解决方法;4. 进一步研究用二元一次方程组解决实际问题.知识点01 常见的一些等量关系(一)1.和差倍分问题:增长量= 较大量= ,总量= .2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量= ,各部分劳动量之和=总量.4.利润问题:商品利润= , . 知识点02 实际问题与二元一次方程组1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);=100% 利润利润率进价目标导航知识精讲解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.注意:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.知识点03 常见的一些等量关系(二)1. 行程问题=路程.顺水速度= .逆水速度= .2.存贷款问题利息= .本息和(本利和)=本金+利息=本金+本金×利率×期数= .年利率=月利率×12.月利率=年利率×. 3.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b ,则这个两位数可以表示为 .4.方案问题在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案. 知识点04 实际问题与二元一次方程组1211.列方程组解应用题的基本思路2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.注意:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.考法01 和差倍分问题【典例1】在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%. (男(女)生优分率=,全校优分率=) (1)求甲校参加测试的男、女生人数各是多少? (2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.()100%()⨯男女生优分人数男女生测试人数100%⨯全校优分人数全校测试人数能力拓展【即学即练】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?考法02 配套问题【典例2】某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68 个,扁担40 根,问这个班的男女生各有多少人?【即学即练】某工厂有工人60人,生产某种由一个螺栓和两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?6020142x y y x +=⎧⎪⎨=⎪⎩2535x y =⎧∴⎨=⎩考法03 工程问题 【典例3】一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)考法04 利润问题【典例4】甲、乙两件服装的成本共500元,商店老板为获取利润,将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按定价的9折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元?【即学即练】为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是多少?考法05 行程问题【典例5】A、B两地相距480千米,一列慢车从A地开出,一列快车从B地开出.(1)如果两车同时开出相向而行,那么3小时后相遇;如果两车同时开出同向(沿BA方向)而行,那么快车12小时可追上慢车,求快车与慢车的速度;(2)如果慢车先开出l小时,两车相向而行,那么快车开出几小时可与慢车相遇?【即学即练】两列火车从相距810km的两城同时出发,出发后10h相遇;若第一列火车比第二列火车先出发9h,则第二列火车出发5h后相遇,问这两列火车的速度分别是多少?考法06 存贷款问题【典例6】蔬菜种植专业户徐先生要办一个小型蔬菜加工厂,分别向银行申请了甲,乙两种贷款,共13万元,徐先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲,乙两种贷款分别是多少元?考法07 数字问题【典例7】一个两位数的数字之和为11,若把十位数字与个位数字对调,所得的两位数比原来大63,则原来两位数为()A.92 B.38 C.47 D.29【即学即练】一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为把个位数字和十位数字对调后组成的数,那么这个两位数是()A.16 B.25 C.52 D.61考法08 方案选择问题【典例8】某种饮料有大箱和小箱两种包装,已知3大箱、2小箱共92瓶;5大箱、3小箱共150瓶.求:①2大箱、5小箱分别有饮料多少瓶?②若一大箱、一小箱饮料分别标价48元、25元,且两种包装的饮料质量完全相同,请问购买哪种包装的饮料更合算?【即学即练】某高校共有5个大餐厅和2个小餐厅,经过测试同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.题组A 基础过关练1.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是()A.()()1836024360x yx y⎧+=⎪⎨-=⎪⎩B.()()1836024360x yx y⎧+=⎪⎨+=⎪⎩C.()()1836024360x yx y⎧-=⎪⎨-=⎪⎩D.()()1836024360x yx y⎧-=⎪⎨+=⎪⎩2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==3.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩分层提分C .91181013x y x y y x ()()=⎧⎨+-+=⎩D .91110813x y y x x y =⎧⎨+-+=⎩()() 4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩6.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 7.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩8.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩9.如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35B.45C.55D.6510.利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm题组B 能力提升练11.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.12.如图,在长方形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=12cm,FG=4cm,则图中阴影部分的总面积是__________2cm.13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.14.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.15.一家快餐店销售、、A B C三种套餐,其中A套餐包含一荤两素,B套餐包含两荤一素,C套餐包含两荤两素,每份套餐中一荤的成本相同,一素的成本也相同,已知一份C套餐的售价是一份A套餐和一份B套餐售价之和的2,3一天下来,店长发现A套餐和B套餐的销量相同,且,A B套餐的利润和是C套餐利润的两倍,当天的总利润率是60%.第二天店内搞活动,C套餐的售价打五折,,A B套餐的售价均不变,当、、A B C 三种套餐的销量相同时,总利润率为________.16.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm,此时木桶中水的深度是_______cm.题组C 培优拔尖练17.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?18.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.19.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少别瓶?20.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.21.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?22.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?。

初中数学知识归纳二元一次方程组与不等式

初中数学知识归纳二元一次方程组与不等式

初中数学知识归纳二元一次方程组与不等式初中数学知识归纳:二元一次方程组与不等式在初中数学学习中,二元一次方程组和不等式是我们必须要掌握的重要内容。

本文将对这两个概念进行归纳总结,帮助读者更好地理解和应用这些知识。

一、二元一次方程组二元一次方程组由两个含有两个未知数的方程组成,一般形式为:{ax + by = cdx + ey = f}其中a、b、c、d、e、f为已知的实数,x、y为未知数。

1. 解的概念解即是满足方程组中所有方程的变量值,使方程组中的等式成立。

对于二元一次方程组,它可能有唯一解、无解或者无穷解三种情况。

2. 解的求解方法(1)消元法:通过将方程组中的一方程乘以适当因子,使得两个方程中的某一未知数系数相等或当前系数可消去。

(2)代入法:将方程组中的一方程解出其中一个未知数,再代入另一个方程中去求解。

(3)等式法:将方程组两个方程相加或相减,消去一个未知数,再求解另一个未知数。

3. 实际应用二元一次方程组在日常生活和实际问题中有广泛应用。

例如,通过解决方程组可以计算某商品的单价和数量,或者找到两架飞机的速度等。

二、不等式不等式是数学中的一种表达式形式,表示两个数或表达式的大小关系。

不等式有三种基本形式:大于(>)、小于(<)和大于等于(≥)。

1. 解的概念不等式中的解是使不等式成立的取值范围。

对于一元不等式,解可以用数轴表示;对于多元不等式,解可以用数平面或空间中的区域表示。

2. 不等式的性质(1)加减性质:对不等式两边同时加或减一个数,不等号方向不改变。

(2)乘除性质:对正数乘除不等式两边,不等号方向不改变;对负数乘除不等式两边,不等号方向改变。

3. 实际应用不等式在实际问题中有着广泛的应用。

例如,通过解决不等式可以求解某个数的范围或满足某种条件的取值范围。

综上所述,初中数学知识中的二元一次方程组和不等式是我们必须要掌握的重要内容。

通过对二元一次方程组的解法和不等式的性质的学习,我们可以更好地理解和应用这些知识。

七年级下册数学二元一次方程

七年级下册数学二元一次方程

七年级下册数学二元一次方程
对于七年级下册数学中的二元一次方程,我们可以通过给定的方程进行推理和解析,来寻找变量的解。

下面是一份详细的内容概述:
1、方程的定义和解的概念:首先,我们要明确二元一次方程的定义。

二元一次方程是指含有两个未知数x和y,且每个未知数的次数为1的方程。

接着,我们要理解解的概念,即满足方程未知数的具体值。

2、代入法求解:代入法是一种常用的求解二元一次方程的方法。

基本步骤是将一个未知数表示为另一个未知数的函数,然后将其代入原方程中求解。

例如,对于方程组 {x + y = 3, y = 2x},我们可以将第二个方程代入第一个方程中,得到一个只包含x的一元一次方程,从而求解出x的值。

3、消元法求解:消元法是通过消去一个未知数的方式,将二元一次方程组转化为一个一元一次方程,然后求解。

例如,对于方程组{x + y = 3, x - y = 9},我们可以将两个方程相加或相减,消去其中一个未知数,得到一个只包含另一个未知数的一元一次方程,从而求解出该未知数的值。

4、线性组合法求解:线性组合法是通过对方程进行线性组合的方式,消去一个未知数,然后求解。

例如,对于方程组 {x + y = 3, 2x - y = 1},我们可以将第一个方程乘以2后与第二个方程相加,消去y,得到一个只包含x的一元一次方程,从而求解出x的值。

通过以上三种方法的学习和练习,我们可以逐步掌握二元一次方程的求解技巧,并进一步解决数学中与二元一次方程相关的其他问题。

这将为我们在八年级学习一元二次方程、线性代数和解析几何等课程打下坚实的基础。

湖北鄂州市七年级数学下册第八章【二元一次方程组】知识点总结(含解析)

湖北鄂州市七年级数学下册第八章【二元一次方程组】知识点总结(含解析)

1.已知二元一次方程组2513377x yx y+=⎧⎨-=-⎩①②,用加减消元法解方程组正确的()A.①×5-②×7B.①×2+②×3C.①×7-②×5D.①×3-②×22.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.958220x yx y+=⎧⎨-=⎩B.954220x yx y+=⎧⎨-=⎩C.9516220x yx y+=⎧⎨-=⎩D.9516110x yx y+=⎧⎨-=⎩3.如图,长方形ABCD被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD的周长为l,若图中3个正方形和2个长方形的周长之和为94l,则标号为①正方形的边长为()A.112l B.116l C.516l D.118l4.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,根据题意列方程组正确的是()A .4.512x yyxB .4.512x yyxC .4.512x yxyD .4.512x yyx5.方程组125x yx y+=⎧⎨+=⎩的解为()122143236.某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x 个,足球有y 个,根据题意可得方程组( ) A .x y 66x 2y 3+=⎧⎨=-⎩B .x y 66x 2y 3+=⎧⎨=+⎩C .x y 66y 2x 3+=⎧⎨=-⎩ D .x y 66y 2x 3+=⎧⎨=+⎩7.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x 只,树有y 棵,由题意可列方程组( )A .3551y xy x +=⎧⎨-=⎩B .3551y xy x -=⎧⎨=-⎩C .15355x y y x ⎧+=⎪⎨⎪=-⎩D .5315x y x y -⎧=⎪⎪⎨⎪=-⎪⎩8.由方程组223224x y m x y m -=+⎧⎨+=+⎩可得x 与y 的关系式是( )A .3x =7+3mB .5x ﹣2y =10C .﹣3x+6y =2D .3x ﹣6y =29.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .1=⎧⎨=⎩x yD .11x y =⎧⎨=⎩10.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x 岁和y 岁,则可列方程组( )A .440x y x y x y -=-⎧⎨-=-⎩B .440x y x y -=⎧⎨+=⎩C .440x yy x -=⎧⎨-=⎩D .440x x yy x y -=-⎧⎨-=-⎩11.下列说法正确的是( )A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是122332111D .若3m n x +与22112m x y --是同类项,则2m =,1n =二、填空题12.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.13.如果方程组43123392x y x y +=⎧⎪⎨-=⎪⎩与方程y =kx -1有公共解,则k =______. 14.已知012x y =⎧⎪⎨=-⎪⎩是方程组522x b y x a y -=⎧⎨+=⎩的解,则a b +的值为_______ . 15.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__.16.已知343435x y m x y m+=⎧⎨+=⎩的解满足1627+=x y ,则m=_________.17.一天,小明从家出发匀速步行去学校上学,几分钟后,在家休假的爸爸发现小明忘带数学作业,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路回家(爸爸追上小明时交流时间忽略不计).小明拿到书后立即提速14赶往学校,并在从家出发后23分钟到校,两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.18.已知关于,x y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出以下结论:①51x y =⎧⎨=-⎩,是方程组的一个解;②当2a =-时,,x y 的值互为相反数;③当1a =时,方程组的解也是方程42号).19.若方程组23103228a b a b -=⎧⎨+=⎩的解是82a b =⎧⎨=⎩,则方程组()()()()223110322128x y x y ⎧+--=⎪⎨++-=⎪⎩的解是____________.20.如果28a b --与()21a b ++互为相反数,那么a b =________. 21.已知x y x x ++=,且490xy ,则5x y -的值为____________.三、解答题22.解方程组:(1)524365y x x y -⎧=⎪⎨⎪+=⎩①②(2)35198367x y x y ①②+=⎧⎨-=⎩23.对于平面直角坐标系xOy 中的点P (),a b 和图形W ,给出如下定义:如果图W 上存在一点Q (),c d 使得,,a cb d k =⎧⎨+=⎩,那么点P 是图形W 的“k 阶关联点”()1若点P 是原点O 的“1-阶关联点”,则点P 的坐标为 ; ()2如图,在ABC ∆中,()1,1A -,()2,4B --,()0,6C -.①若点P 是ABC ∆的“0阶关联点”,把所有符合题意的点P 都画在图中; ②若点P 是ABC ∆的“k 阶关联点”,且点P 在ABC ∆上,求k 的取值范围.24.若在一个两位正整数N的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为N的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数M加 2 后得到一个新数,我们称这个新数为M的“立达数”,如 34 的“立达数”为 36.(1)求证:对任意一个两位正整数A,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数B的“立达数”的各位数字之和是B的各位数字之和的一半,求B的值.25.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本?(2)请你解释,小明为什么不可能找回68元?1.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成.其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.49 B.64 C.81 D.1002.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或53.已知方程组512x yax by+=⎧⎨+=⎩和521613x ybx ay+=⎧⎨+=⎩的解相同,则a、b的值分别是()A.2,3 B.3,2 C.2,4 D.3,44.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)A.﹣a B.a C.12a D.﹣12a5.由方程组71x my m+⎧⎨-⎩==可得出x与y的关系式是()A.x+y=8 B.x+y=1 C.x+y=-1 D.x+y=-86.方程组2824x yx y⎧+=⎪⎨+=⎪⎩的解的个数为()A.1 B.2 C.3 D.47.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A .280B .140C .70D .1968.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( ) A .23x y =+B .32y x +=C .23y x =-D .32y x =-9.已知关于x ,y 的二元一次方程组323223x y m x y m +=-⎧⎨+=⎩的解适合方程x-y=4,则m 的值为( ) A .1B .2C .3D .410.小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页.若小明、小颖平均每天分别阅读x 页、y 页,则下列方程组正确的是( ) A .485210x yy x -=⎧⎨=-⎩B .485210x yy x +=⎧⎨=+⎩C .458210x y y x =-⎧⎨=-⎩D .458210x y y x =+⎧⎨=+⎩11.下列方程是二元一次方程的是( ). A .32x y -=B .1xy=C .2+3=x xD .153x y-= 二、填空题12.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .13.如果方程组43123392x y x y +=⎧⎪⎨-=⎪⎩与方程y =kx -1有公共解,则k =______. 14.二元一次方程组31x y x y +=⎧⎨-=-⎩的解是__________ .15.已知关于,x y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出以下结论:①51x y =⎧⎨=-⎩,是方程组的一个解;②当2a =-时,,x y 的值互为相反数;③当1a =时,方程组的解也是方程42号).16.关于,x y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是41x y =⎧⎨=⎩,则关于,x y 的方程组111222(1)()2(1)()2a x b y c a x b y c -+-=⎧⎨-+-=⎩的解是_____________. 17.已知方程组 2629x y x y +=⎧⎨+=⎩,则x-y=_________.18.若3x b +5y 2a 和﹣3x 2y 2﹣4b 是同类项,则a =_____.19.如果()2x 2y 1x y 50-+++-=,那么x =______,y =____ 20.若方程2(3)31a a xy --+=是关于x ,y 的二元一次方程,则a 的值为_____.21.已知x y x x ++=,且490xy ,则5x y -的值为____________.三、解答题22.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a ,b 的值(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量23.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A 种原料和2吨B 种原料,生产每件乙产品需要3吨A 种原料和1吨B 种原料,该厂现有A 种原料120吨,B 种501(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元?24.2014-2015年度中国篮球联赛()CBA决赛的门票价格如下表:小聪带了2700元购票款前往购票,若购买2张A等票和5张B等票,则购票款多出了200元;若购买5张A等票和1张B等票,则购票款还缺100元.(1)若小聪购买1张A等票和5张B等票共需花费多少元?(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为________张(该小题直接写出答案,不必写出过程.)25.解方程组.(1)32923x yx y-=⎧⎨+=⎩;(2)1343(1)41 x yx y⎧-=⎪⎨⎪-=-⎩.1.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何? ”译成白话文: “现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x 尺,绳子的长度为y 尺.则可列出方程组为( )A . 4.512x y yx -=⎧⎪⎨-=⎪⎩ B . 4.512y x yy -=⎧⎪⎨-=⎪⎩ C . 4.512y x yx -=⎧⎪⎨-=⎪⎩ D . 4.512x y yy -=⎧⎪⎨-=⎪⎩2.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t =3.已知下列各式:①12+=y x ;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( )A .1B .2C .3D .44.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy =5.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l62320y 的值互为相反数;②2x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y=1﹣a 的解;其中正确的是( ) A .①②B .①③C .②③D .①②③7.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=8.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分9.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩10.若方程组21322x y kx y +=-⎧⎨+=⎩的解满足0x y +=,则k 的值为( )A .1-B .1C .0D .不能确定11.方程组320x y x y +=⎧⎨-=⎩的解是( )A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .30x y =⎧⎨=⎩二、填空题12.若方程x |m|-2+(m+3)y 2m-n =6是关于x 、y 的二元一次方程,则m+n=_____ 13.方程27x y +=在正整数范围内的解有_________________.14223322415.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________. 16.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______. 17.为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.18.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_______cm .19.2017年复兴号的成功研制生产,标志着我国高速动车组走在了世界先进前列.2019年全世界最长的高速动车组复兴号CR 400A ﹣B 正式运营,全长约440米,如图,将笔直轨道看成1个单位长度为1米的数轴,CR 400A ﹣B 停站时首尾对应的数分别为a ,b ,向右行驶一段距离后,首尾对应的数分别为c ,d ,若c ﹣d =2(|a |﹣|b |),则b 的值为__.20.若方程2(3)31a a xy --+=是关于x ,y 的二元一次方程,则a 的值为_____.21.已知x y x x ++=,且490x y ,则5x y -的值为____________.三、解答题22.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费22027285.57 阶梯 电量x (单位:度)电费价格一档 0<x≤180 a 元/度二档 180<x≤350 b 元/度三档x >350 0.9元/度23.对于平面直角坐标系xOy 中的点P (),a b 和图形W ,给出如下定义:如果图W 上存在一点Q (),c d 使得,,a c b d k =⎧⎨+=⎩,那么点P 是图形W 的“k 阶关联点”()1若点P 是原点O 的“1-阶关联点”,则点P 的坐标为 ; ()2如图,在ABC ∆中,()1,1A -,()2,4B --,()0,6C -.①若点P 是ABC ∆的“0阶关联点”,把所有符合题意的点P 都画在图中; ②若点P 是ABC ∆的“k 阶关联点”,且点P 在ABC ∆上,求k 的取值范围.24(1)写出用含x、y的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?25.5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如下表所示:型号/价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共10部,总计花费32000元,求:(1)营业厅购进A、B两种型号手机各多少部?(2)营业厅将手机销售完成后共获得利润多少元?。

人教版数学七年级下册知识重点与单元测-第八章8-1二元一次方程(组)的相关概念(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-1二元一次方程(组)的相关概念(能力提升)

第八章 二元一次方程(组)8.1 二元一次方程(组)的相关概念(能力提升)【要点梳理】知识点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个.【典型例题】 类型一、二元一次方程例1.已知方程(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,求m 、n 的值.【答案与解析】解:∵(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,∴n ﹣1=1,|m ﹣1|=1, 解得:n=2,m=0或2,若m=2,方程为2y=2,不合题意,舍去, 则m=0,n=2. 举一反三:【变式1】已知方程3241252m nx y +--=是二元一次方程,则m= ,n= . 【答案】-2,14【变式2】方程(1)(1)0a x a y ++-=,当______a a ≠=时,它是二元一次方程,当时,它是一元一次方程.【答案】1±;11-或 类型二、二元一次方程的解 例2.已知是方程2x ﹣6my+8=0的一组解,求m 的值.【答案与解析】 解:∵是方程2x ﹣6my+8=0的一组解,∴2×2﹣6m ×(﹣1)+8=0,解得m=﹣2. 举一反三:【变式】已知方程2x-y+m-3=0的一个解是11x m y m =-⎧⎨=+⎩,求m 的值.【答案】 解:将11x m y m =-⎧⎨=+⎩代入方程2x-y+m-3=0得2(1)(1)30m m m --++-=,解得3m =.答:m 的值为3.例3.写出二元一次方程204=+y x 的所有正整数解. 【答案与解析】解:由原方程得x y 420-=,因为y x 、都是正整数, 所以当4321, , , =x 时,481216, , , =y . 所以方程204=+y x 的所有正整数解为:⎩⎨⎧==161y x , ⎩⎨⎧==122y x , ⎩⎨⎧==83y x , ⎩⎨⎧==44y x .举一反三: 【变式1】已知是关于x 、y 的二元一次方程ax ﹣(2a ﹣3)y=7的解,求a 的值.【答案】 解:把代入方程ax ﹣(2a ﹣3)y=7,可得:2a+3(2a ﹣3)=7, 解得:a=2.【变式2】在方程0243=-+y x 中,若y 分别取2、41、0、-1、-4,求相应的x 的值.【答案】将0243=-+y x 变形得342yx -=. 把已知y 值依次代入方程的右边,计算相应值,如下表:类型三、二元一次方程组及解 例4.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙看错了方程②中的b .得到方程组的解为54x y =⎧⎨=⎩.试计算:20112010110a b ⎛⎫+- ⎪⎝⎭的值.【答案与解析】 解:把31x y =-⎧⎨=-⎩代入②,得-12+b =-2,所以b =10.把54x y =⎧⎨=⎩代入①,得5a+20=15,所以a =-1, 所以201120112010201011(1)101(1)01010ab ⎛⎫⎛⎫+-=-+-⨯=+-= ⎪ ⎪⎝⎭⎝⎭.举一反三:【变式】已知关于,x y 的二元一次方程组41323x ay x by x y +==⎧⎧⎨⎨+==-⎩⎩的解是 , 求的值a b +. 【答案】解:将13x y =⎧⎨=-⎩代入原方程组得:134332a b -=⎧⎨-+=⎩ ,解得113a b =-⎧⎪⎨=⎪⎩,所以23a b +=-.【巩固练习】一、选择题1.一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) A .5 个 B. 6 个 C.7 个 D.8 个2.方程2x ﹣=0,3x+y=0,2x+xy=1,3x+y ﹣2x=0,x 2﹣x+1=0中,二元一次方程的个数是( )A .5个B .4个C .3个D .2个3.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m 的值为( ) A .4B .﹣4C .D .﹣4.若5x -6y =0,且xy ≠0,则的值等于( )A .23 B. 32C.1D. -1 5.若x 、y 均为非负数,则方程6x=-7y 的解的情况是( ) A .无解 B.有唯一一个解 C.有无数多个解 D.不能确定6.在早餐店里,王伯伯买5个馒头,3个包子,老板少拿2元,只要50元.李太太买了11个馒头,5个包子,老板以售价的九折优待,只要90元.若馒头每个x 元,包子每个y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=-⎧⎨+=÷⎩二、填空题 7.已知方程3241252m nxy +--=是二元一次方程,则m =________,n =_________. 8.若方程组的解为,则点P (a ,b )在第象限.9.在13,72x y ⎧=⎪⎪⎨⎪=⎪⎩ 04x y =⎧⎨=⎩,21x y =⎧⎨=⎩,33x y =⎧⎨=⎩这四对数值中,是二元一次方程组32823x y x y +=⎧⎨-=⎩的解的是________ .10. 方程2x+3y=10 中,当3x-6=0 时,y=_________; 11. 方程|a |+|b |=2 的自然数解是_____________; 12.若二元一次方程组的解中,则等于____________.三、解答题13.请你写出一个二元一次方程组,使它的解是.14.甲、乙二人共同解方程组2623mx y x ny +=-⎧⎨-=-⎩①②由于看错了方程①中的m 值,得到方程组的解为32x y =-⎧⎨=-⎩;乙看错了方程②中的n 的值,得到方程组的解为52x y =-⎧⎨=⎩,试求代数式22m n m n ++的值.15.某球迷协会组织36名球迷租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可租用的汽车有两种:一种是每辆车可乘8人,另一种是每辆车可乘4人.要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最少的租车方案,并简述你的理由.【答案与解析】一、选择题1. 【答案】B;2. 【答案】D;【解析】解:2x ﹣=0是分式方程,不是二元一次方程;3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y﹣2x=0是二元一次方程;x2﹣x+1=0不是二元一次方程.故选:D.3.【答案】【解析】把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.4. 【答案】A;【解析】将5x=6y代入后面的代数式化简即得答案.5. 【答案】B;【解析】76x y=-可知:,x y异号或均为0,所以不可能同时为正,只能同时为0.6. 【答案】B;【解析】根据题意知,x,y同时满足两个相等关系:①老板少拿2元,只要50元;②老板以售价的九折优待,只要90元,故选B.二、填空题7. 【答案】-2,14;【解析】由二元一次方程的定义可得:31241mn+=⎧⎨-=⎩,所以214mn=-⎧⎪⎨=⎪⎩8.【答案】四【解析】:将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P(2,﹣3)在第四象限.9. 【答案】21 xy=⎧⎨=⎩;【解析】把4组解分别代入方程组验证即可.10.【答案】2;【解析】将2x=代入2x+3y=10中可得y值.11.【答案】;12.【答案】-3∶4;【解析】将代入中,得,即;将代入,得,即,即.三、解答题13.【解析】解:答案不唯一,例如:∵,∴x+y=5, x-y=-1,∴所求的二元一次方程组可以是.14.【解析】解:将32xy=-⎧⎨=-⎩代入②中2(3)23n⨯-+=-,32n=.将52xy=-⎧⎨=⎩代入①中-5m+4=-6,m=2.∴229374344 m n mn++=++=.15.【解析】解:(1)设8个座位的车租x辆,4个座位的车租y辆.则8x+4y=36,即2x+y=9.∵ x,y必须都为非负整数,∴ x可取0,1,2,3,4,∴ y的对应值分别为9,7,5,3,1.因此租车方案有5种,任取三种即可.(2)因为8个座位的车座位多,相对日租金较少,所以要使费用最少,必须尽量多租8个座位的车.所以符合要求的租车方案为8个座位的车租4辆.4个座位的车租1辆,此时租车费用为4×300+1×200=1400(元).。

初一数学下册基本知识点总结(通用8篇)

初一数学下册基本知识点总结(通用8篇)

初一数学下册基本知识点总结(通用8篇)新人教版初一下册数学知识点总结归纳篇一一元一次方程一、几个概念1、一元一次方程:2、方程的解:使方程的未知数的值叫方程的解。

5、移项:叫做移项。

(切记:移项必须)。

二、解一元一次方程的一般步骤:①去分母,方程两边同乘各分母的(注意:去分母不漏乘,对分子添括号)②,③,④,⑤三、列方程(组)解应用题的一般步骤①。

设,②。

列,③。

解,④。

检,⑤。

答第七章二元一次方程组一、几个概念1、二元一次方程:2、二元一次方程组:3、二元一次方程组的解:使二元一次方程组的的两个未知数的值。

二、二元一次方程组的解法:1、代入消元的条件:将一个方程化为的形式。

(当一个方程中有一个未知数系数为±1时,最适合)。

2、加减消元的条件:两个方程中,其中一未知数的系数或。

(当两个方程中,其中一未知数系数成倍数关系时,最适合)。

三、解三元一次方程组的一般步骤:①。

先用代入法或加减法消去系数较简单的一个未知数,转化为;②。

然后再解,得到两个未知数的值;③。

最后将上步所得两个未知数的值代回前边其中一方程,求出另一未知数的值。

第八章一元一次不等式一、几个概念1、不等式:叫做不等式。

2、不等式的解:叫做不等式的解。

3、不等式的解集:5、一元一次不等式:6、一元一次不等式组:7、一元一次不等式组的解集:二、一元一次不等式(组)的解法:1、解一元一次不等式的一般步骤:①。

,②。

,③。

,④。

,⑤。

2、怎样在数轴上表示不等式的解集:①先定起点:有等号时用点;无等号时用点。

②再画范围:小于号向画;大于号向画。

3、一元一次不等式组的解法:先分别求;再求4、注意:①。

在不等式两边同时乘或除以负数时,不等号必须②。

求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律:同大取,同小取;“大小,小大”取,“大大,小小”则第九章多边形一、几个概念1、三角形的有关概念:①三角形:是由三条不在同一直线上的组成的平面图形,这三条就是三角形的边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组知识总结及典型例题◆知识要点知识点1:二元一次方程的变形:用一个未知数表示另一个未知数知识点2:二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。

(注:①方程中有且只有两个未知数。

②方程中含有未知数的项的次数为1。

③方程为整式方程。

)知识点3:二元一次方程组的定义:由两个二元一次方程所组成的方程组叫二元一次方程组:知识点4:二元一次方程的解的定义:使二元一次方程左右两边的值相等的未知数的值叫做二元一次方程的解。

方程组的解的定义:方程组中所有方程的公共解叫方程组的解。

知识点5:二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.知识点6:二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解。

◆例题解析例1:已知二元一次方程5x-2y=10 ①将其变形为用含x的代数式表示y的形式。

②将其变形为用含y的代数式表示x的形式例2:(1)下列方程中是二元一次方程的是()A.3x-y2=0 B.2x+y1=1 C.3x-52y=6 D.4xy=3(2)已知关于x,y的二元一次方程6)3()42(232=++---nm ynxm,求m,n的值例3:下列方程组中,是二元一次方程的是()①228423119...23754624x yx y a b xB C Dx y b c y x x y+=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩例4 (1)已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.(2)已知方程组44ax y-=⎧⎨⎩,(1)2x+by=14,(2)由于甲看错了方程①中的a得到方程组的解为26xy=-⎧⎨=⎩,,乙看错了方程②中的b得到方程组的解为44.xy=-⎧⎨=-⎩,若按正确的a、b计算,求原方程组的解.例5:(1)6,234()5() 2.x y x yx y x y+-⎧+=⎪⎨⎪+--=⎩(2) 已知⎩⎨⎧=-+=+-3252zyxzyx求:zyxzyx23324+--+的值(3) 已知关于x 、y 的二元一次方程组 4x+y=5 和 3x-2y=1 有相同的解。

求m 、n 的值。

mx+ny=3 nx-my=1例6 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶. (1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?解:(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩∴⎩⎨⎧==3241y x答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献. ◆强化训练 一、填空题1.若2x m+n -1-3y m -n -3+5=0是关于x ,y 的二元一次方程,则m=_____,n=_____.2.在式子3m+5n -k 中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是_____.3.若方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a+b=_______. 4.已知方程组325(1)7x y kx k y -=⎧⎨+-=⎩的解x ,y ,其和x+y=1,则k_____. 5.已知x ,y ,t 满足方程组23532x t y t x=-⎧⎨-=⎩,则x 和y 之间应满足的关系式是_______. 6.(2008,宜宾)若方程组2x y b x by a+=⎧⎨-=⎩的解是10x y =⎧⎨=⎩,那么│a -b │=_____.7.某营业员昨天卖出7件衬衫和4条裤子共460元,今天又卖出9件衬衫和6条裤子共660元,则每件衬衫售价为_______,每条裤子售价为_______.8.(2004,泰州市)为了有效地使用电力资源,我市供电部门最近进行居民峰谷用电试点,每天8:00至21:00用电每千瓦时0.55元(“峰电”价),21:00至次日8:00•用电每千瓦时0.30元(“谷电”价),王老师家使用“峰谷”电后,•五月份用电量为300kW ·h ,付电费115元,则王老师家该月使用“峰电”______kW ·h . 二、选择题9.二元一次方程3x+2y=15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个10.已知x a y b=⎧⎨=⎩是方程组||223x x y =⎧⎨+=⎩的解,则a+b 的值等于( ) A .1 B .5 C .1或 5 D .011.已知│2x -y -3│+(2x+y+11)2=0,则( )A .21x y =⎧⎨=⎩ B .03x y =⎧⎨=-⎩ C .15x y =-⎧⎨=-⎩ D .27x y =-⎧⎨=-⎩ 12.在解方程组278ax by cx y -=⎧⎨+=⎩时,一同学把c 看错而得到22x y =-⎧⎨=⎩,正确的解应是32x y =⎧⎨=⎩,那么a ,b ,c 的值是( ) A .不能确定 B .a=4,b=5,c=-2 C .a ,b 不能确定,c=-2 D .a=4,b=7,c=213.(2008,河北)如图4-2所示的两架天平保持平衡,且每块巧克力的质量相等,•每个果冻的质量也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g14.4辆板车和5辆卡车一次能运27t 货,10辆板车和3辆卡车一次能运20t 货,设每辆板车每次可运xt 货,每辆卡车每次能运yt 货,则可列方程组( )A .452710327x y x y +=⎧⎨-=⎩ B .452710320x y x y -=⎧⎨+=⎩ C .452710320x y x y +=⎧⎨+=⎩ D .427510203x y x y-=⎧⎨-=⎩ 15.七年级某班有男女同学若干人,女同学因故走了14名,•这时男女同学之比为5:3,后来男同学又走了22名,这时男女同学人数相同,那么最初的女同学有( ) A .39名 B .43名 C .47名 D .55名 16.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,•捐款情况如下表:捐款/元 1 2 3 4 人数6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组.( )A .272366x y x y +=⎧⎨+=⎩ B .2723100x y x y +=⎧⎨+=⎩ C .273266x y x y +=⎧⎨+=⎩ D .2732100x y x y +=⎧⎨+=⎩ 17.甲,乙两人分别从两地同时出发,若相向而行,则ah 相遇;若同向而行,则bh 甲追 上乙,那么甲的速度是乙的速度为( ) A .a b b+倍 B .b a b +倍 C .b a b a +-倍 D .b ab a-+倍18.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,•信封个数分别为( )A .150,100B .125,75C .120,70D .100,150 三、解答题19.解下列方程组:(1)(2008,天津市)35821x y x y +=⎧⎨-=⎩ (2)(2005,南充市)271132x y y x -=⎧⎪⎨--=⎪⎩20.(2008,山东省)为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,•如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?21.(2008,重庆市)为支持四川抗震救灾,重庆市A ,B ,C 三地现在分别有赈灾物资00t ,100t ,80t ,需要全部运往四川重灾地区的D ,E 两县.根据灾区的情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20t . (1)求这批赈灾物资运往D ,E 两县的数量各是多少? (2)若要求C 地运往D 县的赈灾物资为60t ,A 地运往D 县的赈灾物资为xt (x 为整数),B 地运往D 县的赈灾物资数量小于A 地运往D 县的赈灾物资数量的2倍,其余的赈灾物资全部运往E 县,且B 地运往E 县的赈灾物资数量不超过25t .则A ,B•两地的赈灾物资运往D ,E 两县的方案有几种?请你写出具体的运送方案:(3)已知A ,B ,C 三地的赈灾物资运往D ,E 两县的费用如表所示:A 地B 地C 地运往D 县的费用/(元/t ) 220 200 200 运往E 县的费用/(元/t ) 250 220 210 为及时将这批赈灾物资运往D ,E 两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?22.(2003,常州市)甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.购苹果数不超过30kg30kg以下但不超过50kg 50kg 以上每千克价格3元 2.5元2元(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?23北京和上海能制造同型号电子计算机,除本地使用外,北京支援外地10台,上海可支援外地4台,现在决定给重庆8台,武汉6台,每台运费如表所示.现在有一种调运方案的总运费为7600元.问:这种调运方案中北京、上海分别应调给武汉、重庆各多少台?武汉重庆北京400 800上海300 500 24、若甲、乙两库共存粮95吨,现从甲库运出存粮的32,从乙库运出存粮的40%,那么乙库所余粮食是甲库的2倍,问甲、乙两库原各在多少吨粮食?25、某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获得利润200元,求这批衬衫的进价是多少元?标价是多少元?26、某商店出售的某种茶壶每只定价20元,茶杯每只定价3元,该商店在营销淡季特规定一项优惠方法,即买一只茶壶赠送一只茶杯.小明的爸爸单位里花了170元,买回茶壶和茶杯一共38只,问小明爸的单位里买回茶壶和茶杯各多少只?27、一个两位数,数字之和为8,个位数字与十位数字互换后的新数比原数小18,求原数.28、据报道,2000年一季度我国对外贸易进出口额达980亿美元,比1999年同期增长了40%,其中出口增长了39%,进口增长了41%,1999年一季度我国对外贸易出口多少亿美元?进口多少亿美元?29、(2003,常州市)甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.购苹果数不超过30kg30kg以下但不超过50kg 50kg 以上每千克价格3元 2.5元2元(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?30、现有布料25m,要裁成大人和小孩两种服装,已知大人每套用布2.4m,小孩每套用布1m,问各裁多少套能恰好把布用完?31、某中学组织八年组同学春游,原计划租用45辆客车若干辆,但有15人没有座位;如果租用60座同样数量的客车,则多出一辆,且其余客车恰好坐满.已知45座客车,60座客车日租金分别为220元/辆,300元/辆.问(1)八年级有多少人?原计划租用45座客车多少辆?(2)要使每个同学都有坐位,怎样租用更合算?32、在某一河段,一条船顺流航行48千米用4小时,逆流航行32千米用4小时.求水流速度和船在静水中的速度.33、白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?34、某商场计划拔款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。

相关文档
最新文档