传热学第三章-非稳态导热-2

合集下载

传热学-第三章 非稳态热传导

传热学-第三章 非稳态热传导
(0, ) m ( ) 2 sin 1 F e 0 0 1 sin 1 cos 1
( x, ) x cos(1 ) m ( )
2 1 0
2 1 0
与时间无关
28
考察热量的传递
Q0 cV (t0 t )
Q0 --非稳态导热所能传递的最大热量
第三章
非稳态导热
1
§3-1 非稳态导热的基本概念
1 非稳态导热的定义 . 2 非稳态导热的分类
t f (r , )
周期性非稳态导热 (定义及特点)
瞬态非稳态导热 (定义及特点)
2
着重讨论瞬态非稳态导热
3 温度分布:

t
1
4 3
2
1
t
0
0
3
4 两个不同的阶段
非正规状况阶段 (不规则情况阶段)
6
7 毕渥数
本章以第三类边界条件为重点。 (1) 问题的分析 如图所示,存在两个换热环节: a 流体与物体表面的对流换热环节 rh 1 h b 物体内部的导热 (2) 毕渥数的定义:
tf
h

t

tf h
0
r

t
x

tf
h
r h Bi rh 1 h
0
7
x
(微细热电偶、薄膜热电阻)
当 4 时, 1.83% hA 0 Vc
工程上认为=4 Vc / hA时 导热体已达到热平衡状态
第三章 非稳态导热
17
3 瞬态热流量:
Φ ( ) hA(t ( ) t ) hA hA 0 e
hA Vc
W
导热体在时间 0~ 内传给流体的总热量:

高等传热学非稳态导热理论2

高等传热学非稳态导热理论2

高等传热学导热理论第四讲 非稳态导热描述非稳态导热问题的微分方程:pC t a t ρτΦ+∇=∂∂ 2共有四维,不好解。

最简单的情况,如果系统内部无温度差(即无导热),它的温度变化规律如何?这就是所谓的薄壁问题,此时无需考虑系统的空间坐标,所以又是0维问题。

1.薄壁问题(P 40-45)即集总参数系统适用条件 薄壁理论:如果系统内部无温度差,由热力学第一定律可得:MCdt d A d q =∙Ωτ1-4-1当热流密度与边界相互垂直时,有:VCdt qAd ρτ= 1-4-2如边界上的热流密度为)(t t h q f -=VCdt d t t hA f ρτ=-)( 1-4-300t t ==τ实际情况 t 不可能相同。

什么条件下可用薄壁公式呢? 工程界用得最多的判据是:1.0≤Bi 1-4-4对平壁,圆柱和球,此时内部温差小于()()(,)(0,)/(0,)5%t r t t t τττ∞--≤,即实际判据为:()()(,)(0,)/(0,)t r t t t τττε∞--≤,即某时刻平壁内最大温差与该时刻平壁和环境间的最大温差之比小于给定小量。

有人对此判据提出异议:在加热初期极短时间内,任何有限薄壁可看作半无限大体,温度只影响边界附近薄层中,与薄壁概念不符。

判据1-4-4的缺点是没有F o 的影响。

R o s e n o w 提出另一个判据,()()(,)(0,)/(,)(,0)t r t t t ττδτδε--≤,物理意义是在某时刻平壁内最大温差与该时间段内平壁最大温度变化之比小于给定小量。

该判据含F o ,但存在B i 越小,薄壁区越小的缺点,与判据1-4-4不相容。

俞佐平提出了含F o 的新判据,()()()()(,)(,0)(,)/1//(,0)t t t t t t Bi h t t δτδδτεδλδ∞∞∞∞---=≤-该判据规律与1-4-4相似。

本人从理论上证明了判据1-4-4的合理性,发现异议者的误区在于但B i 很小时,无论时间如何短,与该薄壁相应的半无限大体中的最大温差也不会超过我们限定的温差。

传热学讲义——第三章

传热学讲义——第三章

第三章 非稳态导热(unsteady state conduction)物体的温度随时间而变化的导热过程称非稳态导热。

0≠τ∂∂t,任何非稳态导热过程必然伴随着加热或冷却过程。

根据物体内温度随时间而变化的特征不同,非稳态导热过程可分为两类:(1)周期性导热(periodic unsteady conduction ):物体的温度按照一定的周期发生变化; 如建筑物的外墙和屋顶温度的变化。

(2)瞬态导热(transient conduction):物体的温度随时间不断升高或降低,在经历相当长时间后,物体的温度逐渐趋于周围介质的温度,最终达到热平衡。

分析非稳态导热的任务:找出温度分布和热流密度随时间和空间的变化规律。

第一节 非稳态导热的基本概念一、瞬态导热过程采暖房屋外墙墙内温度变化过程。

采暖设备开始供热前:墙内温度场是稳态、不变的。

采暖设备开始供热:室内空气温度很快升高并稳定;墙壁内温度逐渐升高;越靠近内墙升温越快;经历一段时间后墙内温度趋于稳定、新的温度分布形成。

墙外表面与墙内表面热流密度变化过程 采暖设备开始供热前:二者相等、稳定不变。

采暖设备开始供热:刚开始供热时,由于室内空气温度很快升高并稳定,内墙温度的升高相对慢些,内墙表面热流密度最大;随着内墙温度的升高,内墙表面热流密度逐渐减小;随着外墙表面的缓慢升高,外墙表面热流密度逐渐增大;最终二者相等。

上述非稳态导热过程,存在着右侧面参与换热与不参与换热的两个不同阶段。

(1)第一阶段(右侧面不参与换热)是过程开始的一段时间,特点是:物体中的一部分温度已经发生变化,而另一部分仍维持初始状态时的温度分布(未受到界面温度变化的影响),温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,物体内各处温度随时间的变化率是不一样的,即:在此阶段物体温度分布受t分布的影响较大,此阶段称非正规状况阶段或初始阶段(initialregime)。

(2)第二阶段(右侧面参与换热)当右侧面参与换热以后,物体中的温度分布不受t影响,主要取决于边界条件及物性。

非稳态传热_传热学.最全PPT

非稳态传热_传热学.最全PPT
二类非稳态导热的区别:瞬态导热存在着有区别 的三个不同阶段,而周期性非稳态导热不存在。
t
四、边界条件对温度分布的影响 tf
一大平壁置于高温环境中。
h
tf h
问题的分析: 存在两个传热环节:
0
x
1、 流体与物体表面的对流换热
2、 物体内部的导热
r
rh 1 h
rh
r
tf
tw
tm
t
存在3种情况:
Biv
Fov
Biv
h(V
A)
Bi h
Fov (V
A)2
/
a
换热时间 热扰动扩散到(V A)2面积所用的时间
t t
hA
e vc eBivFov
0 t0 t
瞬态热流量:
hA
h A h A0 e vc
0~ 内传给流
体的总热量:
Q
0
d
0
hA
hA0e vc d
一、无限大平板的分析解
1、问题描述
λ=const a=const
h=const
因两边对称,只研究半块平壁
2、数学模型
t 2t
tx,0at0x2
导热微分方程
初始条件
t x
|x0
0
边界条件
t x
|x
ht
,
t
引入过余温度 t t
x,0ax202 t0 t
x
|x0
0
x
| x
h ,
3、求解(用分离变量法)
假设 x, x
a
2
x 2
x d
d
a
d 2
dx2

第三章 非稳态导热传热学

第三章 非稳态导热传热学
基本思想: 基本思想:当所研究的问题非常复杂, 当所研究的问题非常复杂,涉及到的参数很多, 涉及到的参数很多, 为了减少问题所涉及的参数, 为了减少问题所涉及的参数,于是人们将这样一些参数组合 起来, 起来,使之能表征一类物理现象, 使之能表征一类物理现象,或物理过程的主要特征, 或物理过程的主要特征, 并且没有量纲。 并且没有量纲。因此, 因此,这样的无量纲数又被称为特征数, 这样的无量纲数又被称为特征数,或 者准则数。 者准则数。
§3.1 非稳态导热的基本概念
二、非稳态导热的研究内容
1. 研究内容
温度分布和热流量分布随时间和空间的变化规律
t = f ( x, y , z ,τ ) ;
2. 数学模型
Φ = f(τ )
∂t ∂ ∂t ∂ ∂t ∂ ∂t ɺ ρ c = ( λ ) + ( λ ) + ( λ )+Φ ∂τ ∂x ∂x ∂y ∂y ∂z ∂z 解的唯一性定律 初 始 条 件 边 界 条 件
τ4 τ3
τ2
t
1
τ1
t
0
τ0
第3章 非稳态热传导
§3.1 非稳态导热的基本概念
一、非稳态导热
6. 导热量的特点
Φ1
Φ2
由于物体各处本身温度的变化 要积聚或消耗热量, 要积聚或消耗热量,非稳态导热过 程中在与热流方向相垂直的不同截 面上热流量处处不等。 面上热流量处处不等。
第3章 非稳态热传导
Φ1--板左侧导入的热流量 --板左侧导入的热流量 Φ2--板右侧导出的热流量 --板右侧导出的热流量

t
tf,h x
q
rh
rh = 1 h
rλ = δ λ

传热学 第3章-非稳态导热分析解法

传热学 第3章-非稳态导热分析解法

第三章 非稳态导热分析解法1、 重点内容:① 非稳态导热的基本概念及特点;② 集总参数法的基本原理及应用;③一维及二维非稳态导热问题。

2、掌握内容:① 确定瞬时温度场的方法;② 确定在一时间间隔内物体所传导热量的计算方法。

3、了解内容:无限大物体非稳态导热的基本特点。

许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。

如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。

因此,应确定其内部的瞬时温度场。

钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。

§3—1 非稳态导热的基本概念一、非稳态导热1、定义:物体的温度随时间而变化的导热过程称非稳态导热。

2、分类:根据物体内温度随时间而变化的特征不同分:1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ2)物体的温度随时间而作周期性变化1)物体的温度随时间而趋于恒定值如图3-1所示,设一平壁,初值温度t 0,令其左侧的表面温度突然升高到1t 并保持不变,而右侧仍与温度为0t 的空气接触,试分析物体的温度场的变化过程。

首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍保持原来的t 0 。

如图中曲线HBD ,随时间的推移,由于物体导热温度变化波及范围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线HCD 、HE 、HF 。

最后,当时间达到一定值后,温度分布保持恒定,如图中曲线HG (若λ=const ,则HG 是直线)。

由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参与换热的两个不同阶段。

(1)第一阶段(右侧面不参与换热)温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较大,此阶段称非正规状况阶段。

传热学第3章非稳态导热PPT课件

传热学第3章非稳态导热PPT课件

x x h Bi
2)毕渥数Bi对温度分布的影响
O( / Bi, 0)
2)毕渥数Bi对温度分布的影响
§3.2 集中参数法分析导热问题
当物体内部导热热阻远小于其表面的换热热阻, 也就是物体内部温度分布几乎趋于一致,可以近似 认为物体内部在同一瞬间均处于同一温度下。 此时 Bi h 0
对于任意形状的物体当Bi<0.1, 0.95 物体内部的过余温度与其表面的过m 余温度之比为 0.95。其内部热阻就可忽略,从而采用集中参数 法。
物体的温度随时间的变化关系是一条负 自然指数曲线,或者无因次温度的对数
0
与时间的关系是一条负斜率直线。
e
A cV
e
(V
A
)•(VaA
)2
e Bi •Fo
0
其中V/A具有长度的量纲,称为特征长度。
(2)导热量的计算
cV hA 称为系统的时间常数,记为s。
时间常数是反应物体对流体温度变动响应快慢的指标。它 取决于自身的热容量ρcv及表面换热条件hA。热容量越大, 温度变化得越慢;表面换热条件越好单位时间内传递的热 量越多,则越能使物体自身温度迅速接近流体温度。
突然把两侧介质温度降低 为 t并保持不变;壁表 面与介质之间的表面传热 系数为h。
两侧冷却情况相同、温度 分布对称。中心为原点。
3.3 无限大平壁非稳态导热
导热微分方程:
t 2t
a x2
初始条件: 0, t t 0
边界条件: (第三类)
x 0, t x 0
x
,
- t
x
h(t
t )
对于圆柱体和球体在第三类边界条件下的一维非
稳态导热问题,也可以求得温度分布的分析解。

传热学第3章非稳态导热

传热学第3章非稳态导热
对于一个特征数,应该掌握其定义式+物理意义,以及定义式中各个参数的意义。
2019/8/31 - 8 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
Bi r h
rh
1h

当 Bi 时, r rh ,因此,可以忽略对流换热热阻 当 Bi 0 时, r rh ,因此,可以忽略导热热阻
第三章 非稳态导热
第3章 非稳态导热
§3-1 非稳态导热的基本概念 §3-2 零维问题的分析法——集中参数法 §3-3 典型一维物体非稳态导热的分析 §3-4 半无限大物体的非稳态导热 §3-5 简单几何形状物体多维非稳态导热的解析解
2019/8/31 - 2 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
3、工程上几种典型非稳态导热过程温度变化率的数量级
2019/8/31 - 3 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
着重讨论瞬态非稳态导热
4、温度分布:
t

开始的一段时间,物体内部温度变化一层
层逐渐深入到内部,温度变化速度不一样,反映 到吸热量上,吸热量不一样。
t1 P
金属壁 保 温 层

BiV
FoV
BiV

h(V

A)
FoV

a
(V A)2
2019/8/31 - 12 -
第3章 非稳态导热——§3-2 集中参数法
BiV

h(V

A)
FoV

a
(V A)2
FoV 是傅立叶数
0

exp(
hA
cV
)

exp( BiV

3第三章 非稳态导热

3第三章 非稳态导热

Bi
n
2.一维非稳态导热的分析解
(2)总传热量
设从初始时刻至某一时刻τ所传递的热量为Q,则有:
分离变量积分并代入初始条件得:
hA
=e cV
0
思考:上述结果是对物体被冷却 的情况导出的,如果要用于被加 热的场合,该怎么办?
6.集总参数系统的分析解
hA hV cV A
A2 cV 2
h(V / A) a (V / A)2
BiV FoV
Bi hl l= 物体内部导热热阻 1 h 物体表面对流换热热阻
• 在某厂生产的测温元件说明书上,标明该元件的 时间常数为1s。你怎么看待这个值?
cV
c hA
——根据定义式,时间常数中物性参数ρ、c、V、A可 以看作是常数,但表面传热系数h却是与具体过程 有关的量。
——说明书上的标明的时间常数需要具体分析,不能 盲目相信。
【内容小结】
• 集总参数系统的分析 • 时间常数的导出和意义 • 时间常数对测温系统的指导
一个集总参数系统,其体积
为V、表面积为A、密度为、 比热为c、初始温度为t0,突 然放入温度为tf (设t0> tf )、 对流换热系数为h的环境中,
求系统温度变化。
A h, tf
ΔE
Qc
ρ, c, V, t0
——表面对流换热对其过程有着重要影响,如何处理?
4. 微分方程
-
t n
ht
t
f
集总参数系统内部没有温差, 不能用第三类边界条件。
不断减小,在其它各截面上,其
截面温度开始升高之前通过该截
面的热流量是零,温度开始升高
A
之后,热流量才开始增加。
BC D 3

传热学第三章

传热学第三章

内能减小=物体向环境对流换热
7
机械工程与材料能源学部 能源与动力工程学院
传 热 学
定义过余温度: θ=t-t∞
dt cV Ah (t t ) d
cV
dt Ah d
初始条件:
d
τ=0, θ =θ0=t0-t∞

微分方程分离变量,并积分:


0
hA cV
Fo>0.2,正规状况阶段
非稳态导热过程中传递热量
从τ=0 至热平衡
Q0 cV (t 0 t )
19
机械工程与材料能源学部 能源与动力工程学院
传 热 学
从τ=0 至τ时刻
Q c V t 0 t ( x, )dV 1 Q0 cV (t 0 t ) V 1 1 V (t 0 t ) (t t ) dV V t0 t
机械工程与材料能源学部 能源与动力工程学院 6
传 热 学
1. 导热微分方程式建立
例:测量变化着的温度的热电偶
t0 t
t t0 0
t f ( ) ?
t 2t 2t 2t ( 2 2 2) 导热微分方程: c x y z c
11
传 热 学
4. BiV及FoV物理意义
Biv hl

1 h
l
内部面积导热热阻 表面面积对流换热热阻
无量纲 热阻 无量纲 时间
从边界上开始发生热扰 动时刻起 a 到所计算时刻为止的时 间间隔 Fov 2 2 边界上发生有限大小的 热扰动穿过一定 l l a 厚度的固体层扩散到 2的面积上所需时间 l
FoV越大,热扰动越深入地传播到物体内部, 物体内各点的温度越接近周围介质的温度

第三章_非稳态导热问题的分析解

第三章_非稳态导热问题的分析解

ρ C pV
初始条件为 令θ =
dT = q vV − σ XS (T 4 − T w4 ) dτ
(a) (b)
T = T0 τ = 0,
qv L σ XT 03 L aτ T V 4 +θw , Fo = 2 , M o = ,N = ,其中, L = 为 4 T0 λ S σ XT 0 L
dθ + M o (θ 4 − N 4 ) = 0 dFo
薄壁物体的温度响应在非稳态导热过程中如果物体内的温度始终是均匀一致的如导热系数很高的薄壁物体或者说当一个物体与周围环境进行热交换时若认为物体内部的温度分布并不重要而只是关心物体的总体温度随着时间的变化如用热电偶测量气流的温度我们常常只关心整个热电偶结点的温度随时间的变化而对于结点内部的温度分布并不重要

r
r

0
0
Bi =
αL λ
L
(3—2)
其中,α 是对流换热系数; L 是物体的特性尺寸,对于平板,即是厚度,对于圆柱体和球, 即是半径; λ 是物体的导热系数。实际上,Biot 数是物体的导热热阻( 换热热阻(
λ
)与表面的对流
1
α
)的比。一般情况下,当 Bi < 0.1 时,导热物体可近似为薄壁。

(e)
θ = C 1e
αS τ ρ C pV
(f)
取(d)的特解为 θ = 1 ,所以方程(d)的一般解为
θ = 1 + C 1e

αS τ ρ C pV
(g)
根据初始条件(c) ,求得 C1 = −1 ,因此,终解即热电偶结点的温度变化规律为
3
θ = 1 − exp( −
θ

《传热学》第三章 非稳态导热

《传热学》第三章  非稳态导热

令:
—— 过余温度
使导热微分方程边界条件齐次化:
1.分离变量法求解导热微分方程:
对于此类偏微分方程,应采用分离变量法来进行求解: 假定:
代入导热微分方程,得出:
令:
并对两式分别求解
求解结果: 因φ 不可能是无限大或常数,所以只能有:μ <0,因而可令:
求解结果:
将两个求解结果合并,得到:
其中:
A c1c2 , B c1c3
集总热容体的温度分布:
其中:
L
V ——定型尺寸 A
cV
hA
——时间常数(表示物体温度接近流体温度的快慢)
集总热容体的温度分布亦可写成:
四、不同加热方式下的无限大平壁瞬态导热
t
qv
h, t f
h, t f
qw
qw
h, t f
h, t f
x
第三节 半无限大物体的瞬态导热
应用领域:大地 一、第一类边界条件
半无限大物体表面温度:
半无限大物体表热负荷:
——一定时间内将壁温提高至tw所需的热负荷
第四节 其他形状物体的瞬态导热
一、无限长圆柱体和球体——计算线图法 分无 布限 计长 算圆 步柱 骤温 度
计算Bi和Fo
由图3-13计算中心温度
由图3-14计算任意处温度 无限大平壁—— 半壁厚δ
定型尺寸
无限长圆柱体和球体—— 半径 R 其他不规则形状物体——V/A
或:
傅立叶准则——
二、正常情况阶段——Fo准则对温度分布的影响

进行收敛性分析: 随着β n的递增,级数中指数一项收敛很快,所以级数收敛很快,尤其当Fo较 大时,收敛性更加明显。 因此,当Fo>0.2时,仅用级数第一项来描述,已足够精确,即:

《传热学》第3章-非稳态导热

《传热学》第3章-非稳态导热

特殊多维非稳态导热的简易求解方法
在第一类边界条件(初始温度均匀)或第三类边界条件(表面 传热系数h为常数)下的二维或三维的非稳态导热问题,在数学 上已经证明,它们的无量纲过余温度的解等于构成这些物体的 两个或三个物体在同样边界条件下一维非稳态导热问题解的连 乘。
特殊多维非稳态导热的简易求解方法
对于无限长方柱 θ (x, y,τ ) = θ (x,τ ) ⋅ θ (y,τ )
该问题的解可以由3块相应的无限大平板的 解得出。最低温度发生在钢锭的中心,即3 筷无限大平板中心截面的交点上,最高温度 发生在钢锭的顶角,即3块大平板表面的公 共点上。
4
例题3 θ
m/B则θi x0钢==锭hλδ(1θ中=m心3/ 4θ温840×0度).05x.2⋅5(θ=
2.14
m/θ 0
)
y
⋅ (θ
无限大平板的非稳态导热
当Fo ≥ 0.2时,可取
θ (x,τ )
θ0
=
β1
2 sin β1 + sin β1 cos β1
cos

β
1
x δ
e − β12 ⋅Fo
只与Bi、x/δ有关, 与时间无关
lnθ
=
−mτ
+ lnθ 0
β1
2sin β1 + sinτ β1 cos β1
cos
= 0.36
短圆柱的中心温度为
查图3-6得 θ
再讨论直径为
m2R/θ=600=0m0m.8的无θ限m长/ θ圆0柱=:0.13
×
0.8
=
0.104
Bi = hR = 232 × 0.3 = 1.72 λ 40.5
tm = 0.104θ0 + t∞ 查附=2图0.11得04θ×m(3/θ00−=103.0103) +1300

传热学(第四版)第三章:非稳态热传导

传热学(第四版)第三章:非稳态热传导

方程求解
dt cV hA t t d
一阶非齐次方程
0时,t =t0
令: t t — 过余温度,则有
d -hA Vc d 0时, t t 0 0
一阶齐次方程
方程式改写为:
d hA d Vc
3 拟合线1: t 12.7 79.4 exp 79.4 0.216 3 拟合线2 : t 11.1 80.0 exp 80.0 第三章 非稳态导热 1.252
8
时间常数 ( Vc / hA)反应导热体的热惯性。 如果导热体的热容量( Vc )小、换热条件好(h大), 那么单位时间所传递的热量大、导热体的温度变化快。 对于测温的热电偶节点,时间常数越小、说明热电偶对 流体温度变化的响应越快。这是测温技术所需要的。
Q Q= Q 0 Q0
3.2 正规热状况的实用计算方法-近似拟合公式法(了解) 对上述公式中的A,B,μ 1,J0 可用下式拟合
b 1 (a ) Bi
2 1
A a b( 1 e cBi ) a cBi B 1 bBi J 0 ( x ) a` b` x c` x 2 d` x 3
第三章 非稳态导热 11
讨论4:零维问题(集中参数法)的应用条件 理论上,集中参数法是在Bi->0的条件下提出的。 在实际应用中,可以适当放宽适用条件: h(V A) Bi 0.1 (V/A)是物体的特征长度
对厚为2δ 的

无限大平板
对半径为R 的无限长 圆柱 对半径为R 的球
V A A A V R2 R A 2 R 2 4 R3 R V 3 2 A 4 R 3

非稳态导热

非稳态导热

rVc
华北电力大学
梁秀俊
高等传热学
从0到任意时刻 积分
1 d hA
d
0
rVc 0
t t
hA
e rVc
0 t0 t
上式中右端的指数可作如下变化
hA rVc
h(V /
A)
a
(V / A)2
BiV FoV
式中BiV是特征尺度l用V/A表示的毕渥数。
华北电力大学
梁秀俊
高等传热学
梁秀俊
高等传热学
(x, ) (x, ) m ( ) ;
0
m ( ) 0
m ( ) f (Bi, Fo) 0
无限大平板中心无量纲过余温度曲线
华北电力大学
梁秀俊
高等传热学
(x, ) (x, ) m ( ) ; (x, ) f (Bi, x )
0
m ( ) 0
m ( )
四、无限长圆柱 过程类似 图线类似
无限大平板无量纲过 华北电力大学 余温度曲线
梁秀俊
四、乘积解
高等传热学
在二维和三维非稳态导热问题中,几种典型几何 形状物体的非稳态导热问题可以利用一维非稳态导 热分析解的组合求得。无限长方柱体、短圆柱体及 短方柱体就是这类典型几何形状的例子。
华北电力大学
梁秀俊
高等传热学
矩形截面的无限长方柱体是由两个无限大平壁垂 直相交而成;短圆柱是由一个无限长圆柱和一个无 限大平壁垂直相交而成 ;短方柱体(或称垂直六面 体)是由三个无限大平壁垂直相交而成;
z
d d
C1 exp( 2 )
再 积 分 得 :
C1
exp( 2 )d
0
C2
代 入 定 解 C1 2w / 条 件 可 得 :C2 w

传热学课件 第3章-非稳态导热分析解法

传热学课件 第3章-非稳态导热分析解法

2
非稳态导热的分类
周期性非稳态导热:物体的温度随时间而作周期 性的变化 非周期性非稳态导热(瞬态导热):物体的温度 随时间不断地升高(加热过程)或降低(冷却过 程),在经历相当长时间后,物体温度逐渐趋近 于周围介质温度,最终达到热平衡。 物体的温度随时间的推移逐渐趋近于恒定的值. 着重讨论瞬态非稳态导热。
不受初始温度的影响,主要取决于边界条件及物
性,此时非稳态导热过程进入到正规状况阶段。 环境的热影响已经扩展到整个物体内部,即 物体(或系统)不再受到初始温度分布影响的阶 段。可以用初等函数描述。 二类非稳态导热的区别:瞬态导热存在着有区别 的两个不同阶段,而周期性导热不存在。
5 热量变化
Φ 1--板左侧导入的热流量 Φ 2--板右侧导出的热流量
V 特征长度 lc A
exp( Bi, Fo) 0
0
Bi Fo
应用集中参数法时,物体过余温度随时间的变化 关系是一条负自然指数曲线,或者无因次温度的 对数与时间的关系是一条负斜率直线
3.2.2 导热量计算式、时间常数与傅立叶数
1、导热量计算
瞬态热流量:
dt hA Φ cV cV (t0 t ) e d cV (t0 t )hAe
1968s 32.8min
§3.3 典型一维物体非稳态导热的分析解
3.3.1 三种几何形状物体的温度场分析解 3.3.2 非稳态导热正规状况阶段分析解的简化 3.3.3 非稳态导热正规状况阶段工程计算方法 3.3.4 分析解应用范围的推广
对厚为2δ的
无限大平板 对半径为R的无 限长圆柱 对半径为R的 球
M 1 1 M 2 1 M 3
Biv Bi Bi Biv 2 Bi Biv 3

传热学-第三章非稳态导热问题分析解

传热学-第三章非稳态导热问题分析解

单位时间 0, t t0
物体内能 的减少(或 增加)
Φ hAt t
Φ cV dt d
当物体被冷却时(t 0 >t),由能量守恒可

hA(t t ) -Vc dt
d
令: t t — 过余温度,则有
hA
-Vc
d d
( 0) t0 t 0
控制方程 初始条件
方程式改写为:d hA d 分离变量法 Vc
由于表面对流换热热阻与导热热阻相对大小的不同, 平板中温度场的变化会出现以下三种情形:
(1) 1/ h / Bi
(2) / 1/ h Bi 0
(3) δ/ λ 与1/h 的数值比较接近 0 Bi
Bi 准则对温度分布的影响
1/ h /
/ 1/ h δ/ λ 与1/h的数值接近
是一种理想化模型; 物体内导热热阻忽略不计; 物体内温度梯度忽略不计,认为整个物体具有相
同的温度;
通过表面传递的热量立即使整个物体的温度同时 发生变化; 把一个有分布热容的物体看成是一个集中热容的物体;
只考虑与环境间的换热不考虑物体内的导热。
问题的提出:
2 温度分布 如图所示,任意形状的物体,参数均为已知。
0.049 0.05 可采用集总参数法。
F cp V
cp
dl 2d 2 d 2l 4
4
cp
4(l d dl
2)
140 4 (0.3 0.025) 480 7753 0.05 0.3
0.326102
t tf 800 1200 0.342
0 t0 tf 30 1200
由式(3-1)得:
???
§3-2 集总参数法
基本思想:对任意形状的物体,忽略物体内部的导热 热阻,认为物体温度均匀一致。

传热学课件-第三章非稳态热传导共66页文档

传热学课件-第三章非稳态热传导共66页文档
e cV eBivFov
0
物体中的温度 呈指数分布
方程中指数的量纲:
hA
mW2Km2
w1
cV
kg m3
JKkg[m3]
J
s
即与 1 的量纲相同,当
时hVAc,则
hA 1
Vc
此时, e1 36.8% 0
上式表明:当传热时间等于 Vc时,物体的过余温度已经达
到了初始过余温度的36.8%。hA称 为Vc 时间常数,用 表示 。c
非周期性非稳态导热:物体的温度随时间的推移逐渐趋 近于恒定的值
非周期性非稳态导热实例(汽轮机外壳)
冷态启动前:tf1=tw1=tw2=tf2
进汽后 tf1
内壁 q1=h1(tf1-tw1) 到某一时刻 h1A1(tf1-tw1)=h2A2(tw2-tf2) 以后为稳态导热
3 温度分布:
问题描述:
3 、了解内容:
①无限大物体非稳态导热的基本特点。 ②二维非稳态导热问题。
§3-1 非稳态导热的基本概念
一、非稳态导热的特点及类型
1 非稳态导热的定义
物体的温度随时间而变化的导热过程称非稳态导热。
2 非稳态导热的分类
周期性非稳态导热:物体的温度随时间而作周期性的变化
例如太阳辐射的周期性变化引起的房屋的墙壁温度随时间的变化。
这 时 , 由 于 导 热 热 阻 δ/λ几乎可以 忽略,因而任一时刻平板中各点的 温度接近均匀,并随着时间的推移, 整体地下降,逐渐趋近于t∞ 。
(3) δ/λ与 1/h 的数值比较接近
这时,平板中不同时刻的温度分布介于上述两种极 端情况之间。
由此可见,上述两个热阻 的相对大小对于物体中非稳态 导热的温度场的变化具有重要 影响。为此,我们引入表征这 两个热阻比值的无量纲数毕渥 数: Bi h

传热学-第三章

传热学-第三章

无量纲数
当Bi→∞时,⇒rλ>>rh ;因此,可以忽略对流换热热阻 当Bi→0 时,⇒rλ<<rh;因此,可以忽略导热热阻
(4) 无量纲数的简要介绍 基本思想:当所研究的问题非常复杂,涉及到的参数很 多,为了减少问题所涉及的参数,将一些参数组合起来, 使之能表征一类物理现象,或物理过程的主要特征,并且 没有量纲。 因此,这样的无量纲数又被称为特征数,或者准则 数,比如,毕渥数又称毕渥准则。以后会陆续遇到许多类 似的准则数。特征数涉及到的几何尺度称为特征长度,一 般用符号 l 表示。 对于一个特征数,应该掌握其定义式+物理意义,以 及定义式中各个参数的含义。
着重讨论瞬态非稳态导热
3. 温度分布:
4. 两个不同的阶段
非正规状况阶段 (不规则情况阶段) 正规状况阶段 (正常情况阶段) 温度分布主要受初始温度 分布控制 温度分布主要取决于边界 条件及物性
非稳态导热过程总会经历:非稳态导热非正规状况阶段 (起始阶段)、正规状况阶段、新的稳态
5. 热量变化
可以采用集总参数法。时间常数为
13110 × 0.138 × 1000 × 0.953 × 10 −3 = = 148 τc = hA 11.63
ρcV
s
⎛ hA ⎞ 11.63 × 5 × 60 θ ⎛ ⎞ = exp⎜ − ⎟ ⎜ ρcV ⋅ τ ⎟ = exp⎜ − ⎟ −3 θ0 ⎝ 13110 × 0.138 × 1000 × 0.953 × 10 ⎠ ⎝ ⎠ = exp(− 2.02 ) = 0.133
5. 集总参数法的应用条件
对于平板、圆柱及圆球,如果Bi满足如下条件,则 物体中各点过余温度的差别小于5%
Bi v =
对厚为2δ的 无限大平板 对半径为R的 无限长圆柱 对半径为R的 球
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.2
即:比值与无关,仅与几何位置(x/)及边界条件(Bi数) 有关。这表明初始条件的影响已经消失,无论初始分布 如何,无量纲温度都是一样的。此时非稳态导热已进入 正规状态或充分发展阶段。
令x = ,还可以计算平壁表面温度和中心温度的比值。
( , ) m ( )
cos(1
)
(f)
另外,由表3-1可知,当Bi < 0.1时,1 < 0.3111,从 而cos(1) > 0.95。即当Bi < 0.1时,平壁表面温度和
2sin( n ) sin( n ) cos(n
)
cos(n x) exp(an2 )
令 βnδ=μn
最后得:
(x, )
0
n 1
n
2sin( n ) sin n cos n
cos(n
x
) exp(
a 2
n2 )
由于
Fo a 2 (傅立叶数)

(x, ) 0
n 1
n
2sin( n ) sin n cos
….
n (x, ) ean2 [ An cos(n x)]
将无穷个解叠加,得:
(x, ) ean2 [ An cos(n x)] n1
An可利用初始条件
0,
t0-t
0
求取
An
0
n
2sin( n ) sin( )n cos(n
)
于是,得到解的最后形式为:
(x,
)
0
n 1
n
于是有:
Q c V t0 t(x, )dV
Q0
cV (t0 t )
1 V
t0 t (t t )dV
V
t0 t
1
1
dV
V V 0
1
0
这里:
1 V
V (t t )dV
是 时刻物体的平均过余温度。
3-3-2 非稳态导热的正规状况阶段
当Fo > 0.2时,采用级数的第一项计算偏差小于1%,故 当Fo > 0.2时,由:
50 100
1 0.0998 0.221 0.311 0.653 0.860 1.314 1.429 1.540 1.555 1.571
为了分析这时温度分布的特点,将上式取对数,得:
ln
0
(1
)2
Fo
ln
1
2sin 1 sin 1 cos1
c
os
1
x
式右边第一项是时间 的线性函数, 的系数只与 Bi 有 关,即只取决于第三类边界条件、平壁的物性与几何尺寸。 而右边第二项只与Bi、x/ 有关,与时间 无关。
n
cos(n
x
) exp(Fon2 )

Bi h
x — 无量纲距离
于是,最后可得到解得形式为: (x, ) f (Bi, Fo, x )
定义无量纲的热量 Q / Q0
0
其中Q 为 0 时间内传导的热量(内热能的改变量)
为初始时刻至无穷时间内的总传导热量
Q0 c0V (物体内能改变总量)
h h 1 Bi
注意,这里 Bi数的尺度为平板厚度的一半。
显然,β是两曲线交点 对应的所有值。式(c) 称为特征方程。 β称 为特征值。分别为β1、 β2…… βn。
至此,我们获得了无穷个特解:
1(x, ) ea12 [ A1 cos(1x)]
2 (x, ) ea22 [ A2 cos(2 x)]
常数A、B和β可由下边定解条件确定。
(a)
0,
t 0
-t
0
(1)
x 0, x 0
(2)
x , - x h (3) x
由边界条件(2),得 B=0
于是(a)式成为 (x, ) ea 2 [ Acos(x)] (b)
把边界条件(3)代入(b) ,得 tg() h
(c)
将 tg() h 右端整理成:
采用分离变量法求解:取 X (x) T ( )
则由:
2
a
x2
得:
1 dT 1 d 2 X
aT d
X
dx2
于是有: 1 dT 1 d 2 X
aT d
XdΒιβλιοθήκη 2DX只为x的函数 T只为的函数
只能为常数

1 aT
T
D积分
得到
T C1eaD
式中C1是积分常数,常数值D的正负可以从物理概念 上加以确定。
当时间τ趋于无穷大时,过程达到稳态,物体达
到周围环境温度,所以 D 必须为负值,否则物体温度
将无穷增大。

D 2
则有
1 dT 2 aT d
以及
1 X
d2X dx2
以上两式的通解为: T C1ea 2
X C2 cos(x) C3 sin( x)
于是,得
(x, ) ea 2 [ Acos(x) B sin( x)]
中心温度的差别小于5%,可以近似认为整个平壁温度是
均匀的。这就是3-2节集总参数法的界定值定为Bi < 0.1
的原因。
由式
ln
0
(1
)
2
Fo
ln
1
2sin 1 sin 1 cos1
c
os
1
x
两边对时间求导,得
1
a12
上式左边是过余温度对时间的相对变化率,称为冷却
率(或加热率)。
上式说明,非稳态导热进入正规状况阶段后,物体所有 各点的冷却率或加热率都相同,且不随时间而变化,其 值仅取决于物体的物性参数、几何形状与尺寸以及表面 传热系数。
则导热微分方程为:
t
a
2t x 2
初始条件: 0, t t 0
边界条件:
x 0, t x 0
x , - t x h(t t ) 引入: t(x, ) t — 过余温度
则,导热方程可改写为:
定解条件可改写为:
2
a
x2
0, t -t
0
0
x 0, x 0
x , - x h x
§3-3 一维非稳态导热的分析解
当几何形状及边界条件都比较简单时, 可获得分析解。
3-3-1 无限大的平板的分析解
考察厚度 2 的无限大平壁 得情况。设、a为已知常数; =0时温度为 t0;突然把两 侧介质温度降低为 t并保持
不变;已知壁表面与介质之
间的表面传热系数为h。
两侧冷却情况相同、温度分 布对称。中心为原点。
(x,
0
)
n 1
n
2sin( n ) sin n cos
n
cos(n
x
) exp(
a 2
n2 )
得:
0
1
2sin(1 ) sin(1 ) cos(1
)
e( 1 )2 Fo
cos1
x
(d)
其中 1 是第一特征值,是 Bi 的函数。
Bi 0.01 0.05 0.1 0.5 1.0 5.0
10
上式说明,当 Fo > 0.2,平壁内所有各点过余温度的对数
都随时间线性变化,并且变化曲线的斜率都相等,这一温 度变化阶段称为非稳态导热的正规状况阶段。
ln(/0)
Fo > 0.2时,任一点过余温度与
中心过余温度m之比为
正规状况阶段
x/=0
(x, ) m ( )
cos(1
)
x
(e)
x/=1
Fo
相关文档
最新文档