空间平面与直线

合集下载

空间中直线与平面的距离公式

空间中直线与平面的距离公式

空间中直线与平面的距离公式
公式为:│(n1×n2)·AA'│
分析:
对于空间中两异面直线,设AA'为两直线上任意两点连线,n1,n2为两直线的方向向量
两直线的距离为:│(n1×n2)·AA'│
相交直线,即两条直线有且仅有一个公共点。

平行直线,是两条直线在同一平面内,没有公共点。

异面直线,不同在任何平面的两条直线叫异面直线。

两直线位置关系
直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=0
1、当A1B2-A2B1≠0时,相交
2、A1/A2=B1/B2≠C1/C2,平行
3、A1/A2=B1/B2=C1/C2,重合
4、A1A2+B1B2=0,垂直
点到直线的距离:在直线L上取两点A,B,设C为直线外一点,设C到AB的距离为d,CA在直线L上投影的长度为h,那么由勾股定理,h^2 + d^2 = |AC|^2,再把h = |AB*AC|/|AB| 代入即可。

点到平面的距离:设平面方程为Ax + By + Cz + D = 0,则法向量n = (A,B,C),设P为平面上的一点,Q为平面外的一点,那么Q到平面的距离就是向量PQ在法向量n方向上的投影,即|n
* PQ| / |n|。

空间几何直线与平面的位置关系与夹角

空间几何直线与平面的位置关系与夹角

空间几何直线与平面的位置关系与夹角空间几何中,直线和平面是两种常见的几何图形。

它们在空间中的位置关系以及它们之间的夹角是几何学中的重要概念。

本文将探讨直线与平面的位置关系以及它们之间的夹角。

一、直线与平面的位置关系在空间几何中,直线与平面有以下三种位置关系:平行、相交、重合。

1. 平行:当直线与平面没有交点时,它们被认为是平行的。

平行的直线与平面永远不会相交。

2. 相交:当直线与平面有一个交点时,它们被认为是相交的。

相交的直线与平面在该交点处有唯一的交点。

3. 重合:当直线完全位于平面上时,它们被认为是重合的。

重合的直线与平面完全重合,无法区分。

二、直线与平面的夹角夹角是两条直线或两个平面之间的角度。

在空间几何中,夹角可分为以下三种情况:直线与直线的夹角、平面与平面的夹角、直线与平面的夹角。

1. 直线与直线的夹角:直线与直线之间的夹角可以通过它们的方向余弦来计算。

夹角的大小介于0度和180度之间,可以是锐角、直角或钝角。

2. 平面与平面的夹角:平面与平面之间的夹角可以通过它们的法线向量来计算。

夹角的大小介于0度和90度之间,可以是锐角或直角。

3. 直线与平面的夹角:直线与平面之间的夹角可以通过直线在平面上的投影长度和直线与平面法线的夹角来计算。

直线与平面的夹角大小介于0度和90度之间。

三、应用案例直线与平面的位置关系以及夹角在实际应用中有广泛的应用。

以下为两个具体案例:1. 建筑设计:在建筑设计中,直线与平面的位置关系与夹角的概念被广泛应用。

例如,建筑师需要考虑墙体与地板的夹角以及天花板与墙体的夹角等,以确保建筑物的结构和外观符合设计要求。

2. 机械工程:在机械工程中,直线与平面的位置关系与夹角的概念被用于设计机器零件的装配。

例如,螺栓与螺母之间的夹角需要合适,以确保机器零件的连接牢固。

总结:直线与平面的位置关系与夹角是空间几何中重要的概念。

通过理解它们的定义和计算方法,我们可以更好地理解和应用几何学原理。

空间中直线与平面的关系

空间中直线与平面的关系

空间中直线与平面的关系在空间几何学中,直线和平面是两种基本的几何要素,它们之间存在着紧密的关系。

本文将探讨直线与平面的相互作用,以及它们在空间中的几何性质。

一、直线在平面内的位置关系直线可以分为三种不同的位置关系:直线在平面内的情况、直线在平面上的情况和直线与平面相交的情况。

1. 直线在平面内的情况当直线和平面没有交点时,我们说直线在平面内部。

在这种情况下,直线与平面是平行的。

平行的定义是:两条直线在平面内不存在交点,并且它们的方向向量也是平行的。

例如,在笛卡尔坐标系中,直线方程为y = mx + c,而平面方程为ax + by + cz + d = 0,其中m、c、a、b、c、d为常数。

当平面的法向量[a, b, c]与直线的方向向量[1, m, 0]平行时,我们可以确定直线在平面内。

2. 直线在平面上的情况当直线与平面有交点时,我们说直线在平面上。

直线在平面上可以有不同的位置关系:直线与平面相切、直线在平面内部和直线穿过平面。

- 直线与平面相切:在这种情况下,直线与平面只有一个交点,并且这个交点同时属于直线和平面。

我们可以通过求解直线和平面的方程组来确定交点的坐标。

- 直线在平面内部:当直线与平面有无数个交点时,我们说直线在平面内部。

在这种情况下,直线与平面相交但不重合。

- 直线穿过平面:当直线与平面有无穷多个交点时,我们说直线穿过平面。

在这种情况下,直线与平面重合。

3. 直线与平面相交的情况当直线与平面相交时,我们可以进一步讨论相交点的情况。

直线可以与平面相交于一个点、一条直线或平面本身。

- 直线与平面相交于一个点:在空间几何中,直线与平面相交于一个点是最常见的情况。

这时,我们可以通过求解直线和平面的方程组来确定交点的坐标。

- 直线与平面相交于一条直线:在这种情况下,直线与平面共面并且有无数个公共点。

这种情况也可以通过求解直线和平面的方程组来确定。

- 直线与平面相交于平面本身:直线与平面之间存在特殊的关系,即它们有一条公共直线。

空间直线与平面的位置关系与判定

空间直线与平面的位置关系与判定

空间直线与平面的位置关系与判定空间中的直线和平面是几何学中常见的基本要素,它们之间的位置关系及其判定方法在解决实际问题和进行空间几何推理时起着至关重要的作用。

本文将就空间直线与平面的位置关系以及判定方法进行分析和探讨。

一、空间直线与平面的位置关系在三维空间中,直线与平面之间可以存在三种不同的位置关系:直线在平面内、直线与平面相交、直线与平面平行。

下面将分别对这三种情况进行详细说明。

1. 直线在平面内:当直线完全包含在平面内部时,我们称直线在平面内。

这种情况下,直线上的所有点都同时满足平面方程,即直线上的任意一点坐标代入平面方程后等式成立。

举例来说,考虑一条直线L:{(x,y,z)|x+y-z+1=0},以及一个平面P:x+y-z=0。

可以发现,直线L上的所有点坐标代入平面P的方程后等式成立,所以该直线L在平面P内。

2. 直线与平面相交:当直线与平面有交点时,我们称直线与平面相交。

直线与平面相交的情况下,直线上的所有点坐标代入平面方程后等式成立,但并不能包含直线上的所有点。

以直线L:{(x,y,z)|x+y-z+1=0}与平面P:x+2y+3z=0为例,我们可以求解这两个方程组,找出它们的交点。

经计算可得,L和P的交点为(-1, -2, 1),因此直线L与平面P相交。

3. 直线与平面平行:当直线与平面没有交点且直线上的所有点坐标代入平面方程后等式不成立时,我们称直线与平面平行。

以直线L:{(x,y,z)|x+y-z+1=0}和平面P:2x+2y-2z+2=0为例,我们可以观察到直线L上的任意一点坐标代入平面P的方程后等式不成立。

因此,直线L与平面P平行。

二、空间直线与平面的判定方法在实际问题中,我们常常需要根据给定的方程或条件来判断直线与平面之间的位置关系。

下面将介绍两种常用的判定方法:点法向式和方向向量法。

1. 点法向式:点法向式是通过平面上的一点和该平面的法向量来表示平面的方程。

利用点法向式可以判断直线与平面的位置关系。

直线与平面的位置关系及应用

直线与平面的位置关系及应用

直线与平面的关系及应用一、直线与平面的空间位置关系公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

1. 线面平行定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

拓展:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

2. 线面垂直定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

二、空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1. 两条直线平行定义:在同一平面内,不相交的两条直线互相平行。

判定定理:(1)如果两直线同时平行于第三条直线,那么这两条直线平行(2)如果两直线同时垂直于同一个平面,那么这两条直线平行性质定理: 两直线平行,同位角相等。

两直线平行,内错角相等。

两直线平行,同旁内角互补。

拓展:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

第七章第三节空间平面与直线及其方程

第七章第三节空间平面与直线及其方程

A 4C 0 , 即 A 4C ,
代入所设方程并消去C (C 0) , 得所求的平面方程为
4x z 0 .
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
三、空间直线的方程
1.空间直线的点向式方程与参数方程 (1) 直线的方向向量的定义 与直线平行的非零向量, 称为这条直线的一个方向向量. 直线的方向向量有无数多个.
i 1 0 j 1 1 k 0 1
n
M1

M3 M2
(1 , 1 , 1)
又 M1 , 利用点法式得平面 的方程为:
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.1 求过三点
的平面 的方程.
解: 平面 的法向量垂直于该平面内任一向量, 于是可取平面 的法向量为:

高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.2 设一平面与
轴的交点分别为
R(0,0, c ) (其中 a 0,b 0,c 0 ), 求该平面的方程.
分析: 可用平面的一般方程做 或平面的点法式方程做. 解: 设平面的方程为
Ax By Cz D 0,
x x0 y y0 n m 得 y y0 z z0 p n
法2: 先找直线上两点A, B; AB 就是直线的方向向量.
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.5 用点向式方程及参数方程表示直线
分析: 先找直线上一点; 再找直线的方向向量. 解: 先在直线上找一点 M0 ( x0 , y0 , z0 ) . y0 z 0 1 0 , 令 x0 0 , 代入原方程组得 2 y0 z 0 1 0 ,

《空间平面与直线》课件

《空间平面与直线》课件

平面与直线在解析几何中的应用
01
在解析几何中,平面和直线是重 要的研究对象,它们可以用代数 方程来表示和研究。
02
通过建立平面和直线的代数方程 ,可以研究它们的交点、平行性 、垂直性等性质,从而解决解析 几何中的问题。
平面与直线在现实生活中的应用
平面与直线在现实生活中的应用非常 广泛,它们在建筑设计、机械制造、 交通运输等领域都有重要的应用价值 。
《空间平面与直线》 ppt课件
目录
CONTENTS
• 空间平面与直线的定义 • 空间平面与直线的关系 • 空间平面与直线的应用 • 空间平面与直线的证明方法 • 空间平面与直线的综合题解析
01 空间平面与直线的定义
平面与直线的几何定义
平面
在空间中,由无数条平行直线所 构成的无限延展的二维图形。
这道题目考查了点到平面的距离。解题时需要利用点到平面的距离公式,通过已知点和平面方程,计 算点到平面的距离。同时需要注意计算精度和误差控制。
综合题三解析
总结词
考查平面与平面的位置关系
详细描述
这道题目考查了平面与平面的位置关系,包括平行、相交和重合的情况。解题时需要利 用空间几何的性质和定理,判断两个平面的位置关系,并进一步求解相关问题。同时需
直线性质
直线具有无限延长性、笔直性、不可弯曲性等性质。
02 空间平面与直线的关系
平面与直线之间的位置关系
01
02
03
平行关系
当直线与平面平行且不包 含于平面时,它们之间没 有公共点。
相交关系
当直线与平面相交时,它 们会有一个或多个公共点 。
垂直关系
当直线与平面垂直时,它 们之间的角度为90度。
平面与直线之间的角度关系

空间几何中的直线和平面的性质

空间几何中的直线和平面的性质

空间几何中的直线和平面的性质在空间几何中,直线和平面是两个基本的几何概念。

它们在数学研究和实际问题中起着重要作用。

本文将探讨直线和平面的性质,包括定义、性质以及二者之间的关系。

一、直线的性质直线是最简单的几何图形之一,可以由无限多个点组成,并且通过任意两点可以唯一确定一条直线。

直线有以下一些重要的性质:1. 直线的长度:由于直线是无限延伸的,因此直线没有长度。

直线只有方向,用箭头表示。

2. 直线的笔直性:直线上的任意两点之间的线段都位于直线上,直线没有弯曲和交叉。

3. 直线的平衡性:直线的两侧没有明显的倾向性,可以在任意一点作垂直于直线的线段,该线段在两侧长度相等。

4. 直线的延伸性:直线可以无限延伸,既可以向前延伸,也可以向后延伸。

5. 直线的平行性:直线可以与自身平行,也可以与其他直线平行。

当两条直线的斜率相等时,它们是平行的。

二、平面的性质平面是一个二维的几何概念,由无限多个点组成,并且任意三点不共线可以确定一个平面。

平面有以下一些重要的性质:1. 平面的无限延伸性:平面可以无限延伸,既可以在平面上平移,也可以在平面上旋转。

2. 平面的平直性:平面上的任意两点之间的线段都位于平面上,平面没有弯曲和折叠。

3. 平面的两面性:平面可以分为两个互相垂直的半平面,一侧为正面,另一侧为背面。

4. 平面的无限大性:平面没有大小之分,可以根据需要调整大小,但保持平面特性不变。

5. 平面的垂直性:平面可以与自身垂直,也可以与其他平面垂直。

当两个平面的法向量垂直时,它们是垂直的。

三、直线与平面的关系直线和平面在空间几何中有着紧密的联系,它们之间的关系如下:1. 直线与平面的交点:一条直线可以与一个平面相交于一个点,也可以与一个平面相交于多个点。

交点的位置取决于直线和平面的相对位置。

2. 直线与平面的平行关系:一条直线可以与平面平行,也可以与平面不平行。

当直线与平面平行时,它们没有交点。

3. 直线在平面上的投影:一条直线在平面上的投影是与该直线平行的平面上的线段。

空间直线和平面的位置关系ppt课件

空间直线和平面的位置关系ppt课件

a
④求异面直线A1B与B1C1的距离
2a 2Biblioteka 例3:如图,已知长方体ABCD-A’B’C’D’的
棱长AA’=3cm,AB=4cm,AD=5cm.
(1)求点A和C’的距离;
(2)求点A到棱B’C’的距离;
(3)求棱AB和平面A’B’C’D’的距离;
(4)求异面直线AD和A’B’的距离.
D
C
A
B
D’
C’
取一点M,我们把__点__M___到___平__面____的___距___离_____
叫做直线l 和平面的距离。
3)平面和平面的距离: 设平面平行于平面β,在平面上任取一点M,我
们把_点__M__到_平__面__β_的__距__离__叫做平面和平面β
的距离。
M
MN
N
4)异面直线的距离
思考:和两条异面直线都垂直的直线有多少条?
练习:1. 选择题:
(1) 直线 m 与平面 平行的充分条件是 ( )
A. 直线 m 与平面 内一条直线平行;
B. 直线 m 与平面 内无数条直线平行; C. 直线 m 与平面 内所有直线平行; D. 直线 m 与平面 没有公共点;
(2) 过直线 l 外两点,作与 l 平行的平面,这样的平面 ( ) A. 能作无数个; B. 只能作一个;
(2) 过一点有且只有一个平面和一条直线垂直 .
(3) 平面的垂线一定与平面相交,交点就是垂足 .
A
直线和平面垂直,记作
l
2、判定直线和平面垂直的方法 (1)根据定义
直线l与平面上的任何直线都垂直
(2)直线和平面垂直的判定定理
定理2:如果直线l与平面上的两条相交直线a,b都 垂直,那么直线l与平面垂直.

高一数学讲义 第八章 空间直线与平面

高一数学讲义 第八章  空间直线与平面

高一数学讲义 第八章 空间直线与平面8.1平面及其基本性质几何里的平面与直线一样,是无限延伸的,我们不能把一个无限延伸的平面在纸上表现出来,通常用平面的一部分表示平面.例如,我们常用平行四边形表示平面(图8-1).但我们要把它想象成无限延展的.通常我们用一个希腊字母如:αβγ、、…来表示平面,也可以用表示平面的平行四边形的对角顶点的字母来表示,如平面AC .DCBAβα图81平面的基本性质公理l 如果一条直线上有两个点在同一个平面上,那么这条直线上所有的点都在这个平面上(即直线在平面上).公理2 如果两个平面存在一个公共点,那么它们所有公共点的集合是一条直线.公理3 不在同一直线上的三点确定一个平面(即经过不在同一直线上三点有且仅有一个平面). 在上述公理的基础上,可以得到以下三个推论: 推论1 一条直线和直线外一点确定一个平面.证明:如图8-2,在直线l 上任取两个点A B 、,则A B C 、、是不在同一直线上的三点,由公理3可知,经过此三点的平面有且仅有1个,设为平面α,则A B ∈、平面α,又A B 、在直线l 上,由公理1可知直线l 在平面α上.即经过直线l 和直线外一点的平面有且仅有一个.图82推论2 两条相交直线确定一个平面. 推论3 两条平行直线确定一个平面.例1.如图8-3,在正方体1111ABCD A B C D -中,点E F 、分别是棱1AA 、1CC 的中点.试画出过点1D E F 、、三点的截面.B 1C 1D 1A 1EHF GDCB A 图83解:连1D F 并延长1D F 与DC 的延长线交于点H ,联结1D E 并延长与DA 的延长线交于点G ,联结GH 与AB BC 、两条棱交于点B ,联结BE BF 、,则1BED F 就是过点1D E F 、、三点的截面.例2.如图8-4,在正方体1111ABCD A B C D -中,E F 、分别为1CC 和1AA 上的中点,画出平面1BED F 与平面ABCD 的交线.PF C E A DB A 1B 1D 1C 1图84解:在平面11AA D D 内,延长1D F ,1D F 与DA 不平行,因此1D F 与DA 必相交于一点,设为P ,则1P FD P DA ∈∈,. 又1FD ⊂平面1BED F ,AD ⊂平面ABCD 内,P ∴∈平面1BED F P ∈,平面ABCD .又B 为平面ABCD 与平面1BED F 的公共点,∴联结PB PB ,即为平面1BFD F 与平面ABCD 的交线.例3.已知E F G H 、、、分别是空间四边形ABCD (四条线段首尾相接,且联结点不在同一平面内,所组成的空间图形叫空间四边形).各边AB AD CB CD 、、、上的点,且直线EF 和HG 交于点P ,如图8-5,求证:点B D P 、、在同一条直线上.G DPF ECBA图85证明:如图直线EF 直线HG P =.P ∴∈直线EF .而EF ⊂平面ABD , P ∴∈平面ABD .同理,P ∈平面CBD ,即点P 是平面ABD 和平面CBD 的公共点.显然,点B D 、也是平面ABD 和平面CBD 的公共点,由公理2知,点B D P 、、都在平面ABD 和平面CBD 的交线上,即点B D P 、、在同一条直线上. 基础练习1.用符号语言表示下列语句(1)点A 在平面α内,但在平面β外;(2)直线a 经过平面α外一点M ;(3)直线a 在平面α内,又在平面β内,即平面α和β相交于直线a . 2.已知a b c 、、空间三条直线,且a b ∥与a b 、都相交,求证直线a b c 、、在同一个平面上. 3.怎样用两根细绳检查一张桌子的四条腿的下端是否在一个平面内?4.如图8-6所示,ABC △与111A B C △不在同一个平面内,如果三直线1AA 、1BB 、1CC 两两相交,证明:三直线111AA BB CC 、、交于一点.PC 1B 1A 1C BA图865.已知ABC △在平面α外,它的三边所在的直线分别交平面α于P Q R ,,三点,证明P Q R ,,三点在同一条直线上.6.画水平放置的正五边形的直观图. 8.2空间直线与直线之间的位置关系公理4 平行于同一条直线的两条直线平行(即平行线的传递性). 例1.如图8-7所示,设E F G H ,,,分别是空间四边形ABCD 的边AB BC CD DA ,,,上的点,且AE AH CF CGAB AD CB CDλμ====,,求证:F GH EDCBA图87(1)当λμ=时,四边形EFGH 是平行四边形; (2)当λμ≠时,四边形EFGH 是梯形. 证明:联结BD , 在ABD △中,AE AHAB ADλ==,EH BD ∴,∥且EH BD λ=. 在CBD △中,CF CGCB CDμ==,FG BD ∴,∥且FG BD μ=. EH FG ∴∥,∴顶点E F G H ,,,在由EH 和FG 确定的平面内. (1)当λμ=时,EH FG =,故四边形EFGH 为平行四边形; (2)当λμ≠时,EH FG ≠,故四边形EFGH 是梯形.等角定理 如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成的锐角(或直角)相等.证明:当两组平行直线在同一平面内,即为初中几何中的等角定理. 当它们不在同一平面时,如图8-8所示.a 1O 1B 1A 1BA Oba 图88设直线a b 、相交于点O ,直线11a b 、相交于点1O ,且11a a b b ,∥∥,在直线a b 、上分别任取点A B 、(异于点O ),在直线11a b 、上分别任取点11A B 、(异于点1O ),使得11OA O A =,11OB O B =,111AOB AO B ∠∠,分别是a b 、,与11a b 、所成的角. 1111OA O A OA O A =,∥ ∴四边形11OO A A 为平行四边形. 1111OO AA OO AA ∴=,∥.同理1111OO BB OO BB =,∥.1111BB AA BB AA ∴=,∥.四边形11BB A A 为平行四边形. 11AB A B ∴=,因此111AOB AO B △△≌. 111AOB AO B ∴∠=∠.在平面中两条直线的位置关系可以根据交点个数来判断:当两条直线仅有1个交点时.它们是相交的;当没有交点时它们是平行的.但在空间中两条直线没有交点却未必是平行的,如图8-9直线a 在平面α上,直线b 与平面α交于点P ,且P 不在直线b 上,那么直线a 与直线b 即不平行也不相交.此时直线a 与直线b 不能在同一平面内,我们称直线a 、b 是异面直线.baP图89在空间任取一点Q 过Q 分别作a b 、的平行线11a b 、,我们把11a b 、所成的锐角或直角称为异面直线a b 、所成的角.当所成的角为90︒时称异面直线a b 、相互垂直.此外,我们把和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段长度,叫做两条异面直线的距离.例2.如图8-10,在正方体1111ABCD A B C D -中,判断下列直线之间的位置父系,并求出它们所成角的大小.A 2D 2B 2C 2D 1C 1B 1A 1D CBA图810(1)AC 与1BC ;(2)1B D 与1BC . 解:(1)AC 与1BC 是异面直线. 11AA CC ∥且11AA CC =,∴四边形11AA C C 为平行四边形,即11AC AC ∥.11AC B ∴∠为所求AC 与1BC 所成的角.易知11A C B △为等边三角形,即11π3AC B ∠=(2)1B C 与1BC 是异面直线如图8-10:在原正方体下方补一个相同大小的正方体11112222A B C D A B C D -中121B C BC ∥,12DB C ∴∠为所求1B D 与1BC 所成的角.设正方体的棱长为a ,在12DB C △中,112212π2DB B C DC DB C ==∴∠=,,,. 例3.空间四边形ABCD中,2AB BD AD BC CD =====,32AC =,延长BC 到E ,使BC CE =,取BD 中点F ,求异面直线AF 与DE 的距离和他们所成的角.F ED BA图811解:(1)2AB AD BD === ∴三角形ABD 为等边三角形 F 为BD 中点,AF BD ∴⊥,即AF FD ⊥90BC CD CE BDE DF DE ===∴∠=︒∴⊥, DF 长即为异面直线AF DE ,的距离,又112DF BD ==,AF ∴与DE 的距离为1.(2)联结CF F C ,,分别是BD ,BF 的中点, FC ∴平行且等于12DE ,AFC ∴∠即为异面直线AF 与DE 所成的角. 在等边三角形ABD中,AF == 在直角三角形BDE中,12CF DE ==. 三角形AFC 中,由余弦定理得2221cos 22AF FC AC AFC AF FC +-∠==⨯⨯.60AFC ∴∠=︒,即异面直线AF 与DF 成60︒角. 基础练习 1.从止方体的12条棱和12条面对角线中选出n 条,使得其中任意两条线段所在的直线都是异面直线,则n 的最大值为__________.2.如图8-12,已知三棱锥S ABC -中,90ABC ∠=︒,侧棱SA ⊥底面ABC ,点A 在棱SB 和SC 上的射影分别是点E F 、,求证:EF SC ⊥.SGF E CBA 图8123.已知a b 、是两条异面直线,直线a 上的两点A B 、的距离为6.直线b 上的两点C D 、的距离为8,AC BD 、的中点分别为M N 、且5MN =,见图8-13.求异面直线a b 、所成的角.图813bMNO aDCBA4.已知四面体S ABC -的所有棱长均为a .求: (1)异面直线SC 、AB 的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.5.如图8-14,等腰直角三角形ABC中,90A BC DA AC DA AB ∠=︒=⊥⊥,,,若1DA =,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.图814FE D CBA6.如图8-15,在正三角形ABC 中,D E F ,,分别为各边的中点,G H I J ,,,分别为AF AD BE DE ,,,的中点.将ABC △沿DE EF DF ,,折成三棱锥以后,求GH 与IJ 所成角的度数.I JH GFEDCB A 图8157.长方体1111ABCD A B C D -中,143AB AA AD ===,,则异面直线1A D 与11B D 间的距离为__________.8.空间两条异面直线a b 、所成角α,过空间一定点O 与a b ,所成角都是θ的直线l 有多少条? 8.3空间直线与平面空间中直线l 与平面α的位置关系,按照它们交点的个数分成以下三种情况:若直线l 与平面α没有公共点,那么称直线l 与平面α平行,记作l α∥;若直线l 与平面α仅有一个公共点,那么直线l 与平面α是相交的;若直线l 与平面α有1个以上的公共点,由公理1可知直线l 在平面α上.我们将直线与平面平行和相交统称为直线在平面外.直线和平面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 例1.已知:ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上任取一点G ,过G 和AP 作平面交平面BDM 于GH .求征:AP GH ∥. 证明:如图8-16.联结AC 交BD 于O ,联结MO ,G HPOMD CBA图816ABCD 是平行四边形O ∴是AC 中点,又M 是PC 中点, AP OM ∴∥,又OM ⊂面BM DPA ∴∥平面BM D (线面平行判定定理)又PA ⊂平面PAHG ,且面PAHG 平面BMD GH =, PA GH ∴∥(线面平行的性质定理)例2.正方体1111ABCD A B C D -中,E G 、分别是BC 、11C D 的中点如图8-17.求证:EG ∥平面11BB D D .D C 1A 1C图817证明:取BD 的中点F ,联结FF 、1D F .E 为BC 的中点,EF ∴为BCD △的中位线,则EF DC ∥,且12EF CD =.G 为11C D 的中点,1D G CD ∴∥且112D G CD =,1EF D G ∴∥且1EF D G =, ∴四边形1EFD G 为平行四边形,∴1D F EG ∥,而1D F ⊂平面11BDD B ,EG ⊄平面11BDD B , ∴EG ∥平面11BDD B .直线l 与平面α相交,且与平面内所有直线都垂直,称直线l 垂直于平面α,记作l α⊥.直线l 称为平面α的垂线,l 与平向α的交点称为垂足.直线和平面垂直判定定理 如果直线l 与平面α内两条相交直线a b 、都垂直,那么直线与平面垂直. 证明:设直线a b O =,直线c 为平面α上任意一条直线 (1)当直线l 与直线c 都经过点O 时在直线l 上点O 的两侧分别取点P Q 、使得OP OQ =,在平面α上作一条直线,使它与a b c 、、分别交于点A B C 、、联结PA PB PC QA QB QC 、、、、、(见图8-18). acb αO QB A P图818OA 垂直平分PQ ,PQ QA ∴=. 同理PB QB =. PA QA PB QB AB AB ===,,, PAB QAB PC QC ∴∴=,△△≌.PQ c ∴⊥,即l c ⊥.(2)若直线l 与直线c 不都经过点O ,则过O 引l 与直线c 的平行线1l 与直线1c ,由(1)可知11l c ⊥.由等角定理可知l c ⊥.综上所述,l α⊥.直线和平面垂直性质定理 如果两条直线同垂直于一个平面,那么这两条直线平行.过空间一点P 有且仅有一条直线l 和一个平面α垂直,反之过一点P 有且仅有一个平面α与直线l 垂直,垂足Q 称为点P 在平面α上的射影,线段PQ 的大小称为点P 到平面α的距离.若一条直线与一个平面平行,则这条直线上任意一点到平面的距离,叫做这条直线到平面的距离. 若一条直线与一个平面α相交且不垂直,称直线l 与平面α斜交,直线l 为平面α的斜线,交点称为斜足.平面的斜线与其在平面上的射影所成的角称为直线与平面所成的角.最小角定理 斜线和平面所成的角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角. 例3.已知:一条直线l 和一个平面α平行.求证:直线l 上各点到平面α的距离相等. 证明:过直线l 上任意两点A B ,分别引平面α的垂线AA ,′BB ′,垂足分别为A B ,′′(见图8-19).βαB'A'B A图819AA BB αα⊥⊥,′′ AA BB ∴∥′′设经过直线AA ′和BB ′的平面为A B ββα=,′′l l A B α∴∴,∥∥′′AA BB ∴′′是平行四边形 AA BB ∴=′′即直线l 上各点到平面的距离相等例4.如图8-20,已知正方形ABCD 的边长为4,E F ,分别是边AB AD ,的中点,GC 垂直于ABCD 所在的平面,且2GC =,求点B 到平面EFG 的距离.OSGH F E DCBA图820证明:联结DB AC ,,设DB AC O = E F ,分别为AB AD ,中点DB EF ∴∥;又DB ⊄平面EFG , BD ∴∥平面EFG .∴点B 到平面EFG 的距离就是DB 到平面EFG 的距离. ∴即点O 到平面X O 的距离.设EF AC H =,在平面CHG 中,作OS GH ⊥ DB AC ⊥,又EF BD ∥ EF AC ∴⊥又GC ⊥面ABCD ,GC EF ∴⊥ EF ∴⊥面CHG EF OS ∴⊥,又OS GH ⊥ OS ∴⊥面EFG ∴OS 即为O 点到平面EFG 的距离,即为所求 直角三角形HSO 与直角三角形HGC 相似 SO HOGC GH∴=,又124GC HO AC GH =====,2SO ∴= ∴B 到平面EFG的距离为11. 例5.相交成60︒的两条直线AB AC ,和平面α所成的角分别为30︒和45︒,求这两条斜线在平面α内的射影所成的角.解:如图8-21,作平面AO ⊥平面A ,垂足为O ,O CBA图821则30ABO ∠=︒,45ACO ∠=︒,设AO h =,则2AB h =,AC =,BO =,CO h =, 在三角形ABC 中,根据余弦定理有22222(2))cos606BC h h h =+-⨯⨯︒=-.同理,在三角形BOC 中,令BOC θ∠=,则有22222)cos 4cos BC h h h θθ=+-⨯⨯=-.222264cos h h θ∴-=-.cos θ∴=,θ∴=. 三垂线定理 在平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.如图8-22,直线PM 为平面α的斜线,M 为斜足,Q 为P 在平面α内的射影,a 为平面α内一条直线,且a MQ ⊥.求证:a PM ⊥.图822ab a PQM证明:过点M 作的a 平行线b ,则b MQ b PQ ⊥⊥, 即b ⊥平面PMQ ,MQ ⊆平面PMQ 所以b PM a b ⊥,∥,即a PM ⊥.类似地,我们也可以证明:三垂线的逆定理 在平面内的一条直线,如果和平面的一条斜线垂直,那么它也和这条斜线的射影垂直. 基础练习1.如果三个平面αβγ、、两两相交于三条交线a b c 、、,讨论三条交线的位置关系,并证明你的结论. 2.在正方体1111ABCD A B C D -中,P 为棱AB 上一点,过点P 在空间作直线l ,使l 与平面ABCD 和平面11ABC D 均成30︒角,求这样的直线条数3.已知空间四边形ABCD P Q ,、分别是ABC △和BCD △的重心,求证:PQ ∥平面ACD .4.在棱长为a 正方体1111ABCD A B C D -中, (1)求证:11B D CD ⊥; (2)求证:1B D ⊥平面1ACD ; (3)求点D 到平面1ACD 的距离.5.正方体1111ABCD A B C D -中,求1B D 与平面11ABC D 所成角的大小.6.正方体ABCD A B C D -′′′′的棱长为a ,则异面直线CD ′与BD 间的距离等于__________. 7.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE BD 、上各取一点P Q 、.且AP DQ =.求证:PQ ∥面BCE .8.如图8-23,已知AOB ∠在平面M 上,P 为平面外一点,满足POA ∠POB =∠θ=(θ为锐角),点P 在平面上的射影为Q .P OQFE AM 图823(1)求证点Q 在AOB ∠的平分线OT 上;(2)讨论POA ∠、POQ ∠、QOA ∠之间的关系.9.若直线l 与平面α成角π3,直线a 在平面α内,且和直线l 异面,则l 与a 所成角的取值范围是多少? 10.如图8-24,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,,,ABH HBC ABC θαβ∠=∠=∠=,求证:cos cos cos βαθ=⋅. αθβH D CB Aα图82411.如图8-25,平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M .连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.N MBA HSα图825(1)求证:NH SB ⊥;(2)这个图形中有多少个线面垂直关系? (3)这个图形中有多少个直角三角形? (4)这个图形中有多少对相互垂直的直线?12.如图8-26,在正方体1111ABCD A B C D -中,EF 为异面直线1A D 与AC 的公垂线,求证:1EF BD ∥.FE D CBAD 1C 1B 1A 1图82613.如图8-27所示,90BAC ∠=︒.在平面α内,PA 是α的斜线,60PAB PAC ∠=∠=︒.求PA 与平面α所成的角.B αA CMO NP图8278.4空间平面与平面的位置关系空间两个平面根据交点的个数可以分为:若两个平面没有交点则称两个平面互相平行;若两个平面有交点则称两个平面是相交的.平行于同一平面的两个平面互相平行,分别在两个平行平面上的直线是异面或平行的.两个平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.推论 如果一个平面内的两条相交直线,分别平行于另一个平面内的两条相交直线,那么这两个平面平行.两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 例1.平行四边形ABCD 和平行四边形ABEF 不在同一平面内,M ,N 分别为对角线AC ,BF 上的点,且AM ACFN FB=.求证:MN ∥平面BEC .证明:如图8-28,在平行四边形ABCD 中,过M 作MP BC ∥交BC 于P ,联结PN .FP MNEDCBA图828AM AP AC AB =,又AM AC FN BF =,即AM FNAC BF=. ,AP FN PN AF BE AB BF∴=∴∥∥. 又MP BC ∥,∴平面MPN ∥平面CBE . 又MN ⊂平面MPN , MN ∴∥平面BEC .例2.如图8-29所示,平面α平面β,点A C α∈、,点B D β∈、,AB a =是α、β的公垂线,CD 是斜线.若AC BD b ==,CD c =,M 、N 分别是AB 和CD 的中点.图829(1)求证:MN β∥;(2)求MN 的长. 证明:(1)联结AD ,设P 是AD的中点,分别联结PM 、PN . M 是AB 的中点,PM BD ∴∥.又,PM ββ⊂∴∥. 同理N 是CD 的中点,PN AC ∴∥. AC α⊂,PN α∴∥.,,PN PM P αβ=∥PMN β∴∥. MN ⊂平面PMN ,MN β∴∥. (2)分别联结MC MD 、.1,,2AC BD b AM BM a ====又AB 是αβ、的公垂线,90CAM DBM ∴∠=∠=︒,Rt Rt ACM BDM ∴≌△△,CM DM ∴=,DMC ∴△是等腰三角形. 又N 是CD 的中点,MN CD ∴⊥.在Rt CMN △中,MN =一般地,当两个平面相交时,它们的交线l 将各平面分割为两个半平面,由两个半平面αβ、及其交线l 组成的空间图形叫做二面角(dihedral angle ),记作l αβ--.交线l 称之为二面角的棱,两个半平面αβ、叫做二面角的面.如果αβ、上分别有点P Q 、,那么二面角l αβ--也可以记作P l Q --.为了刻画二面角的大小,我们在棱l 上任取一点O ,在面αβ、上分别作棱l 的垂线OM 、ON ,则[](0,π)MON θ∠=∈称为二面角l αβ--的平面角.若π2α=,则称平面αβ⊥. 两个平面垂直的判定定理 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 两个平面垂直的性质定理 如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.例3.如图8-30,在空间四边形SABC 中,SA ⊥平面ABC ,AB BC ⊥,DE 在平面SAC 内,DE 垂直平分SC ,且分别交AC ,SC 于D ,E ,又SA AB =,SB BC =,求以BD 为棱,以BDE 和BDC 为面的二面角的大小.E DCBAS图830解:SB SC =,且E 为SC 的中点,BE SC ∴⊥. 又DE 垂直平分SC ,SC ∴⊥面,BDE SC BD ∴⊥. 又BD ⊥平面SAC ,,,BD DE BD DC ∴⊥⊥EDC ∴∠即为E BD C --的平面角.设SA a =,则,,AB a SB ==SA ⊥面ABC ,BC AB ⊥.,SB BC SC ∴⊥∴为等腰直角三角形SBC的斜边,又BC =,2,,cos ,30SC a AC SCA SCA ∴==∠=∴∠=︒. DE SC ⊥,∴在直角三角形EDC 中,60EDC ∠=︒,即为所求.例4.已知:如图8-31所示,平行四边形ABCD中,AB =AD BD ==,沿BD 将其折成一个二面角A BD C --,若折后AB CD ⊥.63223DCBA图831(1)求二面角A BD C --的大小;(2)求折后点C C 到平面ABD 的距离.解:(1)在平行四边形ABCD中AB =AD BD ==.222AB AD BD ∴=+ ,AD BD BC BD ∴⊥⊥. 作AH ⊥平面BDC ,联结DH (见图8-32).HEDCB A图832AD BD ⊥,由三垂线定理逆定理得DH BD ⊥, ∴ADH ∠是二面角A BD C --的平面角.联结BH,AB DC ⊥,由三垂线定理逆定理, 得BH DC ⊥,设垂足为E ,在直角三角形ABC中,2BD BC BE DC ⋅===,DE ∴ 三角形DHB 与三角形DBE 相似,DH DEDB BE∴=,即DE BD DH BE ⋅=在直角三角形ADH中,1cos 2DH ADH AD ∠===,π3ADH ∴∠=. 即二面角--A BD C 的大小为π3. (2)由对称性,C 到平面ABD 的距离等于A 到平面ABD 的距离. AH ⊥平面BCD ,∴点A 到平面BCD 的距离即是线段AH 的长, 直角三角形ADH中,sin 3AH AD ADH =⋅∠==, ∴点C 到平面ABD 的距离为3. 例5.如图8-33,已知A B 、在平面α上,点C 是平面外一点,且在平面α上的射影为D ,且A B D、、三点不共线,二面角C AB D --的大小为θ,求证:cos DABCABS S θ=.αM DCBA图833证明:过点D 作DM 垂直AB ,垂足为M ,联结CM . 因为,CD AB αα⊥⊆,所以CD AB ⊥,又AB DM ⊥,因此AB ⊥平面CDM ,即AB CM ⊥. 所以CMD ∠为二面角--C AB D 的平面角. 在直角三角形CDM △中有cos cos ABDCBDS DM CMD CM S θ=∠==. 例6.如图8-34,已知两异面直线,a b 所成的角为θ,它们的公垂线段AA ′的长度为d .在直线,a b 上分别取点,E F ,设,A E m AF n ==′,求EF .A'βnb a m F G A图834解:设经过b 且与AA ′垂直的平面为α,经过a 和AA ′的平面为β,c αβ=;则c a ∥,因而b ,c 所成角为θ,且AA c ⊥′;又,AA b AA a ⊥∴⊥′′, 根据两个平面垂直的判定定理,βα⊥. 在平面β内作EG c ⊥,则EG AA =′. 并且根据两个平面垂直的性质定理,EG α⊥ 联结FG ,则EG FG ⊥.在直角三角形EFG 中,222EF EG FG =+AG m =,三角形AFG 中,2222cos FG m n mn θ=+-;又22ED d =,22222cos EF d m n mn θ∴=++-,因此EF =1.已知平面αβ∥,AB ,CD 为夹在,αβ间的异面线段,E 、F 分别为AB CD 、的中点. 求证:,EF EF αβ∥∥.2.如果αβ∥,AB 和AC 是夹在平面α与β之间的两条线段,AB AC ⊥,且2AB =,直线AB 与平面α所成的角为30︒,求线段AC 长的取值范围.3.如图8-35,已知正方体1111ABCD A B C D -中,E F 、分别为1AB AA 、的中点.求平面1CEB 与平面11D FB 所成二面角的平面角的正弦值.CB E AF D 1C 1B 1A 1图8354.如图8-36,点A 在锐二面角MN αβ--的棱MN 上,在面α内引射线AP ,使AP 与MN 所成的角PAM ∠为45︒,与面β所成的角大小为30︒,求二面角MN αβ--的大小.NM APβα图8365.正方形ABCD 边长为4,点E 是边CD 上的一点,将AED △沿AE 折起到1AED 的位置时,有平面1ACD ⊥平面ABCE ,并且11BD CD ⊥.(1)判断并证明E 点的具体位置; (2)求点D ′到平面ABCE 的距离.6.在正三角形ABC 中,E F P 、、分别是AB AC BC 、、边上的点,满足12AE EB CF FA CP PB ===∶∶∶∶,如图8-37.将AEF △沿EF 折起到1A EF △的位置,使二面角1A EF B --成直二面角,联结1A B 、1A P ,如图8-38.A BP FEC图837CEF P BA 图838(1)求证:1A E ⊥平面BEP ;(2)求直线1A E 与平面1A BP 所成角的大小;(3)求二面角1B A P F --的大小(用反三角函数表示).7.如图8-39,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --′.C'DCB A图839(1)指出这个二面角的面、棱、平面角; (2)若二面角C AD C --′是直二面角,求C C ′的长; (3)求AC ′与平面C CD ′所成的角; (4)若二面角C AD C --′的平面角为120︒,求二面角A C C D --′的平面角的正切值. 8.在棱长为a 的正方体中.求异面直线BD 和1B C 之间的距离.9.设由一点S 发出三条射线,,,,SA SB SC ASB BSC ASC αβθαβθ∠=∠=∠=、、、、均为锐角,且cos cos cos θβθ⋅=.求证:平面ASB ⊥平面BSC .10.如图8-40,矩形ABCD ,PD ⊥平面ABCD ,若2PB =,PB 与平面PCD 所成的角为45︒,PB 与平面ABD 成30︒角,求:PF EDCBA图840(1)CD 的长;(2)求PB 与CD 所在的角;(3)求二面角C PB D --的余弦值. 11.如图8-41,线段PQ 分别交两个平行平面αβ、于A B 、两点,线段PD 分别交αβ、于C D 、两点,线段QF 分别交αβ、于F E 、两点,若9PA =,12AB =,12BQ =,ACF △的面积为72.求BDE △的面积.βαAB Q ED CPF图84112.如图8-42,已知正方形ABCD .E F 、分别是AB CD 、的中点.将ADE △沿DE 折起,如图8-43所示,记二面角A DE C --的大小为θ(0πθ<<).FEDCBA图842F EDCBA 图843(1)证明BF ∥平面ADE ;(2)若ACD △为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值.13.在矩形ABCD 中,已知1,AB BC a ==,PA ⊥平面ABCD ,且1PA =. (1)在BC 边上是否存在点Q ,使得PQ QD ⊥,说明理由;(2)若BC 边上有且仅有一个点Q ,使PQ QD ⊥,求AD 与平面PDQ 所成角的弦值; (3)在(2)的条件下,求出平面PQD 与平面PAB 所成角的大小.14.两个平行平面α和β将四面体ABCD 截成三部分.已知中间一部分的体积小于两端中任一部分的体积,点A 和B 到平面α的距离分别为30和20.而点A 和C 到平面β的距离分别为20和16,两个截面中有一个是梯形,点D 到平面α的距离小于24.求平面α和β截四面体所得的截面面积之比. 8.5空间向量及其坐标表示我们把具有大小和方向的量叫做向量.同向且大小相等的两个向量是同一个向量或相等的向量,大小相等方向相反的两个向量是互为负向量,大小为0的向量称为零向量.对空间任意两个向量a b 、.作OA a OC AB b ===,,则O A B 、、三点共面,见图8-44.因此,空间任意两个向量都可以用在同一平面内的两条有向线段表示.与平面向量运算一样,我们可以定义空间向量的加法、减法与数乘运算如下:a图844OB OA AB a b =+=+; CA OA OC a b =-=-;0000a a a λλλλλλ⎧>⎪⎪>⎨⎪<⎪⎩方向相同,大小,,方向相同,大小,为为- 与平面向量类似,在空间两个向量的方向相同或相反,则称他们为共线向量或平行向量,共线向量所在直线平行或重合.类似我们可以验证空间向量的加法与数乘运算满足如下规律: (1)加法交换律:a b b a +=+(2)加法结合律:()()a b c a b c ++=++ (3)数乘分配律:()a b a b λλλ+=+类似地,可以定义两个向量的夹角和向量的数量积:cos a b a b θ⋅=,其中θ为两个向量的夹角,[]0πa b θ∈,,、表示向量a b 、的大小 当π2θ=时称两个向量垂直记作a b ⊥. 与平向向量类似有下列性质成立: (1)0a b a b ⊥⇔⋅=. (2)2a a a =⋅. (3)()()ab a b λλ⋅=⋅.(4)a b b a ⋅=⋅. (5)()()()a b c a b a c ⋅+=⋅+⋅.例1.A B C D 、、、为空间不共面的四点,以A B C D 、、、四点为顶点的线段围成一个空间四面体,若AC BD BC BD ==,,求证AB CD ⊥.图845DBA解:BC AC AB BD AD AB =-=-,, BC BD =, 22BC BD ∴=.2()()BC BC BC AC AB AC AB =⋅=-⋅- 222AC AC AB AB =-⋅+.同理2222BD AD AD AB AB AD AC =-⋅+=,, AD AB AC AB ∴⋅=⋅即()AD AC AB -⋅=0.即CD AB ⋅=0,AB CD ∴⊥.通常我们将可以平移到同一个平面的向量,叫做共面向量.对空间任意两个向量,它们总是共面的,但空间任意三个向量就不一定是共面向量.如上例中a b c 、、中任意两个共面,但a b c 、、却不共面.下面讨论三个向量共面的条件.已知a b 、为不共线的向量,而a b c 、、三个向量共面,则表示可以将它们平移到同一个平面上.由平面向量唯一分解定理.存在实数()λμ,满足c a b λμ=+.反之,若存在实数对()λμ,满足c a b λμ=+,对空间任意一点O 作111OA a OB b OA a A B b λμ====,,,,则1111OB OA A B a b c λμ=+=+=即c 可以平移到O A B 、、三点所在平面上,因此a b c 、、共面.由此可得a b c 、、共面的充要条件是:存在实数对()λμ,满足c a b λμ=+.例2.求证:任意三点不共线的四点A B C D 、、、共面的充要条件是:对空间任意点O 有:OD xOA yOB zOC =++(其中1x y z ++=).证明:A B C D 、、、共面的充要条件是存在实数对()λμ,满足AD AB AC λμ=+(见图8-46).图846()()OD OA AD OB OA OC OA μμ∴-==-+-, (1)OD OA OB OC λμλμ∴=--++.令1x λμ=--,y z λμ==,,则OD xOA yOB zOC =++(其中1x y z ++=).定理 如果三个向量a b c 、、不共面,那么对于空间任意向量P ,存在唯一的实数对()x y z ,,满足:P xa yb zc =++证明:如图8-47,过空间任意点O 作OA a OB b OC c OP P ====,,,, 图847P过点P 作1PP OC ,∥交平面OAB 于点1P ;则11P OP OP PP ==+. 11PP OC PP zc z ∴=∈R ,,∥. 在平面AOB 中存在z ,y ∈R ,满足1OP xOA yOB =+, 因此有11P OP OP PP xOA yOB zOC ==+=++. 若存在111()()x y z x y z ≠,,,,也满足:111P x a y b z c =++, 则有111P xa yb zc x a y b z c =++=++. 111()()x y z x y z ≠,,,,,不妨设1x x ≠,1111y y z za b c x x x x --∴=+--.a b c ∴、、共面,矛盾.由此定理可知,如果三个向量a b c 、、,那么所有空间向量均可以由a b c 、、唯一表示,此时我们称(a b c 、、)为空间向量的一个基底,a b c 、、都叫做基本向量.如果空间的一个基底的三个基向量互相垂直,且大小为1,则称这个基底为单位正交基底,常用(i j k 、、)表示.在空间选定一点O 和一个单位正交基底(i j k 、、),以O 点为坐标原点,分别以i j k 、、的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系O xyz -,那么对于任意向量P ,存在唯一的实数对(x y z ,,)满足:P OP xi y j zk ==++,简记为()P x y z =,,,此时称点P 的坐标为()x y z ,,,见图8-48.图848若111()OA a x y z ==,,,222()OB b x y z ==,,,则 121212()a b x x y y z z +=+++,,,121212()BA OA OB a b x x y y z z =-=-=---,,,111()a x y z λλλλ=,,.例3.在直三棱柱111A B C ABC -中,π2BAC ∠=,11AB AC AA ===.已知G 与E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD EF ⊥,求线段DF 的长度的取值范围解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,则112211(00)(01)0101(00)(01)22F t t E G D t t ⎛⎫⎛⎫<<<< ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,.所以12111122EF t GD t ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,,,,,.因为GD EF ⊥,所以1221t t +=,由此推出2102t <<.又12(0)DF t t =-,,,21DF t =1DF <.例4.已知四边形ABCD 和ABEF 是两个正方形,它们所在的平面互相垂直,M AC ∈,N BF ∈,且AM FN =,见图8-49.求证:不论M 在AC 上何处,直线MN 不可能同时垂直AC 和BF .MNFEDCBA图849证明:设BA a BE b BC c BN t BF ====⋅,,,, 则()(1)()BN t a b AM t c a =⋅+=--, 于是()(1)()(1)MN BN BM t a b t c a a tb t c ⎡⎤⎡⎤=-=+---+=--⎣⎦⎣⎦, 假设MN 同时垂直AC 和BF ,则00.MN AC MN BF ⎧⋅=⎪⎨⋅=⎪⎩,由题设,知00a b b c ⋅=⋅=,, 由2(1)()(1)MN AC tb t c c a t c ⎡⎤⋅=--⋅-=-⋅⎣⎦,得10t -=即1t =.由2(1)()0MN BF tb t c a b t b ⎡⎤⋅=--⋅+=⋅=⎣⎦得0t =,矛盾!所以,MN 不可能同时垂直AC 和BF .基础练习1.如图8-50,OA a OB b OC c ===,,,M N P 、、分别为AB 、BC 、CA 的中点,试用a b c 、、表示下列向量:OM MN AN ,,.图8502.已知空间三点(202)A -,,,(212)B -,,,(303)C -,,.设a AB b AC ==,,是否存在实数k ,使向量ka b +与2ka b -互相垂直,若存在,求k 的值;若不存在,说明理由.。

空间直线和平面的方程

空间直线和平面的方程

空间直线和平面的方程空间直线和平面的方程是几何学中的重要概念,它们描述了在三维空间中的几何对象。

在本文中,我们将讨论空间直线和平面的方程及其性质,以及它们在几何学中的应用。

一、空间直线的方程空间直线可以由其上的两个点确定,我们可以使用两个点的坐标来表示直线。

设直线上的两个点分别为P(x1, y1, z1)和Q(x2, y2, z2),则直线上的任意一点R(x, y, z)的坐标可以表示为:(x, y, z) = (x1, y1, z1) + t(x2 - x1, y2 - y1, z2 - z1)其中t为参数,t的取值范围为实数集。

这个方程被称为直线的参数方程。

除了参数方程外,我们还可以将直线用一般式方程表示。

一般式方程为:Ax + By + Cz + D = 0其中A、B、C、D为实数常数,且A^2 + B^2 + C^2 ≠ 0。

通过两个点的坐标可以确定直线的方向向量,设为V = (a, b, c),则直线的一般式方程可以表示为:a(x - x1) + b(y - y1) + c(z - z1) = 0二、空间平面的方程空间平面可以由其上的三个点确定,我们可以使用三个点的坐标来表示平面。

设平面上的三个点分别为P(x1, y1, z1)、Q(x2, y2, z2)和R(x3, y3, z3),则平面上的任意一点S(x, y, z)的坐标可以表示为:(x, y, z) = (x1, y1, z1) + s[(x2 - x1, y2 - y1, z2 - z1)] + t[(x3 - x1, y3 - y1, z3 - z1)]其中s和t为参数,s、t的取值范围为实数集且s + t ≤ 1。

这个方程被称为平面的参数方程。

除了参数方程外,我们还可以将平面用一般式方程表示。

一般式方程为:Ax + By + Cz + D = 0其中A、B、C、D为实数常数,且A^2 + B^2 + C^2 ≠ 0。

通过平面上的三个点的坐标可以确定平面的法向量,设为N = (a, b, c),则平面的一般式方程可以表示为:a(x - x1) + b(y - y1) + c(z - z1) = 0三、应用空间直线和平面的方程在几何学中有广泛的应用。

平面与直线

平面与直线

例 18 求过三点 A( 2,−1,4)、 B( −1,3,−2) 和
C (0,2,3)的平面方程.

AB = { −3, 4,−6}
AC = { −2, 3,−1}
取 n = AB × AC = {14, 9,−1}, 所求平面方程为 14( x − 2) + 9( y + 1) − ( z − 4) = 0, 化简得 14 x + 9 y − z − 15 = 0.
n1 = { A1 , B1 , C1},
Π1
n2 = { A2 , B2 , C 2 },
按照两向量夹角余弦公式有
cosθ =
| A1 A2 + B1B2 + C1C2 | A + B + C ⋅ A2 + B2 + C2
2 1 2 1 2 1 2 2 2
两平面位置特征: 两平面位置特征:
两平面夹角余弦公式
因所求直线与两平面的法向量都垂直 取
s = n1 × n2 = {4,−1,−3},
x −1 y −0 z + 2 对称式方程 , = = 4 −1 −3 x = 1 + 4t . 参数方程 y = − t z = −2 − 3t
3、两直线的夹角 定义 两直线的方向向量的夹角称之 (锐角) 两直线的方向向量的夹角称之.(锐角)
1
o x
y
由所求平面与已知平面平行得 (向量平行的充要条件) a = b = c , 向量平行的充要条件)
1
1
6
1
6
1 1 1 1 1 1 = = , 令 = = 化简得 =t 6a b 6c 6a b 6c 1 1 1 ⇒a= , b= , c= , 6t 6t t

空间直线与平面的方程

空间直线与平面的方程

空间直线与平面的方程一、空间直线的方程空间直线是三维空间中的一条直线,可以通过两点或者一点和方向向量来确定。

下面分别介绍这两种情况下的空间直线方程。

1. 两点确定空间直线的方程假设空间直线上有两个不同的点A(x1, y1, z1)和B(x2, y2, z2),我们可以通过这两个点来确定一条直线L。

那么直线L上任意一点P(x, y, z)都可以表示为:P = A + t(B - A)其中t为实数,表示P点在直线L上的位置。

根据上述表达式,我们可以得到空间直线的参数方程:x = x1 + t(x2 - x1)y = y1 + t(y2 - y1)z = z1 + t(z2 - z1)2. 一点和方向向量确定空间直线的方程如果我们知道空间直线上一点A(x1, y1, z1)和一条方向向量d(a, b, c),我们可以通过这两个量来确定直线L。

直线L上的任意一点P(x, y, z)满足以下条件:AP与d平行,即 (x - x1)/a = (y - y1)/b = (z - z1)/c(x - x1)/a = (y - y1)/b = (z - z1)/c这就是一点和方向向量确定的空间直线方程。

二、空间平面的方程空间平面可以通过一个点和法向量来确定。

下面介绍这两种情况下的空间平面方程。

1. 一个点和法向量确定空间平面的方程假设空间平面上有一点P(x0, y0, z0),并且法向量为n(a, b, c)。

空间平面上任意一点Q(x, y, z)都满足以下条件:PQ与n垂直,即 (x - x0)*a + (y - y0)*b + (z - z0)*c = 0根据上述条件,我们可以得到空间平面的一般方程:ax + by + cz + d = 0其中d为常数,满足 d = -ax0 - by0 - cz0。

2. 三个点确定空间平面的方程假设空间平面上有三个不共线的点A(x1, y1, z1),B(x2, y2, z2)和C(x3, y3, z3)。

空间中直线与平面之间的位置关系

空间中直线与平面之间的位置关系

空间中直线与平面之间的位置关系文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]空间中直线与平面之间的位置关系知识点一 直线与平面的位置关系1、直线和平面平行的定义如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行。

2、直线与平面位置关系的分类(1)直线与平面位置关系可归纳为(2)在直线和平面的位置关系中,直线和平面平行,直线和平面相交统称直线在平面外,我们用记号α⊄a 来表示a ∥α和A a =α 这两种情形.(3)直线与平面位置关系的图形画法:①画直线a 在平面α内时,表示直线α的直线段只能在表示平面α的平行四边形内,而不能有部分在这个平行四边形之外,这是因为这个用来表示平面的平行四边形的四周应是无限延伸而没有边界的,因而这条直线不可能有某部分在某外;②在画直线a 与平面α相交时,表示直线a 的线段必须有部分在表示平面a 的平行四边形之外,这样既能与表示直线在平面内区分开来,又具有较强的立体感;③画直线与平面平行时,最直观的画法是用来表示直线的线在用来表示平面的平行四边形之外,且与某一边平行。

例1、下列命题中正确的命题的个数为 。

①如果一条直线与一平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一平面相交,那么这条直线与平面内的无数条直线垂直;③过平面外一点有且只有一条直线与平画平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面。

变式1、下列说法中正确的是 。

①直线l平行于平面α内无数条直线,则lααααbα⊂答案:B⊂bαα⊂变式3、若直线l上有两个点到平面α的距离相等,讨论直线l与平面α的位置关系.图3解:直线l与平面α的位置关系有两种情况(如图3),直线与平面平行或直线与平面相交.例2、若两条相交直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.解:如图5,另一条直线与平面α的位置关系是在平面内或与平面相交.图5用符号语言表示为:若a∩b=A,b⊂α,则a⊂α或a∩α=A.变式1、若两条异面直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.分析:如图6,另一条直线与平面α的位置关系是与平面平行或与平面相交.图6用符号语言表示为:若a与b异面,a⊂α,则b∥α或b∩α=A.例3、若直线a不平行于平面α,且a⊄α,则下列结论成立的是( )A.α内的所有直线与a异面B.α内的直线与a都相交C.α内存在唯一的直线与a平行D.α内不存在与a平行的直线分析:如图7,若直线a不平行于平面α,且a⊄α,则a与平面α相交.图7例如直线A′B与平面ABCD相交,直线AB、CD在平面ABCD内,直线AB与直线A′B 相交,直线CD 与直线A′B 异面,所以A 、B 都不正确;平面ABCD内不存在与a 平行的直线,所以应选D.变式1、不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,以下三个命题:①△ABC 中至少有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC中只可能有一条边与α相交. 其中真命题是_____________.分析:如图8,三点A 、B 、C 可能在α的同侧,也可能在α两侧,图8其中真命题是①.变式2、若直线a ⊄α,则下列结论中成立的个数是( )(1)α内的所有直线与a 异面 (2)α内的直线与a 都相交 (3)α内存在唯一的直线与a平行 (4)α内不存在与a 平行的直线分析:∵直线a ⊄α,∴a ∥α或a∩α=A.如图9,显然(1)(2)(3)(4)都有反例,所以应选A.图9答案:A.知识点二 直线与平面平行1、直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

8-2空间平面和直线方程

8-2空间平面和直线方程

y
x
M
0
由点法式方程得平面方程 2( y 1) 1( z 2) 0, 即
2 y z 0.
例2 设平面过点 M0 (3,1,2) 及 x轴, 求其方程. 解2 用待定常数法. 设平面方程是 Ax By Cz D 0 点(0,0,0)及(1,0,0)在平面上, 得 D A 0, 从而平面方程是
两直线的夹角公式
2 2 2 2 2 2
cos( L^ ,L )
1 2
两直线的位置关系: (两直线垂直、平行的条件) L1 : s1 ( m1 , n1 , p1 ), L2 : s2 ( m2 , n2 , p2 )
(1) L1 L2 ( 2) L1 // L2
m1m2 n1n2 p1 p2 0
x 1 y 1 z 1 如对称式方程为 0 1 1
x 1 0 可写成一般方程 y 1 z 1
x 1 y 1 z 1 又如 0 0 1
x 1 可写成一般方程 y1
z
1 x
O
1 y
例6 求过两点M1(1,2,3), M2(2,6,5)的直线方程. 解 向量 M1 M 2 与直线平行 取 s M1 M 2 (1,4,2) 所求直线方程为
a 1, b 6, c 1
所求平面方程为 6 x y 6z 6.
4. 两平面的夹角 定义 两平面法向量的夹角称为两平面的夹角. (通常取锐角)
n2 n1

1 : A1 x B1 y C1 z D1 0
2
2 : A2 x B2 y C2 z D2 0
( 3) A B 0, 平面平行于 xOy坐标面;

空间直线与平面

空间直线与平面

空间直线与平面1、平面的特征:无厚度,无边界,无面积,无限延展;2、公理及其作用公理一:若一条直线上有两点在一个平面内,则该直线在平面内. 【作用】用以证明线在面内....和点在面内......公理二:如果两个平面有一个公共点,则两个平面的交集是通过该点的一条直线. 【作用】用以证明..三.点共线.... 公理三:经过不在同一条直线上的三点有且仅有一个平面 【作用】确定平面的依据推论1 经过一条直线和这条直线外一点有且仅有一个平面; 推论2 经过两条相交直线有且仅有一个平面; 推论3 经过两条平行直线有且仅有一个平面;公理四:平行于同一直线的两直线平行;()// ////a b b c a c ⇒,【作用】对空间的平行线进行传递........ 3、等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补. 4、空间直线的位置关系:平行、相交、异面. 【注】异面直线的证明,一般采用反证法; 5、★异面直线所成角(1)范围:0,2π⎛⎤⎥⎝⎦(2)求解方法(一作、二证、三求解)①平移法:一般是通过作中位线(关键字:中点),或是做平行四边形进行平移; ②补形法:适用于长方体中异面直线问题,其本质还是平移;③向量法:借助异面直线方向向量的夹角,进行间接求解,设异面直线1l 和2l 的方向向量分别为1d 和2d ,1d 和2d 的夹角为ϕ,异面直线1l 和2l 所成的角为θ,则1212||cos |cos |||||d d d d θϕ⋅==⋅.【注】通过解三角形求出平移后的角度余弦值为m ,则异面直线的夹角为arccos m . 6、异面直线间的距离:公垂线段的长度,求解时,可以借助向量投影. 7、直线与平面的位置关系:平行、相交(含垂直)、在平面内.(平行与相交又称为在面外) 8、直线与平面平行(1)定义:直线与平面没有公共点. (2)判定定理:11l l l ll ααα⎧⎪⇒⎨⎪⎩ÜÚ(3)性质定理:11l l l l lαβαβ⎧⎪⇒⎨⎪=⎩Ü 【注】线面平行不具有传递性.9、直线与平面垂直(1)定义:直线垂直于平面内的所有直线(或任意一条直线) (2)判定定理:121212,,l l l l l l l l l P αα⊥⊥⎧⎪⇒⊥⎨⎪=⎩Ü;(3)性质定理:11l l l l αα⊥⎧⇒⊥⎨⎩Ü,l l ααββ⊥⎧⇒⊥⎨⎩Ü;10、★直线与平面所成的角(1)定义:斜线与射影所成的锐角或直角.(2)范围:0,2π⎡⎤⎢⎥⎣⎦;(3)求解方法①定义法:作出线面角,解三角形求解(关键找到垂足..,进而找到射影..); ②投影法:求出点到面的距离d ,斜线长为l ,则arcsindlθ=; ③*向量法:设直线l 的方向向量为d ,平面α的法向量为n ,d 和n 的夹角为ϕ,直线l 与平面α所成的角为θ,||sin |cos |||||d n d n θϕ⋅==⋅; 11、★点到平面的距离(1)定义:过点作平面的垂线,点与垂足之间的线段长即为点到面的距离. (2)求解方法 ①等体积代换.....:放在三棱锥中,借助体积转化. ②*向量法:设平面α的斜线段是()AB B α∈,平面α的法向量为n ,点A 到平面α的距离为d ,则||||AB n d n ⋅=. 12、平面与平面的位置关系:相交、平行. 13、*面面平行(1)定义:平面与平面无公共点; (2)判定:121212,,l l l l P l l ααβββ⎧⎪=⇒⎨⎪⎩Ü;(3)性质:l l αβαα⎧⇒⎨⎩Ü;1122l l l lαβαγβγ⎧⎪=⇒⎨⎪=⎩;【注】面面平行具有传递性.14、*面面垂直(1)定义:两平面所成二面角为直角; (2)判定:l l βαβα⊥⎧⇒⊥⎨⎩Ü;(3)性质:111,ll l l l αβαβαβ⊥=⎧⎪⇒⊥⎨⎪⊥⎩Ü;【注】面面垂直不具有传递性. 15、*二面角(1)定义:由两个相交的半平面组成的图形; (2)范围:[]0,π(3)求解方法(作—证—算—答)①定义法:在棱上任意取一点,过这点分别在两个面内作棱的垂线;②垂面法:在棱上任意取一点,过这点作棱的垂面,得两条交线(射线)所成的最小正角; ③借助射影定理:cos S S θ=射影原图(若是钝二面角,取补角即可)④向量法:设二面角l αβ--中,平面α和β的法向量分别为1n 和2n ,向量1n 和2n 的夹角为θ,则1212cos ||||n n n n θ⋅=⋅,若二面角l αβ--是锐角,则其大小为1212||arccos ||||n n n n ⋅⋅;若二面角l αβ--是钝角,则其大小为1212||arccos||||n n n n π⋅-⋅.【注】法向量的方向控制为一进一出....时,法向量的夹角即为二面角的平面角. 16、立体几何中的轨迹问题探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性. 17、立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有:①几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值; ②代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值. 18、立体几何中的翻折问题翻折问题处理时关键在于把握翻折过程中哪些是不变量,哪些是改变量,注意翻折前后图形之间的内在联系,结合相关理论进行处理.【例题分析】例1、空间中,下列命题正确的是( ) A.两组对边分别相等的四边形是平行四边形 B. 两组对角分别相等的四边形是平行四边形 C.四边相等的四边形是菱形; D.对角线相交的四边形是平面图形例2、完成下列问题(1)不重合的三条直线交于同一点,则三条直线可以确定的平面的个数为_______. (2)三条互相平行的直线可以确定的平面的个数为_______. (3)三个平面可以将空间分成________部分;(4)不共面的四个定点到平面α的距离相等,这样的平面α有______个. (5)正方体一个面上的对角线与正方体的棱可以组成______对异面直线.(6)三棱锥的四个顶点与各棱中点,共10个点中,任取四个点,则四点共面的概率为______.例3、如图所示,ABC ∆的三边延长线分别与平面α交于,,D E F 三点,证明:,,D E F 三点共线.【练习】如图所示,,,,E F G H 分别是空间四边形ABCD 边,,,AB AD BC CD 上的点,且直线,EF GH 相交于M 点,证明:,,B D M 三点共线.ABCD EFαM例4、判断下列命题是否正确,并说明理由.①1122l l l l αα⎧⇒⎨⎩;②l lααββ⎧⇒⎨⎩;③1122l l l l αα⊥⎧⇒⎨⊥⎩;④l l ααββ⊥⎧⇒⎨⊥⎩;⑤αγαββγ⊥⎧⇒⎨⊥⎩;⑥1122l ll l l l ⊥⎧⇒⎨⊥⎩;⑦1122l l l l αα⊥⎧⇒⊥⎨⎩;⑧ll αβαβ⊥⎧⇒⎨⊥⎩.【练习1】设直线m 与平面α相交但不.垂直,则下列所有正确的命题序号是________. ①在平面α内有且只有一条直线与直线m 垂直; ②与直线m 平行的直线不.可能与平面α垂直; ③与直线m 垂直的直线不.可能与平面α平行; ④与直线m 平行的平面不.可能与平面α垂直.【练习2】平面αβ⊥,直线b α,m β,且b m ⊥,则b 与β( )A.b β⊥B.b 与β斜交C.//b βD.位置关系不确定【练习3】判断下列命题是否正确,并说明理由. ①直线l 上存在不同的两点到平面α的距离相等,则l α;②a β⊥,l αβ=,过a 内一点P 作l 的垂线1l ,则1l β⊥;③直线l 垂直于平面α内的无数条直线,则l α⊥; ④直线12,l l 与平面α成等角,则12l l ;ABCD E F例5、已知ABC ∆,点P 是平面ABC 外一点,点O 是点P 在平面ABC 上的射影,(1)若点P 到ABC ∆的三边所在直线的距离相等且O 点在ABC ∆内,则O 为ABC ∆的 心. (2)若点P 到ABC ∆的三个顶点的距离相等,则O 为ABC ∆的________心; (3)若,,PA PB PC 两两垂直,则O 为ABC ∆的________心.(4)平面PAB ,平面PAC ,平面PBC ,与平面ABC 所成的二面角相等,则O 为ABC ∆的________心;(5)若,,PA PB PC 与平面ABC 所成的线面角相等,则O 为ABC ∆的________心;例6、如图所示PA ⊥平面ABC ,AB BC ⊥,AE PB ⊥,且AF PC ⊥. (1)证明:BC ⊥平面PAB ; (2)证明:AE ⊥平面PBC ; (3)证明:PC ⊥平面AEF .例7、异面直线12,l l 所成的角为60,直线l 与12,l l 所成的角均为θ,则θ的范围是________.【变式1】直线12,l l 相交于点O 且12,l l 成60角,过点O 与12,l l 都成60角的直线有_____条.【变式2】异面直线12,l l 相交于点O 且12,l l 成80角,过点O 与12,l l 都成50角的直线有____条.例8、空间四边形ABCD 中,2AD BC ==,,E F 分别是,AB CD的中点,EF ,AD BC 所成的角为________.【变式】如图,在空间四边形ABCD 中,6AC BD ==,7AB CD ==,8AD BC ==,求异面直线AC 与BD 所成角的大小.例9、如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为21θθ和,则( )A .1sin sin 2212≥+θθB .1sin sin 2212≤+θθC .1sin sin 2212>+θθD .1sin sin 2212<+θθ【练习】长方体1111ABCD A B C D -中,设对角线1BD 与自B 点出发的三条棱所夹的角分别为,,αβγ,则222sin sin sin αβγ++=_______.例10、如图,设S AB C D -是一个高为3的四棱锥,底面ABCD 是边长为2的正方形,顶点S 在底面上的射影是正方形ABCD 的中心.K 是棱SC 的中点.试求直线AK 与平面SBC 所成角的大小.ABCDSBCDOK【变式】如图,在斜三棱柱111ABC A B C -中12A AC ACB π∠=∠=,16AAC π∠=侧棱1BB 与底面ABC 所成的角为3π,1AA =4BC =求(1)1A C 与底面ABC 所成角的大小; (2)斜三棱柱111ABC A B C -的体积.例11、已知正方体1111ABCD A B C D -的棱长为a .求点1C 到平面11AB D 的距离.【变式1】ABC ∆的三边长分别是3,4,5,P 为ABC ∆所在平面α外一点,它到三边的距离都是2,则P 到α的距离为________.【变式2】已知ABC ∆中,9AB =,15AC =,23BAC π∠=,ABC ∆所在平面外一点P 到此三角形三个顶点的距离都是14,则点P 到平面ABC 的距离是_________.例12、如图,在长方体1111ABCD A B C D -中,2AB =,11AD A A ==. (1)证明直线1BC 平面1D AC ;(2)求直线1BC 到平面1D AC 的距离.A 1A BCD1D 1C 1B A AB CD1A 1B 1C 1D【变式1】已知R t ABC ∆的直角顶点C 在平面α内,斜边AB α,AB ,AC 、BC 分别和平面α成4π和6π角,则AB 到平面α的距离为________【变式2】已知矩形ABCD 的边长6AB =,4BC =,在CD 上截取4CE =,以BE 为棱将矩形折起,使BC E '∆的高C F '⊥平面ABED ,求 (1)点C '到平面ABED 的距离; (2)点C '到AB 的距离; (3)点C '到AD 的距离.例13、*已知二面角l αβ--的大小为2πθθ⎛⎫> ⎪⎝⎭,AB αÜ,CD βÜ,且A B l ⊥,CD l ⊥,若AB 与CD 所成角为ϕ,则( ) A.ϕθ=B. 2πϕθ=-C.2πϕθ=+D.ϕπθ=-【练习1】已知二面角l αβ--的平面角为θ,在平面α内有一条直线AB 与棱l 成锐角δ,与平面β成角γ,则必有( ) A. sin sin sin θδγ= B. sin sin cos θδγ=C. cos cos sin θδγ=D. cos cos cos θδγ=【练习2】设二面角l αβ--的大小为02πθθ⎛⎫<< ⎪⎝⎭,1l 是平面α内异于l 的一条直线,则1l 与平面β所成角的范围为_______.C 'DBCF例14、*过正方形ABCD 的顶点A 作PA ^平面ABCD ,设PA AB a ==, (1)求二面角B PC D --的大小; (2)求二面角C PD A --的大小.【练习1】如图所示,四棱锥P ABCD -的底面ABCD 是边长为1的菱形,3BCDp?,E 是CD 的中点,PA ⊥底面ABCD,PA =(1)证明:BE ⊥平面PAB ; (2)求PB 与面PAC 的角; (3)求二面角A BE P --的大小.【练习2】已知空间四边形ABCD 中,若2AB AC ==,2CAB CBD π∠=∠=,6BCD π∠=,平面ABC ⊥平面BCD .(1)求AD 与平面BCD 所成角的大小; (2)求二面角A CD B --的大小; (3)求点B 到平面ACD 的距离.例15、设,M N 是直角梯形ABCD 两腰的中点,DE AB ⊥于E (如图).现将ADE ∆沿DE 折起,使二面角A DE B --为45,此时点A 在平面BCDE 内的射影恰为点B ,则,M N 的连线与AE 所成角的大小等于_________.M NBNMA EGDABCDPCED P【练习】将两块三角板按图甲方式拼好,其中2B D π∠=∠=,6ACD π∠=,4ACB π∠=,2AC =,现将三角板ACD 沿AC 折起,使D 在平面ABC 上的射影恰好在AB 上,如图乙.(1)求证:AD ⊥平面BCD ; (2)求二面角B AC D --的大小.例16、在棱长为1的正方体1111ABCD A B C D -中,,M N 分别是矩形ABCD 和11BB C C 的中心,则过点,,A M N 的平面截正方体的截面面积为______.【变式1】在棱长为6的正方体ABCD-1111ABCD A B C D -中,,M N 分别是111,A B CC 的中点,设过,,D M N 三点的平面与11B C 交于点P ,做出P 点,并保留作图痕迹,求PM PN +的值.【变式2】在三棱锥A BCD -中,AB a =,CD b =,ABD BDC ∠=∠,,M N 分别为AD ,BC 的中点,P 为BD 上一点,则MP NP +的最小值是________.DABCOABCDMNP【变式3】已知正三棱锥A BCD ,其底面边长为a ,侧棱长为2a ,过点B 作与侧棱,AC AD 相交的截面,在这样的截面三角形中 (1)求周长的最小值; (2)求周长最小时的截面面积.例17、正方体的截面图形的形状可以为_________. ①三角形;②四边形;③五边形;④六边形;⑤七边形; 【注】①截面可以是三角形:等边三角形、等腰三角形、一般三角形;截面三角形是锐角三角形;截面三角形不能是直角三角形、钝角三角形;ABCDMN例18、如图,正方体1111ABCD A B C D -,则下列四个命题: ①P 在直线1BC 上运动时,三棱锥1A D PC -的体积不变;②P 在直线1BC 上运动时,直线AP 与平面ACD 1所成角的大小不变; ③P 在直线1BC 上运动时,二面角1P AD C --的大小不变;④M 是平面1111A B C D 上到点D 和1C 距离相等的点,则M 点的轨迹是过1D 点的直线 其中真命题的编号是___________.(写出所有真命题的编号)例19、在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 是AB 上的动点 (1)若直线1D E ⊥EC ,请确定E 点的位置,并求此时异面直线1AD 与EC 所成的角; (2)在(1)的条件下,求二面角1D EC D --的大小.【练习1】底面是矩形的四棱锥P ABCD -中,PA ⊥平面ABCD ,1PA AB ==,2BC =. (1)求PC 与平面PAD 所成角的大小;(2)若E 是PD 中点,求异面直线AE 与PC 所成角的大小;(3)在BC 边上是否存在一点G ,使得点D 到平面PAG若存在,求出BG 的值;若不存在,请说明理由.PA BCEABCD 1A 1B 1C 1D EA1A BCD1D 1C 1B P【练习2】如图,在四棱锥P ABCD -中,底面ABCD 是正方形, PA ⊥底面ABCD ,垂足为A ,PA AB =,点M 在棱PD 上,PB ∥平面ACM .(1)试确定点M 的位置;(2)计算直线PB 与平面MAC 的距离;(3)设点E 在棱PC 上,当点E 在何处时,使得AE ⊥平面PBD ?【练习3】如图,在矩形ABCD 中,AB ,BC a =,PA ⊥平面ABCD ,4PA =. (1)若在边BC 上存在一点Q ,使得PQ QD ⊥,求实数a 的取值范围;(2)当边BC 上存在唯一一点Q ,使得PQ QD ⊥时,求异面直线AQ 与PD 所成角的大小; (3)若4a =,且PQ QD ⊥,求二面角A PD Q --的大小.【练习4】如图所示,等腰ABC ∆的底边AB =,高3CD =,点E 是线段BD 上异于点,B D 的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF ∆折起到PEF ∆的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?(3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.PAFCED PA BCDMPA BCD【练习5】如图,在四棱锥ABCD P -中,PD ⊥平面ABCD ,底面ABCD 为正方形,2PD AD ==,M ,N 分别为线段AC 上的点.若︒=∠30MBN ,则三棱锥M PNB-体积的最小值为 .【练习6】如图:PA ⊥平面ABCD ,ABCD 是矩形,1PA AB ==,PD 与平面ABCD 所成角是6π,点F 是PB 的中点,点E 在边BC 上移动. (1)点E 为BC 的中点时,试判断EF 与平面PAC 的位置关系,并说明理由;(2)无论点E 在边BC 的何处,PE 与AF 所成角是否都为定值,若是,求出其大小;若不是,请说明理由;(3)当BE 等于何值时,二面角P DE A --的大小为4π.例20、已知动点P 在正方体1111ABCD A B C D -的侧面11BB C C 中,且满11PD D BD D ∠=∠,则动点P 的轨迹是( )的一部分A .圆B .椭圆C .双曲线D .抛物线PABCEDFPBCD M N【变式1】平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支【变式2】在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( ) A.直线 B .圆 C .双曲线 D .抛物线【变式3】已知正方体1111ABCD A B C D -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11A D 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( ) A .抛物线 B .双曲线 C .椭圆 D .直线【变式4】如图,在矩形ABCD 中,E 为边AD 上的动点,将ABE ∆沿着直线BE 翻转成1A BE ∆,使平面1A BE ⊥平面ABCD ,则点1A 的轨迹是( ) A.线段 B.圆弧 C.椭圆的一部分 D 以上都不是例21、已知正方体1111ABCD A B C D -的棱长为3,长为2的线段MN 点一个端点M 在1DD 上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为_________.αBCAlA B CD 1A 1B 1C 1D NMPABCD 1A E【变式1】正方体1111ABCD A B C D -的棱长为1,P 为侧面11BB C C 内的动点,且2PA PB =,则P 点在四边形11BB C C 内形成轨迹图形的长度为_________.【变式2】在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为1AC 、11A B 的中点,点P 在正方体的表面上运动,则总能使MP 与BN 垂直的点P 所构成的轨迹的周长为________.【变式3】若P 是以12,F F 为焦点的双曲线上任意一点,过焦点作12F PF ∠的平分线的垂线,垂足M 的轨迹是曲线C 的一部分,则曲线C 是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线【变式4】设B 、C 是定点,且均不在平面α上,动点A 在平面α上,且1sin 2ABC ∠=,则点A 的轨迹为( )(A )圆或椭圆 (B )抛物线或双曲线 (C )椭圆或双曲线 (D )以上均有可能ABCD 1A 1B 1C 1D PAB CD1A 1B 1C 1D N M。

空间中平面与直线

空间中平面与直线

空间中平面与直线在数学中,空间中的平面和直线是两个重要的几何概念。

它们在几何学和物理学中有着广泛的应用,在我们的日常生活中也无处不在。

本文将探讨空间中平面与直线的特点、性质以及它们之间的关系。

一、平面的定义和性质平面是由无数个点组成的无限大的二维几何图形。

它可以用一个平面曲面概念来定义,即一个平面曲面是一个不断重复平行延伸的曲面。

平面上的任意三个点不共线,可以确定一个平面。

平面是没有厚度的,它由无数条互相平行的直线组成。

平面的性质包括平面上的任意两点都可以确定一条直线,平面上的任意两条直线要么相交于一点,要么平行。

此外,平面上的两条平行直线与平面外的一条直线相交时,交点到其中一条线的距离与另一条线的距离相等。

平面上的任意一点都可以用两个坐标轴上的数表示,这就是平面直角坐标系的基本原理。

二、直线的定义和性质直线是由无数个点组成的无限大的一维几何图形。

直线上的任意两个点可以确定一条直线。

与平面不同,直线是没有宽度和厚度的,它只有长度。

直线的基本性质是它在任意两个点上的斜率都相等。

斜率可以表示直线的倾斜程度,它是直线上两点之间的纵坐标差与横坐标差的比值。

直线也可以用方程来表示,例如直线的斜率截距方程“y=mx+b”。

直线的性质还包括平行关系和垂直关系。

平行的两条直线在平面上永不相交,它们的斜率相等。

而垂直的两条直线相交成直角,它们的斜率乘积为-1。

直线上的点可以通过直线方程求解,将坐标代入方程计算即可确定点的位置。

三、平面与直线的关系平面与直线之间有着密切的关系。

首先,一条直线可以在平面上内部、外部或平面上与平面相交。

如果直线与平面相交于一点,则称这条直线与平面相交;如果直线在平面上内部,则称这条直线与平面平行;如果直线在平面外,则称这条直线与平面垂直。

其次,平面可以通过一条直线和一个点来确定。

具体而言,如果平面上的一条直线和一点不在这条直线上,则可以通过这条直线和这个点来确定一个平面。

这个平面与直线垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知:l //,l b, b = m
求证:l // m
证明:Q l //
b
l
\l和,没有公共点, 又因m在,内,
m
\l和m都在平面b,内
且没有公共点
\l // m
证毕
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
平面和平面平行
判定定理
如果一个平面内有两条相交直线分别平行于 另一个平面,那么这两个平面平行。
线段相等
A
D
已知:平面 // 平面b,AB和DC为夹在 ,b,间的平行线段。
b
求证:AB = DC
证明:Q AB // DC
\ AB和DC确定平面AC 又因为直线 AD,BC分别是平面 AC
B
C
与平面,b,的交线。
\ AD // BC,四边形ABCD是平行四边形
\ AB = DC
证毕
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
面直线。
(如图)直线AB与直线l为异面直线。
定义2:(如图)直线 a与b 所成的角(或 a与b a与b 夹角)叫做异面直线a与b所成的角(
或夹角)
b
b
a
a
o
A B
l
b
o a
a
ቤተ መጻሕፍቲ ባይዱ
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
注意
若两异面直线所成的角是直角就说两
条直线互相垂直。
D
C
例(90如图)一个正方体
全日制普通高级中学教科书
空间的平面与直线
l
a
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
教学目的
了解空间两条直线的平行关系,直线平行关系的传递 性。
掌握直线和平面,平面和平面平行的判定定理与性质 定理。
理解异面直线的概念。 掌握异面直线的夹角,垂线的概念,了解异面直线的
直线和平面垂直
三垂线定理
在平面内的一条直线,如果它和这个平面的一条斜线 的射影垂直,那么它也和斜线垂直。
P
已知:PO,PA 分别是平面,的垂线 和斜线。OA是PA 在,内的射影, a ,且a ^ OA
求证:a ^ PA
证明:Q PO ^
\ PO ^ a 又a ^ OA,PO OA = O \a ^ 平面POA \a ^ PA
复习提问
两直线平行的公理是什么? 答:平行于同一直线的两直线平行.
例 已知:a//l b//l 求证:a//b
Q a // l
l
b // l
a
\ a // b 证毕
b
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
异面直线及其夹角
定义1: 连接平面内一点与平面外一点的直线
和这个平面内不经过此点的直线是异
已知:a b,b b,a b = p
a //,b //
求证:b //
证明:用反证法
b
b pa
假设 b = c
Q // a,a b
a // c
同理b // c 这与平行公理矛盾
c
\ // b
证毕
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
例题
求证:夹在两个平行平面间的平行
证毕
OA a
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
A

D
20夹角为450
(3)10直线 AB,BC,CD,DA,AD,BC,
0CD,DA都与直线 AA垂直。
第一季度 第三季度
解毕
B
C B
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
性质定理
如果一条直线和一个平面平行,经过这条
直线的平面和这个平面相交,那么这条直线和
交线平行。
距离的概念。 掌握直线和平面,平面和平面垂直的判定定理。与性
质定理。 了解正射影概念和三垂线定理及其逆定理。
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
目录
空间的平行直线
直线和平面平行
异面直线及其夹角
平面和平面平行
直线和平面垂直
首页 目的 目录 平行直线 异面直线 线面平行 面面平行 线面垂直
A
(1)8哪0 些棱所在直线与直 线BA是异面直线?
(2)70求直线 BA和CC的夹角的度数
(3)60哪些棱所在直线与直 线AA垂直?
解((12))345000与由B直直CB线B,线B /AAB/ DCA与C,成C,C异CC可面的,知直夹D线角DB的,,B有所东 西 北AD等部 部 部直以C,于线B异DA与C面CC
相关文档
最新文档