杨辉三角形的生活运用和规律Word版

合集下载

杨辉三角的规律总结

杨辉三角的规律总结

杨辉三角的规律总结一、规律总结: 1、《杨辉三角》定理:两个互为补角的三角形的重心,它们的连线平分第三边。

应用定理:将三角形的一个角用内部的点和一条直线段分别与另外两个角的两边分别相连,这三条线段交于一点,则该点就是这个三角形的重心。

2、《杨辉三角》性质:等腰三角形的两底角的平方和等于第三个角的平方。

二、注意事项: 1、在解决具体问题时,需要结合图形中已知的一些关键信息或特征来推导出杨辉三角定理。

基本思路:利用重心计算两底边上的高。

一般地,由于一个角的顶点在另一个角的底边上,所以可以采用内心法来确定其重心。

也可以利用其他方法来确定重心。

比较常用的方法有:( 1)利用内部的两条线段或内部的三条线段构造三角形。

( 2)将重心分别向顶点延长,做出所要求的三角形。

2、做题时要灵活运用杨辉三角定理及性质,不要拘泥于杨辉三角定理。

3、在解题过程中,只要遇到角,总可以联想到三角形,但是,这时候我们应先找出其重心再判断出是不是在三角形内部,否则会把角放错位置。

例如:等腰三角形的性质与杨辉三角有什么关系呢?答案:因为任何等腰三角形的两底角的平方和等于第三个角的平方。

《杨辉三角》公式:两个互为补角的三角形的重心,它们的连线平分第三边。

1、例如:△abc是等腰直角三角形,∠a=∠b=90°, ad=dc=1,bc=ca=3,∠c=90°,则△abc的重心在( a) b( c) d( e) e或e( c) d( b) e( d) e或b( c) d( a) b例如:△abc是等腰直角三角形,∠abc=180°,∠ab=90°,∠ad=∠dc=1,∠bc=ca=3,∠a=∠b=90°,则△abc的重心在( a)b( c) d( e) e或e( c) d( b) e( d) e或b( c) d( a)b( d) c的解析:第1步:由∠acb=180°可得∠abc=180°,即△abc的三边长均为整厘米数。

杨辉三角形的生活运用和规律

杨辉三角形的生活运用和规律

杨辉三角形规律每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。

第n行的数字个数为n个。

第n行数字和为2^(n-1)。

(2的(n-1)次方)每个数字等于上一行的左右两个数字之和。

可用此性质写出整个帕斯卡三角形。

将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。

将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。

第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。

两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行杨辉三角在弹球游戏中的应用如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。

根据具体地区获的相应的奖品(。

图1我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A 区的奖品价值高于D 区,说明小球落入A 区的可能性要比落入D 区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。

小球要落入D 区的情况有两种,有概率知识得:D 1 D 2就是说,小球落入D 区的概率是等于它肩上两区域概率之和的21,据此小球落入各区的概率为可以按以上方法类推,如下: 2121183813213232323232164646641564206415646641 A B C D E F G图2观察上图,小球落到AD两区的概率要比其它区域小的多,当然奖品就要多一些。

从该图中不难发现各区域的概率分子与杨辉三角形完全一致,我们可以利用杨辉三角的性质直接得出小球落到AD两区的概率要比其它区域小的多。

杨辉三角形的规律口诀

杨辉三角形的规律口诀

杨辉三角形的规律口诀
杨辉三角形的规律口诀如下:
1、杨辉三角左右两侧的数字都是1,而里面的数字等于它肩上的两数之和。

2、第n行的数所组成的数字为11n-1。

3、第n行的数字之和是2n-1。

4、每一斜线上的数字之和等于拐角处的数字。

5、每一斜行的数字相加,组成一个斐波那契数列。

6、每一行的数字分别是(a+b)n这一多项式展开后每一项的系数。

7、杨辉三角中的每一个数字都是组合数。

主要特征:
(1)具有对称性;
(2)每一行的首、尾都是1;
(3)中间各数都等于它们两肩上的数的和。

杨辉三角的规律是每行数字的第一列和最后一列的数字都是1,从第三行开始,除去第一列和最后一列都为数字1以外,其余每列的数字都等于它上方两个数字之和。

从规律中我们可以看出杨辉三角形是对称的,它是二项式系数在三角形中的一种几何排列。

计算杨辉三角形的规律与应用

计算杨辉三角形的规律与应用

计算杨辉三角形的规律与应用杨辉三角形是一种数学图形,它的形状像一个等边三角形,由数字构成。

它以中国古代数学家杨辉的名字命名,他在13世纪时首次提出了这个概念。

杨辉三角形具有许多有趣的规律和应用,本文将对这些内容进行探讨。

一、杨辉三角形的构造方法杨辉三角形可以通过以下规律来构造:1. 第一行只有一个数字1。

2. 第二行有两个数字,均为1。

3. 从第三行开始,每行的首尾元素都是1。

4. 从第三行开始,中间的元素等于上一行中相邻两个元素的和。

例如,下面是一个由6行组成的杨辉三角形:```11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1```二、杨辉三角形的规律杨辉三角形具有一些有趣的规律,可以通过观察和计算得出:1. 每一行的数字之和等于2的n次方,其中n为行数。

例如,第三行的数字之和为2^3=8。

2. 每一行的首尾数字都是1。

3. 从第三行开始,除了首尾数字外,每个数字等于上一行对应位置的左上方和右上方两个数字之和。

三、杨辉三角形的应用杨辉三角形在数学和其他领域中有广泛的应用,下面介绍几个常见的应用:1. 组合数学:杨辉三角形中的数字可以表示组合数,即从n个元素中取k个元素的组合数。

每一行的数字依次对应组合数的值,例如第三行的数字1 2 1对应组合数C(3,0)、C(3,1)、C(3,2)、C(3,3)。

2. 概率论:杨辉三角形可以用于计算二项式分布的概率。

每一行的数字可以表示在n次独立重复试验中,获得k次成功的概率。

3. 数列与数学函数:杨辉三角形中的数字可以形成一些有趣的数列,如斐波那契数列、素数数列等。

此外,杨辉三角形中的数字还与二项式定理、多项式展开等数学函数有关。

四、杨辉三角形的扩展除了基本的杨辉三角形构造方法外,还可以通过一些扩展规则来生成更多的图形和规律:1. 帕斯卡三角形:将杨辉三角形的每个数字乘以2再减去1,可以得到帕斯卡三角形。

帕斯卡三角形在概率论、组合数学和数学函数等领域有广泛的应用。

杨辉三角形的生活运用和规律知识分享

杨辉三角形的生活运用和规律知识分享

杨辉三角形的生活运用和规律杨辉三角形规律每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。

第n行的数字个数为n个。

第n行数字和为2^(n-1)。

(2的(n-1)次方)每个数字等于上一行的左右两个数字之和。

可用此性质写出整个帕斯卡三角形。

将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。

将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。

第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。

两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除 杨辉三角在弹球游戏中的应用如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。

根据具体地区获的相应的奖品(AG 区奖品最好,BF 区奖品次之,CE 区奖图1 我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A 区的奖品价值高于D区,说明小球落入A区的可能性要比落入D区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。

小球要落入D 区的情况有两种,有概率知识得:D 1 D 2就是说,小球落入D 区的概率是等于它肩上两区域概率之和的21,据此小球落入各区的概率为可以按以上方法类推,如下: 2121441收集于网络,如有侵权请联系管理员删除 838132132323232321 64646641564206415646641 A B C D E F G图2观察上图,小球落到AD 两区的概率要比其它区域小的多,当然奖品就要多一些。

杨辉三角在日常生活中的有趣应用

杨辉三角在日常生活中的有趣应用

杨辉三角在日常生活中的有趣应用杨辉三角,也被称为帕斯卡三角,是一个在数学中非常重要的结构。

它不仅仅在数学中有广泛的应用,而且在日常生活中也有很多有趣的应用。

下面我们就来看看杨辉三角在日常生活中的一些有趣应用。

1.组合数学:杨辉三角的一个重要应用是在组合数学中。

二项式系数是组合数学中的一个重要概念,表示在n个不同元素中选取k个元素的组合数。

杨辉三角的第n行第k个数字就是二项式系数,也就是C(n, k)。

这使得杨辉三角成为了一个非常方便的工具,可以快速地查找二项式系数。

2.概率论:在概率论中,杨辉三角也被广泛应用。

比如,在赌博游戏中,我们可以用杨辉三角来计算各种可能的结果的概率。

假设有一个游戏,玩家可以猜一个骰子的点数,如果猜对了就得奖。

我们可以用杨辉三角来计算玩家猜对点数的概率。

3.编码理论:在编码理论中,杨辉三角也被用来构造一些特殊的编码。

比如,有一种叫做"里德-所罗门码"的编码,就是用杨辉三角来生成的。

这种编码具有很强的纠错能力,被广泛应用在各种数字设备和通信系统中。

4.图形学:在图形学中,杨辉三角也被用来生成一些特殊的图形。

比如,有一种叫做"杨辉三角图"的图形,就是用杨辉三角来生成的。

这种图形具有很强的对称性和美感,被广泛应用在各种设计和艺术作品中。

5.生物学:在生物学中,杨辉三角也被用来描述一些生物学的现象。

比如,在遗传学中,有一种叫做"孟德尔遗传"的现象,就是用杨辉三角来描述的。

这种现象描述了基因在遗传过程中的规律,对于理解生物的遗传和进化具有重要意义。

6.投资理财:在投资理财中,杨辉三角也可以被用来计算投资收益。

假设有一个投资计划,每年投资一定的金额,并且每年的收益率为一定的百分比。

我们可以用杨辉三角来计算在一定年限后,投资的总金额和总收益。

7.教育教学:在教学活动中,杨辉三角也是一个非常好的教学工具。

它可以帮助学生更好地理解数学概念,比如组合数学、概率论等。

杨辉三角应用

杨辉三角应用

1杨辉三角概述1.1 杨辉三角的产生唐代以来一些数学著作的失传,大概是五代十国分裂战乱所造成的文化后果。

到了宋代,雕版印数的发达特别是活字印刷的发明,则给数学著作的保存与流传带来了福音。

事实上,整个宋元时期(公元960—1368),重新统一了的中国封建社会发生了一系列有利于数学发展的变化。

商业的繁荣、手工业的兴盛以及由此引起的技术进步(四大发明中有三项——指南针、火药和活字印刷是在宋代完成并获得广泛应用),给数学的发展带来新的活力。

这一时期涌现的优秀数学家中最卓越的代表,如通常称“宋元四大家”的杨辉、秦九韶、李治、朱世杰等,在世界数学史上占有光辉的地位;而这一时期印刷出版、记载着中国古典数学最高成就的宋元算书,也是世界文化的重要遗产。

北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,他的主要贡献是创造了'贾宪三角'和增乘开方法,增乘开方法即求高次幂的正根法。

南宋数学家杨辉在《详解九章算法》(1261年)记载并保存了“贾宪三角”,故称杨辉三角。

元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”(如下图)。

在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。

杨辉,字谦光,北宋时期杭州人。

在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

同时,这也是多项式(a+b)n打开括号后的各个项的二次项系数的规律。

因此,杨辉三角第x层第y项直接就是(y nCr x)。

我们也不难得到,第x层的所有项的总和为2x-1 (即(a+b)x中a,b都为1的时候) 。

上述(a nCr b) 指组合数。

而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是要找规律。

简单的说,就是两个未知数和的幂次方运算后的系数问题,比如(x+y)的平方=x的平方+2xy+y的平方,这样系数就是1,2,1这就是杨辉三角的其中一行,立方,四次方,运算的结果看看各项的系数,你就明白其中的道理了。

杨辉三角的规律以及推导公式word版本

杨辉三角的规律以及推导公式word版本

杨辉三角的规律以及定理李博洋摘要杨辉三角中的一些规律关键词杨辉三角幂二项式引言杨辉是我国南宋末年的一位杰出的数学家。

在他所著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是世界的一大重要研究成果。

我们则来对“杨辉三角”的规律进行探讨和研究。

内容1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。

展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (110)1 1 (111)1 2 1 (112)1 3 3 1 (113)1 4 6 4 1 (114)1 5 10 10 5 1 (115)1 6 15 20 15 6 1 (116)因此可得出二项式定理的公式为:(a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+ C(n,n)a^0*b^n因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。

求二项式展开式系数的问题,实际上是一种组合数的计算问题。

用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。

2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

杨辉三角的规律以及推导公式doc资料

杨辉三角的规律以及推导公式doc资料

杨辉三角的规律以及定理李博洋摘要杨辉三角中的一些规律关键词杨辉三角幂二项式引言杨辉是我国南宋末年的一位杰出的数学家。

在他所著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是世界的一大重要研究成果。

我们则来对“杨辉三角”的规律进行探讨和研究。

内容1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。

展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (110)1 1 (111)1 2 1 (112)1 3 3 1 (113)1 4 6 4 1 (114)1 5 10 10 5 1 (115)1 6 15 20 15 6 1 (116)因此可得出二项式定理的公式为:(a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+ C(n,n)a^0*b^n因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。

求二项式展开式系数的问题,实际上是一种组合数的计算问题。

用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。

2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

杨辉三角的规律

杨辉三角的规律

杨辉三角形的规律
1、杨辉三角左右两侧的数字都是1,而里面的数字等于它肩上的两数之和。

2、第n行的数所组成的数字为11n-1。

3、第n行的数字之和是2n-1。

4、每一斜线上的数字之和等于拐角处的数字。

5、每一斜行的数字相加,组成一个斐波那契数列。

6、每一行的数字分别是(a+b)n这一多项式展开后每一项的系数。

7、杨辉三角中的每一个数字都是组合数。

主要特征:
(1)具有对称性;
(2)每一行的首、尾都是1;
(3)中间各数都等于它们两肩上的数的和。

杨辉三角的规律是每行数字的第一列和最后一列的数字都是1,从第三行开始,除去第一列和最后一列都为数字1以外,其余每列的数字都等于它上方两个数字之和。

从规律中我们可以看出杨辉三角形是对称的,它是二项式系数在三角形中的一种几何排列。

杨辉三角形及应用

杨辉三角形及应用

杨辉三⾓形及应⽤
杨辉三⾓形及应⽤
杨辉三⾓形,⼜称贾宪三⾓形,帕斯卡三⾓形,是⼆项式系数在三⾓形中的⼀种⼏何排列。

北宋⼈贾宪约1050年⾸先使⽤“贾宪三⾓”进⾏⾼次开⽅运算。

杨辉,字谦光,南宋时期杭州⼈。

在他1261年所著的《详解九章算法》⼀书中,辑录了如上所⽰的三⾓形数表,称之为“开⽅作法本源”图,并说明此表引⾃11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了“古法七乘⽅图”。

故此,杨辉三⾓⼜被称为“贾宪三⾓”。

简单的说⼀下就是两个未知数和的幂次⽅运算后的系数问题,⽐如(x+y)的平⽅=x的平⽅+2xy+y的平⽅,这样系数就是1,2,1这就是杨辉三⾓的其中⼀⾏,⽴⽅,四次⽅,运算的结果看看各项的系数,你就明⽩其中的道理了
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
这就是杨辉三⾓,也叫贾宪三⾓
他于我们现在的学习联系最紧密的是2项式乘⽅展开式的系数规律。

如图,在贾宪三⾓中,第3⾏的第三个数恰好对应着两数和的平⽅公式,依次下去。

杨辉三⾓形有以下性质:
1.杨辉三⾓以正整数构成,数字左右对称,每⾏由1开
始逐渐变⼤,然后变⼩,回到1。

2.第⾏的数字个数为个。

3.第⾏的第个数字为组合数。

4.第⾏数字和为。

5.除每⾏最左侧与最右侧的数字以外,每个数字等于它
的左上⽅与右上⽅两个数字之和(也就是说,第⾏第个
数字等于第⾏的第个数字与第个数字的和)。

这是因为有组合恒等式:。

可⽤此性质写出整个杨辉三⾓形。

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式

精心整理杨辉三角的规律以及定理1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

222则为:11(11)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。

由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。

系数是杨辉三角里的系数。

2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1(1)11(1+1=2)121(1+2+1=4)1331(1+3+3+1=8)6,…n31615201561把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

n(3)中第2、每行数字左右对称,由1开始逐渐变大。

3、第n行的数字有n+1项。

4、第n行数字和为2(n-1)。

(2的(n-1)次方)5 (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

[1]6、第n行的第m个数和第n-m个数相等,即C(n,m)=C(n,n-m),这是组合数性质。

(完整word版)杨辉三角形

(完整word版)杨辉三角形

有趣的杨辉三角形【教学目的】1.初步探索杨辉三角的基本性质及数字排列规律;2.培养学生发现问题、提出问题、解决问题的能力,重点培养创新能力;3.了解我国古今数学的伟大成就,增强爱国情感.【教学手段】课堂教学,以学生自学为主,教师引导探索。

【教学思路】→学生自学教材,然后思考几个问题。

→分组探讨杨辉三角的性质。

→展示学生探究成果→教学小结【自学教材】;1.什么是杨辉三角?二项式(a+b)n展开式的二项式系数,当n依次取1,2,3...时,列出的一张表,叫做二项式系数表,因它形如三角形,南宋的杨辉对其有过深入研究,所以我们又称它为杨辉三角.(表1)例如,它的兩項的係數是1和1;,它的三項係數依次是1、2、1;,它的四項係數依次1、3、3、1。

2.杨辉--古代数学家的杰出代表杨辉,杭州钱塘人.中国南宋末年数学家,数学教育家.著作甚多,他编著的数学书共五种二十一卷,著有《详解九章算法》十二卷(1261年)、《日用算法》二卷、《乘除通变本末》三卷、《田亩比类乘除算法》二卷、《续古摘奇算法》二卷.其中后三种合称《杨辉算法》,朝鲜、日本等国均有译本出版,流传世界。

“杨辉三角”出现在杨辉编著的《详解九章算法》一书中,此书还说明表内除“一”以外的每一个数都等于它肩上两个数的和.杨辉指出这个方法出于《释锁》算书,且我国北宋数学家贾宪(约公元11世纪)已经用过它,这表明我国发现这个表不晚于11世纪.在欧洲,这个表被认为是法国数学家物理学家帕斯卡首先发现的(BlaisePascal, 1623年~1662年),他们把这个表叫做帕斯卡三角.这就是说,杨辉三角的发现要比欧洲早500年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.3.观察杨辉三角所蕴含的数量关系(表2)4.杨辉三角基本性质▲教学意图 介绍杨辉三角蕴含的基本规律(1)表中每个数都是组合数,第n 行的第r+1个数是)!(!!r n r n C r n-=.(2)三角形的两条斜边上都是数字1,而其余的数都等于它肩上的两个数字相加,也就是r n r n r n C C C 111---+=.(3)杨辉三角具有对称性(对称美),即rn nr n C C -=. (4)杨辉三角的第n 行是二项式(a+b )n展开式的二项式系数,即nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 1110)(【自学引导】杨辉三角有趣的数字排列规律注意观察方法:横看、竖看、斜看、连续看、隔行看,从多种角度观察(横看成岭侧成峰,远近高低各不同!)(1)杨辉三角的第1,3,7,15,...行,即第2K —1(k 是正整数)行的各个数字有什么特点?第2K行呢?第2K-1(k 是正整数)行的各个数字均为奇数.第2K 行除两端的1之外都是偶数(2)杨辉三角第5行中,除去两端的数字1以外,行数5整除其余所有的数.你能再找出具有类似性质的三行吗?这时的行数P是什么数?如2,3,7,11等行.行数P是质数(素数)(3)计算杨辉三角中各行数字的和,看有何规律:第n 行n nn n n r n n n n C C C C C C 21210=+++++++-(4)从杨辉三角中一个确定的数的“左(右)肩” 出发, 向右(左)上方作一条和左斜边平行的射线,在这条射线上的各数的和等于这个数.例如:10=1+2+3+4, 20=1+3+6+10,... 于是有一般性结论:一般地,在第m 条斜线上(从右上到左下)前n 个数字的和,等于第 m+1 条斜线上的第 n 个数.根据这一性质,猜想下列数列的前n 项和:1+1+1+ ...+1= 1n C (第1条斜线) 1+2+3+ ...+11-n C = 2n C (第2条斜线) 1+3+6+ ...+21-n C = 3n C (第3条斜线) 1+4+10+ ...+31-n C = 4n C (第4条斜线)...1121+-++=++++r n r n r r r r r r C C C C C (第r+1条斜线)(5)如图,写出斜线上各行数字的和,有什么规律?1,1,2,3,5,8,13,21,34,... 此数列{a n }满足, a 1=1,a 2=1, 且a n =a n —1+a n-2 (n ≥3)这就是著名的斐波那契数列(斐波那契,中世纪意大利数学家,传世之作《算术之法》). 结论:斜线上各行数字的和,正好组成斐波那契数列.(6)杨辉三角与“纵横路线图"“纵横路线图”是数学中的一类有趣的问题.图1是某城市的部分街道图,纵横各有五条路,如果从A 处走到B 处 (只能由北到南,由西向东),那么有多少种不同的走法?=48C 70我们把图顺时针转45度,使A 在正上方,B 在正下方,然后在交叉点标上相应的杨辉三角数.有什么有趣的结论 一般地,每个交点上的杨辉三角数,就是从A 到达该点的方法数.由此看来,杨辉三角与纵横路线图问题有天然的联系.(7)计算11的1、2、3、……次幂,看一看与杨辉三角有 什么有趣的联系?(8)杨辉三角与“堆垛术”(三角垛,正方垛,...)我国古代数学的伟大成就—-堆垛术,学生自行探究将圆弹堆成三角垛:底层是每边n的三角形,向上逐层每边少一个圆弹,顶层是一个圆弹,求总数.【课堂小结】。

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式

精心整理杨辉三角的规律以及定理李博洋摘要杨辉三角中的一些规律展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:14641似乎发现了一些规律,就可以发现以下呈三角形的数列:1(110)11(111)121(112)1331(113)14641(114)15101051(115)1615201561(116)因此可得出二项式定理的公式为:(a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n。

2相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3杨辉三角中斜行和水平行之间的关系(1)1(2)n=111(3)n=2121(4)n=31331(5)n=414641(6)n=515101051n=61615201561由上面可得:杨辉三角中n行中的第i个数是i-1中前n-1个数之和,即第n 行的数分别为1、(1)中第n行之前的数字之和、(2)中第n行之前的数字之和、(3)中第n行之前的数字之和、(4)中第n行之前的数字之和、…、(n-3)中第n行之前的数字之和、1。

总结杨辉三角对于我们好理解的规律,如下六点:杨辉,字谦光,南宋时期杭州人。

在他1261年所着的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪前半贾宪的《释锁算术》,并绘画了“古法七乘方图”。

故此,杨辉三角又被称为“贾宪三角”。

在我国古老的文明中,人们发现了很多有趣的规律,而杨辉三角就是其中一个。

杨辉三角的现实例子

杨辉三角的现实例子

杨辉三角的现实例子1. 你知道杨辉三角吗?它在组合数学里可是超级重要的存在呢!就像我们搭积木,每一层的积木数量都有着特定的规律,杨辉三角就是这样神奇。

比如说在计算彩票的组合可能性时,杨辉三角就像一个神奇的指南,帮助我们理解其中的奥秘。

2. 嘿,杨辉三角可不仅仅是书本上的东西哦!它就像一个隐藏在生活中的密码。

比如在排队买东西的时候,我们可以通过杨辉三角来计算不同排列方式的可能性,这难道不酷吗?3. 哇塞,杨辉三角啊!它就好像是一把解开很多难题的钥匙呢。

像是在分配任务的时候,根据杨辉三角的规律可以更合理地安排人员和任务,难道不是吗?4. 你想过杨辉三角在建筑设计中的作用吗?它好比是建筑师手里的魔法棒呀!当设计一个大楼的结构时,杨辉三角能帮助确定最佳的支撑点分布,多神奇啊!5. 杨辉三角啊,那简直就是数学世界里的一颗璀璨明珠!就像我们玩游戏要遵守规则一样,很多数学问题都要遵循杨辉三角的规律呢。

比如计算比赛的场次安排,用杨辉三角就能快速搞定,你说厉害不厉害?6. 哦哟,杨辉三角可牛了!它就如同一个智慧的小精灵藏在数学里。

想想看,在计算投资组合的风险时,杨辉三角就能发挥大作用,这可太妙了吧!7. 嘿呀,杨辉三角可不是吃素的!它好像是我们生活中隐藏的好帮手。

在安排聚会座次的时候,依据杨辉三角来安排,会更加有序和有趣呢,不是吗?8. 哇哦,杨辉三角啊!简直就像一个神秘的宝藏等待我们去挖掘。

在设计图案的时候,杨辉三角的规律能创造出独特又美丽的作品,超级神奇呀!9. 杨辉三角真的太有意思啦!它其实就在我们身边,默默发挥着巨大的作用,就像一个低调的大师。

我们真应该好好去探索和发现它更多的神奇之处呀!我的观点结论是:杨辉三角在众多领域都有着意想不到的应用,它真的非常神奇且重要!我们要重视和运用好它。

杨辉三角在日常生活中的有趣应用

杨辉三角在日常生活中的有趣应用

杨辉三角在日常生活中的有趣应用[摘要]中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

杨辉三角是中国古代数学家贾宪在公元11世纪发现,并被南宋数学家杨辉在他的书中所引述,才使我们今天得以了解贾宪在数学上的重大贡献。

[关键词]杨辉三角趣味性日常生活杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。

杨辉三角形所蕴含的数字排列规律,让我们在感受数学美的同时,也体会到它的趣味性和实用性。

下面就通过三个实例与读者共享。

例1.随着经济的快速发展,越来越多的人加入炒股大军。

股票的涨停问题也成为人们的重要谈资。

有一天,同事谈到股票涨停时,提出一个问题:要经过几次涨停,股资才能翻一倍?大家知道,股票涨停一次,股资增加了原来的百分之十。

构建一个模型:设原来股资为a元,一次涨停后,股资变成a+10%a=(1+0.1)a=1.1a;二次涨停后,股资变成1.1a+10%×1.1a=1.12a;如此递推,当n(n∈z+)次涨停后,股资变成1.1na元。

要经过几次涨停,股资才能翻一倍呢?可以建立以下不等式:1.1na>2a,即 1.1n>2。

那么,最小正整数n是多少?简单推算:1.11=1.1,1.12=1.21,1.13=1.331,……手边没有计算器,再算下去就有一点复杂了。

但观察结果的数字,惊奇的发现前三个的结果与杨辉三角相对应。

如图1是否1.14=1.4641呢?结果与计算相同。

但当n=5时,出现了两位数的情形,怎么解决?能不能像加法运算一样进位加一变成1.61051呢?经过验算猜想与答案完全一致。

这样求最小正整数n的运算就可以通过观察得到。

当n=8时,1.18>2。

也就是经过8次涨停后,股资翻倍。

例2.在游戏场所经常可以看到这样的弹球游戏:一个小球向下跌落,碰到第一层阻挡物后等可能的向两侧跌落。

碰到第二层阻挡物再等可能的向两侧的第三层跌落。

杨辉三角的规律以及推导公式杨辉三角规律

杨辉三角的规律以及推导公式杨辉三角规律

杨辉三角的规律以及推导公式杨辉三角规律下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!杨辉三角的规律及推导公式引言杨辉三角是中国古代数学宝库中的一颗璀璨明珠,它展现了一种神奇的数学规律,被广泛应用于代数、组合数学、概率论等领域。

杨辉三角形的生活运用和规律

杨辉三角形的生活运用和规律

杨辉三角形规律每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。

第n行的数字个数为n个。

第n行数字和为2^(n-1)。

(2的(n-1)次方)每个数字等于上一行的左右两个数字之和。

可用此性质写出整个帕斯卡三角形。

将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。

将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。

第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。

两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行杨辉三角在弹球游戏中的应用如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。

根据具体地区获的相应的奖品(AG区奖品最好,BF区奖品次之,CE区奖品第三,D 区奖品最差)。

图1我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A区的奖品价值高于D 区,说明小球落入A 区的可能性要比落入D 区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。

小球要落入D 区的情况有两种,有概率知识得:D 12D就是说,小球落入D 区的概率是等于它肩上两区域概率之和的21,据此小球落入各区的概率为可以按以上方法类推,如下:A B C D E F G 图2观察上图,小球落到AD 两区的概率要比其它区域小的多,当然奖品就要多一些。

从该图中不难发现各区域的概率分子与杨辉三角形完全一致,我们可以利用杨辉三角的性质直接得出小球落到AD 两区的概率要比其它区域小的多。

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)杨辉三角的规律以及定理1二项式定理与杨辉三角与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。

杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。

展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:14641似乎发现了一些规律,就可以发现以下呈三角形的数列:1(110)11(111)121(112)1331(113)14641(114)15101051(115)1615201561(116)杨辉三角形的系数分别为:1,(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。

由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。

系数是杨辉三角里的系数。

2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1(1)11(1+1=2)121(1+2+1=4)1331(1+3+3+1=8)14641(1+4+6+4+1=16)15101051(1+5+10+10+5+1=32)1615201561(1+6+15+20+15+6+1=64)……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…n 次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3杨辉三角中斜行和水平行之间的关系(1)1(2)n=111(3)n=2121(4)n=31331(5)n=414641(6)n=515101051n=61615201561把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杨辉三角形规律
每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。

第n行的数字个数为n个。

第n行数字和为2^(n-1)。

(2的(n-1)次方)
每个数字等于上一行的左右两个数字之和。

可用此性质写出整个帕斯卡三角形。

将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。

将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。

第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。

两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行
杨辉三角在弹球游戏中的应用
如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。

根据具体地区获的相应的奖品(。

图1
我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A 区的奖品价值高于D 区,说明小球落入A 区的可能性要比落入D 区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。

小球要落入D 区的情况有两种,有概率知识得:
D 1 D 2
就是说,小球落入D 区的概率是等于它肩上两区域概率之和的
2
1,据此小球落入各区的概率为可以按以上方法类推,如下: 2121
1
8381
3213232323232
1
64646641564206415646641 A B C D E F G
图2
观察上图,小球落到AD两区的概率要比其它区域小的多,当然奖品就要多一些。

从该图中不难发现各区域的概率分子与杨辉三角形完全一致,我们可以利用杨辉三角的性质直接得出小球落到AD两区的概率要比其它区域小的多。

相关文档
最新文档