北师大版七年级上册数学各章节知识点总结
北师大版七年级上册数学各章节知识点归纳
北师大版七年级上册数学各章节知识点归纳第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥:三菱锥、四凌锥、五菱锥、……4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
新北师大版七年级上册数学知识点总结
北师大版七年级上册数学知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章有理数及其运算1、有理数的分类正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
北师大七年级数学上册知识点
北师大七年级数学上册知识点北师大版七年级数学上册知识点概述一、数与代数1. 有理数的混合运算- 正数和负数的概念- 有理数的加法、减法、乘法和除法- 有理数的乘方- 有理数的混合运算顺序和运算法则2. 整式的加减- 单项式和多项式的概念- 同类项和合并同类项- 去括号法则- 整式的加减运算3. 一元一次方程- 方程的概念- 解方程的基本步骤- 利用方程解决实际问题4. 几何图形的初步认识- 点、线、面、体的基本概念- 直线、射线、线段的性质- 角的概念和分类- 平行线的性质5. 数据的收集和处理- 统计调查的基本方法- 数据的整理和图表表示- 频数和频率的计算- 利用图表分析数据二、几何1. 平面图形的性质- 平行四边形的性质和判定- 矩形、菱形、正方形的性质和判定 - 三角形的分类和性质- 全等三角形的判定条件2. 几何图形的计算- 三角形、四边形的周长和面积计算 - 圆的周长和面积计算- 体积的概念和计算方法三、统计与概率1. 统计- 统计图表的阅读和理解- 抽样调查和全面调查的比较- 统计数据的误差分析2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件的概率计算四、解题技巧与策略1. 解题方法- 分析问题、寻找条件- 归纳法和演绎法- 逆向思维和分类讨论2. 策略选择- 题目类型的识别- 适当运用数学工具- 时间管理和检查策略五、数学思维的培养1. 逻辑思维- 论证的严密性- 逻辑推理的训练2. 创新思维- 探索性问题的解决- 数学建模的初步尝试3. 数学应用- 数学与现实生活的联系- 数学问题的解决与实际应用六、课程复习与总结1. 知识点的梳理- 重点、难点的回顾- 易错点的总结2. 练习题与测试- 典型题目的练习- 模拟测试与自我评估3. 学习方法的调整- 学习计划的制定- 学习方法的改进以上是北师大版七年级数学上册的主要知识点概述。
在学习过程中,学生应该注重理论与实践相结合,通过大量的练习来巩固知识点,并通过实际问题的解决来提高数学应用能力。
七年级数学北师大版上册单元总结
七年级数学北师大版上册单元总结第一章:丰富的图形世界1、立体图形与平面图形:认识常见的立体图形:长方体、正方体、圆柱、圆锥、球等。
了解立体图形与平面图形的关系,如何从立体图形中得到平面图形。
2、展开与折叠:学习如何将立体图形展开成平面图形,以及如何将平面图形折叠成立体图形。
了解展开与折叠在现实生活中的应用,如包装设计。
3、截一个几何体:学习如何用一个平面去截一个几何体,了解截面的形状和性质。
第二章:有理数及其运算4、有理数:认识有理数,包括正数、负数、零和分数。
了解有理数的性质,如大小比较、绝对值等。
5、有理数的运算:学习有理数的四则运算:加、减、乘、除。
掌握运算律和运算性质,如交换律、结合律、分配律等。
6、有理数的混合运算:学习包含多种运算的混合运算,掌握运算顺序和技巧。
第三章:字母表示数7、字母表示数:认识代数式,学习如何用字母表示数和数量关系。
了解代数式的值和意义。
8、代数式的求值:学习如何根据给定的条件求代数式的值。
9、合并同类项与去括号:学习如何合并代数式中的同类项,以及如何去括号。
第四章:平面图形及其位置关系10、线段、射线、直线:认识线段、射线和直线,了解它们的性质和表示方法。
11、角:认识角,包括锐角、直角、钝角和平角。
学习角的度量和表示方法,了解角的性质和应用。
12、平面图形的位置关系:学习平面图形的位置关系,如相交、平行等。
了解位置关系在几何证明和实际问题中的应用。
第五章:一元一次方程13、等式与方程:认识等式和方程,了解它们的意义和性质。
14、一元一次方程的解法:学习解一元一次方程的方法,包括移项、合并同类项、化系数为1等步骤。
15、一元一次方程的应用:学习如何运用一元一次方程解决实际问题,如行程问题、工程问题、销售问题等。
第六章:数据的收集与整理16、数据的收集:学习如何进行有效的数据收集,包括确定调查目的、设计调查问卷、选择调查方法等。
了解数据收集中的注意事项和常见问题。
七年级数学(北师大版) 上册知识点总结(带关键习题)
北师大版七年级数学上册知识点总结前言:七年级上知识点很简单,主要是衔接作用,很多知识点在六年级涉及过,现在是对六年级的加深与拓展。
重点难点章节有三个:第二章有理数及其运算、第三章整式及其加减、第五章一元一次方程.第一章丰富的图形世界备注:本单元两个易错点: 1、图形的展开与折叠2、“三视图”判断图形个数1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形.平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分)锥圆锥棱锥3、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
4、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形。
(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱: 有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。
圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。
侧面展开图是扇形,底面是圆.球:由一个面(曲面)围成的几何体。
5、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱.侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点.6、正方体的平面展开图:11种总结规律:一线不过四,田凹应弃之;相间、Z端是对面,间二、拐角邻面知。
3—3型7、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
北师大版初中数学七年级上册知识点汇总
侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:北师大版初中数学七年级上册知识点汇总
第一章 丰富的图形世界
¤1.
¤2.
¤3. 球体:由球面围成的(球面是曲面)
¤4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。
几何的表面有平面和曲面;
②面与面相交得到线;
③线与线相交得到点。
※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。
※6. 侧棱:相邻两个侧面的交线叫做侧棱..
,所有侧棱长都相等。
¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底
面图形的形状分别为三边形、四边形、五边形、六边形……
¤9. 长方体和正方体都是四棱柱。
¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
北师大七年级上册数学各章节知识点总结
北师大版七年级上册数学各章节知识点总结第一章 丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、…… 球 圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,相邻两个面的交线,叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
棱柱的所有侧棱长都相等。
棱柱的上、下底面的形状相同,侧面的形状都是平行四边形。
长方体和正方体都是四棱柱。
棱柱可以分为直棱柱和斜棱柱。
直棱柱的侧面是长方形。
n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:截面:用一个平面去截一个几何体,截出的面叫做截面。
用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
锥 柱 生活中的立体图形(按名称分)第二章有理数及其运算1、有理数的分类有理数:整数和分数统称为有理数。
正有理数有理数零有限小数和无限循环小数负有理数整数或有理数分数2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
2023年北师大版七年级数学上册知识点总结
2023年北师大版七年级数学上册知识点总结2023年北师大版七年级数学上册知识点总结1第一章有理数(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整数之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
(完整版)北师大版七年级上数学知识点汇总(精心整理)
七年级上册第一章丰富的图形世界第二章有理数及其运算第三章整式及其加减第四章基本平面图形第五章一元一次方程第六章数据的收集与整理第一章:丰富的图形世界一、生活中的立体图形分类1.棱柱的相关概念(初中只讨论直棱柱,即侧面是长方形)①棱:在棱柱中,相邻两个面的交线叫做棱②侧棱:在棱柱中,相邻两个侧面的交线叫做侧棱③根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱......④棱柱所有侧棱都相等,棱柱的上、下底面的形状相同,侧面的形状都是平行四边形①点:线和线相交的地方是点,它是几何中最基本的图形②线:面和面相交的地方是线,分为直线和曲线③面:包围着体的是面,分为平面和曲面④体:几何体也简称体⑤点动成线,线动成面,面动成体二、展开与折叠1.常见立体图形的展开图①圆柱:两个圆,一个长方形②圆锥:一个圆,一个扇形③三棱锥:四个三角形④三棱柱:两个三角形,三个长方形⑤正方体展开图:共有11种,141(6种),231(3种),33(1种),222(1种)⑥要展开一个正方体,需要切开7条棱⑦正方体平面展开图找对立面:相间、Z端三、截一个几何体1.常见立体图形的截面2.用一个平面去截一个正方体,可能得到三边形、四边形、五边形、六边形(3456)四、三视图(主视图、左视图、俯视图)1.三视图的6种题型:(1)已知实物图画三视图;(2)已知俯视图,画主视图和左视图;(3)已知主视图、左视图和俯视图,确定小立方体的个数;(4)已知主视图和俯视图,确定小立方体最多和最少个数;(5)已知左视图和俯视图,确定小立方体最多和最少个数;(6)已知主视图和左视图,确定小立方体最多和最少个数。
五、多边形的一些规律1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
2.从一个n边形的一边上的一点出发,分别连接这个点与其余各顶点,可以把这个n边形分割成(n-1)个三角形。
3.从一个n边形的内部的一个点出发,分别连接这顶点与其余各顶点,可以把这个n边形分割成n个三角形。
七年级数学(北师大版) 上册知识点总结(带关键习题)
北师大版七年级数学上册知识点总结前言:七年级上知识点很简单,主要是衔接作用,很多知识点在六年级涉及过,现在是对六年级的加深与拓展。
重点难点章节有三个:第二章有理数及其运算、第三章整式及其加减、第五章一元一次方程.第一章丰富的图形世界备注:本单元两个易错点: 1、图形的展开与折叠2、“三视图”判断图形个数1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥3、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面.体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
4、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形。
(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱.棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。
圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。
侧面展开图是扇形,底面是圆。
球: 由一个面(曲面)围成的几何体。
5、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
6、正方体的平面展开图:11种总结规律:一线不过四,田凹应弃之;相间、Z端是对面,间二、拐角邻面知。
3—3型7、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
北师大版七年级数学上册知识点归纳汇总
侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:北师大版七年级数学上册知识点归纳汇总第一章 丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、几何图形是由点、线、面构成的。
几何体与外界的接触面或我们能看到的外表就是几何体的表面。
几何的表面有平面和曲面;①点:线与线相交的地方是点,它是几何图形中最基本的图形。
②线:面与面相交得到线,分为直线和曲线。
③面:包围着体的是面,分为平面和曲面体:几何体也简称体。
点动成线,线动成面,面动成体。
3、生活中的立体图形:球体:由球面围成的(球面是曲面)圆柱:圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:圆锥的表面展开图是由一个圆形和一个扇形连成。
5、棱:在棱柱中,任何相邻两个面的交线都叫做棱。
6、侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。
7、棱柱的上、下底面的形状相同,侧面的形状都是长方形。
8、N 棱柱有2个底面,N 个侧面,共有(N+2)个面,3N 条棱,N 条侧棱,2N 个顶点。
9、根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……10、长方体和正方体都是四棱柱。
11、正方体的平面展开图:11种12、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
用一个平面去截一个N 面体,截出的面最多是N 边形。
13、三视图:物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
14、多边形:同一些不在同一条直线上的线段依次首尾相边组成的封闭平面图形,叫做多边形。
15、设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有条对角线。
北师大版七年级数学上册全册知识点预习汇总
北师大版七年级数学上册全册知识点预习汇总第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……第二章有理数及其运算1.有理数可表示为两个整数之比形式的数。
正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0.3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,|a|≥0。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
只要有一个数为0,积就为0。
有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:减去一个数,等于加上这个数的相反数!有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
北师大版七年级上数学知识点汇总(精心整理)
北师大版七年级上数学知识点汇总(精心整理)七年级上册第一章丰富的图形世界一、生活中的立体图形分类在初中数学中,我们只讨论直棱柱,即侧面是长方形的棱柱。
棱柱的相关概念包括棱、侧棱、以及根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱等等。
棱柱的所有侧棱都相等,且上下底面的形状相同,侧面的形状都是平行四边形。
我们可以根据面、顶点、棱、侧棱、侧面的数量关系来分类n棱柱。
例如,三棱柱有5个面、6个顶点、9条棱、3条侧棱和3个侧面。
在几何中,点、线、面、体是最基本的图形,点动成线,线动成面,面动成体。
二、展开与折叠常见立体图形的展开图包括圆柱、圆锥、三棱锥、三棱柱和正方体。
展开正方体需要切开7条棱。
我们可以通过找对立面(相间、Z端)来展开正方体。
三、截一个几何体常见立体图形的截面可以得到三边形、四边形、五边形和六边形。
四、三视图(主视图、左视图、俯视图)在三视图中,有6种题型,包括已知实物图画三视图、已知俯视图画主视图和左视图、已知主视图、左视图和俯视图确定小立方体的个数、已知主视图和俯视图确定小立方体最多和最少个数、已知左视图和俯视图确定小立方体最多和最少个数、已知主视图和左视图确定小立方体最多和最少个数。
五、多边形的一些规律从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
从一个n边形的一边上的一点出发,分别连接这个点与其余各顶点,可以把这个n边形分割成(n-1)个三角形。
从一个n边形的内部的一个点出发,分别连接这顶点与其余各顶点,可以把这个n边形分割成n个三角形。
4.从一个n边形的一个顶点出发,可以引出(n-3)条对角线。
一个n边形共有n(n-3)/2条对角线。
5.数学家欧拉发现了一个公式:如果用f表示正多面体的面数,e表示棱数,v表示顶点数,则有f+v-e=2.第二章:有理数及其运算一、有理数1.有限小数和无限循环小数都是分数,也都是有理数。
2.正负数表示相反意义的量。
北师大版七年级上册数学知识点总结
北师大版七年级上册数学知识点总结一、数与代数1.1 自然数在北师大版七年级上册数学教材中,最基础的数学知识点就是自然数。
自然数是最简单的数,包括1、2、3、4……。
在学习自然数的过程中,我们要重点掌握自然数的性质、运算规律及其在实际生活中的应用。
1.2 整数整数是自然数、0和它们的负数构成的集合。
学习整数时,需要掌握整数的概念、性质、运算法则以及整数在实际生活中的应用场景。
1.3 有理数有理数是整数和分数的统称。
在学习有理数时,我们要重点理解有理数的性质、四则运算及其在方程中的应用,为学习代数学习打下坚实的基础。
1.4 代数式代数式是用字母表示数的式子。
学习代数式时,需要理解字母与数之间的对应关系、代数式的运算法则以及代数式在实际问题中的运用。
1.5 方程方程是含有未知数的等式。
学习方程,需要重点掌握方程的概念、解方程的方法与步骤,以及方程在实际问题中的应用。
1.6 不等式不等式是含有不等号的数学式子。
学习不等式,重点是理解不等式的概念、性质、解不等式的方法,以及不等式在实际生活中的应用。
总结与回顾:数与代数是数学的基础,对于初中学生来说,掌握好数与代数的知识点是非常重要的。
通过本册数学教材的学习,不仅能够加深对基础数学知识的理解,还能够为将来的学习打下坚实的基础。
个人观点与理解:我认为数与代数是数学中最基础、最重要的部分,它们贯穿于数学的始终。
在学习过程中,我们要注重对基础知识的打牢,才能够更好地理解和应用更复杂的数学知识。
数学知识要与实际生活相结合,才能更好地理解其意义和作用。
北师大版七年级上册数学知识点涉及了数与代数的基础知识,通过系统的学习,我们可以更好地掌握自然数、整数、有理数、代数式、方程以及不等式等知识,为今后的学习打下坚实的基础。
数与代数是数学的基础,是我们学习数学的起点。
在北师大版七年级上册数学教材中,数与代数是一个非常重要的部分,我们需要通过系统的学习来掌握这一部分的知识。
在数与代数的学习过程中,我们首先要了解自然数的概念和性质。
北师大版七年级上册数学知识点汇总
侧面是曲面底面是圆面圆柱,::⎧⎨⎩柱体棱柱底面是多边形侧面是正方形或长方形侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数七年级数学知识点汇总第一章 丰富的图形世界¤1. ¤2. ¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。
几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。
※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。
※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。
¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。
¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。
◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。
◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。
¤15. 凸多边形和凹多边形都属于多边形。
有弧或不封闭图形都不是多边形。
第二章 有理数及其运算1. ※※2、数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
北师大版七年级(上)数学知识点归纳总结
第一章丰富的图形世界七年级上册第1节生活中的立体图形一、生活中常见的几何体1、柱体:分为棱柱和圆柱(1)棱柱①相关概念(如图1-1-1所示)A、底面:两个互相平行的平面叫做棱柱的底面。
B、侧面:两个底面之外的平面叫做棱柱的侧面。
C、棱:相邻两个面的交线叫做棱柱的棱。
D、侧棱:相邻两个侧面的交线叫做棱柱的侧棱。
E、顶点:侧面与底面的公共顶点叫做棱柱的顶点。
F、高:两个底面的距离叫做棱柱的高。
②分类A、按侧棱是否与底面边垂直分为:直棱柱和斜棱柱。
(如图1-1-2所示)B、按底面图形的边数分为:三棱柱、四棱柱、五棱柱、六棱柱……(如图1-1-3所示),它们的底面图形的形状依次是三角形、四边形、五边形、六边形……【说明】长方体和正方体都是四棱柱。
③性质A、棱柱的上、下底面形状相同。
B、棱柱的侧面的形状都是平行四边形,直棱柱的侧面是长方形。
C、棱柱的侧棱都平行且相等,直棱柱的侧棱都平行且与高相等。
④元素间的关系A、底面多边形的边数n确定该棱柱是n棱柱B、n棱柱有2n个顶点,3n条棱,n条侧棱,(n+2)个面,n个侧面。
(2)圆柱①相关概念(如图1-1-4所示)以长方形的一边AB所在直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱。
其中AB叫做圆柱的轴,AB的长叫做圆柱的高,所有平行于AB的线段,如DC,叫做圆柱的母线,AD与BC旋转形成的两个圆叫做圆柱的底面,DC旋转形成的曲面叫做圆柱的侧面。
②性质A、圆柱的上、下底面形状相同,是能够重合的两个圆。
B、圆柱有无数条母线,它们都平行且与高相等。
③圆柱与棱柱的异同A、相同点a、都有上、下两个底面,且两个底面的大小、形状完全相同;b、它们的高都是上、下底面的距离;c、它们的体积都等于底面积乘以高,侧表面积都等于底面周长乘以高。
B、不同点a、圆柱的底面是圆,而棱柱的底面是多边形;b、圆柱侧面是光滑的曲面,而棱柱侧面是有一条边互相重合的顺次相连的四边形。
2、锥体:分为棱锥和圆锥(1)棱锥①相关概念(如图1-1-5所示)A、底面:棱锥的多边形叫做棱锥的底面,如四边形ABCD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级上册数学各章节知识点总结2017.1.4第一章丰富的图形世界1、点、线、面、体:点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
点动成线,线动成面,面动成体。
2、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥3、棱柱:n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
4、正方体的平面展开图:(一四一)中间四个面,上下各一面;(二三一)中间三个面,一二隔河见;(二二二)中间两个面,楼梯三层见;(三三)中间没有面,三,三连一线。
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵正方体:中间四个面,上下各一面(6种摆法-141)中间三个面,一二隔河见(3种摆法-132/231)中间二个面,楼梯天天见(1种摆法-222)中间没有面,三三连一线(1种摆法-33)“田”“凹”应弃之第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
中间没有面,三三连一线(1种摆法-33)5、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形(平行四边形,长方形,正方形,梯形),五边形,六边形。
6、三视图:从正面看,从左面看,从上面看7、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。
8、弧:圆上A 、B 两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章 有理数及其运算1.有理数的分类: ﻩ2.数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数。
如∏)3.相反数:(1)如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0) (2)在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
(3)数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
4.绝对值:(1)绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作|a|。
(2)正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a(3)绝对值的性质:①除0外,绝对值为正数的数有两个,它们互为相反数;②互为相反数的两数(除0外)的绝对值相等;即: |a|=|b|,则a+b=0 ③任何数的绝对值总是非负数,即|a |≥0 ④对任何有理数a,都有|a|=|-a|5.比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值; ②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
6.有理数加法:(1)法则①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
(2)加法的交换律、结合律在有理数运算中同样适用。
灵活运用运算律,使用运算简化,通常有下列规律: ①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加; ③分母相同的数,可以先相加; ④几个数相加能得到整数,可以先相加。
7.有理数减法:(1)法则: 减去一个数,等于加上这个数的相反数。
有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号(变为相反数) 同时运算要注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
(2)有理数的加减法混合运算的步骤:越来越大①写成省略加号的代数和。
在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号; ②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。
) 8.有理数乘法:(1)法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
(2)如果两个数互为倒数,则它们的乘积为1。
(如:-2与21 、3553与…等)注意: ①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置。
一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
(3)乘法的交换律、结合律、分配律在有理数运算中同样适用。
(4)有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。
9.有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。
0不可作为除数,否则无意义。
10.有理数的乘方 :注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
11.有理数混合运算法则:①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
12. 科学记数法:一般地,一个大于10的数可以表示成a×10n 的形式,其中1≤a <10,n 是正整数,这种记数方法叫做科学记数法.....。
第三章 字母表示数1.代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫 代数式...。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式; ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ; ②数字与字母相乘时,数字应写在字母前面,如4a;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a -4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
=⨯⨯⨯⨯ an a a a a 个⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米2.单项式: (1)系数:代数式中的数字中的数字因数叫做代数式的系数......。
如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。
a3b 的系数是1 (2)次数:所有字母的指数和就是这个单项式的次数 3.多项式: (1)项: 代数式7262--x x表示6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项。
注意:在交待某一项时,应与前面的符号一起交待。
(2)次数:多项式中次数最高项的次数就是这个多项式的次数。
4.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a .所含字母相同;b.相同字母的指数也相同。
这两个条件缺一不可; ②同类项与系数无关,与字母的排列顺序无关; ③几个常数项也是同类项。
5.合并同类项:把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:①如果两个同类项的系数互为相反数,合并同类项后结果为0; ②不是同类项的不能合并,不能合并的项,在每步运算中都要写上; ③只要不再有同类项,就是最后结果,结果还是代数式。
6.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
同时也可以根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
注意:①去括号时,要连同括号前面的符号一起去掉; ②去括号时,首先要弄清楚括号前是“+”号还是“-”号; ③改变符号时,各项都变号;不改变符号时,各项都不变号。
第四章 平面图形及位置关系一. 线段、射线、直线2. 直线公理:经过两点有且只有一条直线. 二.比较线段的长短1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离. 2. 比较线段长短的两种方法: ①圆规截取比较法;②刻度尺度量比较法.3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分; 用圆规可以画出线段的和、差、倍. 三.角的度量与表示1. 角:有公共端点的两条射线组成的图形叫做角; 这个公共端点叫做角的顶点; 这两条射线叫做角的边.2. 角的表示法:角的符号为“∠”①用三个字母表示,如图1所示∠A OB ②用一个字母表示,如图2所示∠b ③用一个数字表示,如图3所示∠1 ④用希腊字母表示,如图4所示∠βﻩ 3.平角和周角:角也可以看成是由一条射线绕着它的端点旋转而成的。