三萜类化合物

合集下载

三萜类化合物应用领域

三萜类化合物应用领域

三萜类化合物应用领域
三萜类化合物是一类重要的天然产物,是由三元二烃组成的化合物。

由长链醇、糖类
和多萜类组成,是一类独特的有机化学物质。

三萜类化合物在食品、医药、农药、新能源
和高分子材料等领域有广泛的应用。

首先,三萜类化合物在食品领域有重要应用。

三萜类植物提取物有非常温和的甜味,
使用它们可以替代糖类或其他添加剂,从而大大减少食品成分中的糖量,改善食品的营养
成分。

此外,由三萜类萜芦碱的制备而成的食用油具有抗氧化活性,对人体健康有很好的
保护作用。

其次,三萜类化合物在医药领域有重要应用。

三萜类植物中包含丰富的维生素、氨基酸、矿物质和类黄酮等,在缓解疲劳、抗衰老、抗疲劳和抗病毒等方面具有良好的效果。

此外,三萜类的类化合物还可以用于抗癌和免疫抑制等方面的研究。

再次,三萜类化合物在药剂中有特定的特性,可以用于农业农药的开发研究。

三萜类
化合物的除虫作用能抑制害虫的繁衍,具有强大的抗虫能力,另外因其无毒、无残留和低
活性,其开发出来的农药避免了对农作物造成毒害和残留。

而且,三萜类化合物还可以用于生物燃料的生产,替代化石燃料,大大改善环境污染。

此外,三萜类的多种特性还可以用于高分子材料的开发,如树脂、涂料和纤维等,用于袋子、衣物、电线等生产。

总之,三萜类化合物有许多独特的性质,在食品、医药、农药、新能源和高分子材料
等领域有广泛的应用,对改善环境污染和保护人体健康有重要作用。

三萜类化合物

三萜类化合物

二、结构与分类
4、环菠萝蜜烷型
β构型
21
22
24 25 26
12 18 20
23
11 19
H
1317 16 14
27
2 1 10 9 8
15
α构型
35
30
4
67
H
Cycloartanes
29 28
二、结构与分类
从中药黄芪(Astragalus membranaceus中分离到的
黄芪苷 I :
24
二、结构与分类
二)单环三萜 菊科蓍属植物-----蓍醇A
HO
蓍醇A
二、结构与分类
三)双环三萜
从海洋生物Asteropus sp. 中分离得到 pouoside A-E是一类具有双环骨架的三萜乳糖苷类。
OR4
OH
OO
OH
OR3
OAc
R1 O
OR2
二、结构与分类
四)三环三萜 蕨类植物、楝科植物等。
常见的糖有D-葡萄糖、D-半乳糖、D-木糖、L-阿拉伯糖、 L-鼠李糖、D-葡萄糖醛酸、D-半乳糖醛酸,另外还有D夫糖、D-鸡纳糖、D-芹糖、乙酰基和乙酰氨基糖等,多 数苷为吡喃型糖,但也有呋喃型糖。
有些苷元或糖上还有酰基等。这些糖多以低聚糖形式与 苷元成苷,成苷位置多为3位或与28位羧基成酯皂苷 (ester saponins),另外也有与16、21、23、29位等羟 基成苷的。
第七章 三萜类化合物
一、概述 二、结构与分类 三、理化性质 四、提取分离 五、鉴别
一、 概述
一、概述
多数三萜(triterpenoids)是由30个碳原子组成 的萜类化合物,根据“异戊二烯法则”,多数三 萜被认为是由6个异戊二烯(三十个碳)缩合而成 的,该类化合物在自然界广泛存在. 有的以游离形式存在

三萜类化合物

三萜类化合物
2、羊毛脂烷型(lanostane)
一般C-3位均有-OH,或游离,或成苷,或氧取代
例如:
O
OH
OH
3
HO
H
HO
羊毛脂醇
OH
黄芪醇
二、分类
(一)四环三萜(tetracyclic triterpenoids) 3、 大戟烷型(euphane) 结构特点:
A/B、B/C、C/D环:均为反式 (与达玛烷型一致) 10、14位:β-角甲基 13位:α-角甲基
21 11 1 19 9 2 3 12 18 22 20 17 16 15
1 4 10 14 13
24 23 25 27
26
C 13 D H 14
30 7
A
4 28
10 5
B
6
H 8
17
20
H
29
lanostane
二、分类
(一)四环三萜(tetracyclic triterpenoids)
2、羊毛脂烷型(lanostane)
A
4
B
6
8
30
7
H
29
dammarane
二、分类
(一)四环三萜(tetracyclic triterpenoids)
1、达玛烷型(dammarane) 结构特点:
A/B、B/C、C/D环:均为 反式 8、10位:β-角甲基 14位:α-角甲基 13位: β-H 17位:β-侧链 20位构型:R 或 S
C 13 A
10
R或S 20
H
17
D
B 8
H
dammarane
二、分类
(一)四环三萜(tetracyclic triterpenoids)

三萜类化合物

三萜类化合物

一、 概述
三萜类化合物的生理活性:
溶血 抗肿瘤 抗炎 抗菌
抗病毒
降低胆固醇 杀软体动物 抗生育
一、 概述
三萜类化合物的生合成路线:

O PP +Fra bibliotekO PP

焦磷酸金合欢酯
焦磷酸金合欢酯
鲨烯
不同的环化方式
不同的三萜类化合物
第七章 三萜类化合物
一、概述
二、结构与分类
三、理化性质 四、提取分离 五、鉴别
2、大戟烷型( Euphane )
3、达玛烷型( Dammaranes )
4、环菠萝蜜烷型( Cycloartanes )环阿屯烷型 5、葫芦素烷型 (Cucurbitanes) 6、楝烷型(Meliacanes)
二、结构与分类
1、羊毛脂烷型
21
R构型
22 20 17 14 30 23 16 15 27 24 25 26
三萜皂苷在豆科、五加科、葫芦科、毛莨科、
石竹科、伞形科、鼠李科、报春花科等植物分布 较多。
一、 概述
三萜皂苷 三萜皂苷元(triterpene sapogenins)和糖组成的,常见 的苷元为四环三萜和五环三萜。 常见的糖有D-葡萄糖、D-半乳糖、D-木糖、L-阿拉伯糖、 L-鼠李糖、D-葡萄糖醛酸、D-半乳糖醛酸,另外还有D夫糖、D-鸡纳糖、D-芹糖、乙酰基和乙酰氨基糖等,多 数苷为吡喃型糖,但也有呋喃型糖。 有些苷元或糖上还有酰基等。这些糖多以低聚糖形式与 苷元成苷,成苷位置多为3位或与28位羧基成酯皂苷 (ester saponins),另外也有与16、21、23、29位等羟 基成苷的。 根据糖链的多少,可分单糖链苷(monodemosides)双 糖链苷(bisdemosides)、三糖链皂苷(tridesmosidic saponins)。当原生苷由于水解或酶解,部分糖被降解 时,所生成的苷叫次皂苷(prosapogenins)。

三萜类化合物详解

三萜类化合物详解

7
结构共同特点
1、具有环戊烷骈多氢菲的基本母核(17个碳原子)。 、具有环戊烷骈多氢菲的基本母核( 个碳原子 个碳原子)。 环戊烷骈多氢菲的基本母核 2、C17位有一个由 个碳原子组成的侧链。 个碳原子组成的侧链。 、 位有一个由8个碳原子组成的侧链 3、母核上有 个角甲基,4个连接在 4、C4、C10、C14、另一 个角甲基, 个连接在 个连接在C 、母核上有5个角甲基 个编号为C 的甲基连于C 位上。 个编号为 18的甲基连于 8或C13位上。
4
结构与分类
多数三萜为四环三萜和五环三萜,也有少数为链状、 多数三萜为四环三萜和五环三萜,也有少数为链状、 单环、双环和三环三萜, 单环、双环和三环三萜,如: 无环三萜: 无环三萜:鲨烯 单环三萜: 单环三萜:蓍醇
HO 蓍 醇 A achilleol A
5
结构与分类
双环三萜: 双环三萜:
O R2 R1 O
13 H 10 5 4 H 9 H 8 14
27
H
H
H
28
25 4 24 23
26
friedelane
26
一、物理性质
1、性状: 、性状: • 三萜类化合物多有较好结晶,皂苷尤其寡糖皂苷, 三萜类化合物多有较好结晶,皂苷尤其寡糖皂苷, 由于糖分子的引入,使羟基数目增多,极性加大, 由于糖分子的引入,使羟基数目增多,极性加大, 不易结晶,因而皂苷大多为无色无定形粉末。 不易结晶,因而皂苷大多为无色无定形粉末。
2
生物合成
对三萜类化合物生物合成(biosynthesis)的研究表明三萜是由鲨 的研究表明三萜是由鲨 对三萜类化合物生物合成 经过不同的途径环合而成, 烯(squalene)经过不同的途径环合而成,鲨烯是由倍半萜金合 经过不同的途径环合而成 欢醇(farnesol)的焦磷酸酯尾尾缩合生成。 的焦磷酸酯尾尾缩合生成。 欢醇 的焦磷酸酯尾尾缩合生成

中药化学:8-三萜类化合物

中药化学:8-三萜类化合物

17 13 14
HO H
大戟醇
(大戟属植物乳液中)
大戟烷型
COOH
9 8
7
O
H
乳香二烯酮酸 △7(8)
• 母核的17位上有一个由8个碳原子组成的侧链;
R 17
14
甾醇
• 在母核上一般有5个甲基,即4位有偕二甲基、10位和
14位各有一个甲基、另一个甲基常连接在13位或8位上。
• 在4、4、14位上比甾醇多三个甲基,也有认为是植物
甾醇的三甲基衍生物。
2. 四环三萜或其皂苷苷元主要类型
达玛烷、羊毛脂烷、甘遂烷、环阿屯烷(环菠萝蜜烷
• 根据三萜类化合物碳环的有无和多少进行分类。 多数为四环三萜和五环三萜。
21
2224ຫໍສະໝຸດ 26菲H 20
23
12
(二)四环三萜
27
11 19
18 13
17
9
在中药中分布很广。
1 10 8
15
34
H 7 30
四环三萜
1. 结构特征:
29 28 H
A BCD
• 它们大部分具有环戊烷骈多氢菲的基本母核;
3 4
型)、葫芦烷、楝烷型三萜类。
① 达玛烷型
结构特点:A/B、B/C、C/D 环均为反式, C8位有-CH3,C13位 有-H, C17有侧链,C20构型为R或 S。
1 34
21
22
24
26
H 20 23
12
27
11 19
18 13
17
9
10 8
15
H 7 30
29 28 H
达玛烷型 (dammarane)
11C=O,15C=O,23C=O,27-CH3→27-COOH,是羊 毛甾烷的高度氧化物。

中药化学-第八章-三萜类化合物

中药化学-第八章-三萜类化合物
➢ 苷元中除与氧连接的碳和烯碳外,其他δ 一般在60.0以下,苷元和糖上与氧相连碳 为δ60.0-90.0,烯碳在δ109.0-160.0,羰 基碳为δ170.0-220.0。
其他NMR技术
➢ DEPT (用于确定碳的类型CH3、CH2、CH) ➢ 1H-1HCOSY ➢ 13C-1HCOSY ➢ HMQC(通过氢检测的异核多量子相关谱) ➢ HMBC(通过氢检测的异核多键相关谱)
【分离方法】
➢ 2、大孔树脂法 适合皂苷的精制和初 步分离。先用水洗除去糖和水溶性杂质, 再用不同浓度醇浓度由低至高洗脱皂苷 按极性由大到小的顺序被洗下来。
【分离方法】
3、色谱分离法 ⑴吸附柱色谱法:吸附剂为硅胶,流动相为氯 仿-甲醇不同比例 ⑵分配柱色谱法 支持剂:硅胶 固定相:3%草酸水溶液 流动相:含水混合有机溶剂 反相柱色谱:吸附剂为Rp-18、Rp-8或Rp-2, 流动相为甲醇-水,乙腈-水
【分离方法】
(3)高效液相色谱法 目前最常用, 一般选用反相柱,流动相为甲醇-水, 乙腈-水。
(4)凝胶色谱法 应用较多的是能 在有机相使用的Sephadex LH-20。
第五节 三萜类化合物检识
【理化检识】
➢ 1.泡沫试验 中药水提取液振摇后,产生 持久泡沫(15分钟以上),注意假阳性反 应。
【溶血作用】
➢ 皂苷具有破坏红细胞而产生溶血的现象。
➢ 溶血指数:指在一定条件下(等渗、缓冲 及恒温)下能使同一动物来源的血液中红 细胞完全溶血的最低浓度。
➢ 皂苷的溶血作用是皂苷和红细胞壁上的胆 甾醇结合,破坏血红细胞的正常渗透性, 使细胞内压增加,而产生溶血。但不是所 有皂苷都具溶血作用。另外有些树脂、脂 肪酸、挥发油也能产生溶血现象。
三萜生物碱) ➢ 2.按碳环的数目分类: ➢ (1)链状三萜(较少) ➢ (2)单环三萜(较少) ➢ (3)双环三萜(较少) ➢ (4)三环三萜(较少)

中药化学 第八章 三萜类化合物

中药化学 第八章 三萜类化合物

5.原萜烷(protostane)型 其结构特点是C10位和C14位上有CH3,C8上有-CH3,C20为S构型。 泽泻萜醇A (alisol A)和泽泻萜醇B (alisol B)等是从利尿 渗湿中药泽泻(Alisma orientalis)中得到的主要成分,可降低 血清总胆固醇,用于治疗高血脂症。
化合物。
1.羊毛脂甾烷(lanostane)型 羊毛脂甾烷也叫羊毛脂烷,其结 构特点是A/B环、B/C环和C/D环都是反式,C20为R构型,侧链 的构型分别为10、13、14、17。 羊毛脂醇(lanosterol)是羊毛脂的主要成分,它也存在于大戟 属植物Euphorbia balsamifera的乳液中。
二、单环三萜
从菊科蓍属植物(Achillea odorta)中分离得到蓍醇A(achilleol A) 是一个具有新单环骨架的三萜类化合物,这是2,3-环氧鲨烯 在生物合成时环化反应停留在第一步的首例,环上取代基除 甲基和亚甲基外,还连有l~3个侧链。
三、双环三萜
从海洋生物Asteropus sp.中分离得到的pouoside A-E是 一类具有双环骨架的三萜半乳糖苷类化合物,分子中含有多 个乙酰基。其中pouoside A具有细胞毒作用。
生源途径
三萜类化合物的生物合成途径从生源来看,是由 鲨烯(squalene)通过不同的环化方式转变而来的,而鲨 烯是由焦磷酸金合欢酯(farnesyl pyrophosphate,FPP)尾 尾缩合生成。
第二节
三萜类化合物的结构与分类
根据三萜类化合物在植物体(生物体)内的存在形式、 结构和性质,可分为三萜皂苷及其苷元和其他三萜类(包 括树脂、苦味素、三萜生物碱及三萜醇等)两大类。但一 般则根据三萜类化合物碳环的有无和多少进行分类。目前 已发现的三萜类化合物,多数为四环三萜和五环三萜,少 数为链状、单环、双环和三环三萜。近几十年来还发现了 许多由于氧化、环裂解、甲基转位、重排及降解等而产生 的结构复杂的高度氧化的新骨架类型的三萜类化合物。

三萜类 化合物

三萜类 化合物

三萜类化合物
三萜类化合物是一类由 30 个碳原子组成的萜类化合物,广泛存在于植物界中,具有多种生物活性,如抗炎、抗菌、抗病毒、抗肿瘤等。

三萜类化合物的结构复杂多样,包括四环三萜、五环三萜等多种类型。

四环三萜类化合物是三萜类化合物中较为常见的一类,其中最著名的是紫杉醇。

紫杉醇是一种从紫杉属植物中提取的天然产物,具有良好的抗肿瘤活性,被广泛应用于癌症治疗。

五环三萜类化合物是三萜类化合物中较为复杂的一类,其中最著名的是齐墩果酸。

齐墩果酸是一种从橄榄属植物中提取的天然产物,具有良好的抗炎、抗菌、抗病毒等生物活性,被广泛应用于医药、化妆品等领域。

除了上述两种类型的三萜类化合物外,还有许多其他类型的三萜类化合物,如甾醇、皂苷等。

这些化合物具有不同的生物活性和药理作用,被广泛应用于医药、化妆品、食品等领域。

总之,三萜类化合物是一类非常重要的天然产物,具有多种生物活性和药理作用,对于人类健康和医药事业的发展具有重要意义。

三萜类的作用与功效

三萜类的作用与功效

三萜类的作用与功效三萜类是一类广泛存在于自然界中的次生代谢产物,具有多种生物活性及药理作用。

它们常见于植物、真菌和一些昆虫体内,具有抗菌、抗炎、抗肿瘤、抗病毒、保护神经系统等多种功效,因此受到广泛的关注和研究。

本文将详细介绍三萜类的作用与功效。

一、抗菌作用三萜类化合物对多种微生物具有抑制作用,包括细菌、真菌和病毒。

其中,对细菌的抗菌作用最为明显。

三萜类化合物能够破坏细菌的细胞壁和细胞膜,抑制细菌生长和繁殖。

研究表明,三萜类化合物对多种致病菌如金黄色葡萄球菌、大肠杆菌和绿脓杆菌等均有较强的抑制作用。

此外,三萜类化合物还能够促进巨噬细胞的活性,增强机体的免疫力,从而具有预防感染和促进伤口愈合的作用。

二、抗炎作用三萜类化合物具有明显的抗炎作用,能够抑制炎症反应、减轻组织损伤,并促进组织修复。

三萜类化合物可通过抑制炎症介质的产生和释放,降低炎症细胞的活性,减轻炎症反应的强度和持续时间。

研究发现,三萜类化合物对多种炎症模型均具有显著的抗炎作用,如实验性脑炎、关节炎和红斑狼疮等。

此外,三萜类化合物还具有调节免疫系统的功能,可增强机体的免疫力,提高机体对外界有害物质的抵抗能力。

三、抗肿瘤作用三萜类化合物具有明显的抗肿瘤活性,可抑制肿瘤细胞的生长和增殖,并促进肿瘤细胞的凋亡。

三萜类化合物通过多种机制发挥抗肿瘤作用,包括抑制肿瘤细胞的DNA、RNA和蛋白质的合成,干扰肿瘤细胞的信号传导和凋亡途径等。

研究发现,三萜类化合物对多种肿瘤细胞株均具有显著的抑制作用,如乳腺癌、肺癌、结肠癌和肝癌等。

此外,三萜类化合物还具有抗血管生成的作用,能够抑制肿瘤血管的形成,阻断肿瘤的血供,从而抑制肿瘤的生长和转移。

四、抗病毒作用三萜类化合物对多种病毒具有抑制作用,包括流感病毒、乙肝病毒、艾滋病毒等。

三萜类化合物可通过多种机制发挥抗病毒作用,如抑制病毒的复制和转录,干扰病毒的结构和功能等。

研究发现,三萜类化合物对多种病毒具有显著的抑制作用,特别是对于流感病毒的抑制作用最为明显。

三萜类化合物

三萜类化合物

三萜类化合物根据三萜类化合物在植物体(生物体)内的存在形式、结构和性质,可分为三萜皂苷及其苷元和其他三萜类(包括树脂、苦味素、三萜生物碱及三萜醇等)两大类。

目前已发现的三萜类化合物,多数为四环三萜和五环三萜,少数为链状、单环、双环和三环三萜。

三萜是由鲨烯(squalene)经过不同的途径环合而成,而鲨烯是由倍半萜金合欢醇(farnesol)的焦磷酸酯尾尾缩合而成。

三萜苷类化合物组成苷元:四环三萜、五环三萜常见的糖:葡萄糖、半乳糖、木糖、阿拉伯糖、鼠李糖,糖醛酸,特殊糖(如芹糖、乙酰氨基糖等)糖链:单糖链、双糖链、三糖链成苷位置:3、28(酯皂苷)或其它位-OH次皂苷:原生苷被部分降解的产物三萜类化合物检测方法(一)薄层色谱(TLC)法在分析三萜类化合物时常用的展开系统有甲苯-乙酸乙酯-乙酸(12:4:0.5)、正己烷-乙酸乙酯(1:1),正己烷-乙酸乙酯-乙醚(1:1:1),氯仿-乙醚-乙酸乙酯(9:1:1),甲苯-乙酸乙酯-乙酸(13:4:0.4),乙酸乙酯-环己烷(7:3),石油醚-乙酸乙酯(95:5),氯仿-甲醇-水(30:4:1),一般常用的显色剂为10%硫酸乙醇,50%硫酸甲醇,加热后,可通过观察斑点颜色的变化初步判断四环三萜酸母核上的不饱和性。

三萜醇斑点的颜色通常为黄色。

(二)比色法测定灵芝总三萜酸含量该法的优势是准确、重现性好,样品背景干扰小。

李保明等(2007)以灵芝酸B(ganoderic acidB)为对照品,建立了用比色法定量灵芝中总三萜酸含量的方法。

对灵芝属三个种赤芝(Ganodrrma.luceidum)、紫芝(G.sinense)、松杉灵芝(G.tsugae)等8个样本的总三萜酸含量进行了测定。

该法是将灵芝子实体、灵芝孢子粉用无水乙醇回流提取,提取液经过碱化、酸化后,用氯仿萃取,萃取液经过无水硫酸钠干燥后减压蒸干,制成无水乙醇溶液,与硫酸加热产生颜色反应,测定其吸光度值,按照回归方程求出值。

三萜类化合物的作用

三萜类化合物的作用

三萜类化合物的作用
三萜类化合物是指一组以三萜元素-(-C3H4)n-(n≥2)为结构核心的天然产物,其具有独特的化学结构和生物学活性。

它们在很多部分都表现出了重要的作用,具体包括:
一、免疫调节
1. 抗菌作用:多种三萜类化合物具有抗菌作用,能有效抑制许多致病菌种的增殖,增强机体免疫力。

2. 抑制炎症:三萜类化合物具有抑制炎症的作用,它们能抑制正常的细菌的感染,降低炎症产生的毒素,减轻慢性炎症。

二、营养类补充剂
1. 补充维生素:多种三萜类化合物中富含一定程度的维生素,可补充人体对维生素的需求,促进身体活动和适应能力的改善。

2. 提高消化功能:三萜类化合物含有一定量的天然辅酶,可以增加胃肠道中消化酶的释放,促进食物消化吸收,从而提高身体的消化功能。

三、抗氧化剂
1. 增强抗氧化能力:多种三萜类化合物具有较好的抗氧化特性,可以抵御机体对氧化应激的攻击,维持机体内部氧化状态的稳定。

2. 预防自洁化反应:三萜类化合物作为抗氧化剂可以降低机体内环境物质和活物质的氧化,防止自由基的过度活性,预防自洁化反应发生。

四、改善循环系统
1. 保护心血管:多种三萜类化合物具有良好的血管扩张作用,可以影响血液循环,缓解心脏缺血,保护心血管系统。

2. 改善血液粘度:三萜类化合物可调节血液成膜细胞的分布,降低血液粘度,改善血液循环,提高消化功能。

综上所述,三萜类化合物在生物学、营养学和抗氧化学上都发挥着重要的作用,引起了国内外研究人员的广泛关注,也被普遍应用于药物、营养补剂和保健食品的研制之中,以满足人类的健康需求。

三萜类化合物的综述

三萜类化合物的综述

上取代与羊毛甾烷不
同,其他相同。具有
C9-βCH3,C8-βH,
C10-αH。
❖能够以为是羊毛甾烯(lanoslene) △8质子化
(protonation),在C8位产生阳碳离子,然后 C10 -CH3 位甲基移至C9 位,C9 H移至C8 位所 致。
R
R
+
H
R
H
+ H
R
HH
18 H HH
19 H
生源:从环氧鲨烯由全椅式构象形成。
H
20
HH
13 17
14
10 H 8
构造特点?
H
达玛甾烷
二、达玛甾烷 (Dammarane) 型
H
20
H
H
13 17
14
10 H 8
H
达玛甾烷
H 22 21
24
26
20
12 18
H 23
25
11
13 17 16
27
1 19 9 H 14
15
2
10
H
8 30
345
7
1 19 9 H
14
2
10
H
8 30
345
7
H6
28 29
羊毛甾烷
16
27
构 造 特 点 : 1) A/B 、
15B/C、C/D环均为反式。
2) C10、C13位有两个β-
CH3,C14位有 一种α-CH3。
3) C20为R 构型,即C20
为β-H。
4) C17侧链为β构型。
5) C3位常有-OH存在。
四环三萜 (tetracyclic triterpenoids) 在生 源上可视为由鲨烯变为甾体旳中间体,大 多数构造和甾醇很相同,亦具有环戊烷骈 多氢菲旳四环甾核。在4、4、14位上比甾 醇多三个甲基,也有以为是植物甾醇旳三 甲基衍生物。目前发觉旳四环三萜主要有 下列几种类型。

执业中药师《中药化学》复习:三萜类化合物

执业中药师《中药化学》复习:三萜类化合物

执业中药师《中药化学》复习:三萜类化合物2017执业中药师《中药化学》复习:三萜类化合物三萜类化合物是由数个异戊二烯去掉羟基后首尾相连构成的物质。

大部分为30个碳原子,少部分含27个碳原子的萜类化合物。

下面是店铺分享的一些相关资料,供大家参考。

(一)概述1.定义:三萜是由6个异戊二烯单位、30个碳原子组成。

三萜皂苷是由三萜皂苷元和糖、糖醛酸等组成。

由于该类化合物多数可溶于水,水溶液振摇后产生似肥皂水溶液样泡沫,故此称为皂苷。

结构中多具羧基,所以又称之为酸性皂苷2.分布:三萜皂苷在豆科、五加科、伞形科、毛茛科、石竹科、葫芦科、鼠李科等植物分布较多。

如:人参、三七、甘草、柴胡、黄芪、远志3.生理活性:具溶血、抗癌、抗炎、抗菌、抗生育等活性。

齐墩果酸——临床用于治疗肝炎人参皂苷B2、柴胡皂苷A——降低高血脂甘草次酸——抗病毒作用4.生物合成焦磷酸金合欢酯(倍半萜)经过尾-尾缩合形成鲨烯,鲨烯在经过不同方式环合形成三萜化合物(二)分类多数三萜为四环三萜和五环三萜,也有少数为链状、单环、双环和三环三萜1.四环三萜达玛烷型:C8和C10有β-构型的角甲基,13位有β-H,17位的侧链有β-构型,C20(手性碳)构型为R或者S 书P232羊毛酯烷型:C20为R构型,侧链的构型分别为10β、13β、14α、17β 书P2302.五环三萜齐墩果烷型:又称β-香树脂烷型,五环无侧链,8个角甲基程8个单峰,无裂分,H积分为3;A/B环、B/C环、C/D环均是反式,D/E 环均是顺式书P235乌苏烷型:α-香树脂烷型,多为乌苏酸衍生物。

8个角甲基,C29和C30上的甲基形成H积分为3的二重峰(有裂分) 书P236 齐墩果烷型和乌苏烷型的H谱区分:E环上的'取代基有无甲基的裂分,有则为乌苏烷型,没有则为齐墩果烷型。

羽扇豆烷型:E环为五元碳环,19位有异丙基为α-构型书P237 羽扇豆烷型与齐墩果烷型不同点:C21与C19连成五元环E环,D/E环为反式。

三萜类化合物的常见颜色反应

三萜类化合物的常见颜色反应

三萜类化合物的常见颜色反应
三萜类化合物是一类在植物中广泛存在的天然有机化合物。

它们具有多种生物活性,如抗菌、抗炎、抗肿瘤等作用。

在化学研究中,三萜类化合物常常通过颜色反应进行分离和鉴定。

下面介绍几种常见的三萜类化合物颜色反应。

1. 水杨醛试剂(法式试剂)反应
水杨醛试剂可以与三萜类化合物中的羟基发生加成反应,形成紫色或紫红色的产物。

这种反应可以用于鉴别和定性分析一些三萜类化合物,如齐墩果酸和三尖杉酯。

2. 碘试剂反应
碘试剂可以与三萜类化合物中的不饱和键发生加成反应,形成暗红色、紫色或黑色的产物。

这种反应可以用于鉴别和定性分析一些三萜类化合物,如阿魏酸和异阿托品。

3. 高锰酸钾试剂反应
高锰酸钾试剂可以氧化三萜类化合物中的羟基和双键,形成蓝色或紫色的产物。

这种反应可以用于鉴别和定性分析一些三萜类化合物,如丹参酮和丹参素。

4. 硫酸铁试剂反应
硫酸铁试剂可以与三萜类化合物中的羟基和双键发生加成反应,形成绿色、蓝色或紫色的产物。

这种反应可以用于鉴别和定性分析一些三萜类化合物,如紫草酸和柚皮素。

5. 2,4-二硝基苯肼试剂反应
2,4-二硝基苯肼试剂可以与三萜类化合物中的羟基发生偶氮反应,形成橙黄色或红色的产物。

这种反应可以用于鉴别和定性分析一些三萜类化合物,如乌头酸和毒芹酮。

三萜类化合物的颜色反应是一种常见的鉴别和定性分析方法,可以帮助化学家们更准确地分离和鉴定这些有机化合物。

同时,这些反应也为三萜类化合物的生物活性研究提供了一定的基础。

中药化学第八章三帖类化合物

中药化学第八章三帖类化合物
某些萜类(如三萜酸),胺类、脂肪酸、树脂和酸败的油脂类也可 引起溶血,因此在进行溶血试验时要注意将三萜皂苷纯化后再做 (胆甾醇沉淀,沉淀得到的甾体皂苷再作溶血试验)。
第四节 三萜类化合物的提取与分离 一、三萜类化合物的提取 1.醇类溶剂提取法
为提取皂苷首选方法
(1)含油脂高的原料可事先用石油醚脱脂以后再用醇提, (2)过滤时要趁热。
连一去氧己糖 479[(M+Na)-162-162-146-132]+准分子离子峰-己糖×2-去氧己糖-戊糖:
去氧糖前连戊糖,且此四个单糖组成一条糖链 479=齐墩果酸分子量+Na (苷元):糖链全部打掉。
以上FD-MS测定数据与该三萜皂苷的分子量及糖链连接顺序完全吻合。
三、NMR谱 1.1H-NMR: 可提供甲基质子、连氧碳上质子、烯氢质子及糖端基质子结构信息。
环的碎片峰.
由于分子中存在C12双键,具环己烯结构,故C环易发生RDA裂 解,出现含A、B环和D、E环的碎片离子峰。
(2) 羽扇豆醇型三萜皂苷元 其特征碎片离子峰为失异丙基碎片离子峰[M-43] + 。
2.三萜皂苷 主要以FD-MS和FAB-MS测定。
例 :齐墩果酸-3-0-β-D-葡萄糖基-(1→4)-0 -β -D-葡萄糖基-(1→3)0-α-L-鼠李糖基-(1→2)-0- α -L-阿拉伯糖苷.
2.大戟烷(euphane)型
17 13
H 14
H H

结构特点 是羊毛脂烷的立体异构体, C13、C14和C17 上的取代基构型与羊毛脂烷相反,分别是 13α、14β、17α-构型。
COOH
9 8 7
O H
乳香二烯酮酸 △7(8) 异乳香二烯酮酸 △8(9)
3.达玛烷(dammarane)型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30 20
29 19
COOH
▪ 3、羽扇豆烷型19 H21
18 22
第三节 三萜类化合物的理化性质
一、一般物理性质
1、性状
➢ 苷元多有较好的结晶 ➢ 苷多为无定型粉末 ➢ 具有苦和辛辣味,对人体粘膜有刺激性,还具有吸湿性.
2、溶解性
➢ 苷元能溶于石油醚、苯、乙醚、氯仿等。 ➢ 苷极性较大,可溶于水,易溶热水,热甲醇,热乙醇和稀醇,难溶于
3、溶血实验 供试液1毫升,水浴蒸干,0.9%生 理盐水溶解,加入几滴2%红细胞悬浮液,溶液 油浑浊变澄清,则溶血。
二、色谱检识 1、薄层色谱 吸附剂 :硅胶 展开剂:游离三萜 环己烷-乙酸乙酯
苯-丙酮 氯仿-乙酸乙酯 三萜皂苷 氯仿-甲醇-水 正丁醇-醋酸-水 显色剂:10%硫酸、三氯乙酸等。
▪ 2、纸色谱 ▪ 皂苷:水为固定相 ▪ 苷元:甲酰胺为固定相
第七节 含皂苷的中药实例 一、人参
➢ 五加科人参属植物人参的干燥根。 ➢ 有大补元气、生津止渴、调养营卫。
(一)主成分结构、性质 1、皂苷 含量约4%,根须中的含量高于
主根。
➢ 人参总皂苷(Rx)。 ➢ 根据皂苷元的不同分为A、B、C三类。
▪ (1)分类及主要化合物
▪ A型
➢ 人参皂苷-苷元为20(S)原人参二醇(最
3分布
三萜类化合物在菌类、蕨类、单子叶和双子叶植物、动 物及海洋生物中均有分布,尤以双子叶植物中分布最 多
➢ 游离三萜:豆科、菊科、大戢科、卫矛科 ➢ 三萜苷类:豆科、五加科、桔梗科、远志科、葫芦科、
毛茛科等分布较多
➢ 常用中药人参、黄芪、甘草、三七、桔梗、远志、柴
胡等都含有皂苷(三萜苷)。
第二节 三萜类化合物的结构与分类
12 13
11
C-8 17
16
2
10 9
8 14
15
3
5
7
4
6
2CH3
1、羊毛脂甾烷型
▪ A/B 、B/C、 C/D环都 是反式
▪ C20为R构型 ▪ C10 、C13、C17为β,
C14为α构型。
19 11
21
18 12
13
2
10 9
3 4
5 6
8 14 30
7
28 29
注意17以后的编号
22
一、三萜类化合物的提取分离
1、甲醇或乙醇提取(242页) 2、酸水解有机溶剂萃取法或皂苷水解制备 3、碱水提取法 含有羧基,可溶于碱水。
▪ 二、三萜类化合物的分离
▪ 1.分段沉淀法
▪ 利用皂苷难溶于乙醚、丙酮,先将其溶 于甲醇或乙醇,逐滴加入乙醚、丙酮或 (1:1)的混合比例分段沉淀。

中性醋酸铅:酸性皂苷
▪ 总皂苷采用正丁醇法;单体分离采用硅 胶柱层析、大孔树脂、葡聚糖凝胶等。
▪ 流程:255页。
▪ 2、人参多糖
➢ 提取过皂苷的残渣中存有大量的糖,是其 扶正固本的有效成分。
➢ 骨架由半乳糖醛酸和半乳糖组成,末断为 阿拉伯糖和鼠李糖。
▪ 3、聚炔醇
➢ 从人参根醚提取物中分离得到12种聚乙 炔醇类单体。多为17个碳链长度,其中双键、 三键的位置、数量不等,有1~3个羟基。主 要作用抗癌、止痛、镇静、消炎。
(2)乙酰解
➢ 全乙酰化,在BF3催化下,加入乙酸酐,得到全乙酰 化苷元及全乙酰化寡糖
(3)Smith降解
➢ 温和酸水解,可以用此法获得真正的皂苷元。
(4)酶解
(5)糖醛酸苷键裂解
➢ 对难以水解的糖醛,常用光解法,四醋酸铅-醋酐以 及醋酐-吡啶法.
(6)酯皂苷的水解
➢ 可在氢氧化钠水中水解.
第四节 三萜类化合物的提取分离
3
4
56
27 7
O
O24 23
COOH
(一)主成分结构和性质
1.皂苷类 含量在5~11%。 ➢ 甘草皂苷多有羧基,分子极性大,不易结晶,分
离纯化困难。
➢ 甘草酸由甘草次酸与2分子的葡萄糖醛酸组成。甘 草酸和甘草次酸具有促肾上腺皮质激素样的生物活 性,临床治疗胃溃疡、肝炎等。
➢ 甘草酸易溶于热的稀乙醇,几乎不溶于无水乙醇或 乙醚。在植物体中以钾盐或钙盐存在
第八章 三萜类化合物
第一节 概 述
1 多数三萜,C-30, 6个异戊二烯单位 2 包括:
➢ 游离三萜—皂苷元—常见四环、五环三萜
➢ 三萜苷—皂苷---多含羧基,亦称酸性皂苷糖部分:常见葡萄 糖、鼠李糖、半乳糖、阿拉伯糖、葡萄糖醛酸、半乳 糖醛酸
也有木糖、夫糖、芹糖等
➢ 三萜皂苷的苷元多为醇苷,但也有酯苷。有单糖链、双糖链和叁 糖链皂苷
➢ 与之相对应甾体产生红-紫-蓝-绿-污绿-褪色的 变化
2 五氯化锑(Kahlenberg)反应
➢ 样品的CHCl3液点于滤纸上,喷20%五氯化锑 干燥后60-70℃加热,显蓝色、灰蓝色、灰紫 色
3 三氯乙酸(Rosen-Heimer)反应
➢ 样品溶液点于滤纸上,喷25%三氯乙酸,加热 至100℃,显红-紫色
▪ 不同点是:
➢ A型母核上有三个羟基取代,B型母核上有四 个羟基取代。
▪ 成苷的位置
➢ A型在C3和 C20,糖多为葡萄糖、阿拉伯糖、 木糖;
➢ 糖B、型木在糖C6。和 C20成苷,糖多为葡萄糖、鼠李
C型人参皂苷的苷元为齐墩果烷型, C28 为羧基,并与糖成酯苷键, C3连接的糖 中有葡萄糖醛酸。
细胞的正常渗透性。
➢ 一般口服无溶血作用。肌注易引起组织坏死,静脉注射 可能引起溶血,呈现毒性。
➢ ➢ 一般单皂苷的溶血作用明显,双皂苷较弱.
四 颜色反应
1、醋酐-浓硫酸(liebermann-burchard)
➢ 将样品溶于乙酸酐中,加入浓硫酸-乙酸酐, 颜色可产生黄-红-紫-蓝变化,最后褪色。
24
26
20
23
17
16
25 27
15
2 大戟烷型
与羊毛脂烷型相比
•基本碳架相同
•13、14、17取代基构型不同
19 11
2
10 9
3 4
5 6
28 29
21 18
12 13
8 14 30
7
22
24
26
20
23
17
16
25 27
15
3、达玛烷型
➢ 与羊毛脂烷型相比,C13-CH3转到C8位 ➢ 达玛甾烷型皂苷主要分布在五加科,葫芦科和属李
多), 人参皂苷Ra1、 Ra2、 Ra3、 Rb1、
Rb2、Rb3、 Rc、21 Rd……..
R2O HO
22 20
24
26
23
25
17
27
19
18
30
R1O
29
28
B型人参皂苷-苷元为20(S)原人参三醇
(第二)
人参皂苷Re、 Rf、 Rg1、 Rg2、
Rh1……
21
R2O HO
22 20
24
▪ 2、铅盐沉淀法:

碱性醋酸铅:中性皂苷
3、胆甾醇沉淀法:
➢ 皂苷可与胆甾醇生成难溶性的分子复合物,将此沉淀 用乙醚回流,胆甾醇被乙醚提出,皂苷不溶于乙醚, 残留物既为较纯的皂苷。
4、色谱法
➢ 硅胶,氧化铝:分离苷元 ➢ 高压液相:反相,用甲醇-水,乙晴-水洗脱. ➢ 大孔树脂色谱:皂苷的精制和初步分离。 ➢ 极性大的皂苷可被10%~30%的甲醇或乙醇洗脱。极
性小的则被50%以上的甲醇或乙醇洗脱。 ➢ 凝胶色谱法 在有机相使用的Sephadex-20.
第五节 三萜类化合物的检识
一、理化检识
1、泡末实验:中药粉末1克,加水10毫升,煮沸 10分钟后滤出水液,振摇后产生持久性泡末。 不因加热而消失。
2、显色反应 通过liebermann-burchard等和 Molish反应可初步判断。
30
29
19 20 21
12
18
11
13
25
26
17
22
1
14
COO_glu
2
9
10
8
16 15
RO
3
4
56
27 7
24
23
2、乌苏烷型( α -香树脂醇型)
▪ 乌苏酸又称熊果酸的衍生物。与齐墩 果酸的区别是碳20没有偕二甲基,而是 20和19各有一个甲基取代。

乌苏烷
30
20 29
19
HO
乌苏酸
低极性有机溶剂. ➢ 含水正丁醇常作为皂苷的提取溶剂.
二、表面活性(发泡性)
皂苷的水溶液经强烈振摇能产生持久性的泡沫,
且不因加热而消失。
三、溶血性
多数皂苷水溶液能破坏红细胞而有溶血作用。
溶血指数:在一定条件下能使血液中红细胞完全溶解的最低溶血浓度. ➢ 溶血机理:皂苷与胆甾醇结合生成不溶于水的分子复合物.破坏血红
➢ 甘草酸易溶于水和稀氨水,加酸可沉淀析出。
➢ 甘草酸有糖醛酸,难水解,一般用10%的硫酸加热 24小时或稀狻加压、加热水解。
▪ 甘草酸铵盐的制备;258页 ▪ 甘草酸单钾盐的制备:259 ▪ 甘草次酸的提取:259
12
18
11
13
25
26
17
22 28
14
9
16
10
8
15
27 56 7
1 2
23
34
HO
24
30
29
19 20 21
11 25
9
12 13
26 14
18
22
17
COOH
16
10 8
相关文档
最新文档