第3章 线性回归与非线性回归
高一数学必修三课件第章线性回归方程

01
02
03
变量
在某一过程中可以取不同 数值的量。
自变量
能够影响其它变量,而又 不受其它变量影响的变量 。
因变量
依赖于其它变量,而又不 能影响其它变量的变量。
散点图及其特点
散点图
用点的密度和变化趋势表示两指 标之间的直线和曲线关系的图。
特点
能直观表现出影响因素和预测对 象之间的总体关系趋势。
线性回归方程定义
通过绘制自变量和因变量的散点图,观察数据点 分布形态,若呈现非线性形态,则可能存在非线 性关系。
曲线拟合
根据散点图形态,选择合适的曲线类型进行拟合 ,如二次曲线、指数曲线、对数曲线等。
3
变换自变量或因变量
通过对自变量或因变量进行变换,如取对数、平 方、开方等,将非线性关系转化为线性关系。
可化为线性关系非线性模型
一致性
随着样本量的增加,线性回归方程 的系数估计值会逐渐接近真实值。
预测值与置信区间估计
预测值
根据回归方程和给定的自 变量值,可以计算出因变 量的预测值。
置信区间
通过构造置信区间,可以 对预测值进行区间估计, 表示预测值的可靠程度。
置信水平
置信水平表示了置信区间 包含真实值的概率,常用 的置信水平有95%和99% 。
在数据采集过程中,可能存在某些自变量 被重复测量或高度相关的情况。
变量设计问题
样本量问题
在变量设计时,可能存在某些自变量之间 存在固有的高度相关性。
当样本量较小而自变量较多时,也容易出 现多重共线性问题。
识别和处理多重共线性方法
观察自变量间的相关系数
如果两个自变量间的相关系数很高,则可能存在多重共线性 。
案例二
计量第3章(7节)非线性回归实例

非线性回归实例例1:此模型用来评价台湾农业生产效率。
用台湾1958-1972年农业生产总值(Y t ),劳动力(X 1t ),资本投入(X 2t )数据为样本得到估计模型:= -3.4 + 1.50 LnX 1t + 0.49 LnX 2t(2.78) (4.80) R 2 = 0.89, F = 48.45还原后得,= 0.713X 1t 1.50 X 2t 0.49因为1.50 + 0.49 = 1.99,所以,此生产函数属规模报酬递增函数。
当劳动力和资本投入都增加1%时,产出增加近2%。
例2:用天津市工业生产总值(Y t ),职工人数(L t ),固定资产净值与流动资产平均余额(K t )数据 (1949-1997年) 为样本得估计模型如下:Ln Y t = 0.7272 + 0.2587 Ln L t + 0.6986 LnK t(3.12) (3.08) (18.75)R 2 = 0.98, s.e. = 0.17, DW = 0.42, F = 1381.4因为0.2587 + 0.6986 = 0.9573,所以此生产函数基本属于规模报酬不变函数。
例3: 中国铅笔需求预测模型中国从上个世纪30年代开始生产铅笔。
1985年全国有22个厂家生产铅笔。
产量居世界首位(33.9亿支),占世界总产量的1/3。
改革开放以后,铅笔生产增长极为迅速。
1979-1983年平均年增长率为8.5%。
铅笔销售量时间序列见图1。
1961-1964年的销售量平稳状态是受到了经济收缩的影响。
文革期间销售量出现两次下降,是受到了当时政治因素的影响。
1969-1972年的增长是由于一度中断了的中小学教育逐步恢复的结果。
1977-1978年的增长是由于高考正式恢复的结果。
1981年中国开始生产自动铅笔,对传统铅笔市场冲击很大。
1979-1985年的缓慢增长是受到了自动铅笔上市的影响。
初始确定的影响铅笔销量的因素有全国人口、各类在校人数、设计人员数、居民消费水平、社会总产值、自动铅笔产量、价格因素、原材料供给量、政策因素等。
气象统计方法课件 3回归分析

当b<0,回归直线斜率为负,预报量y随预报因子x增加而减少, 反映预报量与因子是负相关; 当b>0,回归直线斜率为正,预报量y随预报因子x增加而增加, 反映预报量与因子是正相关。
二、回归问题的方差分析
1、意义 评价回归方程的优劣。
2、预报量的方差可以表示成回归估计值的方差 (回归方差)和误差(残差)方差之和。
1
n
n i 1
( yi
y)2
1 n
n i 1
( yˆi
y)2
1 n
n i 1
( yi
yˆ )2
(4)
即: sy2 syˆ2 se2
• 方差分析表明,预报量y的变化可以看成由 前期因子x的变化所引起的,同时加上随机 因素e变化的影响,这种前期因子x的变化影 响可以用回归方差的大小来衡量。如果回 归方差大,表明用线性关系解释y与x的关系 比较符合实际情况,回归模型比较好。
xi
n i 1
yi
n
n
n
b0
i 1
xi
b
i 1xi 2源自i 1xiyi
(3)
(3)式称为求回归系数的标准方程组。
回归系数也可直接表示为:
b0 y bx
n
b
xi yi nxy
i 1
n
xi2 nx 2
i 1
Sxy Sx2
将 b0 =y bx 代入回归方程 yˆi =b0 bxi,得
回归分析与相关分析的区别:
1. 相关分析中,变量x、y处于平等的地位;回归分析中,
变量y称为因变量,处在被解释的地位,x称为自变量, 用于预测因变量的变化。 2. 相关分析中所涉及的变量x和y都是随机变量;回归分 析中,因变量y是随机变量,自变量x可以是随机变量, 也可以是非随机的确定变量。 3. 相关分析主要是描述两个变量之间线性关系的密切程 度;回归分析不仅可以揭示变量x对变量y的影响大小, 还可以由回归方程进行预测和控制。
人教版高中数学第三章3.1第2课时线性回归分析

+
8.95
+
9.90
+
10.9
+
11.8)≈9.487,
所以 R2=1-01.40.16378184≈0.999 1, 所以回归模型的拟合效果较好.
(3)由表中数据可以看出残差点比较均匀地落在不超 过 0.15 的狭窄的水平带状区域中,说明选用的线性回归 模型的精度较高,由以上分析可知,弹簧长度与拉力成线 性关系.由残差表中的数值可以看出第 3 个样本点的残差 比较大,需要确认在采集这个数据的时候是否有人为的错 误,如果有的话,需要纠正数据,重新建立回归模型.
由公式得:^z =0.69x+1.115,则有^y=e0.69x+1.115. (2)由计数器得如下数表:
^y 6.08 12.12 24.17 48.18 96.06 191.52 y 6 12 25 49 95 190
R2=1-244.8614621.8≈0.999 8, 即解释变量天数对预报变量繁殖细菌个数解释了 99.98%.
x 21 23 25 27 29 32 35 z 1.946 2.398 3.045 3.178 4.190 4.745 5.784
利用公式求得回归直线方程为^z =0.272x-3.849, 所以^y =e0.272x-3.849
残差:
yi 7
11
21
24
66 115
yi 6.443 11.101
解析:因为^z =0.25x-2.58,^z =ln y,所以 y=e0.25x
-2.58.
答案:y=e0.25x-2.58
类型 1 线性回归分析(自主研析)
[典例 1] 为研究重量 x(单位:克)对弹簧长度 y(单位: 厘米)的影响,对不同重量的 6 个物体进行测量,数据如 下表所示:
可线性化的非线性回归模型

例 3-1 (数据见 EViews、STATA 文件:li 3-1) 台湾 19581972 年农业生产总值(yt) ,劳动力投入(xt1) ,资本投入(xt2)数 据见表 3-1。应用柯布−道格拉斯生产函数模型评价台湾农业生产效率。用样本得估 计模型如下,
Lnyt = -3.4 + 1.50 LnxБайду номын сангаас1 + 0.49 Lnxt2
yt a0 a1 xt 1 ut yt a0 e1xt ut
本章不做讨论,但介绍 EViews 估计命令。也就是说,利用软件,同样可以完成对 这类模型的估计与检验。
这一节介绍 7 种可线性化的非线性函数。其中包括幂函数、指数函数、对数函 数、双曲线函数、多项式函数、生长曲线函数(Logistic) 、龚伯斯(Gompertz)曲 线函数。在讨论如何把这些非线性函数转化为线性函数的同时,举例介绍应用。
3.1 可线性化的 7 种非线性函数 3.1.1 幂函数模型
(b > 1)
(b = -1)
(b < -1)
(0<b <1)
(0 > b > -1)
yt axt b e ut
b取不同值的图形分别见上图。对上式等号两侧同取对数,得
Lnyt = Lna + b Lnxt + ut
令yt* = Lnyt, a* = Lna, xt* = Lnxt, 则上式表示为
100 120 140 160 180 200 220
5.6 5.4
LOG(OUTPUT) LOG(OUTPUT)
5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.4
5.2 5.0 4.8 4.6 4.4 4.5
多元线性回归和非线性回归

2
SSR R SST
2 ˆ ( y y ) i 2 ( y y ) i i 1 i 1 n
n
,x ,x 称 y 关于 x 1 2, p 的样本复相关系数,R 的大小可以
反映作为一个整体的 x ,x ,x 1 2, p与 y 的线性相关的密切 程度.
修正多重决定系数(adjusted multiple coefficient of determination)
回归参数的估计
估计的多元线性回归的方程
(estimated multiple linear regression equation)
1.
2. 3.
ˆ ,b ˆ ,b ˆ, ˆ 估计回归方程 ,b 用样本统计量 b 0 1 2 p 中的 参数 b 时得到的方程 , b , b , , b 0 1 2 p 由最小二乘法求得 一般形式为
ˆ ˆ ˆ ˆ ˆ y b b x b x b x 0 1 1 2 2 p p
ˆ, ˆ, ˆ, ˆ是 b , b , b , , b b , b 0 1 2 p 0 b 1 b 2 p
估计值 ˆ 是 y 的估计值 y
参数的最小二乘法
1. 使因变量的观察值与估计值之间的离差平方和 ˆ, ˆ, ˆ, ˆ 。即 b b , b 达到最小来求得 b 0 1 2 p
i 1
3. 确定显著性水平和分子自由度p、分母自由度np-1找出临界值F 4. 作出决策:若F>F ,拒绝H0
方差分析表
前面的这些计算结果可以列成表格的形式,称为方差分析表. 方差分析表
方差来源 平方和 回归 残差 总和 SSR SSE SST 自由度 p 方差 SSR / p F 值
线性模型与非线性模型

线性回归模型和非线性回归模型的区别是:
线性就是每个变量的指数都是1,而非线性就是至少有一个变量的指数不是1。
通过指数来进行判断即可。
线性回归模型,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。
线性回归模型是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。
这种函数是一个或多个称为回归系数的模型参数的线性组合。
只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。
非线性回归,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
第三章回归分析预测方法

1984
539
7136
1992
769
8683
1985
577
7658
1993
801
9317
1986
613
7784
1994
855
9675
1987
644
8108
2019
842
8542
1988
670
7583
2019
860
8584
1989
695
8002
2019
890
9612
1990
713
8442
2019
920
x
相关但无
线性关系
-3
-2
-1
0
1
2
3
x
2、回归分析与相关分析
研究和测度两个或两个以上变量之间关系的方 法有回归分析和相关分析。
相关分析。研究两个或两个以上随机变量之 间线性依存关系的紧密程度。通常用相关系 数表示,多元相关时用复相关系数表示。
回归分析。研究某一随机变量(因变量)与 其他一个或几个普通变量(自变量)之间的 数量变动的关系。
回本章目录
一、一元线性回归模型
一元线性回归(Linear regression),只研究一个 自变量与一个因变量之间的统计关系。
对于只涉及一个自变量的简单线性回归模型可表
示为: yb0b1xe
其中,b0和b1称为模型的参数;e是随机误差项,
又称随机干扰项,有 e N0,2
在线性回归模型中加入随机误差项是基于 以下原因:
第一节 引言
本章学习目的与要求:
通过本章的学习,了解回归分析预测法 的概念,掌握回归分析中各系数的计算方法 及回归预测方法,能够运用Excel工具来进行 预测。
第三章 1.3可线性化的回归分析

可线性化的回归分析[学习目标]1.进一步体会回归分析的基本思想.2.通过非线性回归分析,判断几种不同模型的拟合程度.[知识链接]1.有些变量间的关系并不是线性相关,怎样确定回归模型答首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用线性回归方程来建立两个变量之间的关系,这时可以根据已有函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型.2.如果两个变量呈现非线性相关关系,怎样求出回归方程答可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程.([预习导引]1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.2.非线性回归方程曲线方程曲线图形公式变换变换后的线性函数y=ax b·c=ln av=ln xu=ln yu=c+bvy =a e bxc =ln a u =ln yu =c +bxy =a e b x.c =ln a v =1xu =ln yu =c +bvy =a +b ln xv =ln x u =yu =a +bv#要点一 线性回归分析例1 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 35 销售额y (万元)4926…3954(1)由数据易知y 与x 具有线性相关关系,若b =,求线性回归方程y =a +bx ; (2)据此模型预报广告费用为4万元时的销售额.解 (1)x -=4+2+3+54=,y -=49+26+39+544=42,∴a =y --b x -=42-×= ∴回归直线方程为y =+. (2)当x =4时,y =+×4=, 故广告费用为6万元时销售额为万元.跟踪演练1 为了研究3月下旬的平均气温(x )与4月20日前棉花害虫化蛹高峰日(y )的关系,某地区观察了2006年2011年的情况,得到了下面的数据:(1)对变量x,y进行相关性检验;(2)据气象预测,该地区在2012年3月下旬平均气温为27 ℃,试估计2012年4月化蛹高峰日为哪天.解制表.(1)r=∑6i=1xiyi-6x-y-(∑6i=1x2i-6x-2)(∑6i=1y2i-6y-2)≈- 8.由|r|>,可知变量y和x存在很强的线性相关关系.(2)b=错误!≈-,a=错误!-b错误!≈.所以,线性回归方程为y=-.当x=27时,y=-×27=.据此,可估计该地区2012年4月12日或13日为化蛹高峰日."要点二可线性化的回归分析例2 在一化学反应过程中,化学物质的反应速度y(g/min)与一种催化剂的量x(g)有关,现收集了8组观测数据列于表中:催化剂的量x/g15182124273033\ 36化学物质的反应速度y(g·min-1)6830277020565350解根据收集的数据,作散点图(如图),根据已有的函数知识,可以发现样本点分布在某一条指数函数曲数y=c1e c2x的周围,其中c1和c2是待定的参数.令z=ln y,则z=ln y=ln c1+c2x,即变换后的样本点应该分布在直线z=a+bx(a=ln c1,b=c2)的周围.由y与x的数据表可得到变换后的z与x的数据表:x15182124!27303336z,作出z与x的散点图(如图).由散点图可观察到,变换后的样本点分布在一条直线的附近,所以可用线性回归方程来拟合.由z与x的数据表,可得线性回归方程:z=+,所以y与x之间的非线性回归方程为y=e-+.*规律方法 可线性化的回归分析问题,画出已知数据的散点图,选择跟散点拟合得最好的函数模型进行变量代换,作出变换后样本点的散点图,用线性回归模型拟合.跟踪演练2 电容器充电后,电压达到100 V ,然后开始放电,由经验知道,此后电压U 随时间t 变化的规律用公式U =A e bt (b <0)表示,现测得时间t (s)时的电压U (V)如下表:t /s 0 1 2 3 4 56(7 8910U /V 100 75 55 40 30$2015101055试求:电压U 对时间t 的回归方程.(提示:对公式两边取自然对数,把问题转化为线性回归分析问题)解 对U =A e bt 两边取对数得ln U =ln A +bt ,令y =ln U ,a =ln A ,x =t ,则y =a +bx ,得y 与x 的数据如下表:x.1 2345678910{y/根据表中数据作出散点图,如下图所示,从图中可以看出,y 与x 具有较强的线性相关关系,由表中数据求得x -=5,y -≈,进而可以求得b ≈-,a =y --bx -=,所以y 对x 的线性回归方程为y =-.由y =ln U ,得U =e y ,U =-=·e -,因此电压U 对时间t 的回归方程为U =·e-.要点三非线性回归模型的综合应用例3 某地区不同身高的未成年男性的体重平均值如下表:身高x/cm60【708090100110体重y/kg-身高x/cm120130140150160170体重y/kg(试建立y与x之间的回归方程.解根据题干表中数据画出散点图如图所示.由图看出,样本点分布在某条指数函数曲线y=c1e c2x的周围,于是令z=ln y. *x 60708090100110120130140¥150160170z&画出散点图如图所示.由表中数据可得z与x之间的线性回归方程:z=+,则有y=+.规律方法根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线y =c1e c2x的周围,其中c1和c2是待定参数;可以通过对x进行对数变换,转化为线性相关关系.*跟踪演练3 对两个变量x ,y 取得4组数据(1,1),(2,,(3,,(4,,甲、乙、丙三人分别求得数学模型如下: 甲 y =+1, 乙 y =-++,丙 y =-·+,试判断三人谁的数学模型更接近于客观实际. 解 甲模型,当x =1时,y =;当x =2时,y =; 当x =3时,y =;当x =4时,y =.乙模型,当x =1时,y =1;当x =2时,y =; 当x =3时,y =;当x =4时,y =.丙模型,当x =1时,y =1;当x =2时,y =; 当x =3时,y =;当x =4时,y =.观察4组数据并对照知,丙的数学模型更接近于客观实际.1.在一次试验中,当变量x 的取值分别为1,12,13,14时,变量y 的值分别为2,3,4,5,则y 与1x的回归方程为( )A .y =1x +1B .y =2x+3C .y =2x +1D .y =x -1 答案 A解析 由数据可得,四个点都在曲线y =1x+1上.2.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:广告费2~5 6 84销售额3040605070@则广告费与销售额间的相关系数为( )A. B.0.919 C. D.答案B3.根据统计资料,我国能源生产发展迅速.下面是我国能源生产总量(单位:亿吨标准煤)的几个统计数据:年份1996200120062011产量·根据有关专家预测,到2020年我国能源生产总量将达到亿吨左右,则专家所选择的回归模型是下列四种模型中的哪一种( )A.y=ax+b(a≠0) B.y=ax2+bx+c(a≠0)C.y=a x(a>0且a≠1) D.y=log a x(a>0且a≠1)答案A4.某种产品的广告费支出x与销售额y之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是__________.x/万元)24568y/万元3040605070答案(6,50)一、基础达标1.下表提供了某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据.根据表中提供的数据,求出y关于x的线性回归方程是y=+,那么表中t的值是( )x3456,yt4A.4.5 B.4 C.3 D.答案C2.下列数据x,y符合哪一种函数模型( )x1$2345678910y 。
计量经济学第三章多元线性回归模型

解该(k+1) 个方程组成的线性代数方程组,即
$ ,, 可得到(k+1) 个待估参数的估计值 j , j 012,, k 。
正规方程组的矩阵形式
n X 1i X ki
X X
1i 2 1i
X X X
ki
X
ki
X 1i
ˆ 0 1 1 ˆ X 11 X 12 1i ki 1 2 ˆ X ki k X k1 X k 2
假设2,随机误差项具有零均值、同方差及不 序列相关性。
E ( i ) 0
Var ( i ) E ( i2 ) 2
i j i, j 1,2,, n
Cov ( i , j ) E ( i j ) 0
假设3,解释变量与随机项不相关
Cov ( X ji , i ) 0
随机误差项的方差的无偏估计
可以证明,随机误差项的方差的无偏估 计量为:
e e ˆ n k 1 n k 1
2
e i2
二、参数估计量的性质 在满足基本假设的情况下,其结构参 数的普通最小二乘估计仍具有: 线性性、无偏性、有效性。
同时,随着样本容量增加,参数估计量具有: 渐近无偏性、渐近有效性、一致性。
i 1
n
2
• 于是得到关于待估参数估计值的正规方程组:
ˆ ˆ ˆ ˆ ( 0 1 X 1i 2 X 2 i k X ki ) Yi ˆ ˆ ˆ ˆ ( 0 1 X 1i 2 X 2 i k X ki ) X 1i Yi X 1i ˆ ˆ ˆ ˆ ( 0 1 X 1i 2 i X 2 i k X ki ) X 2 i Yi X 2 i ˆ ˆ ˆ ˆ ( 0 1 X 1i 2 X 2 i k X ki ) X ki Yi X ki
线性回归与非线性回归分析

线性回归与非线性回归分析随着数据科学的发展,回归分析成为一种常用的统计方法,用于预测和建立变量之间的关系模型。
在回归分析中,线性回归和非线性回归是两种常见的分析方法。
本文将就线性回归和非线性回归进行详细探讨,并对它们的应用领域进行比较。
一、线性回归线性回归是最简单、最常用的回归方法之一。
它假设自变量和因变量之间存在线性关系,并试图找到一条直线来拟合数据点。
线性回归的数学表达式为:y = β0 + β1x + ε其中,y是因变量,x是自变量,β0和β1是回归系数,ε表示误差项。
通过最小二乘法,可以求得回归系数的估计值,进而进行预测和推断。
线性回归的优点在于计算简单,易于解释和理解。
它适用于自变量和因变量之间呈现线性关系的情况,比如销售额与广告投入的关系、学习时间与考试成绩的关系等。
然而,线性回归也有其局限性,它无法处理非线性的关系,对于复杂的数据模型拟合效果较差。
二、非线性回归与线性回归相反,非线性回归适用于自变量和因变量之间存在非线性关系的情况。
非线性回归通过引入非线性项或函数来建立数学模型,使得模型能够更好地拟合实际数据。
非线性回归的数学表达式为:y = f(β0 + β1x1 + β2x2 + ... + βnxn) + ε其中,f()表示非线性函数,x1、x2、...、xn是自变量,y是因变量,β0、β1、...、βn是回归系数,ε表示误差项。
通过使用最小二乘法或最大似然估计等方法,可以求得回归系数的估计值,并进行预测和推断。
非线性回归的优点在于能够更准确地拟合复杂的数据模型,能够处理自变量和因变量之间的非线性关系。
它适用于许多实际问题,如生长模型、生态系统模型等。
然而,非线性回归的缺点在于计算复杂度高,模型选择的难度较大。
三、线性回归与非线性回归的比较线性回归和非线性回归在应用领域和适用性方面有所不同。
线性回归适用于自变量和因变量之间呈现线性关系的情况,适合用于预测、关联分析等领域。
而非线性回归适用于自变量和因变量之间存在非线性关系的情况,适合用于复杂模型的拟合和解释。
第3章 1.1 回归分析 1.2 相关系数 1.3 可线性化的回归分析

§1回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析1.了解回归分析的思想和方法.(重点)2.掌握相关系数的计算和判断线性相关的方法.(重点)3.了解常见的非线性回归模型转化为线性回归模型的方法.(难点)[基础·初探]教材整理1回归分析阅读教材P73~P75,完成下列问题.设变量y对x的线性回归方程为y=a+bx,由最小二乘法知系数的计算公式为:b=l xyl xx=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2=∑i=1nx i y i-n x y∑i=1nx2i-n x2,a=y-b x.教材整理2相关系数阅读教材P76~P78,完成下列问题.1.相关系数r的计算假设两个随机变量的数据分别为(x1,y1),(x2,y2),…,(x n,y n),则变量间线性相关系数r=l xyl xx l yy=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2=∑i=1nx i y i-n x y∑i=1nx2i-n x2∑i=1ny2i-n y2.2.相关系数r与线性相关程度的关系(1)r的取值范围为[-1,1];(2)|r|值越大,误差Q越小,变量之间的线性相关程度越高;(3)|r|值越接近0,误差Q越大,变量之间的线性相关程度越低.3.相关性的分类(1)当r>0时,两个变量正相关;(2)当r<0时,两个变量负相关;(3)当r=0时,两个变量线性不相关.判断(正确的打“√”,错误的打“×”)(1)两个变量的相关系数r>0,则两个变量正相关.()(2)两个变量的相关系数越大,它们的相关程度越强.()(3)若两个变量负相关,那么其回归直线的斜率为负.()【答案】(1)√(2)×(3)√教材整理3可线性化的回归分析阅读教材P79~P82,完成下列问题.1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.2.非线性回归方程A.y =2+13x B .y =2e x C .y =2e 1xD .y =2+ln x【解析】 分别将x 的值代入解析式判断知满足y =2+ln x . 【答案】 D[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑:[小组合作型]i i 3-1-1①,对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图②.由这两个散点图可以判断()图3-1-1A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关(2)两个变量x,y与其线性相关系数r有下列说法:①若r>0,则x增大时,y也随之相应增大;②若r<0,则x增大时,y也相应增大;③若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上,其中正确的有()A.①②B.②③C.①③D.①②③(3)有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量.其中两个变量成正相关的是A.①③B.②④C.②⑤D.④⑤【精彩点拨】可借助于线性相关概念及性质作出判断.【自主解答】(1)由这两个散点图可以判断,变量x与y负相关,u与v正相关,故选C.(2)根据两个变量的相关性与其相关系数r之间的关系知,①③正确,②错误,故选C.(3)其中①③成负相关关系,②⑤成正相关关系,④成函数关系,故选C.【答案】(1)C(2)C(3)C1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r 来检验线性相关显著性水平时,通常与0.75作比较,若r >0.75,则线性相关较为显著,否则为不显著.[再练一题]1.下列两变量中具有相关关系的是( )【导学号:62690052】A .正方体的体积与边长B .人的身高与体重C .匀速行驶车辆的行驶距离与时间D .球的半径与体积【解析】 选项A 中正方体的体积为边长的立方,有固定的函数关系;选项C 中匀速行驶车辆的行驶距离与时间成正比,也是函数关系;选项D 中球的体积是43π与半径的立方相乘,有固定函数关系.只有选项B 中人的身高与体重具有相关关系.【答案】 Bx (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:(1)(2)气象部门预测下个月的平均气温约为6 ℃,据此估计该商场下个月毛衣的销售量.【精彩点拨】 (1)可利用公式求解; (2)把月平均气温代入回归方程求解.【自主解答】 (1)由散点图易判断y 与x 具有线性相关关系.x=(17+13+8+2)÷4=10,y=(24+33+40+55)÷4=38,∑4i=1x i y i=17×24+13×33+8×40+2×55=1 267,∑4i=1x2i=526,b=∑4i=1x i y i-4x y ∑4i=1x2i-4x2=1 267-4×10×38526-4×102≈-2.01,a=y-b x≈38-(-2.01)×10=58.1,所以线性回归方程为y=-2.0x+58.1.(2)气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量为y=-2.0 x+58.1=-2.0×6+58.1≈46(件).1.回归分析是定义在具有相关关系的两个变量基础上的,因此,在作回归分析时,要先判断这两个变量是否相关,利用散点图可直观地判断两个变量是否相关.2.利用回归直线,我们可以进行预测.若回归直线方程y=a+bx,则x=x0处的估计值为y0=a+bx0.3.线性回归方程中的截距a和斜率b都是通过样本估计而得到的,存在着误差,这种误差可能导致预报结果的偏差,所以由线性回归方程给出的是一个预报值而非精确值.4.回归直线必过样本点的中心点.[再练一题]2.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.【解】(1)如图:(2)∑4i=1x i y i=6×2+8×3+10×5+12×6=158,x=6+8+10+124=9,y=2+3+5+64=4,∑4i=1x2i=62+82+102+122=344,b=158-4×9×4344-4×92=1420=0.7,a=y-b x=4-0.7×9=-2.3,故线性回归方程为y=0.7x-2.3.(3)由(2)中线性回归方程得当x=9时,y=0.7×9-2.3=4,预测记忆力为9的同学的判断力约为4.[探究共研型]探究1【提示】非线性回归问题有时并不给出经验公式.这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:探究2已知x和y之间的一组数据,则下列四个函数中,模拟效果最好的为哪一个?①y=32③y=4x; ④y=x2.【提示】观察散点图中样本点的分布规律可判断样本点分布在曲线y=3×2x-1附近.所以模拟效果最好的为①.某地区不同身高的未成年男性的体重平均值如下表:(2)如果一名在校男生身高为168 cm,预测他的体重约为多少?【精彩点拨】先由散点图确定相应的拟合模型,再通过对数变换将非线性相关转化为线性相关的两个变量来求解.【自主解答】(1)根据表中的数据画出散点图,如下:由图看出,这些点分布在某条指数型函数曲线y=c1e c2x的周围,于是令z=ln y,列表如下:作出散点图,如下:由表中数据可求得z与x之间的回归直线方程为z^=0.693+0.020x,则有y =e0.693+0.020x.(2)由(1)知,当x=168时,y=e0.693+0.020×168≈57.57,所以在校男生身高为168 cm,预测他的体重约为57.57 kg.两个变量不具有线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型,如y=c1e c2x,我们可以通过对数变换把指数关系变为线性关系,令z=ln y,则变换后样本点应该分布在直线z=bx+a(a=ln c1,b=c2)的周围.[再练一题]3.在一次抽样调查中测得样本的5个样本点,数据如下表:【解】作出变量y与x之间的散点图如图所示.由图可知变量y与x近似地呈反比例函数关系.设y=kx,令t=1x,则y=kt.由y与x的数据表可得y与t的数据表:作出y 与t 的散点图如图所示.由图可知y 与t 呈近似的线性相关关系.又t =1.55,y =7.2,∑i =15t i y i =94.25,∑i =15t 2i =21.312 5,b =∑i =15t i y i -5t y∑i =15t 2i -5t 2=94.25-5×1.55×7.221.312 5-5×1.552≈4.134 4,a =y -b t =7.2-4.134 4×1.55≈0.8, ∴y =4.134 4t +0.8.所以y 与x 的回归方程是y =4.134 4x+0.8.[构建·体系]1.下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A .①②B .①②③C .①②④D .①②③④【解析】 函数关系和相关关系的区别是前者是确定性关系,后者是非确定性关系,故①②正确;回归分析是对具有相关关系的两个变量进行统计分析的一种方法,故③错误,④正确.【答案】 C2.下表是x 和y 之间的一组数据,则y 关于x 的线性回归方程必过点( )C.(2.5,4) D.(2.5,5)【解析】线性回归方程必过样本点的中心(x,y),即(2.5,4),故选C.【答案】 C3.对具有线性相关关系的变量x和y,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________.【导学号:62690053】【解析】由题意知x=2,y=3,b=6.5,所以a=y-b x=3-6.5×2=-10,即回归直线的方程为y=-10+6.5x.【答案】y=-10+6.5x4.部门所属的10个工业企业生产性固定资产价值与工业增加值资料如下表(单位:百万元):【解析】x=3+3+5+6+6+7+8+9+9+1010=6.6.y=15+17+25+28+30+36+37+42+40+4510=31.5.∴r=∑10i=1(x i-x)(y i-y)∑10i=1(x i-x)2∑10i=1(y i-y)2=0.991 8.【答案】0.991 85.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【解】 (1)x =16(8+8.2+8.4+8.6+8.8+9)=8.5, y =16(90+84+83+80+75+68)=80, ∵b =-20,a =y -b x , ∴a =80+20×8.5=250, ∴回归直线方程为y =-20x +250.(2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20⎝ ⎛⎭⎪⎫x -3342+361.25, ∴该产品的单价应定为334元时,工厂获得的利润最大.我还有这些不足:(1) (2)我的课下提升方案: (1) (2)。
回归方程的俩种类型

回归方程的俩种类型回归分析是一种统计学方法,用于建立一个数学模型,以预测一个变量与一个或多个其他变量之间的关系。
在回归分析中,回归方程是描述这种关系的数学表达式。
根据变量的性质和数学形式,回归方程可以分为线性回归方程和非线性回归方程。
1.线性回归方程(Linear Regression Equation):线性回归方程是回归分析中最简单也是最常用的一种形式。
它是一个线性函数,用于描述自变量与因变量之间的线性关系。
线性回归方程通常采用最小二乘法进行估计,以找到最佳拟合线(或平面)。
线性回归方程的一般形式可以表示为:Y = a + bX其中,Y是因变量(或响应变量),X是自变量(或解释变量),a是截距,b是斜率。
线性回归方程的关键是估计截距和斜率的值。
这可以通过最小化观测值与回归线之间的残差平方和来实现。
通过拟合最佳拟合线,可以在给定自变量的情况下预测因变量的值。
线性回归方程的应用广泛,用于各种领域的数据分析和预测。
它可以解释变量之间的线性关系,并用于预测结果。
线性回归方程是许多其他回归模型的基础,包括多元线性回归和广义线性模型。
2.非线性回归方程(Nonlinear Regression Equation):非线性回归方程用于描述自变量与因变量之间的非线性关系。
相比于线性回归方程,非线性回归方程更加灵活,可以适应更复杂的数据模式。
非线性回归方程的一般形式可以表示为:Y = f(X, β) + ε其中,Y是因变量,X是自变量,β是参数矢量,f(X, β)是非线性函数,ε是误差项。
非线性回归方程的关键在于拟合一个最佳的非线性函数,以最小化观测值和模型预测值之间的残差。
通常使用最小二乘估计法或最大似然估计法来估计参数的值。
非线性回归方程可以描述一系列复杂的数据关系,例如曲线、指数、对数、多项式等。
它在许多实际应用中被广泛使用,例如生物学、物理学、经济学等。
非线性回归方程的建立和分析通常需要更复杂的数学处理和迭代计算。
线性回归和非线性回归

线性回归和非线性回归
1 线性回归
线性回归是一种广泛使用的机器学习算法,它用于预测一个或多个连续的输入x变量和一个输出y变量之间的关系。
它是一种拟合数据模型的方法,试图找到一个线性关系,可以近似地预测未知输入变量。
给定一组输入变量x1,x2,...,xn,以及一系列输出y,线性回归提供一个称为线性模型的参数形式a1, a2, ..., an,以及偏置b 的等式,这样可以表示为:y = a1x1 + a2x2 + ... + anxn + b。
如果x, y的关系是线性的,那么我们可以使用线性回归找到当前数据关系的最佳参数模型。
2 非线性回归
非线性回归是一种用于预测一个变量与多个输入变量之间关系的机器学习算法。
与线性运动不同,它假设输入变量和输出变量之间的关系是非线性的。
非线性回归模型可以产生任意曲线和非线性模式,在复杂的数据集中表现很好。
通常,使用回归杂波分析,根据提供的数据和观察结果,可以选择正确的非线性函数。
例如,可以考虑使用多项式函数,偏微分方程,自定义神经网络或其他函数。
计量经济学-第3章(一元线性回归模型)-文档资料

即:
Yi E (Yi X i ) u i
Yi的变化可以分为两部分,一部分是可以由Xi的变化解释 的,另一部分来自随机扰动。Yi向Xi所解释的“平均水平”回 归,这就是“回归”的含义。而斜率系数β 1是指,Xi每变化一 个单位,Yi平均变化β 1个单位。β 0是样本回归直线的截距。
《计量经济学》,王少平、杨继生、欧阳志刚主编
假定2:解释变量是外生变量。 即
Cov(ui , u j ) 0
i j , i, j 1, 2,
,N
《计量经济学》,王少平、杨继生、欧阳志刚主编 (3.1.5)
二、普通最小二乘法(OLS)
基于假定3,我们对模型(3.1.1)取条件期望,则有: E (Yi X i ) 0 1 X i 3.1.6) (
5
第一步 构造含有待估计系数的残差平方和 并对其求最小
N Q ˆ ˆ X )0 2 ( Y i 0 1 i ˆ N N 0 i 1 2 ˆ ˆ X )u ˆ ˆi min Q u ( Y i i 0 1 i ˆ ˆ N , 1 i 1 Q i2 ˆ ˆ X )X 0 (Y i 3.1.70 i ( ) 1 i ˆ i 1 1
N 就是说,如果我们能得到不同于最小 由于最小二乘估计量拥有一个“好” 即样本容量趋于无穷大时,估计量依 二乘估计量的其他线性无偏估计量, 渐近有效性 的估计量所应具备的有限样本性质, 概率收剑于总体的真实值,即: 其方差大于或者等于最小二乘估计量 ˆ) P lim( 它也拥有大样本特性,即渐近无偏性、 i i 的方差。 一致性、渐近有效性。 即样本容量趋于无穷大时,估计量 其中:符号“ Plim”表示概率极限,因
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yt B1 B2 X t ut
假设 u t u t -1 v t -1 1 其中,v满足OLS假定,并且 是已知的。
Yt 1 B1 B2 X t 1 ut 1
方程(9 - 2)的两边同时乘以 , 得到 :
Yt -1 B1 B2 X t -1 u t -1
View/Residual Tests/Heteroskedasticity Tests 或者 eq01.hettest(type=Glejser) c car pmg pop rgnp
斯皮尔曼(Spearman)秩相关检验。 戈德费尔德-匡特(Goldfeld-Quandt)检验 巴特莱特(Bartlett)检验 匹克(Peak)检验 布鲁尔什-培甘(Breusch-Pagan)检验 CUSUMSQ检验
在方程定义窗口的定义栏中输入: 线性化方法:ls log(Y) c log(K) log(L) 非线性方法:ls Y=c(1)*K^c(2)*L^c(3)
有时遇到估计结果不符合常规或显示出无法收敛 的错误信息时,需要设定选项重新估计。 (1)初始值(Start Value) 初始值是EViews进行第一次迭代计算时参数所取 的数值。这个值保存在与回归函数有关的系数向 量中。回归函数必须定义初始值。例如如果回归 函数包含表达式1/C (1),就不能把C (1)的初始值 设定为0,同样如果包含表达式LOG (C (2)),那C (2)必须大于零。
建模过程仍是先打开方程定义窗口,在定义栏中输 入模型的非线性表达式即可。不同的是有时候可能 迭代无法收敛,则需要通过修改选项设置来重新估 计。 与例3.6比较,可以看出,线性化与NLS法的参数估 计值完全一样,统计量输出相同,这是由于线性化 仅改变了变量的形式,而NLS法也没有改变y和1/x 的线性关系,在这两种情况下进行最小二乘估计对 于待估参数来说是等价的。
t 1
n
LM 检验
–
–
零假设:残差不存在从一阶到p阶的自相关 View/Residual Test/Serial Correlation LM Test.
自相关的克服方法:取决于我们对误差项ut相互依 赖的性质的了解。 (1)Cochrane-Orcutt迭代法 为方便起见,我们仍以双变量模型为例:
例3.6
表3.11是某企业在16个月度的 某产品产量(X)和单位成本(Y)资料, 研究二者关系 。
例3.6
为了明确产量和单位成本是何种关系,先 绘制散点图。
三个备选模型:
1 Z x y a bZ
Z ln x y a bZ
ln y ln axb ln a b ln x T ln y Z ln x c ln a T c bZ
Wald检验处理有关解释变量系教约束的假设。 例如,假设一个Cobb-Douglas生产函数已经 估计为以下形式: 其中Q、K和已分别代表产出、资本与劳动的 投入量。规摸报酬不变的假设由以下约束检验 表示:
Wald检验原假设的参数限制以及检验方程可以是线性的,也 可以是非线性的,并且可以同时检验一个或多个约束。 Wald检验的输出结果依赖于约束的线性性。在线性约束下, 输出结果是F统计量、x2统计量和相应的p值。 如果约束是有效的,那么无约束条件下和有约束条件下所得 到的回归的拟合程度基本上没有差异,这样,计算的F统计 量应该很小, p值很大,并且约束不会被拒绝。在大多数应 用中,p值和相应的F统计量应该被认为是近似值,也就是说 只有当F值远大于临界值时结论才是可靠的。
在NLS中, EViews用开始估计的系数向量中 对应的值作为初始值。所以我们可以先查看系 数向量中的各个参数值,如果有需要更改的, 可直接在系数向量窗口中编辑更改,这时可输 入更改值。另外也可用命令 Param coef_name(1) n1 coef_name(2) n2... 来重新设置。例如param c(1) 153 c(2) 0.68 c(3) 0.15
(Yt - Yt -1 ) B1 (1- ) B2 (Xt - X t -1 ) v t
由此得到: Y B B X vt
* t * 1 * 2 * t
对变换后的模型(广义差分模型)使用OLS法, 因而获得的估计量具有BLUE性质。 对变换后的模型使用OLS得到的估计量称为广 义最小二乘(generalized least squares)估计 量(GLS)。
例3.7
粮食产量通常由粮食产量(Y)、农业生产劳 动力(L)、化肥施用量(K)等因素决定。表3.13 是我国粮食生产的有关数据(由于粮食生产劳 动力不易统计,假定它在农业劳动力中的比例 是一定的,故用农业劳动力的数据代替),研 究其间关系,建立Cobb-Douglas生产函数模 型。
Cobb-Douglas生产函数模型为 Y=AK^{alpha}L^{beta}
(2)迭代和收敛 EViews用的是Gauss- Seidel迭代法求参数估计值。 迭代停止遵循的法则: 基于回归函数或参数在每次 迭代后的变化率。当待估参数的变化百分比的最大 值小于事先给定的水平时,就会停止迭代。 但有时即使未达到收敛也会停止迭代。这有两种情 况:一种是迭代次数已经达到了给定的次数。这时应 重新设定迭代次数以取得收敛。另一种是经过一定 迭代后EViews发出显示失败的错误信息,而这大多 和回归函数有关。这时可以选取不同的参数初始值, 从不同方向逼近估计值。
(2)重新定义模型。(将绝对量变为增长率 等相对量) dcar=d(car)/car dqmg=d(qmg)/qmg dpmg=d(pmg)/pmg dqmg c dcar dpmg
3.2 非线性回归分析
可线性化的非线性模型
在某些情形下,可以将这些非线性模型,通过 一定的变换线性化,作为线性模型处理。这类 模型称为可线性化的非线性模型。
初始值的选取不当可能会导致NLS运算失败。当 EViews给出Near Singular Matrix的错误提示时,有 可能与初始值选取有关。但通常没有选取初始值的 一般规则,显然离真实值越近越好,所以我们可以 先根据参数的意义猜测参数的范围,给出一个合适 的初始值。如根据劳动弹性系数在0到1之间,例3.7 中可将C (2)赋一个介于0到1的值。
异方差的后果
(1)OLS估计量仍然是线性的. (2) OLS也是无偏的. (3) 但它们不再具有最小方差性. (4) OLS方法得到的方差的估计通常是有偏的. (5) 建立在t分布和F分布之上的置信区间和假 设检验是不可靠的。
异方差的诊断
根据问题的性质 残差的图形检验 White 检验(View/Residual Tests/White Heteroskedasticity) 帕克检验(Park test) Glejser检验
自相关(Autocorrelation)
自相关的性质 自相关一词可以定义为:“在时间(如在时间序列 数据中)或者空间(如在横截面数据中)按顺序所 列观察值序列的各成员间存在着相关”. 自相关问题通常与时间序列数据有关. 在横截 面数据中产生的自相关问题称为空间相关 (Spatial Correlation)
多重共线性必定不好吗?
答案是取决于研究的目的。 如果研究是为了用模型来预测解释变量的未来 均值,则多重共线性本身未必是一件坏事。 另一方面,如果研究不仅仅是为了预测,而且 还要可靠地估计所选模型的各个参数,则严重 的共线性将是一件“坏事”,因为它将导致估 计量的标准差增大。
多重共线性的处理方法
பைடு நூலகம்
Options中有一栏和NLS有关迭代过程 (Iterative Procedure)。它有两个选项: Max Iterative是最大迭代次数, Convergence是事 先给定的一个比率值,当系数在一次迭代后的 变化率小于该值时就停止迭代,即收敛的误差 精度。
二、参数检验: Wald检验
剔除法 差分法 重新定义方程 有偏估计(主成分回归,岭回归)
3.1.2 异方差
同方差(homoscedasticity)或等方差(equal variance) 异方差(heteroscedasticity)或非同方差 (unequal variance)
在横截面数据(cross-sectional data)和时间 序列数据(time-series data)中都可能存在异方 差,但大多存在于横截面数据中。
异方差的补救措施
加权最小二乘法(WLS) 打开方程对象,在Estimate/Options栏中选 Weighted Ls项,并在Weight项中输入权数序 列名即可,如rgnp^1.5。
重新设定模型
–
–
重新设定总体回归函数,常常可以消除异方差。 如:当在线性模型中异方差问题比较严重时,不妨 试一试双对数模型。这样常常可以消除异方差。
自相关的诊断(detecting autocorrelation) 图形法 时间序列图(time-sequence plot) (et,t) (et,e t-1) 杜宾-瓦尔森d检验(D-W检验,Dubin-Watson d Test)
d
(e e
t 2 t
n
t 1
)
2
et2
按照线性化的法则,建立非线性模型有两种方法:一 是用genr命令按变换函数生成新序列,再运用LS命 令对新序列进行参数估计。 Genr z=1/x Ls y c z 还有一种方法是在使用LS命令时直接对序列进行操 作而不必生成任何新序列。 Ls y c 1/x 在条件许可的情况下建议使用第二种处理方法。