浅谈数学分析中的数学思想
2024年《数学分析》学习心得体会(三篇)
2024年《数学分析》学习心得体会数学分析是数学的一门基础课程,对于理工科学生来说非常重要。
在学习《数学分析》的过程中,我深深体会到了它的重要性和困难之处。
以下是我对《数学分析》的学习心得体会。
首先,数学分析的学习需要掌握一定的数学基础知识。
在学习数学分析之前,我们需要掌握一定的微积分、线性代数等数学基础知识。
这些基础知识对于学习数学分析起到了重要的铺垫作用。
在学习过程中,我清楚地感觉到自己掌握得不够扎实的数学基础知识会影响到对数学分析的理解和应用。
因此,学习数学分析前要有一个良好的数学基础。
其次,数学分析的学习需要注重理论与实践相结合。
数学分析是一门理论性的学科,需要掌握其中的概念、定理和证明。
但仅仅停留在理论层面是远远不够的,还需要通过练习题和实际问题的应用来加深对概念和定理的理解。
在学习过程中,我经常会碰到一些概念和定理的理解困难,但通过练习题和实际问题的应用,我不仅对这些概念和定理有了更深入的理解,而且对于解题方法和思路也有了更清晰的认识。
再次,数学分析的学习需要注重逻辑思维的培养。
数学分析是一门基于严谨的逻辑推理的学科,需要具备较强的逻辑思维能力。
在学习数学分析的过程中,我发现只有通过逻辑推理才能正确理解和运用其中的概念和定理。
因此,我在学习数学分析的过程中注重培养自己的逻辑思维能力,通过思考和推理来加深对概念和定理的理解。
最后,数学分析的学习需要坚持不懈。
数学分析是一门较为复杂和抽象的学科,需要耐心和毅力去学习和理解。
在学习过程中,我遇到过很多困难和挫折,但我始终坚持下来,并不断努力去解决问题。
通过持续不懈的努力,我逐渐掌握了数学分析中的一些基本技巧和方法,并取得了一定的进步。
因此,我深刻体会到了坚持不懈对于学习数学分析的重要性。
总之,学习《数学分析》是一项较为艰难但又非常重要的任务。
通过学习《数学分析》,我们不仅可以掌握一种思维方法和工具,还可以培养一种严谨和思辨的精神。
因此,在学习《数学分析》的过程中,我们应注重数学基础的把握,理论与实践相结合,培养逻辑思维,坚持不懈。
数学分析的思想与方法
数学分析的思想与方法数学分析的思想与方法数学分析是高等教学中的基础技能之一,对数学教学具有促进作用。
接下来店铺为大家推荐的是数学分析的思想与方法,欢迎阅读。
(一) 泛函分析泛函分析是现代分析数学的重要分支之一,其深远的理论体系和广泛的应用价值已经对现代分析数学,乃至现代科学技术领域都产生了重大影响。
大学本科阶段的泛函分析课程主要以线性泛函分析中的赋范线性空间及其上的有界线性算子理论等一些最基本内容为主。
研究生阶段的线性泛函分析主要介绍紧算子与Fredholm算子、Banach 代数、无界线性算子、线性算子半群、广义函数、Hilbert-Schmidt算子与迹类算子等内容。
研究生阶段的非线性泛函分析课程一般简要讲授Banach空间上的微积分学、隐函数定理与分歧问题、拓扑度、单调算子以及变分方法等基本内容。
泛函分析的主要研究方向为: 线性算子谱理论、函数空间、Banach空间几何学、算子代数、非交换几何、应用泛函分析以及非线性泛函分析的相关研究方向等。
泛函分析是经过数学分析、高等代数和空间解析几何的“升空式洗礼”,而从“地上”到“天上”的一个数学抽象推广过程。
有限维空间的几何理论以及从有限维空间到有限维空间的映射理论是大学数学一二年级的主要内容。
若只考虑线性映射的运算性质,那就是线性代数。
若考虑非线性映射的连续性与光滑性,那就是微积分。
若把有限维空间的距离概念推广到无限维空间,再考虑相应的线性映射与非线性映射的连续性以及光滑性,那么就自然而然地走到了泛函分析的疆界。
数学分析,高等代数和解析几何的很多结论在泛函分析层面上都有相应的推广结论。
注意到这一点之后,又可以从“天上”回到“地上”了。
把有限维换成无限维,以及欧式度量换成抽象度量,想法还是一样的想法,但现象却是作为拓扑、代数、几何与分析的融合体的泛函分析了。
分析、代数、几何与拓扑的数学思想方法的交融是泛函分析发展壮大的力量之源。
泛函分析已经成为现代分析数学的必要工具之一。
数学分析中体现的数学思想
五、总结
数学分析作为数学学科的一个重要分支,不仅在理论上具有重要意义,而且 在解决实际问题时也有着广泛的应用。在数学分析中,体现了很多重要的数学思 想,如无限思想、极限思想、代数方法、微分方法和积分方法等。这些数学思想 的应用贯穿于数学分析的基础知识和基本技能中,对于理解数学分析的精髓和解 决实际问题具有重要意义。
数学分析中体现的数学思想
目录
01 数学分析中的数学思 想
02
一、数学分析中的基 本思想
03
二、数学分析中的常 用方法
04
三、数学分析中的重 要结论
05 四、实例分析
06 五、总结
数学分析中的数学思想
数学分析是数学学科的一个重要分支,主要研究函数的性质、变化及其应用。 在数学分析的研究过程中,体现了许多重要的数学思想。本次演示将对这些数学 思想进行探讨,并通过实例分析来说明这些思想在实际问题中的应用。
四、实例分析
在实际问题中,数学分析中的数学思想也有着广泛的应用。例如,在物理学 中,微分和积分被广泛应用于求解物体的运动规律和作用力;在工程学中,数学 分析中的各种方法被用于优化设计和提高效率;在经济学中,数学分析中的模型 被用于预测和解析各种现象等。
以物理学中的一个例子来说明数学分析中数学思想的应用。在力学中,物体 的运动轨迹可以通过微分方程来描述,而求解微分方程的方法则可以通过积分学 来得到。具体来说,如果我们知道一个物体在某个时刻的速度和位置信息,那么 我们可以使用微分学中的基本定理来求解其未来的运动轨迹,即通过求解一个微 分方程来得到。而如果我们要求解物体在整个时间区间上的运动轨迹,那么就需 要使用积分学中的定积分或反常积分来求解。
3、积分
积分是数学分析中的另一个重要分支,它主要研究函数在某个区间上的整体 性质。在积分中,常用的概念包括定积分、不定积分和反常积分等。积分的应用 也非常广泛,如求解面积、体积、平均值和概率计算等。
浅谈数学思想和数学方法
浅谈数学思想和数学方法
数学思想和数学方法是一个表达有力的句子,是指用数学思想和方法来思考和解决问题。
自古以来,人们以不同的方式对未知问题进行了解释,而数学思想和数学方法则被认为是解决这些未知问题最有效的方法。
首先,数学思想是一种独特而深刻的思维,它具有良好的数学模型、严谨的推理能力和明确的运算规律。
通俗来说,它是一种能够抽象概括事物形态和规律,能够综合整理知识来对客观事物进行分析和推断的思维方式。
其次,数学方法是一项解决问题的有效工具,它着重考虑问题的客观事实,它具有严格的步骤化求解、详细的步骤推导和有效的总结与检测,可以帮助我们在宏观上更加清晰地看待和分析问题,从而更加准确地求出问题的答案。
总的来说,数学思维和数学方法是一种能够有效地帮助我们解决问题的有效工具,它涉及到我们思考问题的方式,也涉及到我们用什么方法来解决问题。
只有通过理解把握数学思想和方法,才能为我们解决实际问题提供有效的支持。
数学的思想和方法
数学的思想和方法
数学的思想和方法是指数学研究中所采用的思考方式和解决问题的途径。
它们包括以下几个方面:
1. 抽象与逻辑思维:数学的基础是抽象和逻辑思维,通过抽象可以将具体问题转化为可用数学语言描述的形式,通过逻辑思维可以进行推理和证明。
2. 归纳与演绎:数学既可通过归纳法从特例中总结出一般规律,又可以通过演绎法从已知条件推导出结论,从而建立起一套完整的数学理论体系。
3. 规范化与符号化:数学借助规范化和符号化的手段将问题和解法以严谨的形式表示出来,使得数学结果的传递和交流更为方便和准确。
4. 分析与综合:数学的思想和方法需要具备分析和综合的能力,既要能够对问题进行细致入微的分析,把复杂问题分解为简单的组成部分,又要能够将各个部分综合起来,形成整体。
5. 形式化与计算:数学思想和方法经常需要将问题形式化,即用数学符号和公式来表示问题,并通过计算来解决问题或得出结论。
6. 推理与证明:数学思想和方法需要借助推理和证明来验证推断和结论的正确性,通过建立严密的逻辑链条来证明数学命题的真伪。
总之,数学的思想和方法是建立在抽象、逻辑和严谨基础上的,通过规范化、符号化和计算等手段来分析和解决问题,同时又借助推理和证明来验证和确立数学结论。
浅谈中学数学中的极限思想毕业论文
浅谈中学数学中极限思想的应用1 极限思想极限思想是指用极限概念分析问题和解决问题的一种数学思想,是近代数学的一种重要思想.简单地说极限思想即是用无限逼近的方式从有限中认识无限,用无限去探求有限,从近似中认识精确,用极限去逼近准确,从量变中认识质变的思想.1.1 极限思想的产生与一切科学的思想方法一样,极限思想也是社会实践的产物.极限思想可以追溯到古代,刘徽的“割圆术”就是建立在直观基础上的一种原始的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,他们借助间接证法——归谬法来完成了有关的证明.16世纪,荷兰数学家斯泰文改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明.如此,他就在无意中指出了把极限方法发展成为一个实用概念的方向. 1.2 极限思想的发展与完善极限思想的进一步发展和完善是与微积分紧密相联系的.16世纪欧洲的处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中大量的问题只用初等数学的方法已无法解决,为了解决这些问题,科学家们开始专心研究促进技术革新.在这样的社会背景下,牛顿和莱布尼茨以无穷小量为基础建立了微积分,微积分的建立极大的促进了极限思想的发展.到了19世纪,法国数学家柯西在前人工作的基础上,比较完整地阐述了极限概念及其理论.为了排除极限概念中的直观痕迹,德国数学家维尔斯特拉斯提出了极限的静态的定义,给微积分提供了严格的理论基础.所谓n A =,就是指“如果对任何0ε>,总存在自然数N ,使得当n N >时,不等式n A ε-<恒成立”.这个定义,借助不等式,通过ε和N 之间的关系,定量地、具体地刻划了两个“无限过程”之间的联系.因此,这样的定义是严格的,可以作为科学论证的基础,至今仍在数学分析书籍中使用.1.3 中学数学中的极限思想极限思想并非只出现在高等数学中.在中学数学里也有很多方面体现了极限思想,其中最典型的就是在求圆面积时候的用到分割法.在初高中时我们只知道圆的面积公式:2S Rπ=(R为圆的半径).其实,深入探究会发现圆面积的计算就是运用极限的思想得出的.在学圆的面积之前,我们只学过三角形和常规的四边形的面积计算,那么我们如何把圆的面积化为求三角形或者四边形的面积呢?如图1-1是一个以R为半径的圆O,我们给这个圆O作n条半径,如图1-2所示.图这样我们就可以发现,圆的面积是由n个小扇形相加得来.这时你会发现,当n不断增大()n→∞时,圆里面的每一个小扇形我们就可以近似的看成一个小三角形,此小三角形的底可以近似的看成扇形的圆弧()1n n A A+,高为圆的半径R.我们知道三角形的面积为112n nS R A A+≈⋅,则整个圆的面积为122334111112222n nS R A AR A A R A A R A A+≈⋅+⋅+⋅+⋅⋅⋅+⋅()122334112n nS R A A A A A A A A+≈⋅+++⋅⋅⋅+由于12233412n nA A A A A A A A Rπ++++⋅⋅⋅+=带入即可得出圆面积的近似值为:2S Rπ≈,当n越大时越精确,当n→∞即得证.圆面积的探讨运用了“无限分割”的思想方法,同时也体现了“化曲为直,化整为零,积零为整,逐渐趋近近视值”的极限思想.当然这只是极限思想运用的一部分,在中学数学中还有很多的问题渗透了极限的思想.如函数、数列、球的表面积和体积推导、双曲线的渐近线、曲线的切线等等无不包含着极限思想的渗透和运用.本文我们结合一些具体的例子来探讨极限思想在初等数学中的一些运用.2 极限思想在函数中的渗透在中学数学中,很多幂函数、指数函数、正切函数、双曲线等等都存在渐近线,通过利用极限思想可以巧妙的研究这些函数的渐近线.例1 研究函数1+y x x =的图像.分析 函数1+y x x=的定义域为{}|0x x ≠.且为奇函数,因此可以先做出0x >时的函数图像.(1)当0x >时,由基本不等式可得1+2y x x=≥,当且仅当1x =时min 2y =;(2)当0x +→ 时,y →+∞,所以0x =是1+y x x=的一条渐近线;(3)当+x →∞时,10x →,y x →,所以y x =也是1+y x x=的一条渐近线.由此三个条件即可作出函数1+y x =的图像.如图2-1:图2-1极限思想在函数中的应用非常广泛,不仅应用于研究一些函数的渐近线,在求一些特殊函数的最值的问题中极限思想也是很好的切入点.例2 试讨论函数y =的最值. 分析 注意到函数表达式可以变形为:y=从数形结合的角度来看,函数值y可以看成做是平面直角坐标系中x轴上的动点(,0)x到两定点(32)A,、(11)B,的距离之差,即y MA MB=-(如图2-1),由平面几何的知识,易得当M移动到2(M'在线段AB的延长线上)点时y值最大maxy=下面我们探讨此函数有无最小值,分三种情况:①当M在如图2中M(线段AB的垂直平分线l与x轴的交点)右侧移动时;②当M在M'与M中间图2-1图2-2下面我们先看①时由于MB MA>,不妨记=y MB MA--,图2-2中,点1M、2M均在M的右侧(其中2M又在1M的右侧).我们来比较111()=y M B M A--与222()=y M B M A--的大小,移项之后即比较12M B M A+与21M B M A+的大小.设1M A与2M B相交于点T,则有1212<()()M B M A M T BT M T AT++++12()()M T AT M T BT=+++21M B M A=+即12()()y y-<-所以当M在M右侧向右运动时,()y-的值越来越大,下面我们讨论()y-有无最大值.上面已知y MB MA-=-===114-=()114lim lim x x y →∞--=4211==+ 于是当x →+∞时,=y MB MA --的值越来越大的趋近于2,但是永远都不可能达到2,即y -没有最大值.但是<2y -,即2y >-.所以在第①情况下y 的取值范围为(]2,0-.同理,在第③种情况下,MB MA <当M 在M '左侧时(]1x ∈-∞-,,讨论y MA MB =-.计算可得y 的取值范围为(.在第②种情况下,当M 在M '与0M 之间且由0M 向M '移动时,y 值不断增大,所以y 的取值范围为⎡⎣0.综上所述,本题y的值域为(2-本题在高中阶段可能就只会让我们求此函数的最大值,但是如果我们进一步研究这个问题的时候,就能发现其与高等数学的衔接点.本题所涉及的函数最值问题,看似跟极限思想没多大联系,但是通过深入的研究我们才能发现其中的奥妙.3 极限思想在数列中的应用极限分析法是研究数列问题的一个有效方法.对于一个等比数列,在高中教材中给出的求和公式是11(1)(1)1(1),,.n n a q q q q S na -≠-=⎧⎪=⎨⎪⎩等比数列的求和公式是要分情况的,即1q =和1q ≠的情况.这样最简单的等比数列——常数列就被分裂出来.然而,利用极限就可以将它合二为一.对于上面1q ≠的情况,讨论1q →时,n S 的极限.111(1)lim lim 1n n q q a q S q→→-=- 2111(1)(1)lim 1n q a q q q q q-→-+++⋅⋅⋅+=-2111lim (1)n q a q q q-→=+++⋅⋅⋅+1na =这也就是说,1q =时的n S 就是1q ≠时n S 的极限.那么,等比数列求和公式就可以用一个公式来表示1(1)lim 1n n n q a q S q→-=-当然,这比高中课本上给出的公式要复杂点,但是这显然让我们重新思考了问题,使得这些分类的东西变成一个整体.对于一个无穷数列,它本身就是一个极限形式.所以在数列的有关问题中涉及到极限思想的题目很多,灵活运用极限思想能让我们解题方法更加简便,减少计算量和计算时间,优化解题过程.例3 已知数列{}n a 中,满足1=1a ,且对任意自然数n 总有12n n n a a a +-=,问是否存在实数a ,b 使得2()3n n a a b =--对于任意自然数n 恒成立?若存在,给出证明;若不存在,说明理由.分析 假设存在这样的实数a 、b ,满足2()3n n a a b =--对于任意自然数n 恒成立,则lim n x a a →∞=;再由12n n n a a a +-=两边同取极限有2aa a =-,解得0a =或3a =验证,当0a =时,数列{}n a 应该是以1为首项,以23-为公比的等比数列,显然,不可能对于任意自然数n 都满足12n n n a a a +-=恒成立.所以0a =不满足题意.当3a =时,将1=1a ,代入2()3n n a a b =--,求得3b =-,则233()3n n a =+⋅-,验证可得同样不满足对于任意自然数n 都满足12n n n a a a +-=恒成立.所以3a =同样不满足题意.综上所述,0a =和3a =都不满足题意,所以假设与题意矛盾,不存在这样的a 、b .在高中阶段,对于解这样的数列问题一般思路是按照 “由一般到特殊再到一般”的思维原则,再通过数学归纳法将{}n a 表达出来.但是对于这一个题目用这样的方法远没有借用极限思想简单.4 极限思想巧解立几问题在一些复杂立体几何的问题中,我们只要巧妙的利用无限逼近的思想,就可以将原本复杂难懂的问题简单化.像这样的问题在高中数学中很常见,比如像下面这道例题.例4 在四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是( ).(0A.(1B ,C.(0D ,分析 一般的方法,我们通过三角形三条边之间的等量关系列不等式,通过解不等式可以得出来,但是通过极限思想也可以巧妙的解决这个问题.显然,对于四根长度相等的直铁条有两种摆放方法: (1)底面为等腰三角形,两腰长度为2,底长为a (图4-1); (2)底面为等边三角形,三条边的长都为2(图4-2).图 4-2 由于a 是ABC ∆的边,所以04a <<.如图4-1,点A 在平面α(α垂直于平面BCD ,且平面BCD α⋂于BDC ∠的角平分线)上运动,且A 到B 、C 的距离为2.当A D →时,0a →;当平面ABC 与平面BDC 重合时,A 与D 距离最远即a 值最大.此时由菱形的性质可解得a =由于此图形必须要构成三棱锥,所以平面ABC 与平面BDC 不可以重合,即取不到所以(0,a ∈.如图4-2,点A 在平面α(α垂直于平面BCD ,且平面BCD α⋂于DBC ∠的角平分线)上运动,且A 到B 的距离为2.当A 在DBC ∠的角平分线上时,a 最小,可解得a =-;当A 在DBC ∠的角平分线的反向延长线上时,a 最大,可解得a =.由于此图形必须要构成三棱锥,所以A 不能在DBC ∠的角平a ∈.综上所说,a ∈,所以此题选A .这是2010年辽宁省的一道高考题,如果用一般的方法解不等式将会非常复杂,也浪费了考试时宝贵的时间.而如果使用无限逼近思想来研究就可以将原本复杂难懂的问题简单化. 从本题可以发现,极限思想在几何解题过程中的应用可以起到良好的导向作用,同时也是一种探索解题思路或切入点的有效武器.例5 正三棱锥相邻两侧面所成的角为α,则α的取值范围是 ( )o o .(0180)A ,o o .(60180)B , o o .(600)C ,9 o o .(00)D ,6 分析 如图4-3所示,正三棱锥S ABC -中,SO 是正三棱锥S ABC -的高,图4-3当0180.SO→时,S无限靠近于O,此时相邻两个侧面的夹角趋近于o 当SO→∞时,正三棱锥S ABC-无限接近一个底面为正三角形的三棱柱,这时两侧面的夹角越来越小,趋近于o60.所以α的取值范围为o o(60180),,故本题选B.从这些例题可以感受到,极限思想不仅是一种解决问题的方法,同时它也是一种思维方式.我们可以从极限或极端状态的数学问题的研究中得到启发,从而得到数学关系的猜想,有时也会通过这种启发找到问题的解决方法.5 总结本文结合具体的例题讨论了极限思想在初等数学中的一些应用.当然,极限思想作为数学中的重要的思想在中学数学中的涉及范围远不止这几个方面.所以我觉得,在我们的中学教学中,若能通过一些例题,来向学生渗透极限思想,对学生数学思维能力的提高将会有很大帮助.参考文献[1]谢慧杰.极限思想的产生、发展与完善.数学学习与研究,2008,(09):13-15.[2]梁克强.刘徽割圆术.中学生数学,2010,(06):23-24.[3]杨君芳.例析极限思想在高中数学中的一些应用.中学数学研究,2009,11(1):27-28.[4]孙道斌.利用极限思想巧解立几问题.中学生数学,2007,(1上):17-18.[5]吕士虎,徐兆亮.从高等数学看中学数学,2005,(03):1-3.[6]华东师大数学系.数学分析第三版.北京:高等教育出版社,2001:42-48.[7]张永辉,用极限思想解题.中学生数学,2006,(9上):8-9.。
数学中的整体思想
数学中的整体思想整体思想是数学解题中一种重要的思想方法,在解决某些问题时,从问题的整体特性出发,统筹考虑,全面把握,构建整体结构,利用问题的各方面条件寻求简洁的解法。
有些数学问题中的某些元素虽然是非本质的,但若根据题目需要,设法将其视为对象,从整体上把握,则可化难为易,化繁为简。
一、整体代入有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。
例1:一船在静水中的速度是15千米/小时,要经过150千米的河,并且逆流而上(水流速度为5千米/小时),问船往返共用多少时间?分析:此题若从局部考虑,要分顺水、逆水两种情况分别计算,而从整体考虑,因为船速与水速均已知,所以两地之间距离(150千米)也是一个已知量,所以可以省去对其中繁琐细节的研究,直接利用公式解决问题。
设船往返共用x小时。
则根据题意列方程:15x-5x=150解得:x=15二、整体换元有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,视“黑箱”为新元,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。
例2:设a、b是方程2x2-7x+3=0的两根,且a>b>0,求a+b与ab的值。
分析:此题若从局部考虑,要解方程求出a、b的值再代入求值,而从整体考虑,因为a、b是方程2x2-7x+3=0的两根,所以a+b与ab满足一定的等量关系(韦达定理),因此可以省去对其中繁琐细节的研究,直接利用公式解决问题。
因为a、b是方程2x2-7x+3=0的两根,所以有:a+b=-(-7)/2=7/2;ab=3/2三、整体构造有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,根据题目的需要而恰到好处地构造这个“黑箱”,则可以省去对其中繁琐细节的研究,直接利用这些等量关系解题。
例3:已知二次函数y=-x2+mx-m2-0.5m+4的最大值为-18/5,求此函数的解析式。
数学思想方法与数学分析教学
数学思想方法与数学分析教学数学教育的目的不仅要使学生掌握数学知识与技能,更要发展学生的能力,培养他们良好的个性品质与学习习惯,全面提高学生的综合素质。
在实现教育目标的过程中,数学思想方法的教学有着极为重要的作用。
数学思想与方法,是数学知识的精髓,是形成良好认知结构的纽带,也是知识转化为能力的桥梁,是培养学生数学观念,形成优良思维品质的关键。
数学分析是大学数学专业的一门主干基础课,它内容多、理论深、知识结构复杂、思想方法精深,是学习数学专业许多后继课程的阶梯。
这门课程包含着丰富的数学知识,数学思想和方法,教好、学好这门课程,对数学专业的师生是件非常重要的事情。
探讨数学分析课中数学思想方法,在数学分析课中加强数学思想方法教育,是当前数学分析教学改革的一个重要课题。
一、关于数学思想方法1.数学思想方法的涵义所谓数学思想是指现实世界的空间形式和数量关系反映在人的意识中,经过思维活动而产生的结果。
它是对数学知识和方法的本质认识,是对数学规律的理性认识。
数学方法是指人们解决数学问题的步骤、程序和格式,是实施有关数学思想的技术手段。
数学思想与数学方法既有联系又有区别。
数学思想具有概括性和普遍性,数学方法具有操作性和具体性。
思想比方法在抽象程度上处于更高层次,数学思想是数学方法的理论基础和精神实质。
思想是源泉、精华,而方法是实践行为的体现。
数学思想都是通过某种方法来体现,而任何一种数学方法都反映了,一定的数学思想。
因此,我们可以把数学思想与方法,看作统一的整体,称为数学思想方法。
2.数学思想方法的层次性数学思想方法是伴随着数学科学的产生而产生的,人们最初的数学活动经验实际上就是最原始的数学思想方法;随着数学活动的深入,人们对已有的数学活动经验加以抽象概括,就形成了较高层次的数学思想方法。
这种抽象概括,再抽象再概括的不断发展,就产生了更高层次的数学思想方法。
由此可见,数学的思想和方法是有层次的,根据数学思想方法的涵义,大致可以将其划分为如下三个层次:(1)低层次的数学思想方法。
数学思想有哪些
数学思想有哪些
数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想(化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。
1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。
“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。
转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.
6.函数的思想:辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。
7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,。
数学分析三大基本思想之逼近
∫
+∞
−∞
Δn (x ) dx = 1
3. 狄拉克序列性质,即 ∀δ > 0 ,有
n →∞
lim ∫
|x | <δ
Δn (x ) dx = 1
注:这里的 Δn (x ) 是正核,实际应用中也会遇到非正核子,如 Fourier 级数中的 狄利克雷核。另外,参数也不一定是 n ,也可以是连续变量。 这些核函数图形的有一个尖点,两旁迅速下降,极限情况就是狄拉克 δ − 函 数。
除了数学分析科目本身博大精深外想想数分后续科目复变实变科目本身博大精深外想想数分后续科目复变实变ode和和pde造成这造成这种现象的原因之一是数学分析中的技巧特别多初步统计包括种现象的原因之一是数学分析中的技巧特别多初步统计包括逼近逼近放缩和夹放缩和夹逼逼变换变换等价无穷小和不定积分换元等价无穷小和不定积分换元分解分解级数和累次积分反演递级数和累次积分反演递推推rmi原理对称引入参变量收敛因子极端法归纳法构造法和计原理对称引入参变量收敛因子极端法归纳法构造法和计算两次法等等
k k Pn (k ) = C n x (1− x )n −k
显然,ΣPn (i ) = 1 . 这种概率分布也叫二项分布。固定 n 和 x 不动,将 Pn (k ) 视作变量 k 的函数。这个函数在 nx (不一定是整数)附近有一尖峰,在两侧迅 速递减。于是直观上可以设想,对这样的 nx ≈ k (以下默认) , Pn (k ) 比较接近 于 1(在和式 ΣPn (i ) = 1 中权重较大) 。因此,下面的加权逼近想法就自然了:
Δn (x ) = cn (1− x 2 )n , −1 ≤ x ≤ 1
然后构造多项式序列
Pn (x ) = ∫ f (u ) Δn (u − x ) dx
数学分析的基本思想与证明方法
数学分析的基本思想与证明方法数学分析是数学的重要分支之一,它研究的是数学中的极限、连续、导数、积分等概念和性质。
在数学分析中,有一些基本的思想和证明方法,它们是我们理解和掌握数学分析的关键。
一、抽象与具体相结合数学分析是一门抽象的学科,它研究的对象是数学中的概念和性质。
但是,在分析问题时,我们不能只停留在抽象的层面,而应该将抽象的概念与具体的问题相结合。
例如,在研究极限的性质时,我们可以通过具体的数列或函数来展示,通过具体的例子来说明极限的概念和性质。
这种抽象与具体相结合的方法,可以帮助我们更好地理解和应用数学分析的知识。
二、逻辑推理与严谨证明数学分析是一门严谨的学科,它要求我们进行严密的逻辑推理和证明。
在分析问题时,我们需要运用数学中的定理和公理,通过逻辑推理来得出结论。
例如,在证明一个极限存在时,我们可以运用极限的定义,通过逻辑推理来证明。
这种逻辑推理和严谨证明的方法,可以帮助我们建立起数学分析的基本框架,确保我们的结论是正确和可靠的。
三、归纳与演绎相结合数学分析中的证明方法有时候需要运用归纳法,有时候则需要运用演绎法。
归纳法是从特殊到一般的推理方法,通过观察和归纳特例的性质,得出一般性的结论。
例如,在证明一个数列的性质时,我们可以通过观察前几项的规律,然后通过归纳法得出一般性的结论。
演绎法是从一般到特殊的推理方法,通过已知的定理和公理,推导出具体的结论。
例如,在证明一个函数的导数时,我们可以通过已知的导数的性质,运用演绎法来推导出具体的导数。
归纳与演绎相结合的方法,可以帮助我们在证明中更加灵活地运用不同的推理方法。
四、直观与抽象相结合数学分析中的一些概念和性质是抽象的,很难直接进行直观的理解。
但是,我们可以通过直观的方法来帮助我们理解和应用这些抽象的概念和性质。
例如,在研究连续性时,我们可以通过绘制函数的图像,通过观察图像的连续性来理解连续性的概念和性质。
这种直观与抽象相结合的方法,可以帮助我们更好地理解和应用数学分析的知识。
浅谈数学分析思想在高中数学解题中的应用
浅谈数学分析思想在高中数学解题中的应用随着现代社会的发展,数学作为一门重要的学科受到了越来越多的关注,高中数学也正变得越来越重要。
随着教学的深入发展,数学分析思想正成为高中生学习数学的一个重要方法。
本文将结合实际,探讨数学分析思想在高中数学解题中的应用。
首先,数学分析思想更侧重于分析问题,培养学生思维敏锐、临场应变的能力。
在针对高中数学解题时,教师应该培养学生更强的分析问题、理解问题、解决问题的能力。
通过给学生设计适当的活动,教师可以培养学生数学分析思想,提高学生对解决问题的动手能力,使他们能够更好的理解和解决问题。
其次,数学分析思想也可以培养学生深入思考的能力,使学生能够明确题目的意图,从宏观上把握整个问题,形成系统的解题思路。
通过培养这种思维能力,学生可以在解决实际问题时更好的综合运用所学的知识,不仅能够在问题解决中更好的发挥功效,而且可以掌握一定的综合分析思想和能力。
再次,数学分析思想可以培养学生从实践出发,进行思考实践的能力,强化学生的解题能力。
这样的解决问题的能力可以有效地提高学生的解题能力,同时也可以培养学生对实际问题的敏感性,使他们能够及时发现问题,并采取有效的措施解决问题。
最后,数学分析思想可以使学生学习以外的知识,提高学生的解决问题的能力。
学生在解决实际问题时,不仅需要运用数学知识,还需要结合其他科学知识,这样才能形成一套完善的解决方案。
从这个角度来看,培养学生数学分析思想,不仅可以提高学生的数学素养,而且可以促进学生学习其他学科的知识,从而提高学生的解决问题的能力。
综上所述,数学分析思想在高中数学解题中有很重要的作用,由于数学分析思想可以培养学生把握问题的能力,解决问题的能力,从而有效地提高学生的数学解题能力。
在教学活动中,教师应该重视对学生数学分析思想的培养,运用多种教学方法引导学生深入理解问题,灵活运用数学分析思想,为学生提供一个良好的学习环境,使学生能够更好的发挥他们的潜力,成为一名优秀的数学人才。
数学分析解题思想与方法
数学分析解题思想与方法
数学分析是一种重要的数学工具,它可以用来解决一些具体的数学问题。
在现代数学中,学习数学分析不仅仅是在学习一门详细的数学理论,而且学习如何应用数学分析的解决问题的思想和方法也非常重要。
首先,在解决数学问题时,必须熟练掌握一些基本的数学概念,如函数、微分和积分等。
这些概念在解决数学问题中都有重要作用,因此一定要加以细致的学习,深刻理解这些概念。
其次,在解决数学问题时,要经常思考分析问题的本质,了解问题的实质及其解决的方法,根据问题的具体特点,正确选择采用合适的分析方法,把握其中仪式微妙之处。
再次,要熟悉解决数学问题的具体步骤,并能灵活运用数学理论,从而使用合适的思路和方法,逐步解决数学问题。
最后,要加强实践能力,熟练掌握数学分析解题思想和方法,经常做一些解题练习,不断积累经验,提高解题能力,以便在解决实际问题时,能够快速准确地找出最佳的解决方案。
总之,从数学分析解题思想与方法来看,要解决数学问题,除了要学习基本的数学概念外,还要灵活地运用数学理论,了解问题的实质,熟练掌握具体的解决方案,经常练习解题,继续积累经验,提高解题能力,从而能够快速准确地找出最佳的解决方案。
因此,要掌握好数学分析解题思想和方法,必须有一定的耐心和勤奋,始终不懈地提高自己的水平,不断的学习和练习,才能在解决数学问题时获得更
大的成功。
浅谈数学分析思想在高中数学解题中的应用
145数学学习与研究2019.5浅谈数学分析思想在高中数学解题中的应用◎刘少华(江西省大余县新城中学,江西赣州341500)【摘要】高中数学有着较强的逻辑性和严谨性,因此,我们作为教师在进行课堂教学时,若能够正确掌握数学思考方式的教学方法,就可以使学生在学习的过程中拓宽他们的数学思维,对丰富学生的学习方式,也有着良好的帮助.因此,我们在教学过程中,为了提升学生们的数学成绩,就需要把数学分析思想渗透到日常教学中.本文主要对高中数学解题中运用数学分析思想的意义和方式进行了深入分析,通过这种方式,帮助学生们提高解题效率和学习效果,促进我国高中数学教育的进步.【关键词】数学分析思想;高中数学;数学解题效率高中数学作为高中课程的必修课,是高中学生知识学习的主要学科,对其高考成绩有着极其重要的影响,因此,我们作为教师必须重视高中数学的学习.根据相关人员所进行的研究显示,学生要想提高自己数学的学习效率,不能仅仅单纯地依靠做题,做再多的题,可能导致自身思维的固化,无法从根本上解决数学难题.只有拥有独立思考、掌握分析思想的能力,才能帮助学生们解决高中数学中的问题.因此,学会运用数学分析思想,对学生高中数学的解题有着重要的意义.一、高中数学解题中运用数学分析思想的意义(一)有利于学生思维潜能的开发学生在进行高中数学知识的学习时,若能够在教师的指导下运用数学分析思想进行高中数学知识的学习,就能够使得自身在学习的过程中,充分发散思维,并且能够灵活运用所学的数学知识,真正将知识为己所用.并且通过这种方式,有利于帮助学生们进一步的开拓解题思路,使得我们无论在生活中还是在学习中,都能够拥有更为灵活的头脑,拥有更多的创新能力[1].因此,为了学生数学成绩的提升,在教学中需要运用数学分析思想来解决高中数学问题.(二)有利于学生观察能力的提升教师在进行高中数学知识的教学过程中,要想促进学生们数学知识成绩的提升,还需要在教学的过程中提升学生的观察能力.若我们在授课的过程中能够科学运用数学分析思想,有助于学生养成良好的观察习惯,透过数学习题表面,挖掘其中潜藏的数学原理,将理论知识与实践联系起来[2].从而通过这种方式,解决实际生活中所面临的数学问题,有利于帮助学生们认清事物的本质,以促进学生们综合能力的进一步提升.因此,为了众多学生的发展,需要运用数学分析思想进行高中数学知识的学习.二、高中数学解题中运用数学分析思想的方式(一)通过转变题型法进行解题虽然高中数学中所包含的基本概念和原理内容并不是很多,但是教师在对我们高中学生进行数学知识的考查时,通常都会通过千变万化的数学题型来深度考查我们对这些概念和原理的掌握程度.因此,我们在面对较为陌生的题型时,虽然会认为是类似的题目,但部分学生依旧会存在不知从哪里入手来解题的问题,从而无形中增加了解题的难度,这会对我们数学成绩的提升造成一定的影响.所以针对这种类型的题型,我们在解题的过程中应用数学分析思想进行题型的转变,从而进行相关问题的解决.例如,在进行含ab 不确定值的取值范围这种题型的解答时,为了解决相关问题,我们可以采用将不熟悉转变为熟悉的分析思想,比如,a -b =1,y =(a +1)2+(b +1)2,求解y 的取值范围.在进行这道问题的解答时,我们可以构建向量m =(1,-1),n =(a +1,b +1),从而通过这种方式,将题型转变为我们所熟悉的题型,从而进行相关问题的解决.(二)通过逆向思维进行解题我们在进行高中数学知识的学习过程中,是通过不断地确定思维方式,开拓自身的学习思维而实现对题型以及数学模型的掌握的.因此,为了促进学生们数学成绩的提升,还需要使用逆向思维这种数学思维方式进行知识的学习.通过这种思维方式,有利于学生们对公式、定义进行逆向分析,或是应用在从正面解题较为困难的情况下进行解题的一种思维方式,有利于高中数学问题的解决.例如,已知a -b =c ,2a 2-2a +c =0,2b 2-2b +c =0,要求解c 的值.在进行这道问题的解答时,通常情况下,我们所想到的解题方法是利用配方来消元的思想进行相关问题的解答.但是在实际的解题过程中,由于题目中包含了太多的未知元素,因此,如果使用配方消元法进行运算,就会提升解题的难度.所以一般遇到这种情况,我们就可以通过逆向思维进行相关问题的解决.根据题目中的已知条件,这道题目中的题干只给出了a ,b ,c 之间的等量关系,但从一元二次方程定义的逆向来看,2a 2-2a +c =0,2b 2-2b +c =0就相当于其解就是a 和b.因此,在进行问题的解答时,就可以再根据韦达定理,a +b =1和ab =-c2,结合题目中的a -b =c 就能比较简单快捷地得出答案.三、结语综上所述,我们作为教师在进行高中数学知识的学习时,为了促进学生们解题效率的提升,可以运用数学分析思想进行相关的教学活动.比如,通过转变题型法进行解题,或者通过逆向思维进行解题,从而通过这几种方式,帮助学生们真正掌握和领会到这些思想,并在课后的习题或是考试中,通过多看多分析总结来获得数学的解题思路,以提高学生们的学习效率.【参考文献】[1]麦康玲.数学分析思想在高中数学解题中的应用[J ].科教文汇(下旬刊),2015(6):110-111.[2]李明锐.数学分析思想在高中数学解题中的应用[J ].文理导航(中旬),2016(5):16.。
数学分析三大基本思想之分解
数学分析三大基本思想之分解SCIbird说明:鉴于笔者时间和精力有限,文章小错误难免。
因此笔者建议读者最好将文章中的结论动手推导一遍,相信必有收获。
光看不练,等于白看。
本章介绍数学分析中的三大基本思想之分解。
需要强调的是,逼近、变换和分解这三大分析基本思想是统一的,在处理数学问题时常常是综合运用。
笔者将分解看作这样一种数学思想:将一个复杂的结构或问题,分解成若干子结构,使得这些子结构尽可能简单。
若按照广义理解,从一个复杂问题中分离出主要矛盾,这也是一种分解思想。
前者的例子可以考虑幂级数分解,如考虑超越函数21112!!n z e z z z n =+++++L L 如此将一个复杂的超越函数z e 分解成幂级数形式,而幂级数可以看做多项式的推广,而我们对子结构n z 非常熟悉(可类比整数的加减乘除运算)。
实际上,幂级数是研究超越函数的有力工具。
当然我们也可以使用Fourier 级数,或者其它函数级数。
后者的例子可以考虑微分,考虑函数增量()()y f x x f x Δ=+Δ−,数学上证明了对可导函数,有()()y f x x o x ′Δ=Δ+Δy Δ的线性主部记为()dy f x x ′=Δ(微分),dy 对y Δ的贡献较大,属于主要矛盾。
如此,我们从一个非线性增量中,分离出线性部分,达到简化问题的目的。
这个例子很平凡,但却很实用,特别在物理分析中(如微元法)。
很多宏观物理过程在短时间内或小尺度范围内变化很小,可以近似为线性过程。
数学上已经证明了非初等函数是大多数,而研究非初等函数的常见途径有三个,即积分法(如含参数积分)、微分方程法和级数法(特别是幂级数法)。
从实用角度看,级数法更方便,比如利用幂级数进行数值计算。
分解思想在数学中非常普遍(不仅仅是数学分析),我们在证明一个复杂数学定理时,常常分成若干引理,这其实应用了分解思想。
学会如何把一个复杂问题简化,拆成若干简单问题,这是一门真功夫,需要能力和经验的积累。
数学分析三大基本思想之分解
数学分析三⼤基本思想之分解数学分析三⼤基本思想之分解SCIbird说明:鉴于笔者时间和精⼒有限,⽂章⼩错误难免。
因此笔者建议读者最好将⽂章中的结论动⼿推导⼀遍,相信必有收获。
光看不练,等于⽩看。
本章介绍数学分析中的三⼤基本思想之分解。
需要强调的是,逼近、变换和分解这三⼤分析基本思想是统⼀的,在处理数学问题时常常是综合运⽤。
笔者将分解看作这样⼀种数学思想:将⼀个复杂的结构或问题,分解成若⼲⼦结构,使得这些⼦结构尽可能简单。
若按照⼴义理解,从⼀个复杂问题中分离出主要⽭盾,这也是⼀种分解思想。
前者的例⼦可以考虑幂级数分解,如考虑超越函数21112!!n z e z z z n =+++++L L 如此将⼀个复杂的超越函数z e 分解成幂级数形式,⽽幂级数可以看做多项式的推⼴,⽽我们对⼦结构n z ⾮常熟悉(可类⽐整数的加减乘除运算)。
实际上,幂级数是研究超越函数的有⼒⼯具。
当然我们也可以使⽤Fourier 级数,或者其它函数级数。
后者的例⼦可以考虑微分,考虑函数增量()()y f x x f x Δ=+Δ?,数学上证明了对可导函数,有()()y f x x o x ′Δ=Δ+Δy Δ的线性主部记为()dy f x x ′=Δ(微分),dy 对y Δ的贡献较⼤,属于主要⽭盾。
如此,我们从⼀个⾮线性增量中,分离出线性部分,达到简化问题的⽬的。
这个例⼦很平凡,但却很实⽤,特别在物理分析中(如微元法)。
很多宏观物理过程在短时间内或⼩尺度范围内变化很⼩,可以近似为线性过程。
数学上已经证明了⾮初等函数是⼤多数,⽽研究⾮初等函数的常见途径有三个,即积分法(如含参数积分)、微分⽅程法和级数法(特别是幂级数法)。
从实⽤⾓度看,级数法更⽅便,⽐如利⽤幂级数进⾏数值计算。
分解思想在数学中⾮常普遍(不仅仅是数学分析),我们在证明⼀个复杂数学定理时,常常分成若⼲引理,这其实应⽤了分解思想。
学会如何把⼀个复杂问题简化,拆成若⼲简单问题,这是⼀门真功夫,需要能⼒和经验的积累。
谈数学分析中的数学思想
谈数学分析中的数学思想王宏仁;孟鑫;李珉飞【期刊名称】《廊坊师范学院学报(自然科学版)》【年(卷),期】2012(012)005【摘要】Mathematical ideas is very important in the mathematical education,mathematical ideas in knowledge is extremely rich.In the part content this paper about application of analogy、structural thought、negative thought、transformation thought and thought of combination of numeral and form do initial exploration in mathematics analysis.%数学思想是数学教育的重要内容,蕴含于数学知识体系中的思想方法是极其丰富的。
而对数学分析内容中常见的类比的思想、构造的思想、反例的思想、递推的思想、化归转化的思想和数形结合的思想进行初步的分析是有意义的。
【总页数】2页(P12-13)【作者】王宏仁;孟鑫;李珉飞【作者单位】吉林师范大学,吉林四平136000;吉林师范大学,吉林四平136000;厦门市乐安中学,福建厦门361002【正文语种】中文【中图分类】O17【相关文献】1.在“数学分析”中渗透数学思想的教学意义——化归与转化思想 [J], 苏芳;覃学文2.解读《数学分析》中的数学思想方法 [J], 李福兴3.数学思想方法在数学分析教学中的应用 [J], 马忠莲4.数学思想方法教学的原则及其在数学分析教学中的体现 [J], 何天荣5.谈数学分析中的数学思想 [J], 王宏仁;孟鑫;李珉飞因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈数学分析中的数学思想李静赤峰学院 10级 数学与统计学院 数学与应用数学2班 10041100332摘要: 在学习数学分析中,首先接触到的就是关于数学名词的概念问题,那么毫无疑问,深入了解概念是学习掌握数学分析的第一要务;在掌握了概念之后,接下来就是运算能力以及对数学符号的熟识程度;然后就是在学习过程中及做题中学习实践的做题技巧,这就逐渐形成了数学思想方法。
数学知识中蕴含的思想方法是极其丰富的,尤其是隐藏于数学知识背后的数学思想的价值不可忽视.本文对数学分析内容中的函数思想、极限思想、连续思想、数形结合思想、化归思想进行初步的分析.关键词: 数学分析; 数学思想; 分析一、函数思想函数概念和函数思想的提出和运用,使得变量数学诞生了,常量数学发展到变量数学,函数思想起了决定性作用.函数是数学分析的研究对象.函数思想就是运用函数的观点,把常量视作变量、化静为动、化离散为连续,将待解决的问题转化为函数问题,运用函数的性质加以解决的一种思想方法.在数学分析中,我们通常用来解决不等式的证明、方程根的存在性与个数、级数问题、数列极限等.例1 证明 当0x >时,()2ln 12x x x -<+. 分析 这是一个不等式证明问题,直接证明有一定难度,但是将此问题转化为函数问题的单调性,即可解决问题.证明 构造辅助函数()f x =()2ln 12x x x +-+,则()f x '=111x x-++,可证当0x > 时,()0f x '>,因此单调递增.又因为()00f =,所以当0x >时, ()()00f x f >=,即原不等式成立.例2 判断()()1ln 111n n n n ∞=+-+∑的敛散性. 分析 这是一个级数问题,该级数为交错级数.从函数的观点出发,化离散为连续,转化为函数问题,运用函数的性质,从而解决问题.解 该级数为交错级数,由莱布尼兹判别法知,要判断其敛散性,只需判断通项的绝对值n u =()ln 11n n ++是否单调减少且趋于为0.为此,将n u 连续化,设()()ln 11x f x x +=+,由于()()()21ln 11x f x x -+'=+,当9x >时,()0f x '<,即()f x 在()9,+∞内单调递减.将特殊值x n =(n 为大于9)的自然数代入知,n u ()f n =也递减且极限为0,故此级数收敛.二、极限的思想极限的思想方法是近代数学的一种重要思想方法,数学分析就是以极限概念为基础、极限理论为主要工具来研究初等函数的一门学科.极限是研究无限的有力工具,“极限”揭示了常量与变量、有限与无限、直线与曲线、匀速运动与变速运动对立统一的关系.极限的思想方法贯穿于数学分析课程的始终,一方面利用极限的思想给出了连续函数、导数、定积分、无穷小(大)量、级数的敛散性、多元函数的偏导数、广义积分的敛散性、重积分、曲线积分、曲线弧长、曲面积分等的概念,数学分析中几乎所有的概念都离不开极限的思想.另一方面在闭区间列上的区间套定理体现了极限的思想,泰勒定理中的泰勒公式就是利用多项式函数去逼近已知函数等.学习者以”极限理论”为工具,以现实具体的问题为背景,从具体到抽象,特殊到一般的去理解概念及定理的本质,可以增强分析和解决问题的能力.对所求量,先构造与其相关的变量,前提是该变量无限变化的结果就是所求量,此时采用极限运算得到所求量。
例如邱瞬时速度、曲面弧长、曲变形面积等问题,就是采用了极限的思想。
例3 如果物体做非匀速直线运动,其运动规律的函数是()t f s =,其中t 为时间,s 是距离,求它在时刻0t 的瞬时速度。
解 物体从时刻到时刻这段时间内的平均速度是:()()tt f t t f t s v ∆-+=∆∆=00,当t ∆很小时,时刻0t 的瞬时速度v v ≈0,因此当无限趋近于()00≠∆t 时,就无限趋近于0v ,即()()tt f t t f t s v t t ∆-+=∆∆=→∆→∆00000lim lim .三、连续的思想在数学分析中,把函数的连续性局部化到当函数的自变量在某点邻域内作微小变动时,相应函数值也在对应点的函数值邻域内作微小变动。
这种思想应用到连续函数求极限的情形,就可以把极限的复杂问题转化为求函数值的问题,从而大大简化了运算。
如果给定的函数不连续,可以通过整理、化简、变换等途径将其转化为连续函数,再利用上面的方法求其极限。
例4 求()xx a x +→1log lim 0,()1,0≠>a a 解 将给定的函数变形为()x a x 11log +,再根据对数函数的连续性,有()()()e x x x x a x x a x x a x log 1lim log 1log lim 1log lim 01100=⎥⎦⎤⎢⎣⎡+=+=+→→→. 四、数形结合的思想数学是研究空间形式和数量关系的科学,而空间形式和数量关系之间往往存在密切的联系,又有各自特点.数形结合思想方法,就是充分利用形的直观性和数的规范性,通过数与形的联系转化来研究数学对象和解决数学问题.具体包括:数转化为形的思想;形转化为数的思想.这种方法使得复杂问题简单化、抽象问题具体化、形象化、直观化,化难为易,最终找到最优解决方案.数形结合的思想在数学分析课程中的应用广泛,很多抽象问题中都蕴含着某种几何意义,借助几何图形,对抽象问题进行几何解释,使抽象问题结合图形更容易深入理解,更容易掌握其最本质的知识.比如:极限、曲线的渐近线、导数与微分、二元函数偏导数与全微分、定积分与重积分、反常积分(无穷积分与瑕积分)、函数的单调性、函数的凹凸性等概念的几何意义,对于确切理解并正确掌握这些基本概念是非常重要的,同时为解决各种实际问题提供了多样化的方法.又比如:闭区间上连续函数基本性质(介值性定理、根的存在定理)、微分中值定理(罗尔定理、拉格朗日定理、柯西定理)、积分中值定理、费马定理、隐函数存在唯一性定理等几何意义,不论对定理的深入理解,还是对启发证明定理结论方面有很大帮助.例5 下面仅谈谈几何图形对拉格朗日定理的内容的理解及证明所起的作用.为了叙述的方便,首先将拉格朗日定理陈述如下:若函数f 满足如下:()1f 在闭区间[],a b 上连续;()2f 在开区间(),a b 内可导,则在(),a b 内至少存在一点ϕ,使得()()()f b f a f b aϕ-'=-. 它的几何意义是若一条曲线在[],a b 上连续,曲线上每一点都存在切线,则曲线上至少存在一点()(),f θϕϕ,过点θ的切线平行于割线AB (图1).此定理的证明关键在于运用其几何意义 ,考虑到这个定理比罗尔定理少了一个条件,构造辅助函数使其满足罗尔定理的要求,即满足函数在端点的取值相同,最后用罗尔定理得出最后的结论.因此,想办法构造一个辅助函数()F x ,使得在[],a b 上连续,在(),a b 内可导并且()()F a F b =.观察图1可知,割线与曲线有两个交点A 与B ,要使 ()()F a F b =,只需使()F x 的图像经过,A B 两点,()F x 可取为曲线纵坐标与割线纵坐标之差.其中,曲线的方程为()y f x =,割线AB 的()()f b f a -在研究数学问题时,将所面临的未解决或待解决的原问题,通过某种转化过程,归结到一类已经解决的新问题中去,最终原问题得到解答的一种思维方法称为化归思想,基本思维过程如图:化归的思想在数学分析中应用十分广泛,挖掘出隐藏于数学知识背后的化归的数学思想,可深化理解数学分析中知识体系间的关系以及处理一些问题的方法,提高数学综合能力.如:()1海涅定理()Heine 揭示了函数极限与数列极限的关系,一方面可利用海涅定理和数列极限的有关性质得出并证明函数极限的所有性质,另一方面将数列极限问题转化为函数极限问题来处理,把某些数列不等式极限转化为函数不等式极限,进而用洛比达法则或两个重要极限(0sin lim 0x x x →=,1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭)求出其极限.()2微分中值定理揭示函数与其导数关系,将函数问题转化为导数问题,进而以导数为工具学习函数的单调性、凹凸性、极值、最值,解决有关最值与极值的实际问题.()3微积分基本定理实现了微分与积分的转化.()4重积分、曲线积分、曲面积分、广义积分的计算问题都转化为定积分的计算问题,另外求定积分及不定积分的两种基本方法——换元法和分步积分法都体现了化归的思想.()5极限与级数之间的转化,如:数列的极限问题可转化为级数收敛的必要条件、级数收敛的定义转化为极限的方式来定义.数项级数问题转化为函数项级数问题,进而运用逐项求导、逐项求积等性质计算.()6格林公式揭示出平面区域上的二重积分与沿着该区域的闭曲线的第二型曲线积分可以相互转化等.化归思想的关键在于选择“转化的方向”,下面举例说明化归思想的应用. 例6 求 数列极限2lim 2n n n →∞. 分析 这是一个数列极限问题,利用数列极限的理论方向来解决这个问题有一定难度.由海涅定理可知将此问题转化为函数极限问题,由洛比达法则可求出结果.解 ()22222lim lim lim lim 0222ln 22ln 2n x x x n x x x n x x →∞→∞→∞→∞====.例7 求数项级数()11!n n n ∞=+∑. 分析 利用数项级数与函数项级数之间的关系,将无法直接求和的数项级数问题转化为求幂级数和函数的问题,进而用熟悉的逐项求导、求积分方法加以解决.解 设()()111!n n n f x x n ∞+==+∑, ()00f =,()()111!n n f n ∞==+∑,又()111!n n n x n ∞+=+∑在(),-∞+∞内一致收敛, ∴()()11!nx n x f x xe n ∞='==-∑ ,()01x t t x f x te dt xe e ==-+⎰, ∴()11!n n n ∞=+∑=()1f =1. 参考文献 :[1] 李福兴. 解读<<数学分析>>中的数学思想方法[J]. 广西贺州学院学报, 2010, 26(3):109-112.[2] 林远华. 数学分析课程中的数学思想方法研究[J]. 广西河池师专学报, 2001, 21(2):31-34.[3] 复旦大学数学系. 数学分析(第二版)(上、下册)[M]. 北京:高等教育出版社, 2007.4[4] 董海瑞. 函数思想在数学分析中的应用[J].太原教育学院学报, 2005, 23(4):48-50.[5] 赵丽棉. 试析<<数学分析>>的数学思想思想特点[J]. 广西教育学院学报, 2001, 4:40-45.[6] 张永锋. 数学分析思想方法的研究与教学[J]. 咸阳师专学报, 1997, 12(3):41-44.[7] 刘俊先. 化归与转化在数学分析教学中的显化[D]. 河北邢台学院数学系, 2009.[8] 邵文凯,龚书.浅谈数学分析的数学思想[J].科技创新导报,2010。