半导体物理_第七章_金属和半导体接触

合集下载

半导体物理第七章金属与半导体的接触

半导体物理第七章金属与半导体的接触

eV kT
⎞ ⎟⎠
J
V<0 当e|V|>>kT J = − J ST
V
-J0
反向饱和电流JsT与外加电压无关,强烈依赖温度
热场发射理论:
适用于平均自由程较长,迁移率较高材料,如硅锗等
半导体物理
25
三. 镜像力(image force)的影响
理论与实际的偏差
当半导体中的电子到达金属-半导体的界面附近时,该 电子将在金属表面感生正电荷。由于金属表面的电力线 必须垂直于表面,因此该电子在金属表面感生电荷的总 和必定等价于金属内部与该电子镜面对称处的一大小相 等的正电荷。
P
E0
E0


Wm

EC
Ws
Wm
EC
Ws Ef

Ef
EV
EV
反阻挡层
半导体物理
阻挡层
8
表面态对接触势垒的影响
理想肖特基势垒接触: qΦB = Wm − χ
金属与半导体接触是否形成接触势垒,取决于它们的功函 数大小。
同一种半导体与不同金属接触时,形成的势垒高度同金属 的功函数成正比。
实际金-半接触: 90%的金属和半导体接触形成势垒,与功函数关系不大。
2o Wm < Ws 时仍有肖特基势垒
半导体物理
肖特基势垒
Φ BN
=
EC
− EFs =
2 Eg 3
13
势垒区的电势分布
假设: (耗尽层近似) 空间电荷区载流子全耗尽;
d 2V dx 2
=
⎪⎧− ⎨ ⎪⎩
qN D
ε 0ε r
0
0≤ x≤d x>d
E( x) = − dV = qN D (x − d )

半导体第七章金属和半导体的接触PPT课件

半导体第七章金属和半导体的接触PPT课件
=qVD En
假设Wm>Ws,半导体外表形成正的空间电荷区, 电场由体内指向外表,Vs<0,形成外表势垒〔阻 挡层〕。
χ
Wm qΦns
qVD
Ec
En
(EF)s
Ev
能带向上弯曲,形成外表势垒。势垒区电子浓度 比体内小得多→高阻区(阻挡层)。
• 假设Wm<Ws,电子从金属流向半导体,半导体外 表形成负的空间电荷区,电场由外表指向体内, Vs>0。形成高电导区〔反阻挡层〕。
Wm E0 (EF )m E0为真空中静止电子的能量。
金属功函数随原子序数的递增呈现周期性变化
关于功函数的几点说明:
对金属而言, 功函数Wm可看作是固定的. 功 函数Wm标志了电子在金属中被束缚的程度.
对半导体而言, 功函数与掺杂有关 功函数与外表有关. 功函数是一个统计物理量。
半导体的功函数Ws
在一个距离价带顶为qФ0的能级。 • 电子正好填满qФ0以下所有的外表态时,外表呈电
中性。假设qФ0以下外表态为空,外表带正电,呈 现施主型; • qФ0以上外表态被电子填充,外表带负电,呈现受 主型。对于大多数半导体,qФ0约为禁带宽度的三 分之一。
• 假设n型半导体存在外表态,费米能级高于qФ0,如果qФ0以上存 在有受主型外表态,在EF与qФ0之间的能级将被电子填满,外表 带负电。外表附近出现正的空间电荷区,形成电子势垒。势垒 高度qVD恰好使外表态上的负电荷与势垒区的正电荷相等。
m(V)
0.95 0.80 0.94
说明金属的功函数对势垒高度的影响并不显著。
原因:半导体外Leabharlann 存在外表态。巴丁〔Bardeen〕提出应该考虑到半导体外表存在密度相当大的 外表态。如果认为在金属和半导体之间存在原子线度的间隙,外 表态中的电荷可通过在间隙中产生的电势差对势垒高度起到钳制 作用。

半导体物理第七章金属和半导体的接触

半导体物理第七章金属和半导体的接触
半导体
半导体的导电性能介于金属和绝缘体 之间。其内部存在一个或多个能隙, 使得电子在特定条件下才能跃迁到导 带。常见的半导体材料有硅、锗等。
接触的物理意义
01
金属和半导体的接触在电子器件 中具有重要应用,如接触电阻、 欧姆接触等。
02
理解金属和半导体的接触性质有 助于优化电子器件的性能,如减 小接触电阻、提高器件稳定性等 。
03
肖特基结模型适用于描述金属 和p型半导体之间的接触。
06
金属和半导体的接触实验 研究
实验设备和方法
实验设备
高真空镀膜系统、电子显微镜、 霍尔效应测量仪等。
实验方法
制备金属薄膜,将其与半导体材 料进行接触,观察接触表面的形 貌、电子输运特性等。
实验结果分析
接触表面的形貌分析
通过电子显微镜观察接触表面的微观结构, 了解金属与半导体之间的相互作用。
详细描述
当金属与半导体相接触时,由于金属和半导体的功函数不同,会产生电子的转移。这种电子的转移会 导致在接触区域形成一个势垒,阻碍电子的流动,从而产生接触电阻。接触电阻的大小与金属和半导 体的性质、接触面的清洁度、温度等因素有关。
热导率
总结词
热导率是指材料传导热量的能力,金属 和半导体的热导率差异较大,这会影响 它们之间的热交换效率。
详细描述
欧姆接触的形成需要满足一定的条件,包括金属与半导体之间要有良好的化学相容性和冶金相容性,以及半导体 内部载流子浓度要足够高。欧姆接触在集成电路和电子器件中具有广泛应用。
隧道结
总结词
隧道结是指金属和半导体之间形成的 具有隧道传输特性的结,当外加电压 达到一定阈值时,电流可以通过隧道 效应穿过势垒。
2
这个接触势垒会影响金属和半导体之间的电流传 输和热传导,进而影响电子器件的性能。

《半导体物理》胡礼中第七章 半导体的接触现象

《半导体物理》胡礼中第七章 半导体的接触现象

第七章 半导体的接触现象半导体的接触现象主要有半导体与金属之间的接触(肖特基结和欧姆接触)、半导体与半导体之间的接触(同质结和异质结)以及半导体与介质材料之间的接触。

这一章主要介绍前两种接触现象。

§7-1 外电场中的半导体无外加电场时,均匀掺杂半导体中的空间电荷处处等于零。

当施加外电场时,在半导体中引起载流子的重新分布,从而产生密度为)(r ρ的空间电荷和强度为)(r ∈的电场。

载流子的重新分布只发生在半导体的表面层附近,空间电荷将对外电场起屏蔽作用。

图7-1a 表示对n 型半导体施加外电场时的电路图。

在图中所示情况下,半导体表面层的电子密度增大而空穴密度减小(见图7-1b 、c ),从而产生负空间电荷。

这些空间电荷随着离开样品表面的距离的增加而减少。

空间电荷形成空间电场s ∈,在半导体表面s ∈达到最大值0s ∈(见图7-1d )。

空间电场的存在将改变表面层电子的电势和势能(见图7-1e 、f ),从而改变样品表面层的能带状况(见图7-1g )。

电子势能的变化量为)()(r eV r U -=,其中)(r V 是空间电场(也称表面层电场)的静电势。

此时样品的能带变化为)()(r U E r E c c += (7-1a ))(r E v =)(r U E v + (7-1b )本征费米能级变化为 )()(r U E r E i i += (7-2a )杂质能级变化为 )()(r U E r E d d += (7-2b )由于半导体处于热平衡状态,费米能级处处相等。

因此费米能级与能带之间的距离在表面层附近发生变化。

无外电场时这个距离为(f c E E -)和(v f E E -) (7-3)而外场存在时则为[]f c E r U E -+)( 和-f E [)(r U E v +] (7-4)比较(7-3)和(7-4)式则知,如果E c 和E f 之间的距离减少)(r U ,E f 与E v 之间的距离则增加)(r U 。

半导体物理:金属和半导体的接触

半导体物理:金属和半导体的接触
WM<WS, 金属的费米能级高于 n型半导体的费米能级,金属 中的电子向半导体中移动,在 半导体表面形成电子累积的 负空间电荷区.
Wm<Ws
n型反阻挡层(理想欧姆接触)
半导体表面带负电,空间电荷区电场的方向由半导体表面指向 体内,表面电子的能量低于体内,能带向下弯曲,表面处电子 浓度远大于体内。所以此时的空间电荷区是一个很薄的高电导 层,称之为反阻挡层(表面电子积累),对半导体和金属的接 触电阻影响很小。
在空间电荷区内便存在一定的电场,造成能带弯曲,使半 导体表面和内部之间存在电势差Vs,即表面势。
这时接触电势差一部分降落在空间电荷区,另一部分降落 在金属和半导体表面之间。
Ws
Wm q
Vms
Vs
若D小到可以与原子间 距相比较,电子可自由 穿过间隙
接触电势差绝大部分降 落在空间电荷区。
电子亲合能X
定义:E0与Ec之差
E0 EC
半导体功函数
半导体功函数
Ws E0 (EF )s
电子亲合能,它表示要使半导
体导带底的电子逸出体外所 需要的
Ws [Ec (EF )s ] En
En Ec (EF )s
n
=
En q
半导体的功函数与杂质浓度的关系
的流动。
它们之间的电势差完全补偿了原来费米能级的不同
Vms
Vm
Vs Ws
Wm q
随着D的减小,靠近半导体一侧的金属表面负电荷密度增 加,同时,靠近金属一侧的半导体表面的正电荷密度也随 之增加。
由于半导体中电荷密度的限制,这些正电荷分布在半导体 表面相当厚的一层表面层内,即空间电荷区。
半导体中的电子将向金属流动,使金属表面带负电,半导体表

半导体物理学第七章

半导体物理学第七章

J = J m → s + J s →m
qφns qV = A T exp(− )[exp( ) − 1] k0T k0T
∗ 2
qV = J sT [exp( ) − 1] k0T
与扩散理论得到的J-V形式上是一样的,所不同的是JsT与外加电压无 关,却是一个更强烈依赖于温度的函数。
3、镜像力和隧道效应的影响
接触电阻定义为零偏压下的微分电阻,即
∂I Rs = ∂V V =0
−1
下面估算一下以隧道电流为主时的接触电阻。讨论金属和n型半导体接触的 势垒贯穿问题。将导带底选为电势能的零点。
qN D V ( x) = − ( x − d0 )2 2ε r ε 0
电子的势垒为:
q2 ND −qV ( x) = ( x − d0 )2 2ε r ε 0
2
半导体内电场为零,因而
E ( xd ) = − dV dx
x = xd
=0
金属费米能级除以-q作为电势零点,则有 势垒区中
V (0) = −φns
dV ( x) qN D E ( xd ) = − = ( x − xd ) dx ε rε 0 1 2 V ( x) = ( xxd − x ) − φns ε rε 0 2 qN D
2、接触电势差
设想有一块金属和n型半导体, 它们有共同的真空静止能级。 假定
Wm > Ws
接触前,未平衡的能级
平衡状态的能级
q(Vs' − Vm ) = Wm − Ws Ws − Wm Vms = Vm − V = q
' s
接触电势差
紧密接触
忽略间隙 当 Vms 很小时,接触电势差绝大部分 落在空间电荷区。 金属一边的势垒高度是

半导体物理作业(七)答案

半导体物理作业(七)答案

第七章金属和半导体的接触1. 基本概念1)什么是金属的功函数?答:金属费米能级的电子逸出到真空中所需要的能量,即()m F m E E W −=0。

其中E 0:真空中电子的静止能量,(E F )m :金属的费米能。

随着原子序数的递增,金属的功函数呈周期性变化。

2)什么是半导体的电子亲和能?答:半导体导带底的电子逸出到真空中所需要的能量,即C 0E E −=χ。

其中E 0:真空中电子的静止能量,E C :半导体导带底的能量。

3)以金属-n 型半导体接触为例,如果金属的功函数大于半导体的功函数,即W m >W s ,则半导体表面的空间电荷、电场和表面势垒具有什么特点?如果W m >W s ,又如何呢?答:金属-n 型半导体接触,如果W m >W s ,电子从半导体流向金属。

半导体表面形成正的空间电荷区,电场方向由体内指向表面,形成表面势垒。

在势垒区,空间电荷主要由电离施主形成,电子浓度比体内低很多,为高阻区域,称为阻挡层。

如果W m <W s ,电子从金属流向半导体,势垒区电子浓度比体内大很多,为高电导区,称为反阻挡层。

4)什么是表面态对势垒的钉扎?答:表面态密度存在时,即使不与金属接触,表面也会形成势垒。

高的表面态密度,可以屏蔽金属接触的影响,使半导体势垒高度几乎与金属的功函数无关,即势垒高度被高的表面态密度钉扎(pinned )5)为什么金属-n 型半导体接触器件具有整流作用?答:外加电压V ,如果使金属的电势升高,由于n 型半导体高阻挡层为高阻区,外压V 将主要降落在阻挡层,则势垒下降,电阻下降。

反之,如果金属的电势下降,则势垒增高,势垒区电子减少(多子),电阻更高。

因此阻挡层具有类似于pn 结的整流作用。

6)以金属-n 型半导体接触为例,写出势垒宽度大于电子的平均自由程时,其扩散电流密度与电压的关系。

与pn 结的电流密度-电压关系比较,各自具有什么相同和不同的特点?答:金属-n 型半导体接触,扩散电流为⎟⎟⎠⎞⎜⎜⎝⎛−=1kT qV sD e J J ,()T k qVr D D sD D e V V qN J 02/102−⎭⎬⎫⎩⎨⎧−=εεσ 与pn 结的电流密度-电压关系比较,二者均具有单向性的特征;所不同的是,金属-n 型半导体接触的反向电流随外加电压增加呈1/2次方增加,而pn 结的反向电流不随电压变化。

半导体物理学第七章知识点

半导体物理学第七章知识点

第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。

金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。

在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。

要使电子从金属中逸出,必须由外界给它以足够的能量。

所以,金属中的电子是在一个势阱中运动,如图7-1所示。

若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。

W M 越大,电子越不容易离开金属。

金属的功函数一般为几个电子伏特,其中,铯的最低,为;铂的最高,为 eV 。

图7-2给出了表面清洁的金属的功函数。

图中可见,功函数随着原子序数的递增而周期性变化。

2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。

与金属不同,半导体中费米能级一般并不是电子的最高能量状态。

如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。

E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。

它表示要使半导体导带底的电子逸出体外所图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能需要的最小能量。

利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。

表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值 (eV)二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。

第七章 金属和半导体的接触

第七章 金属和半导体的接触

第七章金属和半导体的接触金属—半导体接触指由金属和半导体互相接触而形成的结构,简称M-S 接触。

主要的金属与半导体接触类型:1、单向导电性的整流接触2、欧姆接触§7.1M-S 接触的势垒模型一、功函数和电子亲和能要使一个电子能够逸出金属表面(即能够达到0E 以上的能级),需要给予电子的能量最少应为0m Fm W E E =−,m W 称为金属的功函数或逸出功。

半导体的功函数为0S FSW E E =−半导体的电子亲和势为0C E E χ=−,表示要使半导体导带底的电子逸出体外所需要的最小能量。

此时半导体的功函数又可以表示为:[]S C FS n W E E E χχ=+−=+。

二、理想的M-S 接触的势垒模型假设:①在半导体表面不存在表面态;②M-S 接触之间没有绝缘层或绝缘层很薄(1020o~A )的紧密接触的理想情况。

以金属和n 型半导体的接触为例:1、S mW W <若m S W W >,电子从半导体一侧流向金属一侧,在半导体表面形成正的空间电荷区,产生自建电场,形成负的表面势(从半导体表面到半导体内部的电势之差),能带向上弯曲,形成表面势垒(阻挡层)。

用D V 表示从半导体内部到界面的电势差,则半导体一侧的电子所面临的势垒高度为:D S m s qV qV W W =−=−,称为表面势垒或肖特基势垒;金属一侧的电子所面临的势垒高度为ns D n m q qV E W φχ=+=−2、m SW W <在n 型半导体表面处形成一个高电导区,称为反阻挡层。

金属和p 型半导体接触时:当m S W W >时,表面处能带向上弯曲,形成空穴的反阻挡层;当m S W W <时,表面处能带向下弯曲,形成p 型阻挡层。

三、表面态对接触势垒的影响巴丁最早提出了M-S 接触中有表面态影响的模型,称为巴丁势垒模型。

在半导体表面处的禁带中存在着表面态,对应的能级称为表面能级。

半导体物理学第七章知识点

半导体物理学第七章知识点

第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。

金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E 以下的所有能级,而高于E 的能级则全部是空着的。

在一定温度下,只有E 附近的少数电子受到热激发,由低于E 的能级跃迁到高于E 的能级上去,但仍不能脱离金属而逸出体外。

要使电子从金属中逸出,必须由外界给它以足够的能量。

所以,金属中的电子是在一个势阱中运动,如图7-1所示。

若用E 表示真空静止电子的能量,金属的功函数定义为E 与E 能量之差,用W 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。

W M 越大,电子越不容易离开金属。

金属的功函数一般为几个电子伏特,其中,铯的最低,为;铂的最高,为 eV 。

图7-2给出了表面清洁的金属的功函数。

图中可见,功函数随着原子序数的递增而周期性变化。

2、半导体的功函数和金属类似,也把E 与费米能级之差称为半导体的功函数,用W 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W 是杂质浓度的函数。

与金属不同,半导体中费米能级一般并不是电子的最高能量状态。

如图7-3所示,非简并半导体中电子的最高能级是导带底E 。

E 与E 之间的能量间隔C E E -=0χ被称为电子亲合能。

它表示要使半导体导带底的电子逸出体外所需要的最小能量。

利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。

图7-1 金属中的电子图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值(eV)二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W -W =E FS -E FM 。

半导体物理学第七章知识点

半导体物理学第七章知识点

第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。

金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§7.1金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。

在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。

要使电子从金属中逸出,必须由外界给它以足够的能量。

所以,金属中的电子是在一个势阱中运动,如图7-1所示。

若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。

W M 越大,电子越不容易离开金属。

金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。

图7-2给出了表面清洁的金属的功函数。

图中可见,功函数随着原子序数的递增而周期性变化。

2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。

与金属不同,半导体中费米能级一般并不是电子的最高能量状态。

如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。

E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。

它表示要使半导体导带底的电子逸出体外所需要的最小能量。

利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。

图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。

31_半导体物理学(第四版)第七章(教材)

31_半导体物理学(第四版)第七章(教材)

–若
,金属和n型半导体接触可形成反阻挡层;

时,金属和p型半导体接触也能形成反阻挡层,
反阻挡层没有整流作用,可实现欧姆接触
– 实际生产中利用隧道效应的原理,把半导体一侧重掺杂 形成金属—n+n或金属—p+p结构,从而得到理想的欧姆 接触
27
28
29
30
31
pn结一般为0.7V
7.3 少数载流子的注入和欧姆接触
23
24
欧姆接触应满足一下三点: 1.伏安特性近似为线性,且是对称的 2.接触引入的电阻很小 3. 在接触区附近,载流子浓度等于热 平衡的值,即,没有少子注入
25
欧姆接触
• 欧姆接触
– 不产生明显的附加阻抗,而且不会使半导体内部的平衡 载流子浓度发生显著的改变,为非整流接触
10
表面态密度极高,半导体和 金属接触时,只转移表面态 中的电子就可以使整个系 统达到平衡. 即接触前后,半导体一侧的 空间电荷不发生变化,表面 势垒不变,称为钉扎效应或 锁定效应
11
12
7.2 M—S接触的整流理论
13
14
15
16
17
极管的比较
第七章金属和半导体的接触
7.1 M—S接触的势垒模型 7.2 M—S接触的整流理论 7.3 少数载流子的注入和欧姆接触
本章重点: 势垒模型, 整流理论的概念 欧姆接触的性质及特点
1
为什么研究金属与半导体接触? 什么是M-S接触?
2
7.1 M—S接触的势垒模型
3
E0:真空能级
4
5
6
7
8
9
• 相同点
– 单向导电性
• 不同点
– 正向导通时,pn结正向电流由少数载流子的扩散运动 形成,而肖特基势垒二极管的正向电流由半导体的多数 载流子发生漂移运动直接进入金属形成,因此后者比前 者具有更好的高频特性

半导体物理学——半导体与金属的接触

半导体物理学——半导体与金属的接触
n0 = Nce k0T
( ) NC =
2mn*k0T 3/2
4π 3/2h3
23
半导体物理学 黄整
第七章 金属和半导体的接触
或者
dn′
=
n0
⎛ ⎜ ⎝
mn*
2π k0T
3
⎞2 ⎟ ⎠

mn*
(
vx2
+v
2 y
+vz2
)
e 2k0T dvxdvydvz
换一种思路,考虑动量空间
dn =
An e dp dp dp −
第七章 金属和半导体的接触
达到界面的电子要越过势垒,必须满足
1 2
mn*vx2

−q
⎡⎣(Vs
) 0
+V
⎤⎦
所需要的x方向的最小速度
1
1 2
mn*vx20
=
−q
⎡⎣(Vs
) 0
+V
⎤⎦
vx0
=
⎧⎪⎨− ⎪⎩
2q
⎡⎣(Vs
) 0
mn*
+V
⎤⎦
⎫⎪ ⎬
⎭⎪
2
规定电流的正方向是从金属到半导体,则从
2qN
D
ε
VD
rε0
−V
⎫2 ⎬ ⎭
− qVD
e k0T
⎛ qV ⎝⎜⎜ e k0T
⎞ −1⎠⎟⎟
金属半导体接 触伏安特性
21
半导体物理学 黄整
第七章 金属和半导体的接触
热电子发射理论
当n型阻挡层很薄,电子平均自由程远大于势 垒宽度。起作用的是势垒高度而不是势垒宽 度。电流的计算归结为超越势垒的载流子数 目。

金属和半导体的接触

金属和半导体的接触

1 ( )扩散 理论 (kuòsàn)
n型阻挡层,当势垒的宽度比电子的平均自
由程大得多时(xd>>Ln ),电子通过势垒区要发
生(fāshēng)多次碰撞,这样的阻挡层称为 厚阻挡层--适用于扩散理论
Ln:电子的平均自由(zìyóu)程 Xd:势垒宽度
第十九页,共三十一页。
势垒区存在电场,有电势的变化,载流子浓度不均 匀。计算通过势垒的电流时,必须同时考虑漂移和扩 散运动。
金属电势降低 半导体电势(diànshì)提高
肖特基势垒高度
金属和n型半导体接触能带图(Wm>Ws)
(a)接触前;(b)间隙很大; (c)紧密(jǐnmì)接触;(d)忽略间隙
金半间距D远大于原子间距时
平衡态,费米能级相等
(b )接触 V m 电 sV m 势 V s' W 差 s q W m
D 正负电荷密度增加 空间电荷区形成(why),表面势,能带弯曲
(
E
s F
)
巴丁模型
第九页,共三十一页。
Rectification Theory of Metal-Semiconductor Contact
1、阻挡层的整流特性
——外加(wàijiā)电压对阻挡层的作用
第十页,共三十一页。
▪ 概念
➢ 整流理论是指阻挡层的整流理论 ➢ 紧密接触的金属和半导体之间有外加电压
第七章 金属(jīnshǔ)和半导体的接触
§7.1 金属(jīnshǔ)半导体接触
及其能带图 E-mail:
第一页,共三十一页。
本章(běn zhānɡ)内容提要
▪ 金半接触(jiēchù)及其能级图
▪ 整流特性
▪ 少子注入和欧姆接触
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子通过M-S接触时,能够不受势垒的阻挡,从一种材料输运到另一种 材料,即其正反偏置的电流输运特征没有差别。
2、如何实现欧姆接触?
总结
总结
总结
总结
总结
需修正:①镜像力;②隧道效应
总结
习题
习题
习题
Ehvhc6.62103470301100891.61019 1.78eV Ehvhc6.621034 40301100891.61019 3.10eV
实质上是半导体价带顶部附近的电子流向金属,填充金 属中EF以下的空能级,而在价带顶附近产生空穴。
加正向电压时,少数载流子电流与总电流值比称为少数 载流子的注入比,用 表示。对n型阻挡层而言:
7.3.2 欧姆接触
1、什么是欧姆接触?
欧姆接触应满足以下三点: 1、伏安特性近似为线性,且是对称的; 2、接触引入的电阻很小(不产生明显的附加阻抗); 3、不会使半导体内部的平衡载流子浓度发生显著改变。
空间电荷区 电子从体内到表面,势能增加,表面能带向上弯曲
2、WS >Wm 电子系统在热平衡状态时应有统一的费米能级
电子反阻挡层;低阻 ——欧姆接触
考虑价带的电子转移,留下更多的空穴,形成空间 电荷区。空穴从体内到表面,势能降低,能带向上 弯曲。
7.1.3 表面态对接触势垒的影响
金属和半导体接触前
7.2.2 热电子发射理论
1.热电子发射理论的适用范围:
——适用于薄阻挡层 ——势垒高度 >>k0T ——非简并半导体
lபைடு நூலகம் >> d
2.热电子发射理论的基本思想:
薄阻挡层,势垒高度起主要作用。 能够越过势垒的电子才对电流有贡献 ——计算超越势垒的载流子数目,从而求出电流密度。
3.势垒区的伏安特性
7.1.1 功函数和电子亲和能
7.1.2 接触电势差 理想接触:
——在半导体表面不存在表面态 ——M-S之间没有绝缘层或绝缘层很薄的紧密接触
以金属和n型半导体的接触为例
1、WS <Wm 电子系统在热平衡状态时应有统一的费米能级
半导体体内载流子重新分布引 起载流子的积累或耗尽,导致 能带弯曲;但金属体内的载流 子和浓度基本没有变化。
(2)波长为185 nm的紫外光光子的能量为
Ehvhc6.62103418351100891.61019 6.7eV
发射出来的电子能量: E=E0-W=6.7-2.5=4.2 eV
习题
习题
电流很小,为反向偏置
3. V>0
金属接正极,半导体接负极
外加电压削弱了内建电场的作用,势垒降低; 金属一侧的势垒高度没有变化;
电流很大,为正向偏置
7.2.1 扩散理论 1.扩散理论的适用范围:
适用于厚阻挡层; 势垒宽度比载流子的平均自由程大得多,即
势垒区是耗尽区; ——半导体是非简并的
2.扩散理论的基本思想
态密度较大
态密度很大
两者的EF不重合
存在表面态,即使不与金属接触,半导体一侧产生电子势垒
表面能级以下的能级电子已经填满,只能填到表面能级以上的 能级,则形成受主态(带负电)。体内电子转移后形成带正电 荷的区域。
金属和半导体接触
WS <Wm 半导体向金属转移
①表面态密度很大,以表面电子转移为主
接触前后,半导体一侧的空间电荷不发生变化,表面势不变 ——势垒高度被钉扎。
扩散方向与漂移方向相反
无外加电压: 扩散与漂移相互抵消——平衡; 反向电压: 漂移增强——反偏; 正向电压: 扩散增强——正偏
3.势垒宽度与外加电压的关系
势垒的高度和宽度都随外加电压变化:
4.势垒区的伏安特性
根据扩散理论,势垒区的电流是由半导体一侧电子的扩散和 漂移运动形成的:
该理论是用于迁移率较小,平均自由程较短的半导体, 如氧化亚铜。
第七章 金属和半导体的接触
本章主要内容
7.1 金属半导体接触及其能级图; 7.2 金属半导体接触整流理论; 7.3 少数载流子的注入和欧姆接触;
金属——半导体接触 由金属和半导体互相接触而形成的结构,简称M-S接触。
典型接触:
1、半导体掺杂浓度低,单向导电性——整流接触 肖特基势垒器件
2、半导体掺杂浓度高,双向导电性——欧姆接触 提供低阻互联
②表面态密度较大,表面、体内电子均转移
表面态中的电子和半导体体内的电子都要向金属转移,才能使系统平衡。 金属功函数对势垒有影响,但影响不大——实际情况
7.2 金属半导体接触整流理论
1. V=0
2. V<0
金属接负极,半导体接正极
外加电压增强了内建电场的作用,势垒区电势增强,势垒增高; 金属一侧的势垒高度没有变化;
Ge、Si、GaAs有较高的载流子迁移率、较大的平均自由程, 主要是热电子发射。
需修正:①镜像力;②隧道效应
7.3 少数载流子的注入和欧姆接触
在势垒区域,空穴的浓度在表面最大。
正向电压使得势垒降低,形成自外向内的空穴流,
E
它形成的电流与电子电流方向一致。
7.3.1 少数载流子的注入
在正向电压作用下,金属和n型半导体接触使得半导体 中空穴浓度增加的现象称为少子的注入。
相关文档
最新文档