近五年全国卷解析几何(小题)分析及解题规律总结
近五年全国卷解析几何(小题)分析及解题规律总结
FM 的延长线交 y 轴于点 N 。若 M 为 FN 的中点,则 FN
。
【解析】 y2 8x 则 p 4 ,焦点为 F 2,0 ,准线 l : x 2,
如图, M 为 F 、 N 中点, 故易知线段 BM 为梯形 AFMC 中位线,
ly
∵ CN 2 , AF 4 ,
∴MB=3 又由定义,MB=MF
直线 l1 , l2 ,直线 l1 与 C 交于 A 、 B 两点,直线 l2 与 C 交于 D ,E 两点,
AB DE 的最小值为()A.1616
B.14C.12 D.10
设 AB 倾斜角为 .作 AK1 垂直准线, AK2 垂直 x 轴
AF AK1
cos AF
GF AK1 (几何关系) (抛物线特性)
1 2 5 sin 1 5 cos
5
5
2 ( 2 5 )2 ( 5 )2 sin( )
5
5
2 sin( ) ≤ 3
解决椭圆的离心率的求值及范围问题其关键就是确立一
个关于 a,b, c 的方程或不等式,再根据 a,b, c 的关系消掉 b 得到 a, c 的关系式,建立关于 a,b, c 的方程或不等式,要充分利用椭
22 2
结合 b =c -a 转化为 a,c 的齐次式,然后等式(不等式)两边分别
2
除以 a 或 a 转化为关于 e 的方程(不等式),解方程(不等式)即可得
e(e 的取值范围)。3 结合定义和正余弦定理。
考点三:椭圆的定义和简单性质
【2017
课标
3,理
10】已知椭圆
C
x2 a2
y2 b2
(完整版)解析几何考点和答题技巧归纳
解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。
这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。
② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。
解析几何考点梳理讲解总结,高考数学解析几何题型及答案解析
考点31直线的倾斜角与斜率、直线的方程【命题解读】直线的倾斜角与斜率以及直线的方程作为高考的一个知识点,主要是以基础题为主,在选择题中多有涉及,对于直线的方程更多的是与圆锥曲线相结合出题,难度以中高档题为主。
【命题预测】预计2021年的高考直线的倾斜角与斜率以及直线的方程出题还是以基础题为主,多出选择或者填空,与圆锥曲线的结合出现在解答题,单独出题可能性小。
【复习建议】1.理解直线的倾斜角与斜率的概念,会计算斜率并运用斜率判定直线的位置关系;2.掌握直线方程的各种形式。
考向一直线的倾斜角与斜率1.直线的倾斜角(1)定义:在平面直角坐标系中,当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫作直线l的倾斜角.当直l和x轴平行或重合时,直线l的倾斜角为0°.(2)范围:倾斜角α的取值范围是0°≤α<180°.2.直线的斜率(1)定义:一条直线的倾斜角α(α≠90°)的正切值叫作这条直线的斜率,该直线的斜率k= tan α..(2)过两点的直线的斜率公式:过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=y2-y1x2-x1若x1=x2,则直线的斜率不存在,此时直线的倾斜角为90°.1. 【2020350y --=的倾斜角为( ) A .6π B .3π C .23π D .56π 【答案】A350y --=的斜率为3,故倾斜角θ的正切值tan 3θ=,又[)0,θπ∈,故6πθ=.故选:A2. 若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2【答案】B【解析】由k =-3-2y -12-4=tan 3π4=-1, 得-4-2y =2,所以y =-3. 故选:B考向二 直线的方程名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x=x 0 斜截式 y=kx+b不含垂直于x 轴的直线两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x=x 1(x 1=x 2)和直线y=y 1(y 1=y 2) 截距式 x a +y b=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A 2+B 2≠0)平面内所有直线都适用1. 【2020全国课时练习】以(2,5)A -,(4,1)B -为端点的线段的垂直平分线方程是 A .290x y -+=B .230x y +-=C .290x y --=D .230x y ++=【答案】D【解析】由(2,5),(4,1)A B --,所以点,A B 中点坐标为(3,3)P -,又由斜率公式可得1(5)242ABk ---==-,所以垂直平分线的斜率为112AB k k =-=-,所以垂直平分线的方程为1(3)(3)2y x --=--,即230x y ++=. 故选D .2. 【2020全国课时练习】过点()3,2,斜率是23的直线方程是( ) A .243y x =+ B .223y x =+ C .230x y -=D .320x y -=【答案】C【解析】∵直线过点()3,2且斜率为23, 由直线方程的点斜式得:22(3)3y x -=-, 整理得:230x y -=. 故选:C.3. 【2020全国课时练习】已知ABC 的三个顶点都在第一象限,且(1,1),(5,1)A B ,45A ︒∠=,45B ︒∠=,求:(1)AB 边所在直线的方程; (2)AC 边和BC 边所在直线的方程. 【答案】见解析【解析】(1)因为(1,1),(5,1)A B ,所以直线AB 平行于x 轴,所以直线AB 的方程为1y =. (2)由题意知,直线AC 的倾斜角为A ∠,又45A ︒∠=,所以tan451AC k ︒==. 又直线AC 过点(1,1)A ,所以直线AC 的方程为11(1)y x -=⨯-,即y x =. 又直线BC 的倾斜角为180135B ︒︒-∠=,所以tan1351BC k ︒==-.又直线BC 过点(5,1)B ,所以直线BC 的方程为11(5)y x -=-⨯-,即6y x =-+.题组一(真题在线)1. 【2019山东淄博模拟】直线x +3y +1=0的倾斜角是( ) A .π6B .π3C .2π3D .5π62.【2020全国高二课时练习】直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A .11,5⎛⎫- ⎪⎝⎭B .()1,1,2⎛⎫-∞⋃+∞ ⎪⎝⎭C .()1,,51⎛⎫-∞-+∞ ⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭3. 【2020全国课时练习】若直线l 的向上方向与y 轴的正方向成60角,则l 的倾斜角为( )A .30B .60C .30或150D .60或1204. 【2020全国课时练习】 已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P (0,10a),则直线AB 的方程为 ( ) A .y =-34x +5 B .y =34x -5 C .y =34x +5 D .y =-34x -5 5. 【2020全国课时练习】直线0(0)ax y a a ++=≠在两坐标轴上的截距之和为( ) A .1a -B .1a -C .1a +D .1a --6. 【2020全国课时练习】直线132y x =-+的斜率和在y 轴上的截距分别是( ) A .12-,3 B .3,12-C .12,3- D .3-,127. 【2020全国课时练习】若直线26(30)t x y -++=不经过第一象限,则t 的取值范围为( ) A .30,2⎛⎤ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎫+∞⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭8. 【2020江苏建邺高一期中】下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α︒≤≤︒ B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有斜率, 但不一定有倾斜角D .任意一条直线都有倾斜角,但不一定有斜率9. 【2020全国课时练习】已知直线10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10,m x +=则l m ⊥C .点到直线l 的距离是2D .过与直线l 平行的直线方程是40y --=10. 【2020全国课时练习】已知直线L 过点(2,1)P 且倾斜角为135︒,则l 的点斜式方程为_______.11. 【2020全国课时练习】已知点(0,1)A ,点B 在直线:0l x y +=上运动则当线段AB 最短时,直线AB 的一般式方程为__________.12. 【2020全国高二课时练习】直线l 被两条直线1:430l x y ++=和2:3550l x y --=截得的线段的中点为(1,2)P -,则直线l 的方程为_________.题组一1.D【解析】将直线方程化为y =-33x -33,故其斜率k =-33,倾斜角为5π6. 故选:D .【解析】设直线的斜率为k ,则直线方程为y -2=k (x -1),令y =0,得直线l 在x 轴上的截距为21k -,则2313k -<-<,解得12k >或1k <-. 故选:D. 3. C【解析】直线l 的位置可能有两种情形,如图所示,故直线l 的倾斜角为30或150.故选:C. 4. C【解析】由直线2x ﹣y=0和x+ay=0垂直可得a=2, 则P (0,5),设()2112A 2B 2x x x x ⎛⎫- ⎪⎝⎭,,,, 于是有122102102x x x x +=⎧⎪⎨-=⎪⎩,解得1244x x =⎧⎨=-⎩. 于是A (4,8),B (﹣4,2), ∴AB 所在的直线方程为248244y x -+=-+,即y =34x +5. 故选C 5. D【解析】将方程0(0)ax y a a ++=≠化为截距式得11x ya+=--, 从而可知直线在x 轴,y 轴上的截距分别为1,a --, 故截距之和为1a --. 故选:D【解析】直线方程可化为132y x =-,因此该直线的斜率为3,在y 轴上的截距为12-. 故选:B 7. D【解析】直线方程可化为(32)6y t x =--,因为直线不经过第一象限,所以320t -,解得32t. 故选:D 8. BD【解析】对A ,若α是直线的倾斜角,则0180α︒≤<︒,故A 错误; 对B ,根据tan k α=,即正切函数的值域为实数,故B 正确; 对C ,因为倾斜角为90︒时没有斜率,故C 错误;对D ,由倾斜角的定义可得任意一条直线都有倾斜角,由直线的斜率定义可得,倾斜角为2π的直线,没有斜率,故D 正确; 故选:BD. 9. CD【解析】对于A.直线10l y -+=的斜率k =tanθ=l 的倾斜角是3π,故A 错误;对于B .因为直线10m x +=:的斜率k′=kk ′=1≠﹣1,故直线l 与直线m 不垂直,故B 错误;对于C.点)到直线l 的距离d==2,故C 正确;对于D .过()2与直线l 平行的直线方程是y ﹣2=x ﹣,整理得:40y --=,故D 正确.综上所述,正确的选项为CD . 故选:CD .10. 1(2)y x -=--.【解析】由题意知直线L 的斜率tan1351k ︒==-,所以l 的点斜式方程为1(2)y x -=--. 故答案为:1(2)y x -=--. 11. 10x y -+=【解析】当线段AB 最短时,AB l ⊥,所以1AB k =,所以直线AB 的方程为1y x =+, 化为一般式方程为10x y -+=. 故答案为:10x y -+=. 12. 310x y ++=【解析】设直线l 与1l 的交点为()00,A x y ,直线l 与2l 的交点为B.由已知条件,得直线l 与2l 的交点为00(2,4)B x y ---.联立()()0000430,325450,x y x y ++=⎧⎨-----=⎩即0000430,35310,x y x y ++=⎧⎨-+=⎩解得002,5,x y =-⎧⎨=⎩即(2,5)A -.所以直线l 的方程为2(1)522(1)y x ---=----,即310x y ++=. 故答案为:310x y ++=.考点32两直线的位置关系、直线的交点坐标与距离公式【命题解读】两直线位置关系及交点坐标、距离公式是高考中常考知识点,在近几年的高考中主要是以选择或者填空题的形式出现,题目难度以中低档题为主,主要是考查学生的计算能力和思维转化能力。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)
专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
解析几何解题思路总结
解析几何巧妙解题思路总结解析几何巧妙解题思路总结一.直线和圆的方程一.直线和圆的方程1.理解直线的斜率的概念,理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、掌握直线方程的点斜式、掌握直线方程的点斜式、两点式、两点式、一般式,并能根据条件熟练地求出直线方程.一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.线的方程判断两条直线的位置关系. 3.了解二元一次不等式表示平面区域..了解二元一次不等式表示平面区域. 4.了解线性规划的意义,并会简单的应用..了解线性规划的意义,并会简单的应用. 5.了解解析几何的基本思想,了解坐标法..了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 二.圆锥曲线方程二.圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质..掌握椭圆的定义、标准方程和椭圆的简单几何性质. 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质..掌握双曲线的定义、标准方程和双曲线的简单几何性质. 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质..掌握抛物线的定义、标准方程和抛物线的简单几何性质. 4.了解圆锥曲线的初步应用..了解圆锥曲线的初步应用. 【例题解析】 考点1.1.求参数的值求参数的值求参数的值求参数的值是高考题中的常见题型之一求参数的值是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,构造方程解之构造方程解之. . 例1.(2009年安徽卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162x y +=的右焦点为(2,0),所以抛物线222y px =的焦点为(2,0),则4p =,故选D. 考点2. 2. 求线段的长求线段的长求线段的长求线段的长也是高考题中的常见题型之一求线段的长也是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,找出点的坐标找出点的坐标,,利用距离公式解之离公式解之. .例2.(2009年四川卷)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3 B.4 C.32D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x bì=-+Þ++-=Þ+=-í=+î,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-´-=.故选C 例3.(2006年四川卷)如图,把椭圆2212516x y +=的长轴的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆2212516x y +=的方程知225, 5.a a =\=∴12345677277535.2aPF P F P F P F P F P F P F a ´++++++==´=´= 故填35. 考点3. 3. 曲线的离心率曲线的离心率曲线的离心率曲线的离心率是高考题中的热点题型之一曲线的离心率是高考题中的热点题型之一,,其解法为充分利用其解法为充分利用: : (1)(1)椭圆的离心率椭圆的离心率e =ac ∈(0,1) (e 越大则椭圆越扁越大则椭圆越扁); );(2) (2) 双曲线的离心率双曲线的离心率e =ac ∈(1, (1, +∞+∞+∞) (e ) (e 越大则双曲线开口越大越大则双曲线开口越大). ).结合有关知识来解题结合有关知识来解题. .例4.(2008年全国卷)文(年全国卷)文(44)理()理(44)已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为双曲线方程为A .221412x y -=B .221124x y -=C .221106x y -= D .221610x y -=考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程:解答过程: 2,4,ce c a=== 所以22,12.a b \==故选(A). 小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会. 例5.(2008年广东卷)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于(到右准线的距离之比等于( )A. 2B.332 C. 2 D.4 考查意图: 本题主要考查双曲线的性质和离心率e =ac∈(1, +∞) 的有关知识的应用能力. 解答过程:依题意可知解答过程:依题意可知 3293,322=+=+==b a c a . 考点4.4.求最大求最大求最大((小)值求最大求最大((小)值, , 是高考题中的热点题型之一是高考题中的热点题型之一其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是特别是,,一些题目还需要应用曲线的几何意义来解答一些题目还需要应用曲线的几何意义来解答. .例6.(2006年山东卷年山东卷))已知抛物线y 22=4x,=4x,过点过点P(4,0)P(4,0)的直线与抛物线相交于的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是的最小值是 . 考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P(4,0)的直线为()()224,8164,y k x k x x x =-\-+=()()122222222122284160,8414416232.k x k x k k y y x x k k \-++=+æö\+=+=´=+³ç÷èø 故填32. 考点5 5 圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例7.(2007年广东卷文)年广东卷文)在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y=x 相切于坐标原点O.椭圆9222y ax +=1与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. [考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.行推理运算的能力和解决问题的能力. [解答过程] (1) 设圆C 的圆心为的圆心为 (m, n) 则,222,m n n =-ìïí×=ïî 解得2,2.m n =-ìí=î所求的圆的方程为所求的圆的方程为 22(2)(2)8x y ++-= (2) 由已知可得由已知可得 210a = , 5a =. 椭圆的方程为椭圆的方程为 221259x y += , 右焦点为右焦点为 F( 4, 0) ; 假设存在Q 点()222cos ,222sin q q -++使QF OF =, ()()22222cos 4222sin 4q q-+-++=.整理得整理得 s i n 3c o s 22q q=+, 代入代入 22sin cos 1q q +=. 得:210cos 122cos 70q q ++= , 122812222cos 11010q -±-±==<-.因此不存在符合题意的Q 点. 例8.(2007年安徽卷理)年安徽卷理)如图,曲线G 的方程为)0(22³=y x y .以原点为圆心,以)0(>t t 为半径的圆分别与曲线G 和y 轴的轴的 正半轴相交于正半轴相交于 A 与点B. 直线直线 AB 与 x 轴相交于点C. (Ⅰ)求点(Ⅰ)求点 A 的横坐标的横坐标 a 与点与点 C 的横坐标c 的关系式;的关系式;(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值. [考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的 两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系 ,考查运算能力与思维能力,综合分析问题的能力. [解答过程](I )由题意知,).2,(a a A 因为.2,||22t a a t OA =+=所以 由于.2,02a a t t +=>故有 (1)由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+t y c x又因点A 在直线BC 上,故有,12=+ta c a将(1)代入上式,得,1)2(2=++a a a ca 解得解得 )2(22+++=a a c . (II )因为))2(22(++a a D ,所以直线CD 的斜率为的斜率为1)2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,所以直线CD 的斜率为定值. 例9.已知椭圆2222x y E :1(a b 0)a b +=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E 的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求:,求: (1)椭圆E 的离心率;(2)双曲线C 的方程. 解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ),则221122x y 1a b+=,222222x y 1a b +=,二式相减得:,二式相减得: 21212AB 21212y y (x x )b k x x (y y )a -+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =, 则c2e a 2==;(2)椭圆E 的右准线为22a(2c)x 2c cc===,双曲线的离心率11e 2e==, 设P(x,y)是双曲线上任一点,则:是双曲线上任一点,则: 22(x 2)(y 1)|PM |2|x 2c ||x 2c |-+-==--,两端平方且将N(4,1)-代入得:c 1=或c 3=,当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去;,不合题意,舍去;当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求. 小结:(1)“点差法”是处理弦的中点与斜率问题的常用方法;“点差法”是处理弦的中点与斜率问题的常用方法; (2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义. 考点6 利用向量求曲线方程和解决相关问题利用向量求曲线方程和解决相关问题利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题:典型例题:例10.(2008年山东卷)双曲线C 与椭圆22184x y +=有相同的焦点,直线y=x 3为C 的一条渐近线. (1)求双曲线C 的方程;的方程;(2)过点P(0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合)当12PQ QA QB l l ==,且3821-=+l l 时,求Q 点的坐标. 考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力. 解答过程:(Ⅰ)设双曲线方程为22221x y a b -=, 由椭圆22184x y +=,求得两焦点为(2,0),(2,0)-,\对于双曲线:2C c =,又3y x =为双曲线C 的一条渐近线的一条渐近线\3ba = 解得解得 221,3ab ==,\双曲线C 的方程为2213y x -=(Ⅱ)解法一:(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零. 设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k -. 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. 111111114444()44x k k x k k y y l l l l ì=--ìï-=+ïï\Þííïï-==-îïî 11(,)A x y 在双曲线C 上,上,\2121111616()10k l l l +--=. \222211161632160.3k k l l l ++--=\2221116(16)32160.3k k l l -++-=同理有:2222216(16)32160.3k k l l -++-=若2160,k -=则直线l 过顶点,不合题意.2160,k \-¹12,l l \是二次方程22216(16)32160.3k x x k -++-=的两根. 122328163k l l \+==--,24k \=,此时0,2k D >\=±. \所求Q 的坐标为(2,0)±. 解法二:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 1PQ QA l = , Q \分PA的比为1l . 由定比分点坐标公式得由定比分点坐标公式得1111111111144(1)14401x x k k y y l l l l l l l ìì-==-+ïï+ïï®íí+ïï=-=ïï+îî下同解法一下同解法一解法三:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 12PQ QA QB l l == , 111222444(,4)(,)(,)x y x y kkkl l \--=+=+. 11224y y l l \-==, 114y l \=-,224y l =-,又1283l l +=-,121123y y \+=,即12123()2y y y y +=. 将4y kx =+代入2213y x -=得222(3)244830k y y k --+-=. 230k -¹ ,否则l 与渐近线平行. 212122224483,33k y y y y k k -\+==--. 222244833233k k k -\´=´--.2k \=±(2,0)Q \±. 解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k- 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. \1114444k kx x kl -==-++.同理同理 1244kx l =-+. 1212448443kx kx l l +=--=-++. 即 2121225()80k x x k x x +++=. (*)又 22413y kx y x =+ìïí-=ïî消去y 得22(3)8190k x kx ---=. 当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -¹. 由韦达定理有:由韦达定理有: 12212283193k x x k x x k ì+=ïï-íï=-ï-î代入(*)式得)式得24,2k k ==±. \所求Q 点的坐标为(2,0)±. 例11.(2007年江西卷理)年江西卷理)设动点P 到点A(-l ,0)和B(1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围, 使OM ·ON =0,其中点O 为坐标原点.为坐标原点.[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合 运用数学知识进行推理运算的能力和解决问题的能力.运用数学知识进行推理运算的能力和解决问题的能力.[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.的双曲线.方程为:2211x y l l-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.在双曲线上.即2111511012l l l l l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l lì-=ï-íï=-î得:2222(1)2(1)(1)()0k x k x k l l l l l éù--+---+=ëû, 由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--. 于是:22212122(1)(1)(1)k y y k x x kl l l =--=--.因为0=×ON OM ,且M N ,在双曲线右支上,所以在双曲线右支上,所以 2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l ll -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -<≤.解法2:(1)同解法1 (2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB l l l l l=-=Þ+-=-,因为01l <<,所以512l -=; ②当12x x ¹时,002222212111111y x k y x y xMN ×-=Þïïîïïíì=--=--l l l l l l . 又001MN BE y k k x ==-.所以22000(1)y x x l l l -=-;由2MON p =∠得222002MN x y æö+=ç÷èø,由第二定义得2212()222MN e x x a æö+-éù=ç÷êúëûèø 22000111(1)211x x x l l ll æö=--=+--ç÷--èø. 所以2220(1)2(1)(1)y x x l l l l -=--+-.于是由22000222000(1),(1)2(1)(1),y x x y x x l l l l l l l ì-=-ïí-=--+-ïî得20(1).23x l l -=-因为01x >,所以2(1)123l l->-,又01l <<,C BA oy x解得:51223l -<<.由①②知51223l -<≤.考点7 利用向量处理圆锥曲线中的最值问题利用向量处理圆锥曲线中的最值问题利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易. 例12.设椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为33,过点C(1,0)-的直线交椭圆E 于A 、B 两点,且CA2BC = ,求当AOB D 的面积达到最大值时直线和椭圆E 的方程. 解答过程:因为椭圆的离心率为33,故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为my x 1=+,由222x 3y t my x 1ì+=í=+î得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ), 则1224m y y 2m 3+=+…………① 又CA 2BC =,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………②由①②得:128m y 2m 3=+,224m y 2m 3-=+,则AOB 1221m S |y y |6||22m 3D =-=+=66322|m ||m |£+, 当23m 2=,即6m 2=±时,AOB D 面积取最大值,面积取最大值,此时2122222t32m y y 2m 3(2m 3)-==-++,即t 10=,所以,直线方程为6x y 102±+=,椭圆方程为222x 3y 10+=. 小结:利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易. 例13.已知P A (x 5,y)=+,PB (x 5,y)=- ,且|P A||P B|6+= , 求|2x 3y 12|--的最大值和最小值. 解答过程:设P(x,y),A(5,0)-,B(5,0),因为|P A ||PB|6+=,且|AB|256=<,所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆,的椭圆,椭圆方程为22x y 194+=,令x 3cos ,y 2sin =q =q , 则|2x 3y 12|--=|62cos()12|4pq +-,当cos()14pq +=-时,|2x 3y 12|--取最大值1262+,当cos()14pq +=时,|2x 3y 12|--取最小值1262-. 小结:利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算. 考点8 利用向量处理圆锥曲线中的取值范围问题利用向量处理圆锥曲线中的取值范围问题解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域问题. 例14.(2006年福建卷)年福建卷) 已知椭圆2212x y +=的左焦点为F , O 为坐标原点. (I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==\=-=-圆过点O 、F , \圆心M 在直线12x =-上. 设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =得2213(),22t -+=解得 2.t =±\所求圆的方程为2219()(2).24x y ++±=(II )设直线AB 的方程为(1)(0),y k x k =+¹代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F ,\方程有两个不等实根. ylG ABF OF EP DBA Oy x记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB \的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得222002222211.21212124210,0,2G G k k k x x ky k k k k k x =+=-+=-=-+++++¹\-<<\点G 横坐标的取值范围为1(,0).2- 例15.已知双曲线C :2222x y 1(a 0,b 0)a b-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足|OA|,|OB|,|OF| 成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,(1)求证:PA OP PA FP ×=×;(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围. 解答过程:(1)因|OA |,|OB|,|OF| 成等比数列,故22|OB |a|OA |c |OF|== ,即2a A(,0)c , 直线l :ay (x c)b=--,由2a y (x c)a ab b P(,)bc c y xa ì=--ïïÞíï=ïî, 故:22ab a ab b ab PA (0,),OP (,),FP (,)c c c c c =-==-,则:222a b PA OP PA FP c×=-=×,即PA OP PA FP ×=× ;(或P A (OP FP)P A (PF PO)P A OF 0×-=×-=×=,即PA OP PA FP ×=× ) (2)由44422222222222222ay (x c)a a a c (b )x 2cx (a b )0b b b b b x a y a b ì=--ïÞ-+-+=íï-=î,由4222212422a c (a b )b x x 0a b b -+=<-得:4422222b a b c a a e 2e 2.>Þ=->Þ>Þ>(或由DFDO k k >Þa bb a->-Þ2222222222b c a a e 2e 2=->Þ>Þ>)小结:向量的数量积在构造等量关系中的作用举足轻重,向量的数量积在构造等量关系中的作用举足轻重,而要运用数量积,而要运用数量积,必须先恰当地求出各个点的坐标. 例16.已知a (x,0)= ,b (1,y)=,(a 3b)(a 3b)+^- ,(1)求点P(x,y)的轨迹C 的方程;的方程;(2)若直线y kx m(m 0)=+¹与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围. 解答过程:(1)a 3b +=(x,0)3(13(1,,y)(x 3,3y)+=+,a 3b -=(x,0)3(13(1,,y)(x 3,3y)-=--, 因(a 3b)(a 3b)+^- ,故(a 3b)(a 3b)0+×-=,即22(x 3,3y)(x 3,3y)x 3y 30+×--=--=,故P 点的轨迹方程为22x y 13-=. (2)由22y kx mx 3y 3=+ìí-=î得:222(13k )x 6kmx 3m 30----=, 设1122A(x ,y ),B(x ,y ),A 、B 的中点为00M(x ,y )则22222(6km)4(13k )(3m 3)12(m 13k )0D =----=+->,1226km x x 13k +=-,1202x x 3km x 213k +==-,002my kx m 13k=+=-, 即A 、B 的中点为223km m(,)13k 13k --, 则线段AB 的垂直平分线为:22m 13kmy ()(x )13k k 13k -=----, 将D(0,1)-的坐标代入,化简得:24m 3k 1=-,PQCBA xy O则由222m 13k 04m 3k 1ì+->ïí=-ïî得:2m 4m 0->,解之得m 0<或m 4>,又24m 3k 11=->-,所以1m 4>-, 故m 的取值范围是1(,0)(4,)4-+¥ . 小结:求变量的范围,要注意式子的隐含条件,否则会产生增根现象. 考点9 利用向量处理圆锥曲线中的存在性问题利用向量处理圆锥曲线中的存在性问题存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐标,再根据合理的推理,若能推出题设中的系数,则存在性成立,否则,不成立. 例17.已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O ,且AC BC 0×= ,|BC|2|AC|=, (1)求椭圆的方程;)求椭圆的方程;(2)如果椭圆上的两点P ,Q 使PCQ Ð的平分线垂直于OA ,是否总存在实数λ,使得PQ λAB =?请说明理由;请说明理由;解答过程:(1)以O 为原点,OA 所在直线为x 轴建立轴建立 平面直角坐标系,则A(2,0),设椭圆方程为222x y14b+=,不妨设C 在x 轴上方,轴上方,由椭圆的对称性,|BC|2|AC|2|OC||AC||OC|==Þ= ,又AC BC 0×=AC OC Þ^,即ΔOCA 为等腰直角三角形,为等腰直角三角形,由A(2,0)得:C(1,1),代入椭圆方程得:24b 3=, 即,椭圆方程为22x 3y 144+=; (2)假设总存在实数λ,使得PQ λAB =,即AB //PQ ,由C(1,1)得B(1,1)--,则AB 0(1)1k 2(1)3--==--,若设CP :y k(x 1)1=-+,则CQ :y k(x 1)1=--+,由22222x 3y 1(13k )x 6k(k 1)x 3k 6k 1044y k(x 1)1ì+=ïÞ+--+--=íï=-+î, 由C(1,1)得x 1=是方程222(13k )x 6k(k 1)x 3k 6k 10+--+--=的一个根,的一个根,由韦达定理得:2P P 23k 6k 1x x 113k --=×=+,以k -代k 得2Q 23k 6k 1x 13k+-=+, 故P Q P Q PQ P Q P Q yy k(x x )2k 1k x x x x 3-+-===--,故AB //PQ , 即总存在实数λ,使得PQ λAB =. 评注:此题考察了坐标系的建立、待定系数法、椭圆的对称性、向量的垂直、向量的共线及探索性问题的处理方法等,是一道很好的综合题. 考点10 利用向量处理直线与圆锥曲线的关系问题利用向量处理直线与圆锥曲线的关系问题直线和圆锥曲线的关系问题,直线和圆锥曲线的关系问题,一般情况下,一般情况下,是把直线的方程和曲线的方程组成方程组,是把直线的方程和曲线的方程组成方程组,进一进一步来判断方程组的解的情况,但要注意判别式的使用和题设中变量的范围. 例18.设G 、M 分别是ABC D 的重心和外心,A(0,a)-,B(0,a)(a 0)>,且GM AB =l ,(1)求点C 的轨迹方程;的轨迹方程;(2)是否存在直线m ,使m 过点(a,0)并且与点C 的轨迹交于P 、Q 两点,且OPOQ 0×= 若存在,求出直线m 的方程;若不存在,请说明理由. 解答过程:(1)设C(x,y),则x yG(,)33, 因为GM AB =l ,所以GM //AB ,则xM(,0)3,由M 为ABC D 的外心,则|MA ||MC |=,即2222x x ()a (x)y 33+=-+,整理得:2222x y 1(x 0)3a a+=¹;(2)假设直线m 存在,设方程为y k(x a)=-,由2222y k(x a)x y 1(x 0)3aa =-ìïí+=¹ïî得:22222(13k )x 6k ax 3a (k 1)0+++-=,设1122P(x ,y ),Q(x ,y ),则21226k a x x 13k +=+,221223a (k 1)x x 13k -=+,22212121212y y k (x a )(x a )k [x x a (x x )a ]=--=-++=2222k a 13k-+, 由OP OQ 0×=得:1212x x y y 0+=,即2222223a (k 1)2k a13k 13k --+=++,解之得k 3=±,又点(a,0)在椭圆的内部,直线m 过点(a,0),故存在直线m ,其方程为y 3(x a)=±-. 小结:(1)解答存在性的探索问题,一般思路是先假设命题存在,再推出合理或不合理的结果,然后做出正确的判断;然后做出正确的判断;(2)直线和圆锥曲线的关系问题,一般最终都转化成直线的方程和圆锥曲线的方程所组成的方程组的求解问题. 专题训练与高考预测专题训练与高考预测一、选择题一、选择题1.如果双曲线经过点(6,3),且它的两条渐近线方程是1y x 3=±,那么双曲线方程是(),那么双曲线方程是()A .22x y 1369-= B .22x y 1819-= C .22x y 19-= D .22x y 1183-= 2.已知椭圆2222x y 13m 5n +=和双曲线2222x y 12m 3n-=有公共的焦点,那么双曲线的的渐近线方程为(为( ) A.15x y 2=± B. 15y x2=± C. 3x y 4=± D. 3y x 4=± 3.已知12F ,F 为椭圆2222x y 1(a b 0)a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴,轴, 且12FMF 60Ð=°,则椭圆的离心率为(,则椭圆的离心率为( ) A.12 B.22 C.33 D.324.二次曲线22x y 14m+=,当m [2,1]Î--时,该曲线的离心率e 的取值范围是(的取值范围是( )A.23[,]22B. 35[,]22C.56[,]22D. 36[,]225.直线m 的方程为y kx 1=-,双曲线C 的方程为22x y 1-=,若直线m 与双曲线C 的右支相交于不重合的两点,则实数k 的取值范围是(的取值范围是( )A.(2,2)-B.(1,2)C.[2,2)-D.[1[1,,2)6.已知圆的方程为22x y 4+=,若抛物线过点A(1,0)-,B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程为(抛物线的焦点的轨迹方程为( ) A. 22xy1(y0)34+=¹B. 22x y 1(y 0)43+=¹ C. 22x y 1(x 0)34-=¹ D. 22x y 1(x 0)43-=¹二、填空题二、填空题7.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by ax 上一点,若021=×PF PF 21tan 21=ÐF PF ,则椭圆的离心率为,则椭圆的离心率为 ______________ . 8.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,轴正方向上的一定点,若过点若过点A ,斜率为1的直线被椭圆截得的弦长为3134,点A 的坐标是______________ . 9.P 是椭圆22x y 143+=上的点,12F ,F 是椭圆的左右焦点,设12|PF ||PF |k ×=,则k 的最大值与最小值之差是______________ . 10.给出下列命题:.给出下列命题:①圆22(x 2)(y 1)1++-=关于点M(1,2)-对称的圆的方程是22(x 3)(y 3)1++-=;F 2F 1A 2A 1PNM oy x FQoyx②双曲线22x y 1169-=右支上一点P 到左准线的距离为18,那么该点到右焦点的距离为292;③顶点在原点,对称轴是坐标轴,且经过点(4,3)--的抛物线方程只能是29y x 4=-;④P 、Q 是椭圆22x 4y 16+=上的两个动点,O 为原点,直线OP ,OQ 的斜率之积为14-,则22|OP ||OQ|+等于定值20 . 把你认为正确的命题的序号填在横线上_________________ . 三、解答题三、解答题 11.已知两点A(2,0),B(2,0)-,动点P 在y 轴上的射影为Q ,2PA PB 2PQ ×=, (1)求动点P 的轨迹E 的方程;的方程;(2)设直线m 过点A ,斜率为k ,当0k 1<<时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及此时点C 的坐标. 12.如图,1F (3,0)-,2F (3,0)是双曲线C 的两焦点,直线4x 3=是双曲线C 的右准线,12A ,A是双曲线C 的两个顶点,点P 是双曲线C 右支上异于2A 的一动点,直线1A P 、2A P 交双曲线C 的右准线分别于M,N 两点,两点, (1)求双曲线C 的方程;的方程;(2)求证:12FM F N × 是定值. 13.已知OFQ D 的面积为S ,且OFFQ 1×= ,建立如图所示坐标系,,建立如图所示坐标系, (1)若1S 2=,|OF|2= ,求直线FQ 的方程;的方程;(2)设|OF|c(c 2)=³,3S c 4=,若以O 为中心,F 为焦点的椭圆过点Q ,求当|OQ |取得最小值时的椭圆方程. 14.已知点H(3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM 0×= ,3PM MQ 2=-,BAMQ E T HP o yx(1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T(1,0)-作直线m 与轨迹C 交于A 、B 两点,若在x 轴上存在一点0E(x ,0),使得ABE D 为等边三角形,求0x 的值. 15.已知椭圆)0(12222>>=+b a b y a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量.是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;的取值范围;16.已知两点M (-1,0),N (1,0)且点P 使NPNM PN PM MN MP ×××,,成公差小于零的等差数列,数列, (Ⅰ)点P 的轨迹是什么曲线?的轨迹是什么曲线? (Ⅱ)若点P 坐标为),(00y x ,q 为PN PM 与的夹角,求tan θ.参考答案参考答案一. 1.C .提示,设双曲线方程为提示,设双曲线方程为11(x y)(x y)33+-=l ,将点(6,3)代入求出l 即可. 2.D .因为双曲线的焦点在因为双曲线的焦点在x 轴上,故椭圆焦点为22(3m 5n ,0)-,双曲线焦点为22(2m 3n ,0)+,由22223m 5n 2m 3n -=+得|m |22|n |=,所以,双曲线的渐近线为6|n |3y x 2|m |4=±=± . 3.C .设1|MF |d =,则2|MF |2d =,12|FF |3d =,11212|FF |c 2c 3d3e a2a|MF ||MF |d 2d 3=====++ . 4.C .曲线为双曲线,且曲线为双曲线,且512>,故选C ;或用2a 4=,2b m =-来计算. 5.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组将两方程组成方程组,利用判别式及根与系数的关系建立不等式组. 6.B .数形结合,利用梯形中位线和椭圆的定义数形结合,利用梯形中位线和椭圆的定义. 二.7.解:设c 为为椭圆半焦距,∵021=×PF PF ,∴21PF PF ^ . 又21tan 21=ÐF PF ∴ïïïîïïïíì==+=+212)2(122122221PF PF a PF PF c PF PF解得:255()93,cc e aa === . 选D . 8. 解:设A (x 0,0)(x 0>0),则直线l 的方程为y=x-x 0,设直线l 与椭圆相交于P (x 1,y 1),Q (x 2、y 2),由,由 y=x-x 0 可得3x 2-4x 0x+2x 02-12=0, x 22+2y 22=12 34021x x x =+,31222021-=×x x x ,则,则 2020221221212363234889164)(||x x xx x x x x x -=--=-+=-.∴||13144212x x x -×+=,即202363223144x -××=. ∴x 02=4,又x 0>0,∴x 0=2,∴A (2,0).9.1;22212k |PF ||PF |(a ex)(a ex)a e x =×=+-=- . 10.②④. 三. 11.解(1)设动点P 的坐标为(x,y),则点Q(0,y),PQ (x,0)=-,P A (2x,y)=-- ,PB (2x,y)=---,22P A PB x 2y ×=-+ ,因为2PA PB 2PQ ×= ,所以222x 2y 2x -+=,即动点P 的轨迹方程为:22y x 2-=; (2)设直线m :y k(x 2)(0k 1)=-<<,依题意,点C 在与直线m 平行,且与m 之间的距离为2的直线上,的直线上, 设此直线为1m :y kx b =+,由2|2k b |2k 1+=+,即2b 22kb 2+=,……①把y kx b =+代入22y x 2-=,整理得:222(k 1)x 2kbx (b 2)0-++-=,则22224k b 4(k 1)(b 2)0D =---=,即22b 2k 2+=,…………②由①②得:25k 5=,10b 5=,此时,由方程组222510y x C(22,10)55y x 2ì=+ïÞíï-=î . 12.解:(1)依题意得:c 3=,2a4c 3=,所以a 2=,2b 5=,所求双曲线C 的方程为22x y145-=;(2)设00P(x ,y ),11M(x ,y ),22N(x ,y ),则1A (2,0)-,2A (2,0),100A P (x 2,y )=+ ,200A P (x 2,y )=- ,1110A M (,y )3= ,222A N (,y )3=- , 因为1A P 与1A M 共线,故01010(x 2)y y 3+=,01010y y 3(x 2)=+,同理:0202y y 3(x 2)=--, 则1113F M (,y )3= ,225F N (,y )3=-, 所以12FM F N ×=1265y y 9-+=202020y 6599(x 4)---=20205(x 4)206541099(x 4)-´--=-- . 13.解:(1)因为|OF|2= ,则F(2,0),OF (2,0)=,设00Q(x ,y ),则00FQ (x 2,y )=- ,0OF FQ 2(x 2)1×=-= ,解得05x 2=,由0011S |OF ||y ||y |22=×== ,得01y 2=±,故51Q(,)22±,所以,PQ 所在直线方程为y x 2=-或y x 2=-+;(2)设00Q(x ,y ),因为|OF|c(c 2)=³,则00FQ (x c,y )=- ,)))设椭圆方程为22x y a b +=222594a4b í+=ïî所以,椭圆方程为x y106+=MQ 2-)2-Q(,0)3)(x,)22-22(k 2)k -,2(,)k k-2(x )k k k-=--2k=+2E(k+的距离等于3|2221212(x x )(y y )=-+-=22241k 1k k -×+,所以,422231k 21k k |k |-=+,解得:3k 2=±,011x 3= . 15.解:(1)∵a b y c x c F M M 21,),0,(=-=-则,∴acb k OM 2-= . ∵AB OM a b k AB与,-=是共线向量,∴a bac b -=-2,∴b=c,故22=e . (2)设1122121212,,,2,2,FQ r F Q r F QF r r a F F c q ==Ð=\+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r q +-+--===-³-=+ 当且仅当21r r =时,cos θ=0,∴θ]2,0[pÎ . 16.解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得)得(1,),PM MP x y =-=--- ),1(y x NP PN ---=-=, )0,2(=-=NM MN . 所以所以 )1(2x MN MP +=× . 122-+=×y x PN PM , )1(2x NP NM -=× . 于是,于是, NP NM PN PM MN MP ×××,,是公差小于零的等差数列等价于是公差小于零的等差数列等价于îîïíì<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 îíì>=+0322x y x . 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (Ⅱ)点P 的坐标为),(00y x 。
高考中解析几何的常考题型分析总结
高考中解析几何的常考题型分析一、高考定位回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题.二、应对策略复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧.二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力.三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识.预测在2013年的高考题中:1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及.2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题.三、常见题型1.直线与圆的位置关系问题直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力.求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位.点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理.(2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨.2.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明.常用的一些证明方法:点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为y=?x,并且相互垂直,这些性质的运用可以大大节省解题时间.3.“是否存在”问题所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值,若不存在,则要求说明理由.求解策略:首先假设满足条件的几何元素或参数值存在,然后利用这些条件并结合题目的其他已知条件进行推理与计算,若不出现矛盾,并且得到了相应的几何元素或参数值,就说明满足条件的几何元素或参数值存在;若在推理与计算中出现了矛盾,则说明满足条件的几何元素或参数值不存在,同时推理与计算的过程就是说明理由的过程.例3(2012年高考(湖北文))设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m?1),当点A在圆上运动时,记点M的轨迹为曲线C.(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标.(2)过原点斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ?PH,若存在,请说明理由.点评:本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解.对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.4.定点定值问题的方法圆锥曲线中的定点、定值问题是高考的热点,是指某些几何量线段的长度、图形的面积、角的度数、直线的斜率等的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.题型以解答题为主,解决的基本思想从变量中寻求不变,即先用变量表示要求的量或点的坐标,再通过推理计算,导出这些量或点的坐标和变量无关.常见的类型:(1)直线恒过定点问题;(2)动圆恒过定点问题;(3)探求定值问题;(4)证明定值问题.点评:(1)椭圆和双曲线的定义反映了它们的图形特点,是画图的依据和基础,而定义中的定值是求标准方程的基础,在许多实际问题中正确利用定义可以使问题的解决更加灵活.已知圆锥曲线上一点及焦点,首先要考虑使用圆锥曲线的定义求解.(2)求解直线和曲线过定点问题的基本思路是:把直线或曲线方程中的变量m,k 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x1的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点. 5.最值与范围问题解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.求参数范围的方法:据已知条件建立等式或不等式的函数关系,再求参数范围.圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.求解最值问题应注意:(1)如果建立的函数是关于斜率k的函数,要增加考虑斜率不存在的情况;(2)如果建立的函数是关于点的坐标x,y的函数,可以考虑用代入消元、基本不等式、三角换元或几何解法来解决问题.例5(2012年高考(广东理))在平面直角坐标系xOy中,已知椭圆C:)的距x2a2+y2b2=1(a>b>0)的离心率e=23,且椭圆C上的点到Q(0,2离的最大值为3.点评:从近两年高考试题来看,直线与圆锥曲线的位置关系、弦长、中点弦的问题是高考的热点问题,题型既有选择题、填空题,又有解答题,难度中等偏高.客观题主要考查直线与圆锥曲线的位置关系、弦长问题,解答题考查较为全面,在考查上述问题的同时,注重考查函数与方程、转化与化归,分类讨论等思想,所以在备战2013年高考中对于此类问题应引起足够的重视.6.轨迹问题求轨迹方程的常用方法:法:将几何关系直接转化成代数方程. (1)直接(2)定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程.(3)代入法:把所求动点的坐标与已知动点的坐标建立联系.(4)交轨法:写出两条动直线的方程直接消参,求得两条动直线交点的轨迹.求动点的轨迹方程的一般步骤(1)建系――建立适当的坐标系;(2)设点――设轨迹上的任一点P(x,y);(3)列式――列出动点P所满足的关系式;(4)代换――依条件式的特点,选用距离公式、斜率公式等将其转化为x,y的方程式,并化简;――证明所求方程即为符合条件的动点轨迹方程. (5)证明点评:本小题主要考查圆的性质、椭圆的定义、标准方程及其几何性质、直线方程求解、直线与椭圆的关系和交轨法在求解轨迹方程组的运用.在求解点M的轨迹方程时,要注意首先写出直线AA1和直线A2B的方程,然后求解.。
通用版五年高考2024_2025高考数学真题专题归纳专题18解析几何综合含解析理
52 5. 5 25
9
由于
DAC
0,
2
,所以 cos
DAC
1 sin2 DAC 11 5 . 25
所以 tan DAC sin DAC 2 . cos DAC 11
【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.
6.(2024·江苏卷)在平面直角坐标系 xOy 中,已知椭圆 E : x2 y2 1 的左、右焦点分别 43
(2)证明:设 P6, y0 ,
则直线
AP 的方程为:
y
y0 6
0
3
x
3
,即:
y
y0 9
x 3
1
联立直线
AP
的方程与椭圆方程可得:
x2 9
y2
1
,整理得:
y
y0 9
x 3
y02 9
x2
6 y02 x
9 y02
81
0
,解得:
x
3
或
x
3y02 27 y02 9
将x
3y02 27 代入直线 y02 9
3
4 y0 3 y02
x
3 2
故直线
CD
过定点
3 2
,
0
【点睛】本题主要考查了椭圆的简洁性质及方程思想,还考查了计算实力及转化思想、推理
论证实力,属于难题.
2.(2024·新课标Ⅱ)已知椭圆
C1:
x a
2 2
y2 b2
1(a>b>0)的右焦点
F 与抛物线 C2 的焦点重
合,C1 的中心与 C2 的顶点重合.过 F 且与 x 轴垂直的直线交 C1 于 A,B 两点,交 C2 于 C,D 两 点,且|CD|= 4 |AB|.
2023年全国卷解析几何解答题解法荟萃
2023年全国卷解析几何解答题解法荟萃上两点,0FM FN ⋅=,求2102y px −+==可得,,因为0FM FN ⋅=,所以)()(★方法2:焦半径表示面积设直线()11:,,MN x my n M x y =+,()22,N x y ,则1||2MFN S FM FN ∆=‖ ()()121112x x =++()()121112my n my n =++++()2212121(1)(1)2m y y m n y y n ⎡⎤=+++++⎣⎦2(1).n =− ,因为0FM FN ⋅=,所以)()(★方法2.斜率转化与齐次化.如图,设线段AB 垂直于x 轴,D 为AB 中点,P 为线外任意一点,则有:PD PB PA k k k 2=+.设直线PQ 的方程为(2)1m x ny ++=.因为直线PQ 过点(2,3)−.,代入得13n =.因为点,P Q 在椭圆22:9436C x y +=上,变形得229[(2)2]436x y +−+=,整理可得:229(2)36(2)40x x y +−++=.齐次化得229(2)36(2)[(2)]40, x x m x ny y +−++++=化简得22436(2)(936)(2)0.y ny x m x −++−+=等式两边同除以2(2)x +,构造斜率式得 24369360,22y y n m x x ⎛⎫−⋅+−= ⎪++⎝⎭把13n =代入得 24129360,22y y m x x ⎛⎫−⋅+−= ⎪++⎝⎭由根与系数的关系得32AQ AP AE k k k +==,其中E 为椭圆上顶点,故所以线段MN 的中点是定点()0,3. ★方法3.同构双割线设直线AP 方程为(2)y k x =+,联立22194(2)y x y k x ⎧+=⎪⎨⎪=+⎩得:()2222491616360k x k x k +++−=,当0∆>时,由22163649A P k x x k −⋅=+及2A x =−得2281849P k x k −+=+ 所以22281836,4949k k P k k ⎛⎫−+ ⎪++⎝⎭,设直线PQ 为:(2)3y m x =++,代入点P 化简 得:2123636270k k m −++=同理,设直线AQ 的斜率为k ',同理得到2123636270k k m −'++=k 和k '是二次方程2123636270x x m −++=的两个根,所以3k k +'=.直线,AP AQ 的方程分别为(2),(2)y k x y k x =+='+,当0x =时,2,2M N y k y k ==',即有32M Ny y k k +=+'=,综上,MN 的中点为定点(0,3).则1,0AB BC k k a b ⋅=−+<<同理令0BC k b c n =+=>,且设矩形周长为C ,由对称性不妨设1依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线的斜率分别为k 和1k −,由对称性,不妨设则联立2214()y x y k x a a ⎧=+⎪⎪⎨⎪=−++⎪⎩直线1MA 的方程为(112y y x x =+与直线2NA 的方程可得:22x x +−★方法4.消y 留x 之后的非对称处理记过点(4,0)−的直线为l .当l 与x 轴垂直时,易知点(4,(4,M N −−−,(1,P −−.当直线l 与x 轴不垂直时,设点(1M x ,)()()12200,,,,y N x y P x y ,直线:(4)l y k x =+.将(4)y k x =+代人221416x y −=,得)()2222(4816160k x k x k −−−+=.依题意,得()221212221618,. 44k k x x x x k k −++==−−设1212()x x x x λμ=++,即()22221618. 44k k k kλμ−++=−−即12x x =()12542x x −+−①. 直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()()12120021212422,2242y x x x x x y x x x −+−−==++++即01212012122248. 2428x x x x x x x x x x −−+−=++++将①代入式得0022x x −=+()1212338338x x x x −−+=−−+,即1x =−,据此可得点P 在定直线=1x −上运动.已知B A ,分别为椭圆1:222=+y ax E )1(>a 的左右顶点,G 为E 的上顶点,8=⋅→→GB AG ,点P 为直线6=x 上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)E 的方程为1922=+y x . (2)假设),(),,(),,6(2211y x D y x C t P .则由P C A ,,及P D B ,,三点共线可得:33;392211−=+=x y t x y t 将上面两式相除,再平方可得:91)3()3(21222221=+−⋅x x y y ....① 由于),(),,(2211y x D y x C 均在椭圆E 上,故满足:91;9122222121x y x y −=−=...② 将②代入①可得:91)3)(3()3)(3(2121=++−−x x x x ,整理可得:0364)(152121=−−+x x x x ...③假设直线CD 的方程为m kx y +=代入椭圆方程1922=+y x 可得: 09918)19(222=−+++m kmx x k将1999,19182221221+−=+−=+k m x x k km x x 代入③中,可得:023=+m k ,于是,直线CD 的方程为k kx y 23−=,故其过定点)0,23(.解法2.设()06,P y ,则直线AP 的方程为:()()00363y y x −=+−−,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++−=,解得:3x =−或20203279y x y −+=+,将20203279y x y −+=+代入直线()039y y x =+可得:02069y y y =+,所以点C 的坐标为20022003276,99y y y y ⎛⎫−+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫−− ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫−− ⎪++⎛⎫⎛⎫−−⎝⎭−=−⎪ ⎪−+−++⎝⎭⎝⎭−++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫−−+=−=− ⎪ ⎪+++−−⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=− ⎪−−−⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭解法3.不禁思考,为何此题使用三点共线就可成功地实现了设而不求,整体代入的思想呢?关键在于对椭圆方程的理解,即所谓的第三定义:))(()1(222222x a x a ab a x b y +−=−=这样的话,在遇到与椭圆左右顶点有关的三点共线结构时,我们就可以通过斜率关系再利用点在椭圆上将))(()1(222222x a x a ab a x b y +−=−=代入斜率式,从而构造出含21x x +与21x x 的方程,整体代入完成求解.而上面这个问题有着明显的极点极线背景:从直线t x =上任意一点P 向椭圆)0(12222>>=+b a by a x 的左右顶点引两条割线21,PA PA 与椭圆交于N M ,两点,则直线MN 恒过定点)0,(2ta .2024届九省联考解析几何的深度探究的交点,求GMN面积的最小值.,由直线AB与直线1、x m=S=GMNS=MNG例2.过椭圆22221x y a b+=的长轴上任意一点(,0)()S s a s a −<<作两条互相垂直的弦,AB CD ,若弦,AB CD 的中点分别为,M N ,那么直线MN 恒过定点222,0a s a b ⎛⎫⎪+⎝⎭.证明:如图,设AB 的直线方程为x my s =+,则CD 的直线方程为1x y s m=−+ 联立方程组22221x my s x y ab =+⎧⎪⎨+=⎪⎩,整理得()()2222222220m b a y b msy b s a +++−=则()()22222222221212222222240,,b s a msb a b m b a s y y y y m b a m b a−−∆=+−>+=⋅=++ 由中点坐标公式得22222222,a s msb M m b a m b a ⎛⎫− ⎪++⎝⎭ 将m 用1m −代换得到222222222,a sm msb N m a b m a b ⎛⎫ ⎪++⎝⎭所以MN 的直线方程为()()2222222222221a b m b sm a s y x b m a b m a a m +⎛⎫+=− ⎪++−⎝⎭令0y =,得222a sx a b =+.所以直线MN 恒过定点222,0a s a b ⎛⎫ ⎪+⎝⎭. 二.对点训练的斜率均存在,求FMN面积的最大值解析:(1)由题意得1c =,2c a =(2)证明:①当直线AB ,CD 有一条斜率不存在时,直线2,03P ⎛⎫⎪⎝⎭. 12FMNFPMFPNSSS=+=⨯S=FMN[2,∞+S取得最大值FMN。
全国卷历年高考解析几何解答题真题归类分析(含答案)
全国卷历年高考解析几何解答题真题归类分析(含答案)一、椭圆(2015年2卷)已知椭圆C:9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值.(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.分析:(1)将直线y=kx+b(k≠0,b≠0)与椭圆C:9x 2+y 2=m 2(m>0)联立,结合根与系数的关系及中点坐标公式证明.(2)由四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分求解证明. 解析】:(1)设直线l :y=kx+b(k≠0,b≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故92221+-=+=k kbx x x M , 992+=+=k b b k y M M .于是直线OM 的斜率kx y k M M OM 9-== 即k OM ·k=-9,所以直线OM 的斜率与l 的斜率的积是定值.(2)四边形OAPB 能为平行四边形,因为直线l 过点(,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)得OM 的方程为y=-x. 设点P 的横坐标为x p .由⎪⎩⎪⎨⎧=+-=22299m y x x k y ,得8192222+=k m k x p ,即932+±=k km x p . 将点),3(m m 的坐标代入l 的方程得3)3(k m b -=,因此)9(3)3(2+-=k k k x M 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相评分,即P M x x =2.=,解得k k 12==因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-或4+时,四边形OAPB 为平行四边形.(2016年1卷)设圆x 2+y 2+2x-15=0的圆心为A,直线l 过点B(1,0)且与x 轴不重合, l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E. (1)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(1)圆A 整理为(x+1)2+y 2=16,点A 坐标为(-1,0),如图,∵BE ∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD,∴∠EBD=∠EDB,则|EB|=|ED|, ∴|AE|+|EB|=|AE|+|ED|=|AD|=4.所以E 的轨迹为一个椭圆,方程为2x 4+2y 3=1(y≠0);(2)C 1: 2x 4 +2y 3=1;设l :x=my+1,因为PQ ⊥l ,设PQ:y=-m(x-1),联立l 与椭圆C 1,22x my 1,x y 1,43⎧=+⎪⎨+=⎪⎩得(3m 2+4)y 2+6my-9=0; 则|MN|=M -y N |==()2212m13m 4++;圆心A 到PQ 距离d==,所以=,∴S MPNQ =12|MN|·|PQ|=12·()2212m 13m 4+⋅+=24[12,8).(2016年2卷)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. (I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-=解得2x =-或228634k x k -=-+21234k + 因为AM AN ⊥,所以21212413341AN k kk ==⋅⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >212124343k k k=++, 整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得, ()222223230tk x x t k t +++-=,解得x =或x =所以AM =,所以AN =因为2AM AN =,所以2=,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.(2017年1卷)已知椭圆()2222:=10x y C a b a b +>>,四点()111P ,,()201P ,,3–1P ⎛ ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过点2P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为–1,求证:l 过定点.解析:(1)根据椭圆对称性,必过3P ,4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点.将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =, 21b =,所以椭圆C 的方程为2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,,联立22440y kx bx y =+⎧⎨+-=⎩, 消去y 整理得()222148440k x kbx b +++-=,122814kb x x k -+=+,21224414b x x k -⋅=+, 则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=22228888144414kb k kb kbk b k --++==-+ ()()()811411k b b b -=-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.所以直线l 的方程为21y kx k =--.当2x =时,1y =-,所以l 过定点()21-,.(2017年2卷)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.求证:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解析:(1)设点()P x y ,,易知(0)N x ,,(0)NP y =,,又0NM NP ⎛== ⎝,所以点M x y ⎛⎫ ⎪⎝⎭.又M 在椭圆C上,所以2212x +=,即222x y +=. (2)由题知()1,0F -,设()3,Q t -,(),P m n ,则()3,OQ t =-,()1,PF m n =---,33OQ PF m tn ⋅=+-,(),OP m n =,()3,PQ m t n =---,由1O P P Q ⋅=,得2231m m tn n --+-=.又由(1)知222m n +=,所以330m tn +-=,从而0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线的垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过曲线C 的左焦点()1,0F -. 二、抛物线(2015年1卷)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x --0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a +. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.(2016年3卷)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【解析】(1)由题意可知F 1,02⎛⎫⎪⎝⎭,设l 1:y=a,l 2:y=b 且ab≠0,A 2a ,a 2⎛⎫ ⎪⎝⎭,B 2b ,b 2⎛⎫ ⎪⎝⎭P 1,a 2⎛⎫-⎪⎝⎭,Q 1,b 2⎛⎫- ⎪⎝⎭,R 1a b ,22⎛⎫+- ⎪⎝⎭,记过A,B 两点的直线方程为l,由点A,B 可得直线方程为2x-(a+b)y+ab=0,因为点F 在线段AB 上,所以ab+1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,所以k 1=2a b1a -+,k 2=b 1122--=-b,又因为ab+1=0, 所以k 1=22a b a b 1aba a 1a a abb ---====-+-,所以k 1=k 2,即AR ∥FQ. (2)设直线AB 与x 轴的交点为D ()1x ,0,所以S △ABF =1111a b FD a b x 222-=--, 又S △PQF =a b 2-,所以由题意可得S △PQF =2S △ABF 即:a b 2- =2×12·11x 2a b ⋅--,解得x 1=0(舍)或x 1=1.设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得2ya b x 1=+-(x≠1).而21a b y=+,所以y 2=x-1(x≠1).当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y 2=x-1.(2017年3卷)已知抛物线22C y x =:,过点()20,的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)求证:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 与圆M 的方程.解析:(1)显然当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立222y xx my ⎧=⎨=+⎩,得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-. ⋅1212OA OB x x y y ⋅=+u u r u u u r 1212(2)(2)my my y y =+++21212(1)2()4m y y m y y =++++= 24(1)2240m m m -++⋅+=,所以⊥,即点O 在圆M 上.(2)若圆M 过点P ,则⋅,即1212(4)(4)(2)(2)0x x y y --+++=,即1212(2)(2)(2)(2)0my my y y --+++=,即21212(1)(22)()80m y y m y y +--++=,化简得2210m m --=,解得12m =-或1.①当12m =-时,:240l x y +-=,设圆心为00(,)Q x y ,则120122y y y +==-,0019224x y =-+=,半径||r OQ =,则圆229185:4216M x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. ②当1m =时,:20l x y --=,设圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径r OQ =22:(3)(1)10M x y -+-=.。
解析几何高考题及解析,高考解析几何解题技巧(理科)
返回导航
第一部分 专题讲练
椭圆的标准方程与几何性质
例2 (2019年新课标Ⅰ)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C
交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )
A.x22+y2=1
B.x32+y22=1
C.x42+y32=1
D.x52+y42=1
y2 b2
=1(b>0)经过点(3,4),所以32-
42 b2
=1,解得b=
2.
又a=1,所以双曲线的渐近线方程是y=± 2x.
高考二轮专题析与练 ·数学 ( 理科 )
返回导航
第一部分 专题讲练
4.(2019年新课标Ⅲ)设F1,F2为椭圆C:
x2 36
+
y2 20
=1的两个焦点,M为C上一点
且在第一象限,若△MF1F2为等腰三角形,则M的坐标为________.
抛物线的简 单几何性质
卷Ⅱ,8
卷Ⅰ,8,卷Ⅱ,19 卷Ⅲ,16
2017年 卷Ⅰ,15,卷
Ⅱ,9 卷Ⅲ,10
卷Ⅲ,5
卷Ⅰ,15,卷 Ⅱ,9 卷Ⅲ,5
卷Ⅰ,10,卷 Ⅱ,16
考纲解读
考查直线与圆的 位置关系,椭 圆、双曲线、抛 物线的方程和简 单的几何性质(范 围、顶点、焦 点、离心率、渐 近线、准线),以 选择题、填空题 为主.
x2=2py
x2=-2py
(p>0)
(p>0)
(p>0)
(p>0)
p的几何意义:焦点F到准线l的距离
焦点
离心率 准线 方程
Fp2,0 x=-p2
F-p2,0
F0,p2
【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc
高考解析几何解答题题型分析及解答策略。
©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。
关于近几年全国卷解析几何考查分析及复习策略的探讨
关于近几年全国卷解析几何考查分析及复习策略的探讨发表时间:2019-04-08T16:14:11.870Z 来源:《现代中小学教育》2019第2期作者:王文媛[导读] 摘要:面对高考不仅需要对高考、教学大纲以及教材进行研究,还需要对历年高考试题进行研究,以对考者、被考者双方进行和谐统一。
这样才能够对学生的潜能与创造力进行充分发挥,进而取得优异成绩。
西北工业大学启迪中学王文媛摘要:面对高考不仅需要对高考、教学大纲以及教材进行研究,还需要对历年高考试题进行研究,以对考者、被考者双方进行和谐统一。
这样才能够对学生的潜能与创造力进行充分发挥,进而取得优异成绩。
关键词:高中数学;全国卷;解析几何;复习策略解析几何作为高中数学知识的重要内容,其研究方法具备相应的多样性,并且解析几何是历年高考命题中的重点与热点。
所以怎样在复习中降低学生的失误,提升准确率,是教师需要在教学实践中不断探讨的问题。
一、全国卷解析几何考查分析1、基本概念的考查虽然在《课程标准》中降低了对双曲线的教学要求,高考试题中双曲线内容不会出现在解答题中,但是又没有忽视对双曲线内容的有效考查,以双曲线为背景的试题以选择、填空形式出现的机率很高。
通过统计发现,近几年全国卷小题中均有对双曲线内容的考查,主要包括:双曲线定义、渐近线、离心率等基本概念的考查。
不仅对双曲线教学要求进行了考查,还对学生基本知识、概念的应用能力、逻辑思维能力、运算能力进行了考查。
2、基本思想的考查解析几何教学的基本思想就是利用代数对几何问题进行研究。
例如:对三角形面积的求解。
第一,应用两点间的距离公式,或者是弦长公式,对三角形底进行求解,然后将其带入三角形面积公式进行运算;第二,对三角形顶点坐标和直线方程进行设立,在曲线方程中对直线方程进行代入,得到相应的一元二次方程,通过对韦达定理的应用,对问题进行转化,使其变为三角形顶点坐标问题,以便于求解。
两种方法均可以对解析几何所具备的本质进行展现。
全国卷历年高考解析几何真题归类分析
全国卷历年高考解析几何真题归类分析2018(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--全国卷历年高考解析几何真题归类分析(含答案)(2015年-2018年共11套) 解析几何小题(共23小题)一、直线与圆(4题)1.(2016年2卷4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=( )(A )43- (B )34- (C )3 (D )2【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=, 故圆心为()14,,24111a d a +-==+,解得43a =-,故选A .2.(2015年2卷7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =( )(A )26 (B )8 (C )46 (D )10【解析】选C.由已知得314123-=--=AB k k CB ==3,所以k AB ·k CB =-1,所以AB⊥CB,即△ABC 为直角三角形,其外接圆圆心为(1,-2),半径r=5,所以外接圆方程为(x-1)2+(y+2)2=25,令x=0得y=±2-2,所以|MN|=4.3.(2016年3卷16)已知直线l :330mx y m ++-=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若23AB =,则||CD =__________________.【解析】取AB 的中点E,连接OE,过点C 作BD 的垂线,垂足为F,圆心到直线的距离d=23m 3m 1-+,所以在Rt△OBE 中,BE 2=OB 2-d 2=3,所以d=23m 3m 1-+=3,得m=-3,又在△CDF 中,∠FCD=30°,所以CD=CF cos30︒=4.4.(2018年3卷6)直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【解析】A ,直线分别与轴,轴交于,两点,则点P 在圆上圆心为(2,0),则圆心到直线距离故点P 到直线的距离的范围为则二、椭圆(4题)1.(2015年1卷14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 2.(2107年3卷10)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ). A .63B .33C .23D .13【解析】因为以12A A 为直径的圆与直线20bx ay ab -+=相切,所以圆心到直线的距离d 等于半径,即222ab d a a b==+,又因为0,0a b >>,则上式可化简为223a b =.因为222b ac =-,可得()2223a a c =-,即2223c a =,所以6c e a ==故选A.3.(2016年3卷11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13 (B )12 (C )23 (D )34【解析】选A.由题意可知直线AE 的斜率存在,设为k,直线AE 的方程为y=k ()x a +,令x=0可得点E 坐标为()0,ka ,所以OE 的中点H 坐标为ka 0,2⎛⎫⎪⎝⎭,又右顶点B(a,0),所以可得直线BM 的斜率为-k 2,可设其方程为y=-k 2x+k 2a,联立()y k x a ,k k y x a,22⎧=+⎪⎨=-+⎪⎩可得点M 横坐标为-a3,又点M 的横坐标和左焦点相同,所以-a 3=-c,所以e=13.4.(2018年2卷12)已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【解析】D ,因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,三、双曲线(10题)1.(2015年1卷5)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( ) (A )(-33,33 (B )(-36,36) (C )(2222) (D )(2323【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •= 0000(3,)(3,)x y x y --•- =2220003310x y y +-=-<,解得033y <<故选A.2.(2016年1卷5)已知方程222213x y m n m n -=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3【解析】选A.2222x y 1m n 3m n-=+-表示双曲线,则(m 2+n)(3m 2-n)>0,所以-m 2<n<3m 2,由双曲线性质知:c 2=(m 2+n)+(3m 2-n)=4m 2,其中c 是半焦距,所以焦距2c=2·2|m|=4,解得|m|=1,所以-1<n<3.3.(2107年3卷5)已知双曲线()2222:10,0x y C a b a b -=>>的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【解析】 因为双曲线的一条渐近线方程为5y x =,则5b a =①又因为椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①,②,解得2,5a b ==,则双曲线C 的方程为22145x y -=.故选B.4.(2018年2卷5)双曲线的离心率为,则其渐近线方程为 A.B.C.D.【解析】A ,因为渐近线方程为,所以渐近线方程为.5.(2107年2卷9)若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( ).A .2B .3C .2D .233【解析】取渐近线b y x a=,化成一般式0bx ay -=,圆心()20,到直线的距离为2223b a b =+,得224c a =,24e =,2e =.6.(2017年1卷15)已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若60MAN ∠=,则C 的离心率为________. 【解析】如图所示,OA a =,AN AM b ==.因为60MAN ∠=,所以32AP b =, 222234OP OA PA a b =-=-,从而2232tan 34b AP OP a b θ==-.又因为tan b a θ=,所以 223234b b a a b=-,解得223a b =,则221231133b e a =+=+=.7.(2015年2卷11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) (A )√5 (B )2 (C )√3 (D )√2 【解析】选D.设双曲线方程为-=1(a>0,b>0),如图所示,|AB|=|BM|,∠ABM=120°,过点M 作MN⊥x 轴,垂足为N,在Rt△BMN 中,|BN|=a,|MN|=a,故点M 的坐标为M(2a,a),代入双曲线方程得a 2=b 2=c 2-a 2,即c 2=2a 2,所以e=.8.(2016年2卷11)已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为( )θy=b aM P N A O yx(A )2 (B )32(C )3 (D )2 【解析】 离心率1221F F e MF MF =-,由正弦定理得12211222sin 321sin sin 13F F M e MF MF F F ====---.9.(2018年1卷11)已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若OMN 为直角三角形,则|MN|=A. B. 3 C.D. 4【解析】B ,根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以.10.(2018年3卷11)设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B. 2 C. D.【解析】C ,由题可知,,在中,在中,,四、抛物线(5题)1.(2108年1卷8)设抛物线C :y2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=( )A. 5B. 6C. 7D. 8【解析】D ,根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得.2.(2016年1卷10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为( )(A)2 (B)4 (C)6 (D)8【解析】选B.以开口向右的抛物线为例来解答,其他开口同理可得. 设抛物线为y 2=2px(p>0),设圆的方程为x 2+y 2=r 2,题目条件翻译如图:设A(x 0,22),D p ,52⎛⎫- ⎪⎝,点A(x 0,22)在抛物线y 2=2px 上,所以8=2px 0. ① 点D p ,52⎛⎫- ⎪⎝在圆x 2+y 2=r 2上,所以5+2p 2⎛⎫- ⎪⎝⎭=r 2.②点A(x 0,22)在圆x 2+y 2=r 2上,所以20x +8=r 2. ③ 联立①②③解得:p=4,焦点到准线的距离为p=4.3.(2017年1卷10)已知F 为抛物线24C y x =:的焦点,过点F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则AB DE +的最小值为( ).A .16B .14C .12D .10【解析】设直线1l 的斜率为k ,则直线2l 的斜率为1k-,设()11,A x y ,()22,B x y ,()33,D x y ,()44,E x y ,直线()11l k x =-,直线()21:1l y x k=--.联立 ()241y x y k x ⎧=⎪⎨=-⎪⎩,消去y 整理得()2222240k x k x k -++=,所以2122224424k AB x x p k k+=++=+=+,同理22342124441k DE x x p k k+=++==+,从而22184+16AB DE k k ⎛⎫+=+ ⎪⎝⎭,当且仅当1k =±时等号成立.4.(2107年2卷16)已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN = . 【解析】由28y x =,得4p =,焦点为()20F ,,准线:2l x =-.如图所示,由M 为FN的中点,故易知线段BM 为梯形AFNC 的中位线.因为2CN =,4AF =,所以3MB =.又由抛物线的定义知MB MF =,且MN MF =,所以6NF NM MF =+=.5.(2108年3卷16)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.【解析】2,设,则,所以,所以取AB 中点,分别过点A,B 作准线的垂线,垂足分别为,因为,,因为M’为AB 中点,所以MM’平行于x轴,因为M(-1,1),所以,则即.解析几何解答题(共11小题)一、椭圆(7题)1.(2015年2卷)已知椭圆C:9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M. (1)证明:直线OM 的斜率与l 的斜率的乘积为定值.lFN M C BAOyx(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.解:(1)设直线l :y=kx+b(k≠0,b≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故92221+-=+=k kbx x x M , 992+=+=k b b k y M M .于是直线OM 的斜率kx y k M M OM9-== 即k OM ·k=-9,所以直线OM 的斜率与l 的斜率的积是定值.(2)四边形OAPB 能为平行四边形,因为直线l 过点(,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)得OM 的方程为y=-x. 设点P 的横坐标为x p .由⎪⎩⎪⎨⎧=+-=22299m y x x ky ,得8192222+=k m k x p ,即932+±=k km x p . 将点),3(m m 的坐标代入l 的方程得3)3(k m b -=,因此)9(3)3(2+-=k k k x M 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相评分,即P M x x =2. 于是k k 22=2⨯3+93+9,解得,k k 12=4-7=4+7.因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-或4+时,四边形OAPB 为平行四边形.2.(2016年1卷)设圆x 2+y 2+2x-15=0的圆心为A,直线l 过点B(1,0)且与x 轴不重合, l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E. (1)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C1,直线l 交C1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(1)圆A 整理为(x+1)2+y 2=16,点A 坐标为(-1,0),如图,∵BE∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD,∴∠EBD=∠EDB,则|EB|=|ED|, ∴|AE|+|EB|=|AE|+|ED|=|AD|=4.所以E的轨迹为一个椭圆,方程为2x 4+2y 3=1(y≠0);(2)C1:2x 4+2y 3=1;设l :x=my+1,因为PQ⊥l ,设PQ:y=-m(x-1),联立l 与椭圆C1,22x my 1,x y 1,43⎧=+⎪⎨+=⎪⎩得(3m2+4)y2+6my-9=0;则21m + ()222236m 363m 41m3m 4++++=()2212m13m 4++;圆心A 到PQ 距离()2m 111m---+22m1m +,所以22|AQ |d -224m 161m -+2243m 41m ++,∴SMPNQ=12|MN|·|PQ|=12·()222212m 143m 43m 41m++⋅++2224m 13m 4++=24 2113m 1++3).3.(2016年2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA⊥NA.(I )当4t =,AM AN =时,求△A MN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k xk x k +++-=解得2x =-或228634k x k -=-+,则2222286121213434k AM k k k k -=+-+=+++ 因为AM AN ⊥,所以2221121211413341AN k k k kk ⎛⎫=+-=+⋅⎪⎝⎭⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >212124343k k k=++, 整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得, ()222223230tk x x t k t +++-=,解得x =或x =所以AM =+因为2AM AN =,所以2=,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.4.(2017年1卷)已知椭圆()2222:=10x y C a b a b+>>,四点()111P ,,()201P ,,3–12P ⎛⎫ ⎪ ⎪⎝⎭,,412P ⎛ ⎝⎭,中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过点2P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为–1,求证:l 过定点.解析:(1)根据椭圆对称性,必过3P ,4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点.将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =, 21b =,所以椭圆C 的方程为2214x y +=. (2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,,221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,,联立22440y kx bx y =+⎧⎨+-=⎩, 消去y 整理得()222148440k x kbx b +++-=,122814kb x x k -+=+,21224414b x x k-⋅=+, 则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++==-+ ()()()811411k b b b -=-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.所以直线l 的方程为21y kx k =--.当2x =时,1y =-,所以l 过定点()21-,.5.(2017年2卷)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.求证:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解析:(1)设点()P x y ,,易知(0)N x ,,(0)NP y =,,又1022NM NP ⎛== ⎪⎝⎭,,所以点12M x y ⎛⎫ ⎪⎝⎭,.又M 在椭圆C 上,所以22122x += ⎪⎝⎭,即222x y +=. (2)由题知()1,0F -,设()3,Q t -,(),P m n ,则()3,OQ t =-,()1,PF m n =---,33OQ PF m tn ⋅=+-,(),OP m n =,()3,PQ m t n =---,由1OP PQ ⋅=,得2231m m tn n --+-=.又由(1)知222m n +=,所以330m tn +-=,从而0OQ PF ⋅=,即OQ PF ⊥.又过点P存在唯一直线的垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过曲线C 的左焦点()1,0F -.6.(2018年1卷)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.【解析】(1)由已知得,l的方程为x=1.由已知可得,点A的坐标为或.所以AM的方程为或.(2)当l与x轴重合时,.当l与x轴垂直时,OM为AB的垂直平分线,所以.当l与x轴不重合也不垂直时,设l的方程为,,则,直线MA,MB的斜率之和为.由得,.将代入得,.所以,.则.从而,故MA,MB的倾斜角互补,所以.综上,.7.(2018年3卷)已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【解析】(1)设,则.两式相减,并由得.由题设知,于是.①由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d ,则.②将代入①得.所以l 的方程为,代入C 的方程,并整理得.故,代入②解得.所以该数列的公差为或.二、抛物线(4题)1.(2015年1卷)在直角坐标系xoy 中,曲线C :y=24x与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN?说明理由.解析:(Ⅰ)由题设可得(2,)M a a ,(22,)N a -,或(22,)M a -,(2,)N a a .∵12y x '=,故24xy =在x =22a a C 在(22,)a a 处的切线方程为(2)y a a x a --0ax y a --=.故24x y =在x =-22a 处的到数值为-a C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.0ax y a --=0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN,所以(0,)P a -符合题意.2.(2016年3卷)已知抛物线C:y2=2x 的焦点为F,平行于x 轴的两条直线l1,l2分别交C 于A,B 两点,交C 的准线于P,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明:AR∥FQ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 【解析】(1)由题意可知F 1,02⎛⎫⎪⎝⎭,设l1:y=a,l2:y=b 且ab≠0,A 2a ,a 2⎛⎫ ⎪⎝⎭,B 2b ,b 2⎛⎫⎪⎝⎭P 1,a 2⎛⎫- ⎪⎝⎭,Q 1,b 2⎛⎫- ⎪⎝⎭,R 1a b ,22⎛⎫+- ⎪⎝⎭,记过A,B 两点的直线方程为l,由点A,B 可得直线方程为2x-(a+b)y+ab=0,因为点F 在线段AB 上,所以ab+1=0,记直线AR 的斜率为k1,直线FQ 的斜率为k2,所以k1=2a b 1a -+,k2=b1122--=-b,又因为ab+1=0,所以k1=22a b a b 1aba a 1a a abb ---====-+-,所以k1=k2,即AR∥FQ.(2)设直线AB 与x 轴的交点为D ()1x ,0,所以S△ABF=1111a b FD a b x 222-=--,又S△PQF=a b 2-,所以由题意可得S△PQF=2S△ABF 即:a b 2-=2×12·11x 2a b ⋅--,解得x1=0(舍)或x1=1.设满足条件的AB 的中点为E(x,y).当AB 与x 轴不垂直时,由kAB=kDE 可得2ya b x 1=+-(x≠1).而21a b y =+,所以y2=x-1(x≠1).当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y2=x-1.3.(2017年3卷)已知抛物线22C y x =:,过点()20,的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)求证:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 与圆M 的方程.解析:(1)显然当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立222y xx my ⎧=⎨=+⎩,得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-.OBOA ⋅1212OA OB x x y y ⋅=+1212(2)(2)my my y y =+++21212(1)2()4m y y m y y =++++= 24(1)2240m m m -++⋅+=,所以⊥,即点O 在圆M 上.(2)若圆M 过点P ,则⋅,即1212(4)(4)(2)(2)0x x y y --+++=,即1212(2)(2)(2)(2)0my my y y --+++=,即21212(1)(22)()80m y y m y y +--++=,化简得2210m m --=,解得12m =-或1.①当12m =-时,:240l x y +-=,设圆心为00(,)Q x y ,则120122y y y +==-,0019224x y =-+=,半径||r OQ ==,则圆229185:4216M x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.②当1m =时,:20l x y --=,设圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径2231=10r OQ ==+,则圆22:(3)(1)10M x y -+-=.4.(2018年2卷)设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程;(2)求过点,且与的准线相切的圆的方程.【解析】(1)由题意得F (1,0),l 的方程为y=k (x –1)(k>0).设A (x1,y1),B (x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l 的方程为y=x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.。
全国卷历年高考解析几何真题归类分析2018
全国卷历年高考解析几何真题归类分析(含答案)(2015年-2018年共11套) 解析几何小题(共23小题)一、直线与圆(4题)1.(2016年2卷4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=( )(A )43- (B )34- (C )3 (D ) 2【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=, 故圆心为()14,,24111a d a +-==+,解得43a =-,故选A .2.(2015年2卷7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =( )(A )26 (B )8 (C )46 (D )10 【解析】选C.由已知得314123-=--=AB k k CB =错误!未找到引用源。
=3,所以k AB ·k CB =-1,所以AB ⊥CB,即△ABC 为直角三角形,其外接圆圆心为(1,-2),半径r=5,所以外接圆方程为(x-1)2+(y+2)2=25,令x=0得y=±2错误!未找到引用源。
-2,所以|MN|=4错误!未找到引用源。
.3.(2016年3卷16)已知直线l :330mx y m ++-=错误!未找到引用源。
与圆2212x y +=错误!未找到引用源。
交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若23AB =错误!未找到引用源。
,则||CD =错误!未找到引用源。
__________________. 【解析】取AB 的中点E,连接OE,过点C 作BD 的垂线,垂足为F,圆心到直线的距离d=23m 3m 1-+,所以在Rt △OBE 中,BE 2=OB 2-d 2=3,所以d=23m 3m 1-+=3,得m=-33,又在△CDF 中,∠FCD=30°,所以CD=CFcos30︒=4. 4.(2018年3卷6)直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A. B. C. D.【解析】A ,直线分别与轴,轴交于,两点,则点P 在圆上圆心为(2,0),则圆心到直线距离故点P 到直线的距离的范围为则二、椭圆(4题)1.(2015年1卷14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 2.(2107年3卷10)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ). A 6B 3C .23D .13【解析】因为以12A A 为直径的圆与直线20bx ay ab -+=相切,所以圆心到直线的距离d 等于半径,即222ab d a a b==+,又因为0,0a b >>,则上式可化简为223a b =.因为222b a c =-,可得()2223a a c =-,即2223c a =,所以6c e a ==故选A. 3.(2016年3卷11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【解析】选A.由题意可知直线AE 的斜率存在,设为k,直线AE 的方程为y=k ()x a +,令x=0可得点E 坐标为()0,ka ,所以OE 的中点H 坐标为ka 0,2⎛⎫⎪⎝⎭,又右顶点B(a,0),所以可得直线BM 的斜率为-k 2,可设其方程为y=-k 2x+k 2a,联立()y k x a ,k k y x a,22⎧=+⎪⎨=-+⎪⎩可得点M 横坐标为-a 3,又点M 的横坐标和左焦点相同,所以-a 3=-c,所以e=13.4.(2018年2卷12)已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D. 【解析】D ,因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,三、双曲线(10题)1.(2015年1卷5)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,33) 【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •= 0000(3,)(3,)x y x y --•- =2220003310x y y +-=-<,解得033y <<故选A.2.(2016年1卷5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【解析】选A.2222x y 1m n 3m n-=+-表示双曲线,则(m 2+n)(3m 2-n)>0,所以-m 2<n<3m 2,由双曲线性质知:c 2=(m 2+n)+(3m 2-n)=4m 2,其中c 是半焦距,所以焦距2c=2·2|m|=4,解得|m|=1,所以-1<n<3.3.(2107年3卷5)已知双曲线()2222:10,0x y C a b a b -=>>的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【解析】 因为双曲线的一条渐近线方程为52y x =,则52b a =① 又因为椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +== ② 由①,②,解得2,5a b ==,则双曲线C 的方程为22145x y -=.故选B. 4.(2018年2卷5)双曲线的离心率为,则其渐近线方程为A. B. C. D.【解析】A ,因为渐近线方程为,所以渐近线方程为.5.(2107年2卷9)若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( ).A .2B 3C 2D 23【解析】取渐近线by x a=,化成一般式0bx ay -=,圆心()20,到直线的距离为 2223b a b=+224c a =,24e =,2e =.6.(2017年1卷15)已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,以A 为圆心,b为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若60MAN ∠=,则C 的离心率为________.【解析】如图所示,OA a =,AN AM b ==.因为60MAN ∠=,所以32AP b =, 222234OP OA PA a b =-=-,从而2232tan 34b AP OP a b θ==-.又因为tan b aθ=,所以223234b b a a b =-,解得223a b =,则221231133b e a =+=+=.7.(2015年2卷11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) (A )√5 (B )2 (C )√3 (D )√2【解析】选D.设双曲线方程为错误!未找到引用源。
近五年全国卷解析几何小题分析和解题规律总结课件
直线 l1 , l2 ,直线 l1 与 C 交于 A 、 B 两点,直线 l2 与 C 交于 D ,E 两点,
AB DE 的最小值为()A.1616
B.14C.12 D.10
设 AB 倾斜角为 .作 AK1 垂直准线, AK2 垂直 x 轴
AF AK1
cos AF
GF AK1 (几何关系) (抛物线特性)
FM 的延长线交 y 轴于点 N 。若 M 为 FN 的中点,则 FN
。
【解析】 y2 8x 则 p 4 ,焦点为 F 2,0 ,准线 l : x 2,
如图, M 为 F 、 N 中点, 故易知线段 BM 为梯形 AFMC 中位线,
ly
∵ CN 2 , AF 4 ,
∴MB=3 又由定义,MB=MF
2、(2015(5))已知
M(x0,y0)是双曲线
C:
x2 2
y2
1上的一点,F1、F2
是
C
上的两个焦点,若 MF1 MF2 <0,则 y0 的取值范围是
(A)(- 3 , 3 ) 33
(B)(- 3 , 3 ) 66
(C)( 2 2 , 2 2 ) (D)( 2 3 , 2 3 )
3
3
3
3
3、(2014 卷 1)已知 F 是双曲线 C : x2 my2 3m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为
A . 3 B .3 C . 3m D . 3m
【解析】:由 C : x2
my2
3m(m
x2 0) ,得 3m
y2 3
1, c2
,考∴ 点二:双曲线的离心率和渐近线
全国卷历年高考立体几何真题归类分析(含答案)
全国卷历年高考立体几何真题归类分析(含答案)类型一:直建系——条件中已经有线面垂直条件,该直线可以作为z轴或与z轴平行,底面垂直关系直接给出或容易得出(如等腰三角形的三线合一)。
这类题入手比较容易,第(Ⅰ)小问的证明就可以用向量法,第(Ⅱ)小问往往有未知量,如平行坐标轴的某边长未知,或线上动点等问题,以增加难度。
该类问题的突破点是通过条件建立方程求解,对于向上动点问题这主意共线向量的应用。
1.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.2.(2015年全国Ⅰ卷)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.3.(2015年全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.4.(2016年全国Ⅲ卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.5.(2017全国Ⅱ卷)如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值.EM DCBAP类型二:证建系(1)——条件中已经有线面垂直条件,该直线可以作为z 轴或与z 轴平行,但底面垂直关系需要证明才可以建系(如勾股定理逆定理等证明平面线线垂直定理)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OA a , AN AM b
∵ MAN 60 ,∴ AP 3 b , OP OA 2 PA 2 a2 3 b2
2
4
AP ∴ tan
OP
3b 2 a2 3 b2
4
又∵ tan b ,∴
a
3b 2 a2 3 b2
b a ,解得 a2
3b2
4
∴ e 1 b2 1 1 2 3
【答案】D
【解析】试题分析:设双曲线方程为
x2 a2
y2 b2
1(a 0,b 0) ,如图所示,
AB
BM
,
ABM 1200 , 过 点 M 作 MN x 轴 , 垂 足 为 N , 在 RtBMN 中 , BN a ,
MN 3a ,故点 M 的坐标为 M (2a, 3a) ,代入双曲线方程得 a2 b2 a2 c2 ,即
【答案】:C
【解析】:过 Q 作 QM⊥直线 L 于 M,∵ FP 4FQ
PQ 3
QM PQ 3
∴ PF 4 ,又 4 PF 4 ,∴ QM 3,由抛物线定义知 QF QM 3
精品课件
1. (2017 全国 1)已知 F 为抛物线 C: y2 4x 的交点,过 F 作两条互相垂
直线 l1 , l2 ,直线 l1 与 C 交于 A 、 B 两点,直线 l2 与 C 交于 D ,E 两点,
B. x2 y2 1 45
C. x2 y2 1 54
D. x2 y2 1 43
【解析】由题意可得: b 3 , c 3 ,又 a2 b2 c2 ,解得 a2 4,b2 5 , a2
设 F
3m 3, 0
y ,一条渐近线
3 3m
x
,即
x
m y 0 ,则点 F 到 C 的一条
d 3m 3
渐近线的距离
1 m = 3 ,选 A. .
精品课件
5、(2015 全国 2)11.已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E 上,∆ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为( ) A. 5 B. 2 C. 3 D. 2
精品课件
,考∴ 点二:双曲线的离心率和渐近线
【2017 课标 1,理】已知双曲线 C x2 y2 1 (a>0,b>0)的右顶点为 A,以 A 为圆心,b a2 b2
为半径作圆 A,圆 A 与双曲线 C 的一条渐近线交于 M、N 两点.若∠MAN=60°,则 C 的离心 率为________.
c2 2a2 ,所以 e 2 ,故选 D.
考查内容:双曲线的标准方程和简单几何性质.
精品课件
6(2017)已知双曲线
C:
x2 a2
y2 b2
1
(a>0,b>0)的一条渐近线方程为 y
5 x, 2
且与椭圆 x2 y2 1有公共焦点,则 C 的方程为 12 3
A. x2 y2 1 8 10
近五年全国卷解析几何在小题中 的考点和解答策略
临淄中学 王娓 娓
精品课件
解析几何在全国卷中通常出 2 小 1 大,小题一般主要以 考查直线、圆及圆锥曲线的性质为主,一般结合定义,借 助于图形可容易求解。主要考点是直线与圆的位置关系,点 到直线的距离,双曲线的离心率与渐近线,抛物线的定义及 几何性质,椭圆的定义及几何性质等等。
精品课件
近五年考过的知识点
考点 直线与圆的位置关系
2013 2014 2015 2016 2017
点到直线的距离 双曲线的离心率与渐近线 抛物线的定义及简单几何性质 椭圆的定义及几何性质
圆与椭圆结合
精品课件
考点一:抛物线的定义和简单性质
【2017 课标 II,理 16】已知 F 是抛物线 C : y2 8x 的焦点, M 是 C 上一点,
CN
且 MN=NF, ∴ NF NM MF 6
B
M
A
OF
x
精品课件
(2014 全国)10.已知抛物线 C :y2 8x 的焦点为 F ,准线为 l ,P 是 l 上一点,
Q 是直线PF 与 C 的一个交点,若 FP 4FQ ,则| QF | =
7
5
A . 2 B . 2 C .3 D .2
3
3
3
3
精品课件
3、(2014 卷 1)已知 F 是双曲线 C : x2 my2 3m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为
A . 3 B .3 C . 3m D . 3m
x2 y2 【解析】:由 C : x2 my2 3m(m 0) ,得 3m 3 1, c2 3m 3, c 3m 3
P 1 cos
∴
AB
2P 1 cos2
2P sin2
π
又 DE 与 AB 垂直,即 DE 的倾斜角为 2
DE
2P
sin2
π 2
2P cos2
而 y2 4x ,即 P 2 .
精品课件
• 【策略】 • 抛物线的定义是解决抛物线问题的基础,
它能将两种距离(抛物线上的点到焦点的距 离、抛物线上的点到准线的距离)进行等量 转化。另外,直线与抛物线联立,求判别 式、韦达定理是通法,需要重点掌握.考查 到最值问题时要能想到用函数方法和基本 不等式进行解决. 如果问题中涉及抛物线的 焦点和准线,又能与距离联系起来,那么 用抛物线定义就能解决问题。
a2
33
精品课件
2、(2015(5))已知
M(x0,y0)是双曲线
C:
x2 2
y2
1上的一点,F1、F2
是
C
上的两个焦点,若 MF1 • MF2 <0,则 y0 的取值范围是
(A)(- 3 , 3 ) 33
(B)(- 3 , 3 ) 66
(C)( 2 2 , 2 2 ) (D)( 2 3 , 2 3 )
FM 的延长线交 y 轴于点 N 。若 M 为 FN 的中点,则 FN
。
【解析】 y2 8x 则 p 4 ,焦点为 F 2,0 ,准线 l : x 2,
如图, M 为 F 、 N 中点, 故易知线段 BM 为梯形 AFMC 中位线,
ly
∵ CN 2 , AF 4 ,
∴MB=3 又由定义,MB=MF
AB DE 的最小值为()A.1616
B.14C.12 D.10
设 AB 倾斜角为 .作 AK1 垂直准线, AK2 垂直 x 轴
AF AK1
cos AF
GF AK1 (几何关系) (抛物线特性)
易知
GP
P 2
P 2
P
∴ AF cos P AF
同理
AF
P 1 cos
,
BF