近五年(含2017)新课标I卷高考理科解析几何考点分布和考题统计

合集下载

全国新课标1卷近五年数学(理)科高考试题考点分布表

全国新课标1卷近五年数学(理)科高考试题考点分布表


义,并了解如下可以作为推理依据的公理和定理.②以立体几何的上
空间几何 体、表面 积与体积 、三视图
空间想 像能 力,运 算求解 能力
选择题 、填空

6、15
空间几何 体、表面 积与体积 、三视图
空间想 像能
力,运 算求解
能力
选择题
7、11
空间几何 体、表面 积与体积 、三视图
空间想 像能 力,运 算求解 能力
选择题
1
集合间的基本关系及集合的基本运算.
集合的基 运算求 本运算 解能力
选择题 1
集合元素 个数
运算求 解能力
选择题
①了解构成函数的要素,会求一些简单函数的定义域和值域;了解
映射的概念.②在实际情境中,会根据不同的需要选择恰当的方法
(如图像法、列表法、解析法)表示函数.③了解简单的分段函数,
并能简单应用(函数分段不超过三段).④理解函数的单调性、最大
序模 号块
知识点 能力要求
全国新课标1卷近五年数学(理)科高考试题考点分布表
2010年
2011年
2012年
题型 题号
考查知 识点
考查 能力
题型
题号
考查知 识点
考查 能力
题型 题号
考查知 识点
考查 能力
题型
①了解集合的含义,体会元素与集合的属于关系.②能用自然语言、
1
集合
(1)集合的含义与 表示(2)集合间的 基本关系(3)集合 的基本运算
填空题
1直线、圆的方
程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆
的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了

2017年高考新课标Ⅰ卷理数试题解析(解析版)

2017年高考新课标Ⅰ卷理数试题解析(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<I I{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<U U ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248aa⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p满足1142p<<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A.3.设有下面四个命题1p:若复数z满足1z∈R,则z∈R;2p:若复数z满足2z∈R,则z∈R;3p:若复数12,z z满足12z z∈R,则12z z=;4p:若复数z∈R,则z∈R.其中的真命题为A.13,p p B.14,p p C.23,p p D.24,p p 【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b=+∈R的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记nS为等差数列{}na的前n项和.若4524a a+=,648S=,则{}na的公差为A.1 B.2 C.4 D.8【答案】C【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,学/科网C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin p AB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭L L ,要使(1)100 2kk+>,有14k≥,此时122kk++<,所以2k+是第1k+组等比数列1,2,,2kL的部分和,设1212221t tk-+=+++=-L,所以2314tk=-≥,则5t≥,此时52329k=-=,所以对应满足条件的最小整数293054402N⨯=+=,故选A.【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2b |= .【答案】23【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b,所以|2|1223+==a b.秒杀解析:利用如下图形,可以判断出2+a b的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y=-的最小值为.【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .23 【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by xa=上的点,且(,0)A a,||||AM AN b==,而AP MN⊥,所以30PAN∠=o,点(,0)A a到直线by xa=的距离22||||1bAPba=+,在Rt PAN△中,||cos||PAPANNA∠=,代入计算得223a b=,即3a b=,由222c a b=+得2c b=,所以233cea b===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O 上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【答案】15【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =⨯3x =.∴35FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=-, 令()0n x '=,即43403x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 154854415V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得A,P,B,(C .所以(22PC =--u u u r,CB =u u u r,(22PA =-u u u r ,(0,1,0)AB =u u u r . 设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n即0,220,x y z ⎧-+-=⎪=可取(0,1,=-n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m即0,220.x z y -=⎨⎪=⎩可取(1,0,1)=m .则cos ,||||⋅==<>n m n m n m , 所以二面角A PB C --的余弦值为3-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,因此σ0.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,(t,.则121k k +==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分) 已知函数2()e(2)e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1). 试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e(2)e 1(e 1)(2e 1)xx x x f x a a a '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l的距离为d =对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =当4a ≥-时,d=8a =;当4a <-时,d=16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而112x -+<≤.所以()()f x g x ≥的解集为117{|1}x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。

近五年含2017新课标I卷全国高考文理科数学考点分布统计表1

近五年含2017新课标I卷全国高考文理科数学考点分布统计表1

(1)卷全国高考文理科数学考点分布统计表近五年(含2017)新课标II2010-2017 卷高考理科数学考点分布统计表年新课标20172012 2015 2013 20102016 2011 2014 题次一元二求不等集合运算集合的运算(集合运算复数运算:不等式集(绝对值复数(集合的1 不等式有限集、并集式、除法、无理不等式合运算法、共轭合间关传统文化中的三角函(诱函数性复数平方复数相等复数(除法复数运算几何(单调性排列组合公式正弦和率问除法2乘分式、模的运乘法、共轭)运奇偶性公式逆用奇函数导数(切线复数的概念及等差数统计分函数及特称命题的算法(分式函数一复数运算 3 及其运抽绝对值环,算与简易逻比一次积的奇三角函数(独立重复试验双曲线古典概圆锥曲线圆锥曲线等差数列结合周运动、角几等车互斥事件和点到渐椭圆离(计数双曲线4度、画图,概式运心率公线的距理型思想向量数量积三角函函数的奇偶性双曲线数列等程序框图概率二曲线的标准逻 5 (单调性(定义范数分单调运算性倍角立体几何三视图二项式定理求二项分布的程序框图球体嵌三视图实际应用题球的表6三视功正方体锥体原立体积与体积计(双曲函数图算法(框图三视图空间几何体求数列等心率与平面向量的棱锥体的识别循环结构、程序框7线位置面何运数用了导计项求和系二项式三视图指数函由三角函数函数性质(圆锥曲线导数应用(两个方体与与对数像求单调递8函数、复合等轴双程序框积、特柱组合求切数的性区数线抛物积计项程序框三角函数二项式三角函数平移线性规三角(同角与算法程序框定积单调性数求参9 恒等变换求最的范圆锥曲线立体几何(函数性质抛物线与过焦抛物线抛物线向量与二项式定理韦判断函椭圆10 棱柱与球、点三角开式的系性弦长问定的表面积图像5/ 1(1)近五年新课标(含卷全国高考文理科数学考点分布统计表2017)1平面的截面面问题,分段函数(图立体几何面平行异面直三视图象变换含绝三角函球函数性质球体内指数与函数结ii 性质定理值对数运算(性质柱的表面所成的数形结三棱异面直函数图像所成的函数图三角函导数的综合递数列函数性质双曲线(中(反比的性(函数极用零点取数列新颖规12 三角关弦反函型点、单调范数向量的偶函数,求向量运算二项展随机模拟和向量运算量积及线性规13 向量模长运数量积积求参数标运线性规划二项式(与椭线性规划求最三角函四边形椭圆的顶点三视图(给理指定线的位数列:14最域视图写图形线性的标准方系关系三角函数双曲线与点到直线与圆(球内截函数奇等比数正态分布15 线性规划斜辅助角的距及其应求圆方程切求概性单调函数性质数列已平面图形折叠正余弦定理线性规解三角形(递推关对称性直线与解三角16 形结合思积、求角最大体的应求最项数列正弦定理解三角形项的解三角形与数列(递推等比数三角函数与解余弦定正弦定理数列通项等差数列系叠加、等比(列项正弦定理17 角放缩求余弦定理及三角余弦定错位相减义与通项公式和和求边面积公拆项消去垂直问立体几何立体几何空间垂直判证明面面垂直立几(统计与的证明线线垂四棱锥(线异面线面平行与性质分段体、垂直率系,求二面角18 空间向证明线线面角垂直线所成角的三棱锥二面角数分布余弦算的应5 / 2新课标1(卷全国高考文理科数学考点分布统计表含(1)近五年2017)非线性拟合;线概率与统立体几何:统计与概性回归方程求统计(随机抽计、独立重线性回归随机变服从正态分布模统计概率线线垂直率:利用回归方19样、独立性检法;型及数学期望量的分布证明二面方程(分布列)复试验概程进行预报预验率分布测解析几何直线与圆锥曲圆锥曲抛物线的切线椭圆(直线解析几何(椭圆)的位解析几轨迹方(圆、直线与抛物抛物线解析几何椭圆位置关关系(定(20弦长公式与函综合圆椭圆基本关系、等差位置关系探韦达定理,过法)、韦迹、导数列第一定义计算新问题点问题定导数:利用导数研导数及单线、求曲线的切线导数函数导数(应用(导数应用导数求利用导数求参新概念的理解数、二次、区间不数;不范围研究函数点、范围数不等函数单21分段函数的综合式分类式调性、最值零点问题不等式恒立求分类讨论点论求参分类讨论明取值范圆的切线判四点共圆直线与极坐标与参数与性质圆周(四点几何证几何证22圆、相几何证的位置圆、相似定理直角三系及证形射影定参数方程坐标系坐标系直角坐标方极坐标参数方程直线与圆的参数方程参数方程与极坐标互化程与直参数方数方程、求极坐标不等式证23坐标方直线与圆的求交点极坐标的互化求距置关应不等式不等式绝对值函数(分段函含绝对值不不等绝对值不等(图象,解绝的图像个绝绝对值式解法分段恒24等式个绝值不等式,对值不数一元二次值)、求等值求等式解形结合数的取式的数的范近五2017新课卷高考文科数学考点分布统计题20132014201520162017一元二次不集合运算不集合的运算(复数运算:分式求不等式集合的式、集合运算1式集合间关集、并集除法、交5/ 3近五年(含2017)新课标I卷全国高考文理科数学考点分布统计表(1)5/ 4近五年(含2017)新课标I卷全国高考文理科数学考点分布统计表(1)/ 5。

全国卷历年高考解析几何解答题真题归类分析(含答案)

全国卷历年高考解析几何解答题真题归类分析(含答案)

全国卷历年高考解析几何解答题真题归类分析(含答案)一、椭圆(2015年2卷)已知椭圆C:9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值.(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.分析:(1)将直线y=kx+b(k≠0,b≠0)与椭圆C:9x 2+y 2=m 2(m>0)联立,结合根与系数的关系及中点坐标公式证明.(2)由四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分求解证明. 解析】:(1)设直线l :y=kx+b(k≠0,b≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故92221+-=+=k kbx x x M , 992+=+=k b b k y M M .于是直线OM 的斜率kx y k M M OM 9-== 即k OM ·k=-9,所以直线OM 的斜率与l 的斜率的积是定值.(2)四边形OAPB 能为平行四边形,因为直线l 过点(,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)得OM 的方程为y=-x. 设点P 的横坐标为x p .由⎪⎩⎪⎨⎧=+-=22299m y x x k y ,得8192222+=k m k x p ,即932+±=k km x p . 将点),3(m m 的坐标代入l 的方程得3)3(k m b -=,因此)9(3)3(2+-=k k k x M 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相评分,即P M x x =2.=,解得k k 12==因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-或4+时,四边形OAPB 为平行四边形.(2016年1卷)设圆x 2+y 2+2x-15=0的圆心为A,直线l 过点B(1,0)且与x 轴不重合, l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E. (1)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(1)圆A 整理为(x+1)2+y 2=16,点A 坐标为(-1,0),如图,∵BE ∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD,∴∠EBD=∠EDB,则|EB|=|ED|, ∴|AE|+|EB|=|AE|+|ED|=|AD|=4.所以E 的轨迹为一个椭圆,方程为2x 4+2y 3=1(y≠0);(2)C 1: 2x 4 +2y 3=1;设l :x=my+1,因为PQ ⊥l ,设PQ:y=-m(x-1),联立l 与椭圆C 1,22x my 1,x y 1,43⎧=+⎪⎨+=⎪⎩得(3m 2+4)y 2+6my-9=0; 则|MN|=M -y N |==()2212m13m 4++;圆心A 到PQ 距离d==,所以=,∴S MPNQ =12|MN|·|PQ|=12·()2212m 13m 4+⋅+=24[12,8).(2016年2卷)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. (I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-=解得2x =-或228634k x k -=-+21234k + 因为AM AN ⊥,所以21212413341AN k kk ==⋅⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >212124343k k k=++, 整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得, ()222223230tk x x t k t +++-=,解得x =或x =所以AM =,所以AN =因为2AM AN =,所以2=,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.(2017年1卷)已知椭圆()2222:=10x y C a b a b +>>,四点()111P ,,()201P ,,3–1P ⎛ ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过点2P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为–1,求证:l 过定点.解析:(1)根据椭圆对称性,必过3P ,4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点.将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =, 21b =,所以椭圆C 的方程为2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,,联立22440y kx bx y =+⎧⎨+-=⎩, 消去y 整理得()222148440k x kbx b +++-=,122814kb x x k -+=+,21224414b x x k -⋅=+, 则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=22228888144414kb k kb kbk b k --++==-+ ()()()811411k b b b -=-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.所以直线l 的方程为21y kx k =--.当2x =时,1y =-,所以l 过定点()21-,.(2017年2卷)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.求证:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解析:(1)设点()P x y ,,易知(0)N x ,,(0)NP y =,,又0NM NP ⎛== ⎝,所以点M x y ⎛⎫ ⎪⎝⎭.又M 在椭圆C上,所以2212x +=,即222x y +=. (2)由题知()1,0F -,设()3,Q t -,(),P m n ,则()3,OQ t =-,()1,PF m n =---,33OQ PF m tn ⋅=+-,(),OP m n =,()3,PQ m t n =---,由1O P P Q ⋅=,得2231m m tn n --+-=.又由(1)知222m n +=,所以330m tn +-=,从而0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线的垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过曲线C 的左焦点()1,0F -. 二、抛物线(2015年1卷)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x --0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a +. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.(2016年3卷)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【解析】(1)由题意可知F 1,02⎛⎫⎪⎝⎭,设l 1:y=a,l 2:y=b 且ab≠0,A 2a ,a 2⎛⎫ ⎪⎝⎭,B 2b ,b 2⎛⎫ ⎪⎝⎭P 1,a 2⎛⎫-⎪⎝⎭,Q 1,b 2⎛⎫- ⎪⎝⎭,R 1a b ,22⎛⎫+- ⎪⎝⎭,记过A,B 两点的直线方程为l,由点A,B 可得直线方程为2x-(a+b)y+ab=0,因为点F 在线段AB 上,所以ab+1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,所以k 1=2a b1a -+,k 2=b 1122--=-b,又因为ab+1=0, 所以k 1=22a b a b 1aba a 1a a abb ---====-+-,所以k 1=k 2,即AR ∥FQ. (2)设直线AB 与x 轴的交点为D ()1x ,0,所以S △ABF =1111a b FD a b x 222-=--, 又S △PQF =a b 2-,所以由题意可得S △PQF =2S △ABF 即:a b 2- =2×12·11x 2a b ⋅--,解得x 1=0(舍)或x 1=1.设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得2ya b x 1=+-(x≠1).而21a b y=+,所以y 2=x-1(x≠1).当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y 2=x-1.(2017年3卷)已知抛物线22C y x =:,过点()20,的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)求证:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 与圆M 的方程.解析:(1)显然当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立222y xx my ⎧=⎨=+⎩,得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-. ⋅1212OA OB x x y y ⋅=+u u r u u u r 1212(2)(2)my my y y =+++21212(1)2()4m y y m y y =++++= 24(1)2240m m m -++⋅+=,所以⊥,即点O 在圆M 上.(2)若圆M 过点P ,则⋅,即1212(4)(4)(2)(2)0x x y y --+++=,即1212(2)(2)(2)(2)0my my y y --+++=,即21212(1)(22)()80m y y m y y +--++=,化简得2210m m --=,解得12m =-或1.①当12m =-时,:240l x y +-=,设圆心为00(,)Q x y ,则120122y y y +==-,0019224x y =-+=,半径||r OQ =,则圆229185:4216M x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. ②当1m =时,:20l x y --=,设圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径r OQ =22:(3)(1)10M x y -+-=.。

近五年(含2017)新课标I卷全国高考文理科数学考点分布统计表

近五年(含2017)新课标I卷全国高考文理科数学考点分布统计表
导数:切线、求参数;不等式、分类讨论求参数取值范围
导数应用:函数单调性
利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类讨论思想
导数及其应用(零点、范围、不等式证明)
利用导数求参数范围研究函数的零点问题。
22
圆、相似
圆(四点共圆、相似)
几何证明
几何证明
几何证明
圆的切线判定与性质;圆周角定理;直角三角形射影定理
四点共圆、直线与圆的位置关系及证明
极坐标与参数方程
23
直线与圆的参数方程、求轨迹
参数方程、极坐标方程
坐标系与参数方程:极坐标下求距离
坐标系与参数方程:求交点坐标
参数方程
直角坐标方程与极坐标互化;直线与圆的位置关系
参数方程、极坐标方程与直角坐标方程的互化及应用
等车、几何概型
等差数列结合公式运算
5
逻辑(单调性)
三角函数(定义、二倍角)
数列:等比数列
程序框图:运算、范围
概率:二项分布
向量数量积;双曲线的标准方程
双曲线的性质
函数的奇偶性和单调性
6
二项分布的期望
三视图
程序框图:功能
立体几何:球体嵌入正方体体积计算
三视图还原立体图
实际应用题、圆锥体积
三视图及球的表面积与体积
导数(切线,分式函数一次比一次)
算法(循环,)
复数运算:
统计:分层抽样
奇函数、偶函数及其绝对值乘积的奇偶
特称命题的否定
等差数列及其运算
复数的概念及运算与简易逻辑
4
三角函数(圆周运动、角速度、画图,模型思想)古典概型( Nhomakorabea数原理)
圆锥曲线:椭圆、离心率

2011-2017年新课标全国卷1理科数学分类汇编 解析几何

2011-2017年新课标全国卷1理科数学分类汇编 解析几何

2011-2017年新课标全国卷1理科数学分类汇编 解析几何一、选择题【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【2015,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(B .(C .(D .( 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【2014,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .72B .52C .3D .2【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0)C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x【2013,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y +【2012,4】设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【2012,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为( )AB .C .4D .8【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A B C .2 D .3 二、填空题【2017,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【2015,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【2011,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 .三、解答题【2017,20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–12 ),P 4(12)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【2016,20】设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.【2015,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【2014,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>,F 是椭圆的焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【2013,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【2012,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r ,MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.9.解析几何(解析版)一、选择题【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴,易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性),cos AF P AF θ⋅+=∴,同理1cos P AF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-, 又DE 与AB 垂直,即DE 的倾斜角为π2θ+, 2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =. ∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当且仅当π4θ=取等号,即AB DE +最小值为16,故选A ;【法二】依题意知:22sin PAB θ=,2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,由柯西不等式知: 2222211(11)22816sin cos sin cos AB DE P P P θθθθ+⎛⎫+=+≥⋅== ⎪+⎝⎭,当且仅当π4θ=取等号,故选A ; 【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【解析】以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0,A x,2p D ⎛- ⎝,点(0,A x 在抛物线22y px =上,∴082px =……①;点2p D ⎛- ⎝在圆222x y r +=上,F∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =,焦点到准线的距离为4p =.故选B .【2016,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【解析】222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m = ∴13n -<<,故选A .【2015,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(B .(C .(33-D .( 解析:从120MF MF ⋅<入手考虑,120MF MF ⋅=可得到以12FF 为直径的圆与C 的交点1234,,,M M M M (不妨设12,M M 在左支上,34,M M 在右支上),此时1112M F M F ⊥,1112M F M F -=-12F F =112111201211||22M F F S M F M F y F F ∆=⋅=⋅解得0||y =,则M 在双曲线的12M M 或34M M 上运动,0y ∈(,故选A .. 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d =A.【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0)C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x解析:选C ,∵2c e a ==,∴22222254c a b e a a +===,∴a 2=4b 2,1=2b a ±,∴渐近线方程为12b y x x a =±±.【2013,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 解析:选D ,设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 【2012,4】设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【解析】如图所示,21F PF ∆是等腰三角形,212130F F P F PF ∠=∠=︒,212||||2F P F F c ==,260PF Q ∠=︒,230F PQ ∠=︒,2||F Q c =,又23||2aF Q c =-, 所以32a c c -=,解得34c a =,因此34c e a ==,故选择C .【2012,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B两点,||AB =,则C 的实轴长为( )AB.C .4D .8【解析】设等轴双曲线C 的方程为22221x y a a-=,即222x y a -=(0a >),抛物线216y x =的准线方程为4x =-,联立方程2224x y a x ⎧-=⎨=-⎩,解得2216y a =-,因为||AB =,所以222||(2||)448AB y y ===,从而212y =, 所以21612a -=,24a =,2a =,因此C 的实轴长为24a =,故选择C .【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )ABC .2D .3解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B 二、填空题【2017,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.(15)【解析】如图,OA a =,AN AM b ==, ∵60MAN ∠=︒,∴AP =,OP =,∴tan AP OP θ==又∵tan b a θ=,∴b a =,解得223a b =,∴221113b e a =++ 【法二】如上图可知(,0)A a 到渐进线0bx ay -=的距离为abd AP c===, 1,60,cos cos302ab AP AMN a c AN AM b AMNAN b c e∠==∠=∴=====又,e ∴= 【法三】如图在等边三角形AMN ∆中,,AP FH b== 由OAPOFH ∆∆知2a a e c b c =⇒==;【法四】如图,由等面积法可得,在三角形OAN 中,132223ab c c b e a =⇒==;【法五】因为,AM b OA a ==且渐进线bxy a=可得三角形OAN 为 双曲线三角线(即三边分别为,,a b c ),有几何意义易得30MAP MOA ∠=∠=tan 33b MOA e a ∴∠====;【2015,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 解析:由椭圆的性质可知,圆只能经过短轴顶点和右顶点三个点(0,2),(0,2),(4,0)-; (方法一)设圆的半径为r ,则有222(4)2r r -+=,可得52r =,故所求圆的标准方程为22325()24x y -+=.(方法二)设圆的标准方程为222()(0)x a y r a -+=>,代入点(0,2),(4,0),解方程组可得35,22a r ==半径为r ,故所求圆的标准方程为22325()24x y -+=. (方法三)设圆的一般方程为220x y Dx Ey F ++++=,代入点(0,2),(0,2),(4,0)-,解方程组可得3,0,4D E F =-==-,化为标准方程为22325()24x y -+=. 【2014,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72B .52C .3D .2【解析】选C ,过Q 作QM ⊥直线L 于M ,∵4FP FQ = ∴34PQPF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM == 【2011,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为2.过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 .解析:由2416c a a ⎧=⎪⎨⎪=⎩得a=4.c=从而b=8,221168x y ∴+=为所求. 三、解答题【2017,20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点,将()23011P P ⎛- ⎝⎭,,代入椭圆方程得:222113141b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b =, ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,, 联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=, 122814kb x x k -+=+,21224414b x x k -⋅=+,则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-= 22228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠,21b k ⇒=--,此时64k ∆=-,|||M N MN y y =-存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--,当2x =时,1y =-,所以l过定点()21-,.【2016,20】设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ【解析】:⑴ 圆A 整理为(1x +BE AC Q ∥,则C =∠∠EBD D ∴=∠∠,则EB =⑵ 221:143x y C +=;设:l x 联立l 与椭圆圆心A 到所以||PQ =()2212111||||2234MPNQm S MN PQ m +⎡∴=⋅=⋅==⎣+ 【2015,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 解:(Ⅰ)当0k =时,点)M a 和()N a -,2xy '=,故x =线方程为y a x --0y a --=;同理,x =-y a x -=+0y a ++=.(Ⅱ)在y 轴上存在点P ,使得当k 变动时,总有OPM OPN ∠=∠.证明如下: 设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k . 直线l 与曲线C 的方程联立可得2440x kx a --=,则12124,4x x k x x a +==-.1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==,当b a =-时,120k k +=,则直线,PM PN 的倾斜角互补,故OPM OPN ∠=∠,即(0,)P a -符合题意.【2014,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>的离心率为2,F 是椭圆的焦点,直线AF,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【解析】:(Ⅰ) 设(),0F c,由条件知2c =c =又c a =, 所以,2221b a c =-= ,故E 的方程2214x y +=. …….6分 (Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,1,2x =从而212143k PQ x -=-=,又点O 到直线PQ 的距离d =,所以∆OPQ的面积12OPQS d PQ ∆== t =,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,k =0∆>,所以当∆OPQ 的面积最大时,l的方程为:22y x =-或22y x =--. ……12分 【2013,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M=1,解得k=4±. 当k=4时,将4y x =22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=.当k =时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.【2012,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值. 【解析】(1)若∠BFD =90°,则△BFD 为等腰直角三角形,且|BD|=2p ,圆F的半径||r FA =, 又根据抛物线的定义可得点A 到准线l 的距离||d FA ==.因为△ABD 的面积为24,所以1||2BD d ⋅⋅=122p ⋅= 所以24p =,由0>p ,解得2p =. 从而抛物线C 的方程为24x y =,圆F 的圆心F (0,1),半径||r FA == 因此圆F 的方程为22(1)8x y +-=. (2)若A ,B ,F 三点在同一直线m 上, 则AB 为圆F 的直径,∠ADB=90°, 根据抛物线的定义,得1||||||2AD FA AB ==,所以30ABD ∠=︒,从而直线m的斜率为3或- 当直线m 的斜率为3时,直线m 的方程为32py x =+,原点O 到直线m 的距离1pd =.依题意设直线n 的方程为y x b =+,联立22y x b x py⎧=+⎪⎨⎪=⎩,得220x px pb -=, 因为直线n 与C 只有一个公共点,所以24803p pb ∆=+=,从而6pb =-. 所以直线n 的方程为36py x =-,原点O 到直线n 的距离2pd =.因此坐标原点到m ,n 距离的比值为12236p dd ==.当直线m 的斜率为m ,n 距离的比值也为3. 【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r,MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.解:(I )设(),M x y ,由已知得(),3B x -,()0,1A -. 所以(),1,MA x y =---,()0,3,MB y =--,(),2AB x =-.再由题意可知()0MA MB AB +⋅=,即()(),4,2,20x y x ---⋅=. 所以曲线C 的方程为2124y x =-. (II )设()00,P x y 为曲线21:24C y x =-上一点,因为12y x '=,所以l 的斜率为012x .因此直线l 的方程为()00012y y x x x -=-,即2000220x x y y x -+-=. 则O 点到l的距离d . 又200124y x =-,所以2014122x d +⎫=≥ 当00x =时取等号,所以O 点到l 的距离的最小值为2.。

解析近5年高考全国卷数学高频考点分布图

解析近5年高考全国卷数学高频考点分布图

速:解析近5年高考全国卷数学高频考点分布图,梳理第三轮复习“盲区”!2017.5.22发布一、2017年各省份的试卷使用情况全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆全国Ⅲ卷地区:云南、广西、贵州、四川自主命题省份自主命题:江苏、北京、天津部分使用全国卷省份海南省:全国Ⅱ卷(语、数、英)单独命题(政、史、地、物、化、生)山东卷:全国Ⅰ卷(外语、文综、理综)自主命题(语文、文数、理数)二、2017年高考数学学科高频考点(理科)一、高频考点由以上柱形图可以得出,新课标I卷高考理科数学近五年高频考点为:1. 圆锥曲线与方程,导数及其应用和概率与统计,三角函数与解三角形,数列,年均占比11.43%,9.36%,7.69%,6.34%;2. 立体几何初步/空间向量与立体几何,占比合计12%左右,也需同学们着重注意;3. 函数概念与基本初等函数Ⅰ/平面解析几何初步,推理与证明题,占比4%左右;其余知识点年均占分约为一道选/填题的分值5分;4. 最后一道计算题为2选1,共10分,可在2坐标系与参数方程、不等式这两道大题中任选其一。

二、三轮复习建议及应试技巧试卷结构与考试时间同文科数学。

●拿分技巧:1. 三角函数、数列、概率、立体几何、二选一题目难度不大,多拿分数;2. 圆锥曲线和导数难度相对较大,请拿到基本分后,再突破高难。

●三轮复习梳理重点:1. 补全易错题、薄弱知识点;2. 善于总结结论、方法;3. 多与同学交流做题经验与思路;4. 要进行有针对性的训练:①做往年的模拟题或真题,选填控制40分钟,进行强化训练;②优秀学生每天做1-2道圆锥曲线或者导数的大题,不用限制时间,做深入地分析。

近五年(含2017)新课标I卷高考理科解析几何考点分布和考题统计表

近五年(含2017)新课标I卷高考理科解析几何考点分布和考题统计表

抛物线与过焦点弦长问题【2013Ⅰ卷】4、已知双曲线C:22221x ya b-=(0,0a b>>,则C的渐近线方程为A.14y x=±B.13y x=±C.12y x=±D.y x=±【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,ca=即54=22ca=222a ba+,∴22ba=14,∴ba=12±,∴C的渐近线方程为12y x=±,故选C.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。

若AB 的中点坐标为(1,-1),则E 的方程为 ( ) A 、x 245+y 236=1B 、x 236+y 227=1C 、x 227+y 218=1D 、x 218+y 29=1【命题意图】本题主要考查椭圆中点弦的问题,是中档题. 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b+-+-+=, ∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a ,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. (20)(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C. (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.【命题意图】【解析】由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4,由椭圆的定义可知,曲线C 是以M ,N 为左右焦点,场半轴长为2的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R ≤2,当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q ,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =当k=时,将y x =代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x,∴12||x x -=187.当k =-时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=.【2014Ⅰ卷】4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A. B .3 CD .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C的一条渐近线的距离d =A. .10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作Q M ⊥直线L 于M ,∵4FP FQ =∴34PQ PF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM ==选C20. (本小题满分12分) 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【解析】:(Ⅰ) 设(),0F c ,由条件知23c =,得c =又2c a =, 所以a=2,2221b a c =-= ,故E 的方程2214x y +=. ……….6分 (Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=,当216(43)0k ∆=->,即234k >时,1,22814k x k ±=+从而212143k PQ x -=-=又点O 到直线PQ 的距离d =,所以∆OPQ 的面积12OPQS d PQ ∆== ,t =,则0t >,244144OPQ t S t t t∆==≤++,当且仅当2t =,k =等号成立,且满足0∆>,所以当∆OPQ 的面积最大时,l 的方程为:2y x =- 或2y x =-. …………………………12分【2015Ⅰ卷】(5)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ∙<,则0y 的取值范围是( )(A )( (B )((C )(3-,3) (D )()【答案】A【解析】由题知12(F F ,220012x y -=,所以12MF MF ∙= 0000(,),)x y x y -∙-=2220003310x y y +-=-<,解得033y -<<,故选A. 【考点定位】双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.【名师点睛】本题考查利用向量数量积的坐标形式将12MF MF ∙表示为关于点M 坐标的函数,利用点M 在双曲线上,消去x 0,根据题意化为关于0y 的不等式,即可解出0y 的范围,是基础题,将12MF MF ∙表示为0y 的函数是解本题的关键.(14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24x y -+=(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【答案】0y a --=0y a ++=(Ⅱ)存在【2016Ⅰ卷】(5)已知方程222213x y m n m n+=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(– (C )(0,3) (D )) 【答案】A【解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-,故选A . 【考点】双曲线的性质【名师点睛】双曲线知识一般作为客观题出现,主要考查双曲线的几何性质,属于基础题.注意双曲线的焦距是2c 而不是c ,这一点易出错.(10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=|DE|=则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )8 【答案】B 【解析】试题分析:如图,设抛物线方程为22y px =,圆的半径为r ,,AB DE 交x 轴于,C F 点,则AC =即A 点纵坐标为A 点横坐标为4p ,即4OC p=,由勾股定理知2222DF OF DO r +==,2222AC OC AO r +==,即22224()()2p p+=+,解得4p =,即C 的焦点到准线的距离为4,故选B.【考点】抛物线的性质【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因. (20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。

最新近五年(含)新课标i卷全国高考文理科数学考点分布统计表

最新近五年(含)新课标i卷全国高考文理科数学考点分布统计表
2014
2015
自制饰品一反传统的饰品消费模式,引导的是一种全新的饰品文化,所以非常容易被我们年轻的女生接受。2016
2017
1
集合(绝对值、无理不等式)
我们大学生没有固定的经济来源,但我们也不乏缺少潮流时尚的理念,没有哪个女生是不喜欢琳琅满目的小饰品,珠光宝气、穿金戴银便是时尚的时代早已被推出轨道,简洁、个性化的饰品成为现代时尚女性的钟爱。因此饰品这一行总是吸引很多投资者的目光。然而我们女生更注重的是感性消费,我们的消费欲望往往建立在潮流、时尚和产品的新颖性上,所以要想在饰品行业有立足之地,又尚未具备雄厚的资金条件的话,就有必要与传统首饰区别开来,自制饰品就是近一两年来沿海城市最新流行的一种。
由三角函数图像求单调递减区间
指数函数与对数函数的性质
程序框图
9
三角(同角、恒等变换)
定积分
三角函数:单调性、的范围
二项式:系数、求参数的值
线性规划求最值
程序框图
程序框图与算法案例
三角函数平移问题
10
立体几何(三棱柱与球、球的表面积)
向量与命题
函数性质:判断函数图像
圆锥曲线:椭圆、韦达定理
抛物线焦点三角形
三角函数与解三角形
18
四棱锥(线线垂直、线面角)
立几(锥体、垂直、二面角)
统计与概率:分段函数、分布列
立体几何:线线垂直证明线面角
立体几何:线面平行、三棱锥体积
空间垂直判定与性质;异面直线所成角的计算;
垂直问题的证明及空间向量的应用
证明面面垂直独立性检验)
统计概率(分布列)
数列:与
三角函数最值
椭圆的顶点、圆的标准方程
二项式定理指定项系数
线性规划求最优解

2017年高考新课标Ⅰ卷理数试题解析

2017年高考新课标Ⅰ卷理数试题解析

2017年普通高等学校招生全国统一考试课标1理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,学科网然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<< {|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【答案】B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8【答案】C【解析】设公差为d,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 6.621(1)(1)x x++展开式中2x 的系数为 A .15 B .20 C .30 D .35【答案】C【解析】因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D【解析】由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D.9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12 D .10【答案】A11.设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z【答案】D【解析】令235(1)x y z k k ===>,则2log x k =,3log y k =,5log z k = ∴22lg lg3lg913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k的部分和,设1212221t t k -+=+++=-, 所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 二、填空题:本题共4小题,每小题5分,共20分。

2017全国新课标卷考点分布及考查特点

2017全国新课标卷考点分布及考查特点

近六年全国新课标1卷考点分布及考查特点一、选择题部分1、物理学史及相关知识1314.右图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表。

表中第二列是时间,第三列是物体沿斜面运动的距离,第一列是伽利略在分析实验数据时添加的。

根据表中的数据,伽利略可以得出的结论是A.物体具有惯性B.斜面倾角一定时,加速度与质量无关C.物体运动的距离与时间平方成正比D.物体运动的加速度与重力加速度成正比1414.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表相连,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化17j3.下列描述正确的是()A.开普勒提出所有行星绕太阳运动的轨道都是椭圆B.牛顿通过实验测出了万有引力常数C.库仑通过扭秤实验测定了电子的电荷量D.法拉第发现了电流的磁效应考查特点:涵盖物理学常识、重要史实或著名人物、重要思想方法,试题的命制已经由“什么人”、“什么事”的表层考查逐步过渡到对规律发现历程、背景、实验装置与情景、所涉及的思想方法等深层次考查,甚至是一些相高中物理教科书中未涉及的内容(如15年阿拉果铜盘实验),建议以专题讲座或校本课程的方式进行系统的提炼梳理。

例如:伽利略对自由落体运动及力与运动关系的研究(归谬法、外推法、理想实验法等);牛顿对物理学的主要贡献;万有引力定律的发现及完善(三巨头);法拉第对电磁感应现象的研究等。

2、平衡问题或牛顿第二定律1417.如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。

现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。

2010-2017年新课标I卷高考理科数学考点分布统计表

2010-2017年新课标I卷高考理科数学考点分布统计表
线性规划
向量运算:数量积、模
向量运算:求参数
二项展开式
偶函数,求参数,
向量的数量积及坐标运算
向量模长运算
14
三视图(给正视图写图形)
椭圆(与直线的位置关系)
线性规划:四边形区域、线性目标
数列:与
三角函数最值
椭圆的顶点、圆的标准方程
二项式定理指定项系数
线性规划求最优解
15
直线与圆(相切,求圆方程)
球内截圆锥
参数方程、极坐标方程与直角坐标方程的互化及应用
不等式证明
24
绝对值函数的图象,解绝对值不等式,数形结合。
绝对值不等式,恒成立
不等式:解不等式(含2个绝对值)、求参数的值
不等式:解不等式(含2个绝对值)、求参数的取值范围
绝对值不等式
含绝对值不等式解法;分段函数;一元二次不等式解法
分段函数的图像,绝对值不等式的解
2010
2011
2012
2013
2014
2015
2016
2017
1
集合(绝对值、无理不等式)
复数(除法、共轭)
集合运算:有限集
集合运算:不等式、集合间关系
一元二次不等式、集合运算:交集
复数运算:分式、除法、模
求不等式集合的交集
集合的运算(交集、并集)
2
复数(除法、乘法、共轭)
函数性质(单调性、奇偶性)
4
三角函数(圆周运动、角速度、画图,模型思想)
古典概型(计数原理)
圆锥曲线:椭圆、离心率
圆锥曲线:双曲线、离心率
双曲线焦点到渐近线的距离
独立重复试验;互斥事件和概率公式
等车、几何概型
等差数列结合公式运算

近五年(含2017)新课标I卷高考理科立体几何考点分布统计表

近五年(含2017)新课标I卷高考理科立体几何考点分布统计表

空间几何体求表面积【2013】6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 38、某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+18、(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°.(Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值。

【2014】12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A. B. C .6 D .419. (本小题满分12分)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC求二面角111A A B C --的余弦值.【2015】(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A.14斛 B.22斛 C.36斛 D.66斛(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

五年(2017-2021)全国卷数学(理)高考真题考点分布对比

五年(2017-2021)全国卷数学(理)高考真题考点分布对比

五年(2017-2021)全国卷数学(理)高考真题考点分布对比卷别题号2017年2018年2019年2020年2021年全国I/乙卷1集合的运算复数的四则运算、复数的模集合的交集运算复数的运算、复数的模复数的运算、共轭复数2几何概型集合的运算复数的几何意义和模的运算集合的交集运算集合的运算3复数的运算、共轭复数、命题真假的判断扇形图、统计的数据特征指数和对数的大小比较正四棱锥特称命题、全称命题以及复合命题的真假性4等差数列的通项公式及求和等差数列的通项公式和前n项和数学文化、黄金分割比例及估算抛物线的定义及几何性质函数的奇偶性5函数的性质函数的基本性质、导数及其应用函数的图象和性质回归分析立体几何中异面直线所成角的大小6二项式定理平面向量的线性运算数学文化、古典概型、计数原理导数的几何意义分步乘法计数原理、排列组合7几何体的三视图空间几何体的三视图、圆柱的性质平面向量的夹角、垂直和模三角函数的图象和性质三角函数图象的变换8算法与程序框图抛物线的方程与几何性质、直线与抛物线的位置关系、平面向量的数量积算法和程序框图二项式定理几何概型9三角函数图象的变换分段函数、函数的图象与性质、函数的零点等差数列的通项与求和二倍角的余弦公式数学文化中的三角形求解问题10直线与抛物线的位置关系、抛物线的焦点弦、基本不等式数学文化中的几何概型直线和椭圆的位置关系、焦点与弦长问题三棱锥的外接球、球的表面积导数与不等式11指数函数与对数函数的单调性、指数与对数的运算双曲线的方程与几何性质、直线与双曲线的位置关系函数的基本性质、正弦函数的性质直线和圆的方程及位置关系椭圆的几何性质、最值问题12等比数列的通项与求和空间几何体的性质、空间角三棱锥的外接球、面面垂直的判定指数函数和对数函数的单调性、指数和对数的运算函数的单调性、比较大小13平面向量的运算线性规划导数的几何意义线性规划双曲线的几何性质14线性规划数列的递推关系式、等比数列的定义与前n项和公式等比数列的通项与求和平面向量的运算平面向量数量积的坐标表示、向量垂直15双曲线的标准方程与几何性质、直线与圆排列组合互斥事件和相互独立事件的概率双曲线的标准方程及几何性质三角形的面积公式、余弦定理16三棱锥的体积、折叠问题、导数及函数思想三角恒等变换、导数及其应用、函数的最值双曲线的几何性质、平面向量三棱锥、余弦定理空间几何体的三视图17解三角形、三角恒等变换解三角形、同角三角函数基本关系式解三角形、三角恒等变换等差数列和等比数列统计中的平均数、方差18空间直线和平面的位置关空间面面垂直的证明、空间直四棱柱的性质、线面圆锥的性质、线面垂直线段长度的求解、二面角系、平面与平面垂直的判定、二面角向量的应用与线面角的求解平行的判定、二面角的判定、二面角的求解19统计与概率、正态分布、平均数与期望椭圆的方程与几何性质、直线与椭圆的位置关系抛物线的定义和几何性质、直线与抛物线的位置关系相互独立事件、互斥事件、对立事件的概率等差数列的通项公式、数列的前n项和20椭圆的标准方程及几何性质、直线与椭圆的位置关系相互独立事件、独立重复试验、二项分布、随机变量的分布列与数学期望导数的应用、函数的零点椭圆的标准方程和几何性质、直线与椭圆的位置关系函数的极值与导数的关系、利用导数证明不等式21导数的应用、函数的零点导数及其应用、函数的单调性、极值与最值、不等式的证明随机变量的分布列、等比数列函数的单调性、导数的应用、不等式抛物线的几何性质、直线与抛物线的位置关系、圆的弦长公式22椭圆的参数方程、直线的参数方程、点到直线的距离极坐标方程与直角坐标方程的相互转化、直线与圆的位置关系椭圆的参数方程、直线的极坐标方程圆的参数方程、直线的极坐标方程圆的参数方程、圆的切线方程、直角坐标方程和与极坐标方程的互化23绝对值不等式绝对值不等式的求解与性质不等式的证明绝对值不等式的解法绝对值不等式的求解、与绝对值不等式有关的参数范围的求解问题全国II/甲卷1复数的运算复数的运算集合的交集运算集合的运算集合的交集运算2集合的运算集合的运算复数的运算及几何意象限角的三角函数的符频率分布直方图的应用义、共轭复数号判断3数学文化与等比数列函数图象的识别平面向量的坐标运算随机事件的概率复数的运算4三视图、空间几何体的体积平面向量的数量积数学与物理学背景结合的创新应用、函数与方程等差数列前n项和的实际应用对数的运算5线性规划双曲线的标准方程与几何性质样本的数字特征直线与圆的位置关系、点到直线的距离双曲线的定义与几何性质6排列与组合二倍角的余弦公式、余弦定理函数的单调性及不等关系等比数列的递推公式及前n项和三视图7推理与证明算法与程序框图两平面的位置关系以及充要条件的判定三视图等比数列的前n项和、充分条件与必要条件8算法与程序框图古典概型、计数原理椭圆与抛物线的焦点双曲线的几何性质解三角形9双曲线的几何性质、直线与圆的位置关系异面直线所成的角三角函数的周期性与单调性对数函数的奇偶性和单调性二倍角公式、同角三角函数的基本关系10空间几何体的性质与空间角三角函数的单调性二倍角公式、同角三角函数的基本关系球的表面积、点到平面的距离排列组合、古典概型11导数及其应用、函数的单调性与极值函数的基本性质圆与圆的位置关系、弦长问题、双曲线的离心率导数判断函数单调性以及不等关系的应用球的结构特征、锥体的体积公式12平面向量的数量积椭圆的几何性质函数的解析式、不等式数的求和的创新应用函数的图象与性质恒成立问题13二项分布导数的几何意义加权平均数、利用样本估计总体平面向量的垂直、数量积导数的几何意义14三角函数的图象与性质线性规划函数的奇偶性、指数运算、对数运算排列组合平面向量的坐标运算15等差数列的性质与数列求和两角差的正切公式、三角恒等变换余弦定理、三角形面积公式复数的加减运算、模的运算椭圆的几何性质16抛物线的定义、方程与几何性质圆锥的侧面积、线面角数学文化中的立体几何问题、空间几何体的性质平面的性质、空间点线面的位置关系、命题的真假判断三角函数的图象与性质17同角三角函数基本关系式、解三角形等差数列的通项和前n项和公式线面垂直的性质和判定、二面角、空间向量解三角形、三角恒等变换样本频率、独立性检验18独立事件的概率、独立性检验、频率分布直方图线性回归方程、折线统计图对立事件、互斥事件的概率统计的应用等差数列的通项公式、前n项和公式19空间线面关系、空间向量的应用、空间角的求解抛物线的几何性质、直线与圆的位置关系数列的递推公式、等差数列与等比数列的性质、通项公式椭圆、抛物线的性质直三棱柱中的线线垂直、二面角、空间向量20椭圆的方程与几何性质、直线与椭圆的位置关系三棱锥的性质、空间线面垂直的证明、线面角和二面角函数的单调性、函数的零点、导数的应用线面平行的性质、面面垂直的判定、线面角抛物线与圆的方程、点到直线的距离、直线与圆的位置关系21导数及其应用、函数的单调性、极值与最值导数的应用、函数的零点轨迹方程、直线与圆锥曲线的综合应用三角函数的性质及恒等变换、导数的应用导数在研究函数单调性以及方程根的问题中的应用22极坐标方程与直角坐标方程的转化椭圆的参数方程、直线的参数方程极坐标方程极坐标方程、参数方程与普通方程的互化极坐标方程化为直角坐标方程、曲线的参数方程、判断两曲线是否存在公共点23不等式的证明含绝对值不等式的解法含绝对值不等式的解法绝对值不等式的解法、不等式成立的参数问题绝对值不等式的解法全国Ⅲ卷1集合交集的运算集合交集的运算集合交集的运算集合的运算2复数的四则运算与复数的模复数的运算复数的运算复数的运算3折线图三视图逻辑联结词的意义和统计知识离散型随机变量的均值和方差、标准差4二项式定理二倍角公式二项式定理指数函数5双曲线与椭圆中基本量的关系二项式定理等比数列的性质及前n项和抛物线的几何性质6三角函数的图象与性质直线与圆的位置关系导数的几何意义平面向量的数量积7算法与程序框图函数图象的识别函数的图象和性质解三角形8圆柱体体积离散型随机变量的期望与立体几何中线段长度三视图、三棱锥的表面方差的计算与位置关系的判断积9等比数列的性质、等差数列的通项公式及求和公式解三角形算法与程序框图三角函数的化简与计算10椭圆的几何性质、直线与圆的位置关系三棱锥的外接球双曲线的几何性质直线与曲线相切问题、利用导数计算切线斜率11函数的零点双曲线的几何性质指数、对数函数大小的比较双曲线的几何性质12直线与圆的位置关系与平面向量的坐标运算的综合应用对数函数的性质与对数的计算三角函数的性质对数值的大小比较13线性规划平面向量的坐标运算平面向量的运算线性规划14等比数列的通项公式与性质导数的几何意义等差数列的前n项和二项式定理15分段函数与不等式的解法三角函数的性质及计算椭圆的几何性质圆锥体内接球和球体体积的计算16空间线面角的求解直线与抛物线的相交问题空间几何体的体积三角函数和复合函数的性质17解三角形等比数列通项公式与前n项和频率分布直方图、平均值数列通项公式及前n项和18分布列的求解及根据分布列解决具体问题茎叶图、中位数、独立性检验解三角形概率的计算、平均数的计算、独立性检验19空间线面位置关系的证明、二面角的求解立体几何中线面垂直的证明以及二面角的计算立体几何中面面垂直的证明及二面角的计算立体几何中线线平行的证明及二面角的计算20直线与抛物线的位置关系直线与圆锥曲线的相交问题利用导数判断函数的单调性及计算最值椭圆的方程与性质、直线与椭圆的位置关系21导数在解决函数与数列不等式中的应用利用导数判断函数的单调性、函数的极值直线与抛物线的位置关系利用导数计算曲线切线的斜率、利用导数判断函数的单调性、计算函数的最值22极坐标方程与参数方程参数方程与普通方程的互化与计算圆的极坐标方程极坐标与参数方程的运算23绝对值不等式、不等式恒成立以及求参数问题绝对值不等式的计算基本不等式、不等式的证明及求参数问题不等式的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国1卷2013 2014 2015 2016 20174 圆锥曲线:双曲线、离心率双曲线焦点到渐近线的距离5 向量数量积;双曲线的标准方程双曲线的性质910 圆锥曲线:椭圆、韦达定理抛物线焦点三角形抛物线的性质抛物线与过焦点弦长问题11121314 椭圆的顶点、圆的标准方程15 双曲线与点到线的距离161920 解析几何:轨迹方程(定义法)、韦达定理解析几何:椭圆抛物线的切线;直线与抛物线位置关系;探索新问题;圆锥曲线(圆、椭圆)综合问题直线与圆锥曲线(椭圆)的位置关系,弦长公式,韦达定理,过定点问题。

【2013Ⅰ卷】4、已知双曲线C:22221x ya b-=(0,0a b>>)的离心率为52,则C的渐近线方程为A.14y x=±B.13y x=±C.12y x=±D.y x=±【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,52 ca =,即54=22ca=222a ba+,∴22ba=14,∴ba=12±,∴C的渐近线方程为12y x=±,故选C.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。

若AB 的中点坐标为(1,-1),则E 的方程为 ( ) A 、x 245+y 236=1B 、x 236+y 227=1C 、x 227+y 218=1D 、x 218+y 29=1【命题意图】本题主要考查椭圆中点弦的问题,是中档题. 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b+-+-+=, ∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a ,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. (20)(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C. (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.【命题意图】【解析】由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4,由椭圆的定义可知,曲线C 是以M ,N 为左右焦点,场半轴长为2的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R ≤2,当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q ,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M 相切得2|3|11k k =+,解得24k =±. 当k =24时,将224y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x =4627-±,∴|AB|=2121||k x x +-=187.当k =-24时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=23.【2014Ⅰ卷】4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,33c m c m =+=+ 设()33,0Fm +,一条渐近线33y x m=,即0x m y -=,则点F 到C 的一条渐近线的距离331m d m+=+=3,选A. .10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =u u u r u u u r,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作Q M ⊥直线L 于M ,∵4FP FQ =u u u r u u u r∴34PQ PF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM ==选C20. (本小题满分12分) 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的焦点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【解析】:(Ⅰ) 设(),0F c ,由条件知2233c =,得3c = 又32c a =, 所以a=2,2221b a c =-= ,故E 的方程2214x y +=. ……….6分 (Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,21,22824314k k x k ±-=+ 从而2221241431k k PQ k x x +-=+-=g又点O 到直线PQ 的距离21d k =+,所以∆OPQ 的面积214432OPQk S d PQ ∆-== , 243k t -=,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,7k =等号成立,且满足0∆>,所以当∆OPQ 的面积最大时,l 的方程为:72y x =- 或72y x =-. …………………………12分【2015Ⅰ卷】(5)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<u u u u r u u u u r ,则0y 的取值范围是( ) (A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233) 【答案】A【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •u u u u r u u u u r = 0000(3,)(3,)x y x y ---•-- =2220003310x y y +-=-<,解得03333y -<<,故选A. 【考点定位】双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.【名师点睛】本题考查利用向量数量积的坐标形式将12MF MF •u u u u r u u u u r表示为关于点M 坐标的函数,利用点M 在双曲线上,消去x 0,根据题意化为关于0y 的不等式,即可解出0y 的范围,是基础题,将12MF MF •u u u u r u u u u r表示为0y 的函数是解本题的关键.(14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24x y -+=(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【答案】(Ⅰ)0ax y a --=或0ax y a ++=(Ⅱ)存在【2016Ⅰ卷】(5)已知方程222213x y m n m n+=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 (A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3) 【答案】A【解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-,故选A . 【考点】双曲线的性质【名师点睛】双曲线知识一般作为客观题出现,主要考查双曲线的几何性质,属于基础题.注意双曲线的焦距是2c 而不是c ,这一点易出错.(10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )8 【答案】B 【解析】试题分析:如图,设抛物线方程为22y px =,圆的半径为r ,,AB DE 交x 轴于,C F 点,则22AC =,即A 点纵坐标为22,则A 点横坐标为4p ,即4OC p=,由勾股定理知2222DF OF DO r +==,2222AC OC AO r +==,即22224(5)()(22)()2p p+=+,解得4p =,即C 的焦点到准线的距离为4,故选B.【考点】抛物线的性质【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.(20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。

相关文档
最新文档